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Glossaries

— Ai : Artificial Intelligence .

— Ul : User Interface.

— UX : User experience

— 10T : Internet of things.

— JSON : JavaScript Object Notation.

— E : Event.

— C : Condition

— A : Action

— MVC : Model View Controller

— API : Application Programming Interface

— NPK : A set of three essential soil nutrients for plant growth: Nitrogen (N),
Phosphorus (P), and Potassium (K).

— UML : Unified Modeling Language
— ECA : Event-Condition-Action

— LLM : Large Language Model



Abstract

Precision agriculture is crucial for assisting farmers in addressing increasing
food demands, optimizing scarce resources, and adapting to climatic
challenges. This study results in intelligent application that amalgamates data
from various sources — such as field parcels, meteorological information,
geolocation, soil nutrients (NPK), and satellite imagery — and employs four
analytical types: descriptive (to discern historical trends), diagnostic (to
investigate factors affecting yields), predictive (utilizing machine learning to
anticipate future yields), and prospective (to model scenarios that assist
farmers in selecting appropriate strategies). The model also accounts for
particular agricultural constraints, including resource availability, seasonality,
financial limitations, and farmer preferences regarding crop selection and
sustainable practices. The Data-Driven Approach Automation (DDAA)
system utilizes machine learning and deep learning to automate tasks by
replicating human actions. An essential attribute is an interactive advisor
driven by a Large Language Model (LLM) that engages with farmers,
providing tailored guidance in accordance with their objectives, such as
optimizing yield or conserving water. The application offers precise forecasts,
practical insights, and a user-friendly interface that is multilingual and
accessible. This work integrates multi-source data analysis with Al-driven
guidance to promote intelligent, sustainable agriculture and enhance the

accessibility of advanced tools for farmers.
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General Introduction

1.1 Context and Motivation

There are issues in farming that have never been seen before.like Weather
changes, rising temperatures, soil erosion, and a lack of water and arable land are
some of the things that put food quality food security and at risk around the
world. Also, as the population grows, so does the need for food. This puts
pressure on farming systems to be more productive and last longer. A lot of the
time, farmers, especially those who live in developing areas,or hate the
technologies , can't get the real-time data, advanced decision-making tools, and
personalized advice that would help them handle these issues better.

It is becoming more and more important for farmers to use digital tools. This is
called "smart farming" or "precision agriculture." Using data and Al, farmers can
keep a closer eye on their crops, get the most out of the things they put into them,
guess how much they'll produce, and be ready for risks. When farming and
artificial intelligence (Al) work together, it could start a new era of farming that is
based on data, flexible, and good for the environment.

1.2 Role of Artificial Intelligence in Agriculture

Artificial Intelligence, especially Machine Learning (ML) and Deep
Learning (DL), has shown a lot of promise in changing farming. Some uses
include predicting agricultural yields, finding diseases, analyzing soil, and
improving irrigation. More recently, Large Language Models (LLMs) like
ChatGPT have made it possible for farmers and advisory systems to talk to
one other in natural language. These models can interpret questions in plain
English, find the right information, and provide personalized advice, making
them like virtual agricultural consultants.

Al may also be used with data from many sources, including as satellite
images, soil sensors, historical climate data, and observations given by
farmers, to provide a complete picture of crop conditions, farm

performance, and potential threats. These tools may provide farmers a lot of
ability to make choices based on facts and in a timely manner.
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1.3 Project Overview

This thesis suggests creating and designing an intelligent agriculture assistance
system called GHALATY. The system's goal is to bring together:

e Data from several sources, such field sensor readings, satellite
photos, weather reports, and soil conditions,

¢ A model that can anticipate production and tell you how healthy a
plant is,2

e A Large Language Model (LLM) that works as a virtual assistant in
real time,

e And a Data Dashboard and AI Application (DDAA) that lets farmers
see insights and make decisions based on them.

GHALATY is a hybrid, modular system that combines conventional data analysis
with conversational Al to provide farmers advice that is relevant to their situation,
in real time, and predictive analytics, as well as interactive visual aids to help
them farm better.

1.4 Problem Statement

Even though there are vast agricultural databases and new technologies, farmers
sometimes have trouble understanding the data or using it to make smart
decisions. Traditional consulting services are sluggish, one-size-fits-all, and hard
for smallholder farmers to get to. Also, the choices farmers make depend on the
circumstances on their farm, the climate in their area, the sort of crop they grow,
and the resources they have.

How can we provide a system that gives farmers precise, real-time, individualized
guidance based on data from several sources? When we think about farmers'
chosen language (such Arabic), connection issues, and the requirement for advice
that are specific to their area, this situation becomes much harder

14



1.5 Research Question :

"How can farmers use multi-source agricultural data with Artificial Intelligence
(Al), especially Large Language Models (LLMs), to help them make decisions
that are real-time, personalized, and based on data?"

1.6 Objectives of the Study

The major goals of this study are to:

Build and use an integrated system (GHALATY) that uses both predictive
models and conversational Al.

Use data from several sources, such sensors, satellites, and the environment, to
estimate how healthy and productive crops will be.

Add a domain-adapted LLM that can talk to farmers in their own language, such
Arabic dialects.

Make a dashboard and mobile app that are easy to use for seeing data and talking
to the Al helper.

Check the system's performance, ease of use, and real-world effect on making
decisions.

1.7 Methodology

To achieve this objective, we will use Scrum methodology, a widely
recognized agile approach known for its flexibility and efficiency. Scrum
was designed to increase speed of development, align individual and
organization’s mottos, define a culture focusing on performance, support
shareholder value creation, to have good communication of performance at
all levels, and improve individual development and quality of life [12].
Thus, its numerous advantages justify our choice of this approach, as it
promotes better communication within the team and especially allows for
early detection and resolution of problems during the development stage.

15



1.8 Thesis Structure

There are three primary chapters in this thesis:
Chapter 1 : Agriculture 4.0 and data driven and multi source

Chapter 2 : goes into depth on how the GHALATY system was analyzed and
designed, including things like requirements, architecture, UML diagrams, and
data preparation.

Chapter 3 : talks about putting the plan into action, testing it out, and talking
about the outcomes. It ends with a conclusion and ideas for how to make things

better in the future.
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Chapter 1

The Rise of Agriculture 4.0
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Chapter 1: The Rise of Agriculture 4.0

1.1 The Evolution of Agriculture:

Over thousands of years and across the ages, agriculture has undergone
significant changes, moving from labor-intensive methods to the highly
technologically advanced systems we use on a daily basis. Agriculture began
during the Neolithic period, when early inhabitants of the Fertile Crescent grew
crops such as wheat, barley, and emmer wheat using primitive, time-consuming,
and labor-intensive techniques [1].

