Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-tiaret.dz:80/handle/123456789/16075
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorKADARI, BOUCHRA-
dc.contributor.authorKHAMKHAM, DOUAA-
dc.date.accessioned2025-05-28T08:22:44Z-
dc.date.available2025-05-28T08:22:44Z-
dc.date.issued2024-06-
dc.identifier.urihttp://dspace.univ-tiaret.dz:80/handle/123456789/16075-
dc.description.abstractThis study explores the comparative software of Artificial Intelligence (AI) and Machine Translation (MT) technology for boosting scholar gaining knowledge of and language acqui-sition. As academic environments come to be more and more digital, AI-pushed equipment together with customized gaining knowledge of systems, chatbots, and superior language fashions are revolutionizing the methods college students engage with content. Machine Translation, a specialized software of AI, has visible speedy improvements with equipment like Google Translate, Deeply, and AI-powered fashions, imparting college students immedi-ate, albeit imperfect, translations. The studies examine the strengths, limitations, and capacity integration of AI and MT equipment in academic contexts. Through case studies, consumer feedback, and overall performance evaluation, the examine highlights AI`s adaptability in supplying customized gaining knowledge of studies whilst contrasting MT`s position in breaking language barriers. The findings endorse that whilst AI gives broader packages for scholar support, MT stays a precious asset for language gaining knowledge of and accessibil-ity. This comparative evaluation outlines first-rate practices for incorporating those technolo-gy in education, presenting frameworks that stability innovation with pedagogical effective-ness.en_US
dc.language.isoenen_US
dc.publisheribn khaldoun university-Tiareten_US
dc.subjectArtificial Intelligenceen_US
dc.subjectMachine Translationen_US
dc.subjectData Analysisen_US
dc.titleA Comparative Study of Artificial Intelligence and Machine Translationen_US
dc.typeThesisen_US
Collection(s) :Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
TH.M.ENG.2024.76.pdf3,39 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.