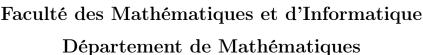
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE IBN KHALDOUN TIARET



Spécialité: Mathématique

Option : Analyse Fonctionnelle Et Équations différentiel

Mémoire de Fin d'Etudes

Pour obtenir

Le diplôme de Master

Sujet de mémoire

Équation d'évolution non homogène

Présenté par

*MENAD FARIHA

*MOSTEFAOUI HAKIMA

*TEKLAL FARYAL

soutenue devant le Jury composé de

*ZENTAR OUALID MAB Président

*MOHAMED ZIANE MCA Encadreur

*SOUID MOHAMMED SAID MCA Examinateur

Promotion: 2018 \ 2019

Table des matières

1	Semi-groupes à un paramètre d'opérateurs linéaires bornés			2
	1.1	Semi-g	groupes d'opérateurs linéaires bornés uniformément continus	2
	1.2	Semi-g	groupes d'opérateurs linéaires bornés fortement continus	8
	1.3	Théor	ème de Hille-Yosida	15
2	Applications aux équations d'évolution			28
	2.1	problè	ème de Cauchy abstrait non homogène	30
2.2 le dépendance continue des valeurs initiale		le dép	endance continue des valeurs initiale	32
	2.3	.3 Stabilité et comportement asymptotique de solution		
		2.3.1	Équation linéaire	33
		2.3.2	Cas non linéaire	35
		2.3.3	Stabilité linéaire	36
		2.3.4	Cas spécial	37

Chapitre 1

Semi-groupes à un paramètre d'opérateurs linéaires bornés

1.1 Semi-groupes d'opérateurs linéaires bornés uniformément continus

Soit X un espace de Banach muni de la norme $\|\cdot\|$ et notons par $\mathcal{L}_B(X)$ l'algèbre des opérateurs linéaires bornés de X dans X de norme d'opérateurs qu'on notera $\|\cdot\|$

Définition 1.1. Une famille $(T(t))_{t\geq 0}$ à un paramètre d'opérateurs linéaires bornés de X dans X est dite semi-groupe d'opérateurs linéaires bornés sur X si :

- (1) T(0) = I, (où I est l'opérateur identité de X)
- (2) T(t+s) = T(t)T(s), $\forall t, s \ge 0$

un semi groupe d'opérateurs linéaires bornés $(T(t))_{t\geq 0}$ sur X est dit uniformément continue sur X, si :

$$\lim_{t \to 0^+} ||T(t) - I|| = 0 \ (1)$$

l'opérateur linéaire A défini par :

$$D(A) = \left\{ x \in X, \lim_{t \to 0^+} \frac{T(t)x - x}{t} existe \right\}$$
 (1.1)

$$Ax = \lim_{t \to 0^+} \frac{T(t)x - x}{t} = \frac{dT(t)x}{dt_{t=0}}, \forall x \in D(A)$$
 (1.2)

est appelée le générateur infinitésimal du semi-groupe $(T(t))_{t\geq 0}$ et D(A) est appelé le domaine $\mathrm{de} A$

Dans ce paragraphe , nous allons étudier quelque propriétés de semi- groupes d'opérateurs linéaires bornés uniformément continus

Remarques 1.1. Il est facile de voir que $si(T(t))_{t\geq 0}$ est un semi-groupe uniformément continue sur X, alors : $\lim_{s\to t} ||T(s)-T(t)||=0$ en effet :

$$T(t) - T(s) = T(t - s + s) - T(s)$$

= $T(t - s)T(s) - T(s)$
= $T(s)[T(t - s) - I]$

$$si \ s \to t \ alors \ t-s \to 0$$

 $donc \ [T(t-s)-I] \to 0 \ par \ suite \ T(s)-T(t) \to 0$

Tout d'abord, commençons par démontrer le lemme suivante :

Lemme 1.1. soit $f:[a,b] \to X$ est une fonction continue, alors:

$$\lim_{t \to 0^+} \frac{1}{t} \int_a^{a+t} f(s) \, \mathrm{d}s = f(a)$$

preuve pour tout $t \neq 0$

$$\|\frac{1}{t} \int_{a}^{a+t} f(s) ds - f(a)\| = \|\frac{1}{t} \int_{a}^{a+t} (f(s) - f(a)) ds\|$$

$$\leq \frac{1}{t} \times \|f(s) - f(a)\| \times t$$

$$= \sup \|f(s) - f(a)\|$$

la continuité de f nous permet de conclure

Théorème 1.1. un opérateur linéaire A est le générateur infinitésimal d'un semigroupe uniformément continue sur X ssi A est un opérateur linéaire borné sur X

preuve soit A un opérateur linéaire borné sur X posons :

$$T(t) = \exp^{tA} = \sum_{n=0}^{+\infty} t^n \frac{A^n}{n!}$$
 (4)

la série ainsi définit dans la forme (4) converge en norme pour tout $t \geq 0$ et définit, pour tout $t \geq 0$ un opérateur linéaire borné $(T(t))_{t \geq 0}$