Food production increased significantly during the Green Revolution of the 20th
century, marked by the advent of mechanization and artificial fertilizers that
helped advance agriculture in general and the discovery of high-yielding crop
varieties [2].

Precision agriculture, which uses Global Positioning System (GPS) technology
for activities such as field mapping and variable rate applications, emerged in the
late 1990s. This breakthrough made the concept of Agriculture 4.0, which
integrates digital technology to improve agricultural operations, possible [3].

1.2 Agriculture 1.0 To 4.0 Overview (Focusing on 4.0):

Era Description Technologies Key Impact
Agriculture  Manual labor & Basic tools, animal | Subsistence
1.0 traditional methods traction farming

Agriculture  Industrial agriculture @ Tractors, fertilizers,  Increased
2.0 breeding productivity

Agriculture  Precision agriculture = GPS, GIS, remote Resource

3.0 sensing optimization
Agriculture | Digital and smart IoT, Al robotics, Sustainable
4.0 farming big data automation
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Table 1: Agriculture 1.0 To 4.0(Source: Author's own design)

1.2.0 Time line :

digital revolution

precision agriculture
Agriculture 4.0

introduction of machinery

2010s — Present

Agriculture 3.0

simple tools
1960s — Early 2000s

Agriculture 2.0

Late 1800s — Mid 1900s
Agriculture 1.0

~10,000 BC - 1800s

Figure 1: Time line Agriculture (Source: Author's own design)

1.2.2 Agriculture 2.0

Saw the introduction of machinery, such as tractors and harvesters, which
replaced manual labor and increased productivity. This era also witnessed the
development of chemical fertilizers and pesticides, which improved crop yields
but had negative environmental impacts. Many of those changes were
consequence of the re-adaptation of mechanical and chemical industries,
converted to civil uses after having been producing for the army in World War I1.
Also breeding started to boost, both from public universities and public institutes,
and private companies [5].

1.2.3 Agriculture 3.0

Utilizing technology to maximize agricultural methods, precision agriculture is
another name for this approach. Geographic Information Systems (GIS), remote
sensing, and GPS technologies were used into agricultural operations to gather
information on weather patterns, crop health, and soil conditions. In order to
minimize waste and environmental harm, this data was then used to produce
accurate maps and apply inputs, such as pesticides, fertilizers, and irrigation
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water, just where and when required [3]. During this time, the general people
became aware of the negative effects that the widespread use of pesticides and
fertilizers was having on the environment.

1.2.4 Agriculture 4.0

Agriculture 4.0 represents the ongoing digital revolution in farming. It is
characterized by the convergence of technologies such as the Internet of Things
(IoT), artificial intelligence (Al), robotics, and big data analytics. In this era,
farms are becoming increasingly automated, with robots performing tasks like
planting, de-weeding, and harvesting. [oT sensors monitor various aspects of
farm operations, from soil moisture to livestock health. Al algorithms analyze
vast amounts of data to optimize decision-making and predict future outcomes
[6]. Precise application of resources strongly reduces waste and environmental
impact. A big contribution is brought also from Breeding, developing varieties
needing less input to produce a good yield, and more resilient to environmental
stress [7].

1.2.4.1 Key Technologies Driving Agriculture 4.0

m . [ BLOCKCHAIN J
o= i, 2

% BDIAGI'A b
Tm o=
[ BIG DATA ]

JH

o O o
g /Q{ Agriculture 4.0 }07 [~} O?O (=]
W l { INTERNET OF THINGS ]

INTELLEGENCE ARTIFICIEL

APPLICATION

= WATER AND NUTRITION MONITORING

SOIL PREPERATION

. DISEASES AND BUG MONITORING

« YIELD CONDITION AND STORAGE

SOIL MONITORING
IRRIGATION
CROP HEALTH MONITORING
FERTILIZATION

= EFFICIENT ENVIRONMENT RESOURCES

. PESTICIDES AND HERBICIDES

UTILIZATION

Figure 2: Key Technologies Driving Agriculture 4.0(Source: Author's own
design)

o Internet of Things (IoT): IoT devices connect farm equipment, sensors,
and other devices to collect and transmit data.
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Artificial Intelligence (AI): Al algorithms analyze data to identify
patterns, make predictions, and automate tasks.

Robotics: Robots perform tasks such as planting, weeding, and harvesting,
increasing efficiency and reducing labor costs.

Drones: Drones are used for tasks such as crop monitoring, spraying, and
delivering supplies.

Big Data Analytics: Big data analytics helps farmers make informed
decisions based on vast amounts of data.

Blockchain: Blockchain technology can be used to track the origin and
quality of food products [8].

1.2.4.2 Benefits of Agriculture 4.0

Several studies have highlighted the benefits of Agriculture 4.0 in transforming
traditional farming into a more efficient, data-driven, and sustainable practice .
These include:

Increased productivity: Automation and optimization lead to higher
yields.

Reduced environmental impact: Precision agriculture minimizes the use
of inputs, reducing pollution.

Improved food safety: Technology can help track food from farm to table,
ensuring safety and quality.

Enhanced sustainability: Agriculture 4.0 can help address challenges such
as climate change and food security [6], [8].

1.2.5 Challenges and Future Directions

While Agriculture 4.0 offers many benefits, it also presents challenges, such as
the high cost of technology, the need for skilled labor, and concerns about data
privacy [9]. As the industry continues to evolve, future developments may

include:
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« Autonomous farming: Fully autonomous farms operated by Al and
robotics.

« Vertical farming: Growing crops in stacked layers in urban environments.

« Gene editing: Using CRISPR and other technologies to create genetically
modified crops with desirable traits [10].

In conclusion, from what we've learned, the evolution of agriculture from manual
labor to advanced technological practices has been remarkable. Agriculture 4.0
represents the latest in agricultural technology, offering a system that makes food
more sustainable, efficient, and productive. With continued technological
advancements, the future of agriculture appears bright, offering opportunities to
increase productivity and reduce environmental impact. This is something we'll
discuss later.

1.3 Agriculture 4.0 include

Several studies have highlighted the benefits of Agriculture 4.0 in transforming
traditional agriculture into a more efficient, data-driven, and sustainable practice.
These include:

Precision Agriculture: Using data analytics to make informed decisions about
crop management.

