Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/16880
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLAKHAL, NOUREDDINE-
dc.date.accessioned2025-11-23T08:17:49Z-
dc.date.available2025-11-23T08:17:49Z-
dc.date.issued2025-06-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16880-
dc.description.abstractPrecision agriculture is crucial for assisting farmers in addressing increasing food demands, optimizing scarce resources, and adapting to climatic challenges. This study results in intelligent application that amalgamates data from various sources — such as field parcels, meteorological information, geolocation, soil nutrients (NPK), and satellite imagery — and employs four analytical types: descriptive (to discern historical trends), diagnostic (to investigate factors affecting yields), predictive (utilizing machine learning to anticipate future yields), and prospective (to model scenarios that assist farmers in selecting appropriate strategies). The model also accounts for particular agricultural constraints, including resource availability, seasonality, financial limitations, and farmer preferences regarding crop selection and sustainable practices. The Data-Driven Approach Automation (DDAA) system utilizes machine learning and deep learning to automate tasks by replicating human actions. An essential attribute is an interactive advisor driven by a Large Language Model (LLM) that engages with farmers, providing tailored guidance in accordance with their objectives, such as optimizing yield or conserving water. The application offers precise forecasts, practical insights, and a user-friendly interface that is multilingual and accessible. This work integrates multi-source data analysis with AI-driven guidance to promote intelligent, sustainable agriculture and enhance the accessibility of advanced tools for farmersen_US
dc.language.isofren_US
dc.publisherUniversité Ibn Khaldoun –Tiareten_US
dc.subjectThe Rise of Agriculture 4.0en_US
dc.subjectAgriculture 4.0 Includesen_US
dc.subjectArchitecture of GHALATYen_US
dc.subjectRole of LLMsen_US
dc.titleDéveloppement d’un Modèle de Prédiction pour l’Agriculture de Précision Basé sur l’Intégration de Données Multi-Sourcesen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.INF.2025.25.pdf5,02 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.