Il est claire que T(0)=I par un simple calcul, on a $t,s\geqslant 0$: $T(t+s)=\sum_{n=0}^{+\infty}\frac{(t+s)^n}{n!}A^n$ $T(t+s)=\sum_{n=0}^{+\infty}\sum_{k=0}^n\frac{1}{n!}C_n^kt^{n-k}s^kA^n$ $=\sum_{n=0}^{+\infty}\sum_{k=0}^n\frac{1}{k!(n-k)!}t^{n-k}s^kA^n$ $=\sum_{n=0}^{+\infty}\sum_{k=0}^n\frac{t^{n-k}A^{n-k}}{(n-k)!}\frac{s^kA^K}{K!}$ $=(\sum_{n=0}^{+\infty}\frac{t^nA^n}{n!})(\sum_{n=0}^{+\infty}\frac{s^nA^n}{n!})$ =T(t)T(s)

par ailleurs, pour tout $t \ge 0$, on a :

$$||T(t) - I|| = ||\sum_{n=0}^{+\infty} \frac{t^n A^n}{n!} - I||$$

$$= ||\sum_{n=1}^{+\infty} \frac{t^n A^n}{n!}||$$

$$\leq \sum_{n=1}^{+\infty} t^n \frac{||A||^n}{n!} = e^{t||A||} - 1 \to_{t\to 0^+} 0$$

Donc $\lim_{t\to 0^+} ||T(t) - I|| = 0$

D'autre part, pour tout t > 0, on a :

$$\begin{split} \|\frac{T(t)-I}{t}-A\| &= & \|\frac{e^{tA}-I}{t}-A\| \\ &= & \|\frac{e^{tA}-I-tA}{t}\| \\ &= & \|\frac{1}{t}\sum_{n=2}^{+\infty}\frac{t^nA^n}{n!}\| \\ &\leq & \frac{1}{t}\sum_{n=2}^{+\infty}\frac{t^n||A||^n}{n!} \\ &\leq & \frac{1}{t}(\sum_{n=0}^{+\infty}\frac{t^n||A||^n}{n!}-1-t||A||) \\ &= & \frac{1}{t}(e^{t||A||}-1-t||A||) \\ &= & \frac{1}{t}(e^{t||A||}-1-t||A|$$

Ainsi $(T(t))_{t>0}$ est un semi-groupe d'opérateur linéaire borné uniformément continue sur X, de générateur infinitésimal A

Réciproquement, soit $(T(t))_{t>0}$ un semi-groupe d'opérateurs linéaires borné uniformément continus sur X et soit A son générateur infinitésimal L'application $T(\cdot)$: $\mathbb{R}^+ \to l_B(X)$ est continue, donc $\int_0^t T(s) \mathrm{d}s \in L_B(X), \forall t \geqslant 0$

D'après le lemme 1 , on a : $\lim_{t\to 0^+} \frac{1}{t} \int_0^t T(s) \mathrm{d}s = T(0) = I$ Il existe alors $\rho > 0$ tq : $\|\frac{1}{\rho} \int_0^\rho T(s) \mathrm{d}s - I\| < 1$,ce qui implique que $\frac{1}{\rho} \int_0^\rho T(s) \mathrm{d}s$ est inversible, et donc $\int_0^\rho T(t) ds$ est aussi inversible. Pour tout h > 0, on a :

$$(\frac{T(h) - I}{h})(\int_0^{\rho} T(s) ds) = \frac{1}{h} \int_0^{\rho} (T(h+s) - T(s)) ds$$

$$= \frac{1}{h} (\int_h^{\rho+h} T(s) ds - \int_0^{\rho} T(s) ds)$$

$$= \frac{1}{h} (\int_{\rho}^{\rho+h} T(s) ds - \int_0^h T(s) ds)$$

Donc
$$(\frac{T(h)-I}{h}) = (\frac{1}{h} \int_0^{\rho+h} T(s) ds - \frac{1}{h} \int_0^h T(s) ds) (\int_0^{\rho} T(s) ds)^{-1}$$

compte tenu du lemme (1), on obtient $\lim_{h\to 0^+} (T(h)-I)/h = (T(\rho)-I)(\int_0^\rho)^{-1}$ ainsi, le générateur infinitésimal du semi-groupe $(T(t))_{t\geq 0}$ (uniformément continue) est l'opérateur linéaire borné $A = (T(\rho)-I)(\int_0^\rho)^{-1}$