Automation: Using robots and autonomous machines to perform agricultural
tasks.

Connectivity: Using [oT devices for real-time monitoring and control.

Sustainability: Reducing environmental impact through efficient use of
resources [6], [11].

By leveraging these technologies, Agriculture 4.0 seeks to address challenges
such as climate change, population growth, and resource scarcity.

1.4 The Role of the Internet of Things in Modern Agriculture

The Internet of Things (IoT) has become an integral part of modern agriculture,
enabling real-time data collection and analysis. [oT devices, such as soil moisture
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sensors, weather stations, and livestock trackers, provide farmers with important
information for data-driven decision-making. [12].

1.4.1 IoT applications in agriculture include:

Crop monitoring: Sensors measure soil conditions, temperature, and humidity to
optimize irrigation and fertilization.

Livestock management: Wearable devices track animal health, behavior, and
environmental information, improving welfare and productivity.

Supply chain optimization: The Internet of Things facilitates step-by-step
traceability and quality control from the farm (primary product) to the consumer.

There are many uses, but we will only discuss those that serve the memorandum's
purpose. in finale Integrating IoT technologies improves efficiency, reduces
waste, and supports sustainable farming practices [12], [13].

1.5 Data-Driven Approach Automation (DDAA)

Data-Driven Agricultural Applications (DDAA) use data analytics and artificial
intelligence to enhance decision-making in agricultural practices. The DDAA
system analyzes data from many sources to provide insights on crop health,
production predictions, and resource management [14].

1.5.1 Key components of the DDAA system include:
« Predictive analytics: Predicting crop yields and disease outbreaks.

o Decision support systems: Providing recommendations on planting,
irrigation, and fertilization schedules.

o Market analysis: Evaluating market trends to guide pricing and
distribution strategies.

Adopting a DDAA system enables farmers to make informed decisions,
enhancing productivity and profitability [14].
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1.8 The Importance of Multi-Source Data Integration

Integrating data from multiple sources is critical for comprehensive agricultural
analysis. Combining information from IoT devices, satellite imagery, and
historical records enables a comprehensive understanding of farming systems
[15].

1.9 The benefits of multi-source data integration include:

Integrating data from multiple sources is crucial for comprehensive agricultural
analysis. Combining information from IoT devices, satellite imagery, and
historical records allows for a holistic understanding of farming systems.

1.9.1 Benefits of multi-source data integration include:

Enhanced Accuracy: Cross-referencing data improves the reliability of
predictions.

Comprehensive Insights: A unified data set provides a complete picture of farm
operations.

Informed Decision-Making: Integrated data supports strategic planning and risk
management.

1.10 Challenges in Implementing Agriculture 4.0

Challenges Description

Infrastructure Limitations Lack of reliable internet connectivity in
rural areas hinders technology adoption.

High Costs The expense of acquiring and maintaining
advanced technologies can be prohibitive
for small-scale farmers.
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Technical Expertise Farmers may require training to effectively
utilize new tools and systems.

Data Privacy Concerns Ensuring the security of sensitive
agricultural data is paramount.

Table 2: Challenges in Implementing Agriculture 4.0(Source: Author's own design)

1.11 the Role of LLMs in Agriculture 4.0

We examined Agriculture 4.0's technical foundation, now we will emphasizing
the incorporation of sophisticated data systems and intelligent agents. We
examine the ways in which contemporary structures facilitate communication,
prediction, data collecting, and storage. We specifically draw attention to the
expanding function of Large Language Models (LLMs) in supporting decision-
making, real-time advising, and farmer contact.

1.11.1 Definition of Large Language Models (LLMs)

Large Language Models (LLMs) are deep learning models trained on massive
datasets of text to understand, generate, and interact using human language.
Models like GPT-4, BERT, and TS5 belong to this class. They are built on the
Transformer architecture, which uses self-attention mechanisms to process
input sequences efficiently and contextually [16].

In agricultural contexts, LLMs can act as intelligent assistants capable of:
« Answering farmers’ queries
« Translating technical data into understandable language
+ Interpreting sensor results
« Generating automated reports

« Interacting in local dialects or specific farming terminologies
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“LLMs function not only as knowledge retrievers but also as adaptive
communicators, bridging the digital divide in precision agriculture” [17].
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Figure 3: The role of large language models in agriculture (Source: Tawseef Ayoub Shaikh
and al., 2024) [18].

1.11.2 Applications of LLMs in Advice and Communication:

In this section, we discuss the integration of LLMs into agricultural systems for
advisory and communication purposes. Several real-world applications exist or
are emerging:

Use Case Description LLM Benefit

Chatbots (LLM)  Virtual assistants accessible via Provide 24/7 responses in

for Farmers application local languages

Pest & Disease LLMs interpret symptoms or Aid in accurate diagnosis
Diagnosis photos via multi-modal inputs  and treatments

Policy and Summarizing news, weather, Help farmers make
Market Advice and farm reports informed decisions
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Voice-to-Text Speech-based queries Enhance accessibility for

Interaction illiterate users
Report Daily or seasonal farm Automate documentation
Generation summaries using loT data

Table 3: Applications of LLMs

For instance, the GhALATY application was integrate an LLM module that
allows farmers to ask natural language questions like:

“What'’s the best time to irrigate based on this week’s forecast?”

The LLM can query internal data, apply logic, and reply contextually.

1.11.3 LLMs vs Traditional Chatbots in Agriculture :

Feature LLM-Based Chatbots Traditional Chatbots
Training Data Billions of tokens Manually programmed
responses
Flexibility Can handle complex Limited to predefined
questions flows
Language Multilingual, even Often language-limited
Support dialects
Updates Fine-tuned with new Requires manual
data easily reprogramming

Table 4: LLMs vs Traditional Chatbots

1.11.4 Future Integration with Satellite Data and IoT:

27



Future developments aim to couple LLMs with satellite imagery, weather
forecasts, and sensor data to provide multimodal decision support. An LLM

might process:
« Satellite NDVI data
« Soil moisture sensor readings
« Disease reports
...and then generate a summary like:

“Your northern field shows a 20% decrease in vegetation index. Consider

checking for irrigation issues or pest infection.”
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mehiisire msinege yrbr
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Figure 5 : Smart Agriculture System (Source: Author's own design)

1.11.5 Challenges and Considerations:
Despite the promise of LLMs in agriculture, several challenges persist:

« Data Privacy: Sensitive farm data must be protected.
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« Bias: LLMs trained on general data might misinterpret niche agronomic
content.

« Connectivity: Many rural areas lack stable internet access.

« Language Barriers: Support for local dialects must be fine-tuned.

Conclusion:

Agriculture 4.0 represents a radical change from conventional methods to data-
driven, intelligent agricultural systems that can handle today's pressing global
issues. Its promise to improve crop resilience, lessen environmental impact, and
guarantee food security is obvious, despite current obstacles including cost and
technical complexity. Furthermore, new opportunities for real-time data
interpretation, individualized advising systems, and intelligent decision-making
are made possible by the integration of developing technologies, especially the
expanding importance of Large Language Models (LLMs). The collaboration of
LLMs, IoT devices, and Al-powered dashboards will be crucial in forming a
more sustainable and scalable future for smart farming as the agricultural industry
develops.
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Chapter 2

Part 1: Analysis, Design, and Architecture of
GHALATY
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Chapter 2 -Part 1: Analysis, Design, and Architecture of GHALATY
2.1 Introduction

In this chapter, we analyze the conceptual foundation and system architecture of
GHALATY—our integrated platform for “development of a prediction model
for precision agriculture based on the integration of multi-source data using
four types of analysis.” We begin with a real-world motivating example, then
outline domain considerations, propose our solution, and conclude with
architectural and user-centered design insights.

2.2 Motivating Example
We explore a realistic scenario to ground our architecture in real-world needs.
2.2.1 Scenarios

We consider a smallholder olive farmer in Ksar-chellala ,Tiaret, Algeria,
challenged by unpredictable weather, soil nutrient depletion, and lack of expert
guidance. In such contexts, farmers rely on tradition rather than data-driven
insights. GHALATY offers them intuitive, actionable advice via smartphone—
whether it’s when to irrigate, fertilize, or rotate crops.

2.2.2 Domain Analysis

In this section, we examine data sources (IoT sensors, satellite imagery, climate
APIs, farmer inputs), user roles, and analytical needs specific to olive farming.
We also review existing agricultural tools and identify gaps in cost, context-
awareness, and offline usability.

2.2.3 Avenues for Improvement

Most current systems are either expensive, lack contextual guidance, or fail to
personalize recommendations. GHALATY bridges these gaps by integrating real-
time data, Al-powered prediction, multilingual support, and an LLM advisor.
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2.2.4 Motivation and Research Question
Our guiding question is:

How can we design a predictive, context-aware platform that integrates multi-
source data and provides descriptive, diagnostic, predictive, and prescriptive
insights to smallholder farmers?

2.3 Our Proposal: LLM Advisor Integrated System
2.3.1 Internet of Things (I0T) Integration
We integrate:
« Soil sensors for NPK, moisture, and pH
« Environmental sensors for microclimate data
« Drones for aecrial NDVI imagery
o Camera traps monitoring crop health
« Google earch engine satellite images
These feed into a real-time decision pipeline.
2.3.2 Storage Layer
We use SQLite for structured data (e.g., user profiles and farm details and chats)

Currently, the prototype is in progress, but as the final model is released, we are
working on using Firebase and cloud storage.

2.3.3 User Interface

The mobile application (built in Flutter) includes a chatbot, dashboards, and
guided data input—designed for low-literacy farmers, with language options
(Arabic and English).

2.4 Theoretical Foundation
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2.4.1 Core Elements

Core components: Sensor network, Data pipeline, Prediction model, LLM
advisor, and Mobile App interface.

2.4.2 System Behavior

We define system behavior UML Sequence Diagram representing key triggers:
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Figure 6 — UML Sequence Diagram of the LLLM Interaction Process (Source:
Author's own design)

This diagram details the dynamic message exchange between the user (farmer),
mobile interface (Flutter app) and the Large Language Model (LLM). It starts
from user input and ends with the delivery of actionable advice.

2.4.3 Fault and Exception Handling
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Mechanisms include sensor anomaly detection, fallback to satellite data, and safe
defaults for missing inputs.

2.4.4 Behavioral Patterns

We implement observer and MVC (Model-View—Controller) design patterns to
ensure scalability and maintainability.

2.5 Problem Formalization
2.5.1 Objective (Goal)

To develop an intelligent assistant for precision agriculture that analyzes multi-
source data (drone images, loT, weather, soil) and responds to farmer goals or
problems using a Large Language Model (LLM).

e = -
il
oy ; satellite
— - N

Farm view e /
NDVI data (Sl 4~

Cloud

gI_]-eL =

-y
Get user information ‘

-farm details

-lTot information e%

-Weather details 1= O
-Goals user Q

. Select . Receive .
O Processing —0 answers —
Chat ‘

Figure 7: Intelligent assistant for precision agriculture (Source: Author's own
design)

2.5.2 Mathematical Formalization
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Let’s define:

* Let F bethe set of all farmers { f1, f2, ..., fa}
o let D = {d;,d;, dy, ds} be the multi-source data collected:
e d,: Soil data (NPK, pH, moisture, etc.)
* d;: Drone image features (plant color, size, health score)
e d,: Weather data (tem perature, rainfall, humidity)
e d,: User/farmer input (selected goals/problems)

e LetG = {g1,4, ..., gm } be a set of goals/problems selectable by farmers (e.g., "Yeflowing leaves", "Low
yield").

o let LLM : (D, g;) — R,where R is the set of natural-language responses generated by the LLM.

Input:
- Farmer f_i selects goal g_i from options list
- Multi-source data D = {soil_data, drone_images, weather_data, user_input}

Process:
1. system collects and preprocesses relevant data for f_i:
a. fetch soil logs and sensor data
b. analyze drone image features (leaf color, patterns)
c. retrieve weather history and forecasts
. format prompt dynamically for LLM:
prompt = """
Farmer issue: [g_i]
Soil NPK levels: [N, P, K]
Weather conditions: [T, R, H]
Drone observation: [leaf_color, anomalies]
Suggest reason, fix, and long-term advice.
. send prompt to LLM
4. receive response R
. display R in natural language to the farmer

Output:
- LLM Response R: Advice, diagnosis, solution steps

Figure 6 — Pseudocode for Problem-Based LLM Interaction Using Multi-Source
Agricultural Data
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This figure represents how Ghalaty dynamically builds a natural-language prompt
using farmer inputs and farm-specific data to generate tailored responses using a
Large Language Model.