Remarques 1.2. De la définition (1), on voit bien qu'un semi-groupe $(T(t)_{t\geq 0})$ admet un unique générateur. si $(T(t))_{t\geq 0}$ et uniformément continue, alors son générateur infinitésimal et un opérateur linéaire bornée. D'autre part, tout opérateur linéaire bornée est le générateur infinitésimal d'un semi-groupe uniformément continue. ce semi-groupe est t-il unique? La réponse affirmative à cette question est donnée par le théorème suivant :

Théorème 1.2. Soit $(T(t))_{t\geq 0}$ et $(S(t))_{t\geq 0}$ deux semi-groupes uniformément continue : $si \lim_{t\to 0^+} \frac{T(t)-I}{t} = A = \lim_{t\to 0^+} \frac{S(t)-I}{t}$ (5). Alors : T(t) = S(t), $\forall t\geq 0$

preuve Montrons que pour tout a > 0, T(t) = S(t), $\forall t \in [0, a]$ Soit a > 0 fixé, comme $(T(t))_{t \geq 0}$ et $(S(t))_{t \geq 0}$ soit deux semi-groupe uniformément continue, alors les applications $t \mapsto ||T(t)||$ et $t \mapsto ||S(t)||$ sont continus. Il existe alors une constant c_a tq: $||T(t)||||S(s)|| \leq c_a$, $\forall t, s \in [0, a]$.

pour tout h>0, on a : $\|\frac{T(h)-S(h)}{h}\|=\|\frac{T(h-I)}{h}-A-(\frac{S(h)-I}{h}-A)\|$ Soit $\epsilon>0$ L'égalité (5) implique qu'il existe un $\delta>0$ tq pour $0< h\leq \delta$, on ait : $\|\frac{T(h)-I}{h}-A\| \leq \frac{\epsilon}{2c_a}$ et $\|\frac{S(h)-I}{h}-A\| \leq \frac{\epsilon}{2ac_a}$ ce que entraine alors que pour $0< h\leqslant \delta$, $\|\frac{T(h)-S(h)}{h}\leq \|\frac{T(h)-I}{h}-A\|+\|\frac{S(h)-I}{h}-A\|$ $\leq \frac{\epsilon}{ac_0}$ (6) Soit $t\in [0,a]$ et soit n>1 tq $\frac{t}{a}<\delta$. De la définition (1) d'un semi-groupe et de

Soit $t \in [0,a]$ et soit $n \ge 1$ tq $\frac{t}{n} \le \delta$. De la définition (1) d'un semi-groupe et de (6)il vient que :

$$||T(t) - S(t)|| = ||\sum_{k=0}^{n-1} T((n-k)\frac{t}{n})S(\frac{kt}{n}) - T((n-k-1)\frac{t}{n})S((k+1)\frac{t}{n})||$$

$$\leq \sum_{k=0}^{n-1} ||T((n-k)\frac{t}{n})S(k\frac{t}{n}) - T((n-k-1)\frac{t}{n})S((k+1)\frac{t}{n})||$$

$$\leq \sum_{k=0}^{n-1} ||T((n-k-1)\frac{t}{n})T(\frac{t}{n})S(\frac{kt}{n}) - T((n-k-1)\frac{t}{n})S(\frac{kt}{n})S(\frac{t}{n})||$$

$$\leq \sum_{k=0}^{n-1} ||T((n-k-1)\frac{t}{n})||||S(\frac{kt}{n})||||T(\frac{t}{n}) - S(\frac{t}{n})||$$

$$\leq c_a \frac{t}{n} \frac{\epsilon}{ac_a} \sum_{k=0}^{n-1} 1$$

$$= \epsilon \frac{t}{a}$$

$$\leq \epsilon$$

comme $\epsilon > 0$ est arbitraire, alors $T(t) = S(t), \forall t \in [0, a]$. mais puisque a > 0 est aussi arbitraire, il s'ensuit que : $T(t) = S(t), \forall t \geq 0$