2.5.3 Example Instantiation

Afarmer f; selects the issue "My plant leaves are yellow” (goal ga):
o d,={N=30,P=10,K = 40, pH = 5.2}
* d; = {leaf _color = yellow, plant_height = 25em}
o d, = {rainfall = 15mm, temp = 35°C}

Farmer issue: Yellowing plant leaves (Sellected from list)
DATA{

Soil NPK levels: N=30, P=10, K=40@, pH=5.2

Drone: Yellow discoloration detected

Weather: High temperature, low rainfall

}

LLM might respond:

1
2
3
a
5
6
7
8
9

=
®

“The yellowing may be due to nitrogen deficiency and high so
il acidity. We recommend applying a balanced NPK fertilizer
and adjusting the pH with lime. Also, consider shading
plants during heat waves.”

Figure 7 — Pseudocode for LLM Interaction Using Multi-Source Agricultural
Data with farmer
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2.5.4 Goal of the System

Given:

* Aselected goal/problem g; by the farmer

o  Associated farm data DD

Produce:

[ ]

Objective:

Find R = LLM(D, g;) that maximizes farmer comprehension and actionable outcomes.

A natural-language response ft € K from the LLM

2.6 Conceptual Organization of Our System
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needs, and soil
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temperature,

= humidity, soil

type, and
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2.6 User-Centered Design

2.6.1 Design Process

We conducted interviews, created personas, and developed clickable prototypes
tested with local farmers. This iterative process ensured functional clarity,
localization, and mobile-first simplicity.

2.8 Use Cases & Analysis Mapping

Compared to existing solutions, GHALATY excels in integrated data usage,
multilingual Al advisory and coverage of all four analysis types:

Feature Conventional Tools GHALATY
Data Integration Partial Multi-source (IoT, satellite, user)
Adyvisory Capability Minimal Rich LLLM-based with explanation
Multilingual Support No Yes (local dialects)
Analytical Depth Predictive-focused Full four-tier analysis

Table 5 — Comparative Positioning of GHALATY
2.8.1 Use Case Diagrams

An UCD is an Unified Modeling Language (UML) diagram that graphically
represents the functional requirements of a system by illustrating the interactions
between users (actors) and the system itself. It describes the different ways in
which users can use the system to accomplish specific tasks [19]. In this section,
we will present the different use case diagrams related to each of the functional
requirements presented above
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2.9 Conclusion of Part 1

We have established a robust conceptual and architectural model for GHALATY.

Figure 9 - Class Diagram Ghalaty

We explored motivations, domain context and user-centered components. This

foundation aligns seamlessly with our goal of delivering a predictive model under

the four-analysis framework. In Part 2, we will demonstrate how this translates

into real-world, tool-supported implementation.
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Chapter 2 — Part 2: Proof of Concept &
Tooling
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Chapter 2 — Part 2: Proof of Concept & Tooling

2.1 Introduction

In this part, we detail the practical implementation of the GHALATY prototype,
focusing on software/hardware integration, technical deployment, and system

components. We will analyze how each component enables the four types of
analysis—descriptive, diagnostic, predictive, and prospective—essential to
supporting the project’s core objective of predictive, data-driven precision
agriculture.

2.2 Software and Hardware Components

2.2.1 Software Components

We implemented a microservices architecture using Fast API for its excellent
asynchronous performance and ease of development [21]. Databases include
SQLite for structured data storage [oT logs and chat histories [22]. For the mobile
app, we used Flutter, ensuring smooth, cross-platform experience.

Component

Mobile
Application

LLM Engine

Database

External Data
Sources

Description

Interface for farmer interaction,
data entry, and receiving Al
suggestions.

Provides intelligent advisory by
interpreting user queries in natural
language.

Stores user profiles, history, input
logs, and system configuration.

Includes weather APIs, NPK data,
satellite imagery feeds.

Technology
Used

Flutter

DeepSeek via
API

SQLite

OpenWeather,
[oT

Justification

Flutter allows cross-platform
development with a single codebase,
ideal for rural mobile users.

Enables context-aware, multilingual
conversational support without custom
model training.

Lightweight, file-based relational
database ideal for mobile and edge use
cases.

Enhances prediction precision through
environmental context integration.

Table 6 — Software Components of GHALATY.
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This table provides a detailed overview of the core software components that
form the GHALATY platform. Each component is selected with consideration for
low-resource deployment, scalability, and integration with an Al-driven
architecture. The use of SQLite, in particular, reflects the need for lightweight,
offline-capable storage on mobile or low-infrastructure systems typical in
agricultural settings.

2.2.2 Hardware Components

The system also integrates environmental sensors (NPK, humidity,
temperature) and optional drone support for aerial image capture. These
elements support the collection of real-time, on-field data, which is crucial
for precision agriculture.

Component Purpose Description

ESP32 Edge-level data Collect sensor readings (e.g., soil moisture,

Controllers collection temperature) and transmit via Wi-
Fi/Bluetooth.

NPK & DHT22 Soil and environmental NPK sensor captures soil nutrient levels;

Sensors measurement DHT22 measures temperature and humidity.

Raspberry Pi4  Edge computing and Acts as a gateway to process sensor data

preprocessing locally before sending to backend via HTTP or
MQTT.
GPS Module Geolocation tagging Attaches precise location metadata to data for

use in geospatial prediction and mapping.

Drone (optional) Aerial crop condition  Captures high-resolution multispectral or RGB
mapping imagery for crop health analysis.

T able 7 — Hardware Components Used in GHALATY.
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This table presents the main physical components employed in the GHALATY
architecture to collect, process, and transmit environmental and agronomic data.
The combination of embedded sensors and edge computing supports real-time,
location-aware Al-driven recommendations in the field.

2.3 Technical Implementation

2.3.1 SQLite Database Configuration

SQLite is an in-process library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine. The code for SQLite is in the
public domain and is thus free for use for any purpose, commercial or private.
SQLite is the most widely deployed database in the world with more applications
than we can count, including several high-profile projects. [23]

2.3.2 Integration of AI Components

The GHALATY platform integrates this key Al services:

o LLM Advisor: A large language model (DeepSeek) Configured for
agricultural vocabulary and online dialects, deployed through an API.

The predictive model pipeline includes feature extraction from satellite imagery
(NDVI, EVI), sensor readings, and time-series weather data and selected inputs
from user with a saved goal.

2.3.3 Technical and Technological Choices

In this section we will see the technologies used to ensure collaboration as well as
the tools and development environments.

2.3.3.1 Collaboration and Design Technologies

These technologies have allowed us to collaborate effectively remotely while
being supervised by our supervisor. They are among others :

2.3.3.1.1 Google Meet

44



A videoconferencing service developed by Google. It allows in particular to
launch meetings or to join which was useful for us to debrief on the progress of
the project.