Corollaire 1.1. soit $(T(t))_{t\geq 0}$ un semi-groupe d'opérateurs linéaires bornés, uniformément continus. Alors :

- (1) Il existe deux constantes $w \ge 0$ telle que : $||T(t)|| \le Me^{wt}, \forall t \ge 0$
- (2) Il existe un unique opérateur linéaire borné A $tq: T(t) = e^{tA}, \forall t \geqslant 0$
- (3) L'opérateur A de l'assertion(2) est le générateur infinitésimal du semi-groupe $(T(t))_{t>0}$
- (4) L'application: $t \mapsto T(t)$ est différentiel en norme et on a : $\frac{\mathrm{d}T(t)}{\mathrm{d}t} = AT(t) = T(t)A, \ (7)$

preuve Toutes les assertions du corollaire 1 découlent de l'assertion 2 pour montrer 2 notons que puisque $(T(t))_{t\geq 0}$ est un semi-groupe uniformément continu son générateur infinitésimal A est un opérateur linéaire borné est aussi le générateur infinitésimal du semi-groupe $(e^{tA})_{t\geq 0}$ définie par la formule(4) ,et par le théorème(2)(d'unicité),on obtient $T(t) = e^{tA}$, $\forall t \geq 0$

1.2 Semi-groupes d'opérateurs linéaires bornés fortement continus

Dans tout ce paragraphe, X dénote un espace de Banach de norme $||\cdot||$ et $L_B(X)$ dénote l'algèbre des opérateurs linéaires bornés sur X, munie de la norme des opérateurs qu'on notera aussi par $||\cdot||$

Définition 1.2. Un semi-groupe $(T(t))_{t\geq 0}$ d'opérateurs linéaires bornés sur X est dit un semi-groupe d'opérateurs linéaires bornés fortement continus sur X, si : $\lim_{t\to 0} T(t)x = x, \forall x \in X$ (8)

un semi-groupe fortement sur X est appelé aussi semi-groupe de classe C_0 sur X,ou tout simplement : un C_0 -semi-groupe sue X on établit le théorème suivant :

Théorème 1.3. Soit $(T(t))_{t\geq 0}$ un C_0 -semi-groupe ur X. alors il existe deux constants $w\geq 0$ et $M\geq 1$ tells que : $||T(t)||\geq M\exp^{wt}\forall t\geq 0$ (9)

preuve Montrons d'abord qu'il existe a > 0 et $M \ge 1$ tels que :

$$||T(t)|| \geq M, \forall t \in [0, b]$$

. supposons le contraire, c'est à dire, supposons que $\forall a > 0, \forall M \geq 1, \exists t \in [0, a]$ tq:

$$||T(t)||t > M$$

En particulier pour $a = \frac{1}{n}$ et $M = n \ge 1$ $(n \in \mathbb{N})$, il existe $t_n \in [0, \frac{1}{n}]$ tq: $||T(t_n)|| > n$. donc la suite $(||T(t_n)||)_n \in \mathbb{N}$ est non bornée. Il vient alors du théorème de Banach-Steinhaus, qu'il existe x_0 inX tq: $(||T(t_n)x_0||)_n \in \mathbb{N}$ soit non bornée, ce qui contredit le fait que $\lim_{t\to 0^+} T(t)x = x \ \forall x \in X$. Ainsi: $||T(t)|| \le M \ \forall t \ge 0$, $t \in [0, a]$ comme ||T(0)|| = 1, alors $M \ge 1$ posons $w = \frac{\log(M)}{a} \ge 0$ Soit $t \ge 0$ et soient $n \in \mathbb{N}$ et Ω telle que: $t = na + \Omega$, avec $0 \ge \Omega < a$. par la propriété des semi-groupe, on a :

$$\begin{split} \|T(t)\| &= \|T(na + \Omega)\| &= \|T(\Omega)T(na)\| \\ &= \|T(\Omega)T(a)^n\| \\ &\leq M^n + 1 \\ &\leq MM^n \\ &\leq MM^{\frac{t-\Omega}{a}} \\ &\leq MM^{\frac{t}{a} - \frac{\Omega}{a}} &\leq MM^{\frac{t}{a}} \\ &= M \exp^w t \end{split}$$

ce qui achevé la démonstration du théorème

Corollaire 1.2. Soit $(T(t))_{t\geq 0}$ on C_0 -semi-groupe sur X .Alors : pour tout $x \in X$, la fonction $t \longmapsto T(t)x$ est continue de \mathbb{R}_+ , sur X

preuve soit $x \in X$ et soient $t, h \ge 0$. La continuité de $t \longmapsto T(t)x$ découle dans inégalités :

$$||T(t+h)x - T(t)x|| = ||T(t)(T(h)x - x)||
\leq ||T(t)|| ||T(h)x - x||
\leq M \exp^w t ||T(h)x - x||
\text{et pour tout } t \geq h \geq 0 :
||T(t-h)x - T(t)x|| = ||T(t-h)(x - T(h)x)||
\leq ||T(t-h)|||x - T(h)x||
\leq M \exp^w (t-h)||x - T(h)x||
\leq M \exp^w t ||x - T(h)x||$$

Théorème 1.4. soit $(T(t))_{t\geqslant 0}$ un C_0 -semi groupe sur X de générateur infinitésimal A alors :

(1)
$$\lim_{h \to 0^+} \frac{1}{h} \int_t^{t+h} T(s) x ds = T(t)x, \forall t \geqslant 0, \forall x \in X, (10)$$

(2) Pour toute
$$x \in X$$
 et tout $t \ge 0, \int_0^t T(s)x ds \in D(A)$ et on $a: A(\int_0^t T(s)x ds) = T(t)x - x, (11)$

(3) Pour toute
$$t \ge 0$$
 et toute $x \in D(A)$, $T(t)x \in D(A)$ et on a :
$$\frac{\mathrm{d}}{\mathrm{d}t}T(t)x = AT(t)x = T(t)Ax ,(12)$$

(4) Pour toute
$$t \ge s \ge 0$$
 et toute $x \in D(A)$, on a : $T(t)x - T(s)x = \int_s^t AT(u)x du = \int_s^t T(u)Ax du$, (13)

preuve

(1) l'égalité énoncée découle de l'inégalité :

$$\|\frac{1}{h} \int_{t}^{t+h} T(s)x ds - T(t)x\| = \|\frac{1}{h} \int_{t}^{t+h} (T(s)x - T(t)x) ds\|$$

$$\leq \sup \|T(s)x - T(t)x\|$$

et de la continuité de la fonction $t \mapsto T(t)x$ de \mathbb{R}^+ dans X, pour toute $x \in X$

(2) pour $x \in X$ et tout h > 0

$$\frac{T(h) - I}{h} \int_0^t T(s) x ds = \frac{1}{h} (\int_0^t (T(s+h)x - T(s)x) ds$$
$$= \frac{1}{h} \int_h^{t+h} T(s) x ds - \frac{1}{h} \int_0^t T(s) x ds$$
$$= \frac{1}{h} \int_t^{t+h} T(s) x ds - \frac{1}{h} \int_0^h T(s) x ds$$

en utilisant la résultat(1) $\longrightarrow T(t)x-x$, d'où le (2)

(3) Pour toute $x \in D(A)$, on a :

$$\lim_{h \to 0^{+}} \frac{T(h) - I}{h} T(t) x = \lim_{h \to 0^{+}} \frac{T(t+h)x - T(t)x}{h}$$

$$= \lim_{h \to 0^{+}} T(t) \frac{(T(h) - I)}{h} x$$

$$= T(t) Ax , (*)$$

Ce qui montre alors que $T(t)x \in D(A)$ et que AT(t)x = T(t)Ax.

L'égalité (*) implique aussi que : $\frac{d^+}{dt}T(t)x = AT(t)x = T(t)Ax$. c'est à dire que la dérivé à droite de T(t)x existe et vaut T(t)Ax.

Pour prouver(12), il reste à montrer que pour toute $t \geq 0$, la dérivé à gauche de T(t)x existe et vaut aussi T(t)Ax.

Pour toute
$$h \ge 0$$
, $\forall t \ge h$, et tout $x \in D(A)$, on a:
$$\frac{T(t)x - T(t-h)x}{h} - T(t)Ax = \frac{T(t)x - T(t-h)x}{h} + T(t-h)Ax - T(t-h)Ax - T(t)Ax$$

$$= T(t-h)\left[\frac{T(h)x - x}{h} - Ax\right] + T(t-h)[Ax - T(h)Ax]$$

comme $x \in D(A)$ et ||T(t-h)|| est bornée pour $h \in [0,t]$ et que $(T(t))_{t>0}$ est fortement continue, on obtient que:

$$\lim_{h \to 0^+} \frac{T(t)x - T(t-h)x}{h} - T(t)Ax = \lim_{h \to 0^+} T(t-h) \left[\frac{T(h)x - x}{h} - Ax \right] + \lim_{h \to 0^+} T(t-h) [Ax - T(t-h)] = 0$$

,d'où l'assertion(3)

(4) s'obtient par intégration entre s et t.