2.3.3.1.2 Git/GitHub

It is a project version management platform allowing to follow its evolution and
to know all the deployed versions. Its advantages are the collaboration on the
same project of several collaborators and the management of changes as well as
its integration into several development environments.

2.3.3.1.3 Figma
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It is a collaborative web application for interface design, with additional offline
features enabled by desktop applications for macOs and Windows. The feature
set of Figma focuses on user interface and user experience design, with an
emphasis on real-time collaboration [25], utilizing a variety of vector graphics
editors and prototyping tools.

2.3.3.1.4 Draw.io

Draw.io is a robust technology stack designed for constructing diagramming
applications. A key strength of draw.10 lies in its comprehensive support for
UML (Unified Modeling Language), a standardized method for visually
representing software systems[26]. It offers the following features:

» Effortless UML Diagramming: With a drag-and-drop interface and pre-made
UML shapes, draw.io enables quick and easy diagram creation.

* Versatile UML Support: Draw.io supports a variety of UML diagrams,
including class diagrams and use case diagrams, among others.

* Real-Time Collaboration: An added advantage of draw.1o0 is its real-time
collaboration feature, allowing multiple users to work on the same UML diagram
simultaneously.
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2.3.3.2.1Mobile development tools

Those are tools used specifically to implement the system at the mobile level.
They are among others:

2.3.3.2.2 Android Studio

According to Wikipedia, ”Android Studio is the official Integrated Development
Environment (IDE) for Google’s Android operating system, built on JetBrains’
IntelliJ IDEA software and designed specifically for Android development”. We
chose it to allow the development of the mobile application under Android. It
uses languages like

* Kotlin or Java for the backend,;
 Extensible Markup Language (XML) or Kotlin for the front-end

2.4 UI/UX of the Assistant Tool
2.4.1 Mobile App Design Process

The UI/UX design followed Google's Material Design principles, featuring clear
navigation, simple forms, and multilingual support (Algerian Arabic, French,
English). UI elements are optimized for low-literate users, featuring icons and
voice input options [24].

2.4.1.1 Sketching
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Sketching is the initial phase of the design process where we translate our ideas
into rough visuals. This stage involves :

Figure 9- Sketching

—Brainstorming sessions : Generating concepts and defining user needs.

— Rough sketches : Creating hand-drawn representations of key interfaces and
user flows to explore different layout options.

— Feedback gathering : Sharing sketches with stakeholders to refine ideas
based on initial feedback.

2.4.1.2 Storyboards

Storyboards help visualize the app’s functionality through a sequence of screens,
providing a narrative of user interactions :

— User scenarios : Creating scenarios that depict how users will interact with the
app in real-world situations.
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— Screen sequences : Designing sequences that illustrate key interactions and
transitions between screens.

— Experience mapping : Mapping out the emotional journey of users to ensure
the app delivers a positive and engaging experience.

2.4.2 Mobile app demonstration

To showcase the effectiveness of our design process, we provide a demonstration
of key interfaces within the mobile app. This demonstration highlights the app’s
capabilities and user experience.
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Figure 10— Open application
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- Adyvisor Results

We built an intelligent farm advisor interface that allows users to select multiple
agricultural criteria for analysis. In this section, we focus on providing farmers
with a comprehensive set of parameters they can choose from, including weather
conditions, soil quality, water usage, productivity metrics, and pest management
options. The interface supports multi-select functionality for more tailored advice,
with options ranging from productivity enhancement to sustainable farming
practices. We used a clean Arabic interface to ensure accessibility for local
farmers.
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- Received Ai advisor

In this results screen, we demonstrate how the system provides detailed weather
impact analysis on crop production. We built an intelligent parsing system that
breaks down complex meteorological data into actionable insights. The analysis
covers three key weather factors: temperature ranges and their effect on
photosynthesis, precipitation patterns and their impact on root systems, and
humidity levels that influence pest proliferation. We used bullet-point formatting
to make the technical agricultural information easily digestible for farmers.
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Rate our app on the app store to help
us improve

Figure 23 — Dark mode
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User Guide

Getting Started

1. Create an account using your email

2. Complete your farmer profile

3. Add your first farm with accurate
details

4. Enable notifications for weather alerts
5. Explore the dashboard features

Managing Farms

1. Add multiple farms if needed

2. Update farm details when necessary
3. View farm statistics and analytics

4. Monitor weather conditions

5. Track farm activities

Weather Tracking

1. View current weather conditions
2. Check hourly and daily forecasts
3. Set up weather alerts

4. Monitor rainfall predictions

5. Track temperature trends

Farm Analysis

1. View soil condition reports

2. Track farm productivity

3. Analyze weather impact

4. Monitor resource usage

5. Generate performance reports

Figure 24 — Help and support
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Contact Us

Contact Us

Phone
-

+213555336497

Email

lakhal.noureddine@univ-tiaret.dz

LinkedIn

Noureddine L

e,

Facebook
0O

Noureddine M

Instagram
m g

@noureddinelakha

Support

Feel free to reach out to us through any of the

following channels. We are here to help!

Figure 25 — Contact us
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& Weather Information

KSAR CHELLALA

« 29°C

CLEAR SKY
& = @
Humidity Wind Pressure
45% 12 km/h 1015 hPa

Hourly Forecast

14:00 17:00 20:00 23:00 02:00 05:00 08:(
- - —_— - - - geinn

27°C | F28°C | |°'29°C | 127G | |:128°C | |1 29°C: | | .27

7-Day Forecast

Friday « 27°C
Saturday > 29°C
Sunday == 28°C
Monday ~ 27°C
Tuesday — 29°C

Figure 26 — weather screen
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Hello, lakhal noureddine

Current Metrics Overview

Soil Moisture

< o
3 \ 3

(0] o)

e 5 o

Q a

: 9 g

: , 8

AlpiwuinH
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P 3

Figure 27 — farm analyse (dashboard - 1)
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v Excel 8 O @ Temperature
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Figure 28 — farm analyse (dashboard - 2)

70



22:28 © NRE R all all G4

Ll =

v Excel ¥ O @® Crop Health
1007 - o
) AN ® | > i
80% ! \...‘./ 4 / \ e \ / \
i [ | ® ®
60%—————F————- .
| | |
o, ST O SO (S S P
40% ; : |
| | |
o R - | Rl [
20% I I |
| | |
0% | | | |
100- 0400  09:00 1400  19:00 23:00

Daily Averages

100%

80%

60%j

40%

20%

o,

0%
Day1 Day 2 Day 3 Day 4 Day5 Day 6 Day?7
sudlall &
Current weather and forecast
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View satellite imagery of your farm 2

Figure 29 — farm analyse (dashboard - 3)
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- Dashboards Overview

We built a real-time agricultural monitoring system that provides farmers with
actionable insights through intuitive dashboards. In these sections, we focus

on visualizing critical farm metrics, including soil moisture, temperature,
humidity, and crop health, using a combination of graphs, percentages, and
time-based trends to ensure clarity and quick decision-making.