Remarques 1.3. la formule (13) du théorème (2.2.2) s'écrit en particulier pour $t \geq 0$ et s = 0 et pour tout $x \in D(A)$ sous la forme simple :

$$T(t)x - x = \int_0^t T(u)Ax du = \int_0^t AT(u)x du, \quad \forall x \in D(A)$$

Corollaire 1.3. si A est le générateur infinitésimal d'un C_0 -semi groupe $(T(t))_{t>0}$, alors:

(1) Le domaine D(A) de A est dense dans X , (ie $:\overline{D(A)} = X$)

(2) A est un opérateur linéaire fermé .Autrement dit A est un opérateur linéaire dont le graphe G(A) est un fermé de $X \times X$

preuve

- (1) Soit $x \in X$ et soit (t_n) une suite réelle telle que $t_n > 0$, $\forall n \in \mathbb{N}$ et $\lim_{n \to \infty} t_n = 0$ (par exemple : $t_n = \frac{1}{n+1}, \forall n \in \mathbb{N}$) posons $x_n = \frac{1}{t_n} \int_0^{t_n} T(s) x ds, \forall n \in \mathbb{N}$ D'après l'assertion(2) de théorème(2.2.2) on voit que $x_n \in D(A), \forall n \in \mathbb{N}$ et par l'assertion(1) du même théorème(2.2.2), on a : $\lim_{n\to\infty}x_n=\lim_{n\to\infty}\frac{1}{t_n}\int_0^{t_n}T(s)x\mathrm{d}s=x\text{ Ainsi }\overline{D(A)}=X,\text{c'est à dire }D(A)\text{ est dense dans }X$
- (2) La linéarité de A est évidente. Montrons que A est un opérateur fermé, i.e à montrer que le graphe :

 $G(A) = \{(x, Ax)/x \in D(A)\}\$ de A est un fermé de $X \times X$. Pour cela, soit $(x_n) \subset D(A)$ to $x_n \xrightarrow{n \to \infty} x$ et $Ax_n \xrightarrow{n \to \infty} y$ Montrons alors que $x \in D(A)$ et que Ax = yPuisque $x_n \in D(A), \forall n \in \mathbb{N}, \text{alors d'après la formule} (13), \text{on a}:$

$$T(t)x_n - x_n = \int_0^t T(s)Ax_n ds \qquad \forall n \in \mathbb{N}, \forall t \ge 0$$
 (14)

Soit t>0, alors pour tout $s\in[0,t]$, on a : $\forall n\in\mathbb{N}$, $||T(s)Ax_n - T(s)y|| = ||T(s)(Ax_n - y)||$ $\leq ||T(s)|| ||Ax_n - y||$ $\leq M \exp^{wt} ||Ax_n - y||$

Donc $(T(s)Ax_n)_n$ converge uniformément vers T(s)y, quand $n \to +\infty$ sur [0,t]Il vient de l'égalité (14) et du théorème d'inversion limite et intégrale que :

$$T(t)x - x = \int_0^t T(s)y ds$$

 $\frac{T(t)x - x}{t} = \frac{1}{t} \int_0^t T(s)y ds \qquad \forall t > 0$ Donc $\lim_{t \to 0} \frac{1}{t} \int_0^t T(s) y ds = y \text{ alors } \lim_{t \to 0} \frac{T(t) x - x}{t} \text{ existe}$

D'où $x \in D(A)$ et Ax = y

Théorème 1.5. Soit $(T(t))_{t>0}$ et $(S(t))_{t>0}$ deux C_0 -semi-groupe sur X, de générateur infinitésimaux respectivement A et B . si A=B, alors T(t)=S(t) , $\forall t\geq 0$

preuve Soit t > 0 et soit $x \in D(A) = D(B)$

Il vient facilement du théorème(2.2.2)-(2.2.1) que la fonction $: s \in [0,t] \mapsto u(s)x =$ T(t-s)S(s) $x \in D(A)$

est dérivable et que :

$$\frac{\mathrm{d}}{\mathrm{d}s}u(s)x = \frac{\mathrm{d}}{\mathrm{d}s}(T(t-s))S(s)x + T(t-s)\frac{\mathrm{d}}{\mathrm{d}s}S(s)x$$

$$= -AT(t-s)S(s)x + T(t-s)BS(s)x$$

$$= -T(t-s)AS(s)x + T(t-s)AS(s)x = 0$$

ce qui entraine alors que, pour tout $x \in D(A)$, la fonction $s \mapsto u(s)x = T(t-s)S(s)x$ est constante et en particulier ses valeurs aux points s=0 et s=t coïncident, c'est à dire u(0)x = u(t)x $\forall x \in D(A)$