- Key Features & Design Choices
1. Dynamic Data Visualization

o We used percentage-based bar graphs to display fluctuations in
temperature, humidity, and soil moisture over 24-hour
periods (1:00-23:00).

o Daily averages (Day 1-Day 7) help farmers track trends across a
week, allowing for long-term adjustments in irrigation or pest
control.

2. User-Centric Layout

o The dashboard greets the user personally ('"Hello, Lakhal
Noureddine') and organizes data into clearly labeled

sections (e.g., "Current Metrics Overview," "Excel Temperature,"
"Crop Health").

o Color-coded thresholds (e.g., 100°C—0°C) make it easy to identify
critical ranges that could affect crop viability.

3. Actionable Insights & Annotations

o We included "Random Notes" (e.g., "3 4l pie 4aa3l") ag
placeholders for system-generated alerts (e.g., soil dryness
warnings) or farmer observations.

o Satellite imagery integration ("ic_<ll .elia ,&") allows users to
cross-reference sensor data with visual farm conditions.

4. Real-Time Weather & Forecasts
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o A dedicated weather panel provides current conditions and
forecasts, helping farmers plan around rain, heatwaves, or humidity
spikes.

Why This Approach?

« Mobile-first design: The vertical scrolling and compact graphs ensure
readability on smartphones, crucial for farmers in the field.

« Offline resilience: Since SQLite stores data locally, the dashboard remains
functional even without internet access, syncing later when connectivity
resumes.

o Minimalist but informative: We avoided clutter while ensuring all key
metrics (soil, weather, crop health) are visible at a glance.
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& Farm Satellite View Satellite ~

v Main Farm North Field South Field

Main Farm

Area: 5.2 hectares

Soil Type: Loamy

Crops: Wheat, Barley
Last Harvest: 2023-06-15

Figure 30 — farm view satelite
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2.6 Positioning of Our Work

GHALATY stands out in the precision agriculture landscape for its fully
integrated approach: combining loT data, LLM-powered advice, user-friendly
mobile design, and four-tier analysis—all while being optimized for smallholder
farmers in rural areas.

2.7 Conclusion of Part 2

This section outlined the architectural and technical realization of GHALATY,
showcasing how each tool, device, and model contributes to the system’s scalable
and effective application in precision agriculture. We demonstrated real-time data
integration, robust Al model deployment, and intuitive user interaction. The
implementation supports all four types of analysis and is fine-tuned for practical
use in smallholder farming contexts.
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Chapter 3: General Conclusion and
Perspectives
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Chapter 3: General Conclusion and Perspectives
3.1 General Conclusion

In this research, we developed GHALATY, an intelligent and modular platform
for precision agriculture, centered around the integration of multi-source data and
powered by a Large Language Model (LLM). Our main objective was to provide
context-aware, real-time assistance to farmers through the automation of four
analytical pillars: descriptive, diagnostic, predictive, and prospective analysis.

Throughout the project, we explored the critical role of data fusion from
heterogeneous sources such as soil sensors, drones, GPS, and weather APIs, and
how these contribute to forming a coherent, unified representation of farm
conditions. By structuring the system into distinct layers — including data
collection, preprocessing, LLM interfacing, and user-facing modules — we
ensured modularity, scalability, and user accessibility.

We demonstrated how the LLM not only interprets natural language prompts but
also tailors its responses based on real-time data tied to specific farm locations.
For example, when a farmer selects “yellowing leaves™ as a concern, the system
correlates this 1ssue with potential nutrient deficiencies or diseases based on local
NPK, temperature, and humidity values, and offers actionable advice.

From a system architecture standpoint, we implemented a clean integrated with
SQLite as the primary local database to ensure offline functionality in rural areas.
The mobile-first design implemented in Flutter made the platform intuitive and
responsive across devices.

Ultimately, our project validated the viability of using LLM-based assistance
systems in agricultural settings, especially when supported by real-world, real-
time environmental data. GHALATY represents a foundational step toward
smarter, more autonomous farming in Algeria and similar contexts worldwide.
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3.2 Future Perspectives

While GHALATY has reached a functional and deployable state, several
enhancements and research directions remain to be explored. Below, we outline
promising avenues:

- Enhanced Contextual Learning in LLMs:

Current implementations rely on prompt engineering to personalize advice.
Future work may integrate a retrieval-augmented generation (RAG) pipeline,
allowing the LLM to query external structured documents (weather trends, pest
knowledge bases, soil health databases) before generating responses.

- Advanced Reasoning over Time-Series Data:

To improve predictive capabilities, we aim to integrate deep learning
architectures such as LSTM (Long Short-Term Memory) or Transformer-based
temporal models to analyze evolving conditions (e.g., rainfall over seasons) and
provide more nuanced advice.

- Expanded Data Sources:

Integration of satellite-derived vegetation indices (e.g., NDVI) and hyperspectral
drone imagery could enrich the decision-making process. This would enable the
system to diagnose plant stress even before visual symptoms occur.

- Gamification for Farmer Engagement:

A promising area is the use of gamified incentives to encourage continuous
interaction with the platform. For instance, farmers could receive virtual
achievements for implementing sustainable practices, which over time could lead
to actual financial or cooperative incentives.

- Interoperability and Open APIs:

To promote wide adoption, future versions of GHALATY should expose
RESTful APIs and conform to agro-informatics interoperability standards (such
as ISO 11783 or AgGateway) to integrate with other agricultural systems,
equipment, or platforms.

- Al Ethics, Explainability, and Trust:
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As Al becomes embedded in decision-making, especially in critical sectors like
agriculture, explainability becomes essential. Our future research will explore
XAI (Explainable AI) techniques that allow farmers to understand why the Al
made a specific recommendation — not just what it recommended.

3.3 Final Remarks

By integrating domain-specific data with human-language understanding,
GHALATY creates a new paradigm in user-Al collaboration in agriculture. This
system serves as a robust prototype not only for precision farming but also for
future intelligent systems in other critical domains, such as climate adaptation,
rural health, and sustainable development. Our ambition is to continue this line of
work in collaboration with local universities, startups, and agricultural
cooperatives, turning GHALATY from a project into a widely adopted digital
farming companion.
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STARTUP : GHALATY

REALISATION PREVISION

Produit A destiné Client | N-2 | N-1 N N+1 N+2 N+3 N+4 N+5
Quantité produit A 500 1000 1500 2000 25500 3000

Prix HT produit A 1200 1200 1300 1400 1500 1500

Ventes produit A 600000 1200000 | 1950000 | 2800000 | 3750000 | 4500000

CHIFFRE D'AFFAIRES GLOBAL 600000 | 1200000 | 1950000 | 2800000 | 3750000 | 4500000

aBoall 8506 M5 ikl v AaBgall clsl¥ls ciladl jslas :(01) JKad!

: e 4sLs

BILANS DE STARTUP :GHALATY

REALISATION

PREVISION

En milliers DZD N| N- N N+1 N+2 N+3 N+4 N+5
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Immobilistation Incorporelles

Immobilisation Corporelles

1800000 0

Terrain

Batiment

Autres Immobilisations
Corporelles

Immobilisations en
concession

Immobilisation en cours

Immobilisations Financiéres

Titres mis en équivalence

Autres participations et
créances rattachées

Autres Titres immobilisés

Prets et autres titres
financiers non courants

Impots différés actif

ACTIF NON COURANT

1800000 | 1800000

1800000

1800000

1800000

1800000

Stocks et encours

200000 300000

400000

500000

600000

700000

Créances et emplois assimilés

Clients

Autres débiteurs

Impots et assimilés
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Autres créances et emplois
assimilés

Disponibilités et assimilés

2000000

2200000

2300000

2500000

2700000

3000000

Placements et autres actifs
financiers courants

Trésorerie

ACTIF COURANT

En milliers DZD

2200000

REALISATION

2500000

2700000

3000000

3300000

3700000

PREVISION

N - N

N+1

N+2

N+3

N+4

N+5

CAPITAUX PROPRES

Capital émis

Capital non appelé

Ecart de réevaluation

Primes et réserves- Réserves
Consolidées

Résultat net- RN part du
groupe

Autres capitaux propores-
report a nouveau

Part de la société
consolidante (1)

CAPITAUX PROPRES

PASSIFS NON-COURANTS

Emprunts et dettes
financiéres
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impot différé passif

Autres dettes non courantes

Provisions et produits
constatés d'avance

PASSIFS NON-COURANTS

PASSIFS COURNATS

Fournisseurs et comptes
rattachés

Impots

Autres dettes

Trésorerie passif

PASSIFS COURANTS

Verification de I'équilibre
Actif/Passif

dadgal) mwiludl bl Jous 102 @3, 3=l

COMPTE DE RUSULTAT PREVISIONNELDE STARTUP : GHALATY

N -2

N -1

N

N+1

N+2

N+3

N+4

N+5

Production de

['exercice

600000

1200000

1950000

2800000

3750000

4500000
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Consommation 150000 | 300000 | 500000 | 700000 | S00000 | 1000000
de l'exercice
Valeur ajoutée 450000 | 900000 | 1450000 | 2100000 | 2850000 | 3500000
d'exploitation
Excédent Brut 300000 | 600000 | 1000000 | 1500000 | 2000000 | 2500000
d'Exploitation
Résultat 280000 | 580000 | 980000 | 1480000 | 1980000 | 2480000
opérationnel
Résultat net de 250000 | 500000 | 850000 | 1300000 | 1800000 | 2300000
I'exercice
Byl il 103 w3 3ol
TABLEAUX DE FLUX DE TRESORERIE
STARTUP : GHALATY
Année Entrées Sorties Solde Net
N 2000000 1800000 200000
N+1 2200000 1900000 300000
N+2 2500000 2100000 400000
N+3 2800000 2300000 500000
N+4 3000000 2500000 500000
N+5 3300000 2700000 600000
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Business Model Canvas

K ey Partners

= Space y@ncies ad satellite Imagery
proriders.

= Agrimitnmal Teseanch Cerders .

= Meteorological offices .

= Ghalaty comparides .

» Electronic pryment serrice prowiders .

Cost Structure

= Sermer and cloud compart gz costs.

By Dotivities

= Platform developm et ard madrderatue .

= Coptiroaos wpdat g of Almodels.

» Collectivg ard arabyaingg direrse
agrimathral datasets .

= Broridmgorstom e sapport ad aser
L

= Brentting digital mark etivgg compaigne .
Key Resources

w Iifulti-sonmrce agrioathmal data (rreather,
zoil, satellite magery).

w Clomd senvers ard comprt g
ifrastnachre.

» Teckmical team (AT specialists, softamrs
dewelopers ).

» Agricuthmal eeperts md dita mabyas

= Salaries for developers and agrinalhamal eperte.

= Ifarhetirgzard adwertic g epetces .

= Licetses for satellite data ad magery.

= Applicatiot demelopmerd and matderance costs.

Pesigred for:
Ghalaty

Wfalue Propositions
= Smart and acomate arop yield predicticoze .

= Improwed aop quality amd redced losses.

= Bitegrated platform for mreather, soil, and
aop data mabysis.

» 8T hased apport for agrioathmal decisia-
making,

w Titelligerit acsictart cfferivg wrtom it i
agrioathmal adwice.

Desigmed by
Lakha Moureddine

Custorner Relationships

» Diivect techmical ampport {chat, Whate fpp,

email).
» Short itz conmses T 16T .

= Begnlaripdates arnd featrs
erthancemerits.

= Flerible sabsoiption plaes.

Channel s
*  Dashboard.
*  Tfobile applicaticn.
*  Partrwerchips writh cooperat ires

arvd agrioathmal cerders .
*  Digtal marheting compaigns Tia
social media.
Reverue Streams
= Ioxdhiby ard rearky aibe aiptione.

= Paid oustomizmed anabptical reporte .

= fgrioinmal corwnating cermices .

Pate lfersion:

120452025 210

Customer Segmerts

*  Individual farmers (zmall and
medium-sized).

*  Agricuftural companies.

*  Fammers' cooperatives.

¢ Ministries and agricuttural
institutions.

* Seed and fertilizer suppliers.

*  fgritech solution developers.

= Partriershaps and licers kyrdeals wrifhm ajor agimi bl orgrimtiore .
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