D'où
$$T(t)x = S(t)x \qquad \forall t \ge 0, \forall x \in D(A)$$

comme $\overline{D(A)} = X$ et T(t) et S(t) sont des opérateurs bornés sur X, pour tout t > 0.

Il en résulte que
$$T(t)x=S(t)x \qquad \forall t\geq 0, \forall x\in X$$

D'où $T(t)=S(t) \qquad \forall t\geq 0$

Théorème 1.6. Soient $(T(t))_{t\geq 0}$ un C_0 -semi-groupe sur X, de générateur infinitésimal A et soit V un opérateur linéaire borné sur X (i.e, $V \in L_B(X)$) Alors les propriétés suivants sont équivalents :

- (1) T(t)V = VT(t) , $\forall t > 0$
- (2) $VD(A) \subseteq D(A)$ et AVx = VAx , $\forall x \in D(A)$

preuve

 $(1) \Rightarrow (2) \text{ soit } V \in L_B(X) \text{ telle que } : T(t)V = VT(t)$, $\forall t > 0$ soit $x \in D(A)$, alors on a:

$$A(Vx) = \lim_{t \to 0} \frac{T(t)Vx - V(x)}{t}$$
$$= \lim_{t \to 0} \frac{VT(t)x - Vx}{t}$$
$$= \lim_{t \to 0} V(\frac{T(t)x - x}{t})$$

qui existe et vaut VAx, donc $Vx \in D(A)$ et on a AVx = V(Ax)

 $(2) \Rightarrow (1)$ soit $V \in L_B(X)$ telle que telle que $VD(A) \subseteq D(A)etAVx = VAx, \forall x \in D(A)$ Pour tout $t \ge 0$ et tout $x \in D(A)$, définissons la fonction $s \in [0, t] \mapsto W(s)x = 0$

$$T(t-s)VT(s)x \in D(A)$$
 Alors:
$$\frac{\mathrm{d}}{\mathrm{d}s}W(s)x = (\frac{\mathrm{d}}{\mathrm{d}s}T(t-s))VT(s)x + T(t-s)\frac{\mathrm{d}}{\mathrm{d}s}VT(s)x$$

$$= -AT(t-s)VT(s)x + T(t-s)VAT(s)x \quad \text{Par conséquent}: W(0)x = -T(t-s)AVT(s)x + T(t-s)VAT(s)x$$

$$= 0$$

$$W(t)x \quad \forall x \in D(A)$$

$$D'où: T(t)Vx = VT(t)x \quad \forall t \geq 0, \forall x \in D(A)$$

$$\mathrm{comme} \ \overline{D(A)} = XetT(t)VetVT(t) \ \text{sont continues alors} \ T(t)V = VT(t) \quad \forall t \geq 0$$

Nous avons vu dans le corollaire (3) que si A est le générateur infinitésimal d'un C_0 -semi-groupe sur X, alors $\overline{D(A)} = X$ et A est un opérateur fermé. Maintenant, nous allons démontrer un résultat plus général, pour cela nous commençons tout d'abord par énoncer le lemme suivant :

Lemme 1.2. Soit Eun espace vectoriel normé et soit F un sous espace vectoriel de E telle que : $\overline{F} \neq E$. Alors il existe $f \in E'$, $f \neq 0$ telle que : $\langle x, f \rangle = 0, \forall x \in F$

preuve c'est un corollaire du théorème de Hahn-Banach

Théorème 1.7. Soit $(T(t))_{t\geq 0}$ un C_0 -semi-groupe sur X, de générateur infinitésimal (sur X)A. Alors:

(1)
$$\overline{D(A^n)} = X$$
, pour toutes $n \in \mathbb{N}^*$
(2) $\bigcap_{n \ge 0}^{+\infty} D(A^n) = X$

preuve

(1) si n=1 ,compte tenir du corollaire(3),il résulte que $\overline{D(A)}=X$. Posons $D=\{\varphi\in C^\infty(\mathbb{R}): \text{c'est à support compact dans } [0,+\infty[\}$ Pour tout $\varphi\in D$ et tout $x\in X$,on pose $:x_\varphi=\int_0^\infty \varphi(s)T(s)x\mathrm{d}s$ et on considère l'ensemble $:Y=\{x_\varphi:\varphi\in D\text{ et }x\in X\}$ Pour toutes $x\in X,\varphi\in D$ et h>0, on a :

$$\begin{split} \frac{T(h)-I}{h}x_{\varphi} &= \frac{1}{h}\int_{0}^{\infty}\varphi(s)T(s+h)x\mathrm{d}s - \frac{1}{h}\int_{0}^{\infty}\varphi(s)T(s)x\mathrm{d}s \\ &= \frac{1}{h}\int_{h}^{\infty}\varphi(s-h)T(s)x\mathrm{d}s - \frac{1}{h}\int_{0}^{\infty}\varphi(s)T(s)x\mathrm{d}s \\ &= \frac{1}{h}\int_{h}^{\infty}(\varphi(s-h)-\varphi(s))T(s)x\mathrm{d}s - \frac{1}{h}\int_{0}^{h}\varphi(s)T(s)x\mathrm{d}s \\ &= \frac{1}{h}\int_{h}^{\infty}(\varphi(s-h)-\varphi(s))T(s)x\mathrm{d}s + \frac{1}{h}\int_{0}^{h}(\varphi(s-h)-\varphi(s))T(s)x\mathrm{d}s \\ &= \frac{1}{h}\int_{0}^{\infty}(\varphi(s-h)-\varphi(s))T(s)x \text{ converge uniformément sur } [0,+\infty[\text{ vers }-\varphi'(s)T(s)x]) \\ &= \frac{1}{h}(\varphi(s-h)-\varphi(s))T(s)x \text{ converge uniformément sur } [0,+\infty[\text{ vers }-\varphi'(s)T(s)x]) \end{split}$$

 $\operatorname{sur}\left[0,+\infty\right[$

quand $h \to 0^+$, alors en faisant tendre h vers 0^+ dans la formule (15).

Il vient que $x_{\varphi} \in D(A)$

et que : $Ax_{\varphi} = -\int_{0}^{\infty} \varphi'(s)T(s)x ds$

Il en résulte alors que $Y \subset D(A)$ et par récurrence on montre que :

 $Y \subset D(A^n)$, pour tout $n \in \mathbb{N}^*$ et que :

 $A^n x = (-1)^n \int_0^\infty \varphi^(n)(s) T(s) x ds$ pour tout $x_\varphi \in Y$

Maintenant, montrons que Y est dense dans X.

Supposons que le contraire, c'est à dire : que $\overline{Y} \neq X$, alors d'après le lemme (2.2.1), corollaire du théorème de Hahn-Banach, il existe $f \in X', f \neq 0$ et telle que :

$$\langle x_{\varphi}, f \rangle = 0, \forall x_{\varphi} \in Y$$

 $\begin{array}{l} \operatorname{Donc}, \int_0^\infty \varphi(s) \langle T(s)x, f \rangle \mathrm{d}s = \langle \int_0^\infty \varphi(s) T(s) x \mathrm{d}s, f \rangle = 0 &, \forall \varphi \in D, \forall x \in X \\ \operatorname{Par \ cons\'equent \ :pour \ tout \ } x \in X, \text{ on a : } \langle T(s)x, f \rangle = 0 \ , \forall s \in [0, +\infty[.] \end{array}$

Cas sinon, il existe $\varphi \in D$ telle que : $\int_0^\infty \varphi(s) \langle T(s)x, f \rangle ds \neq 0$ ce qui est contradiction.

Il s'ensuit alors que pour tout $x \in X$:

 $\langle T(s)x, f \rangle = 0, \forall s \in [0, +\infty[$

En particulier pour s=0 on obtient $:\langle T(0)x,f\rangle=\langle x,f\rangle=0, \forall x\in X$

Ce qui est absurde car $f \neq 0$ sur X.

Comme $Y \subset D(A)$, pour tout $n \in \mathbb{N}^*$, on obtient, $D(A^n)$ est dense dans X, i.e. $\overline{D(A^n)} =$ X.

D'où (1).

(2) On a vu dans (1) que $Y \in D(A^n), \forall n \in \mathbb{N}^*$

donc $Y \subset \bigcap_{i=1}^n D(A^n)$, comme $\overline{Y} = X$,
il vient alors que :

$$\bigcap_{n=1}^{+\infty} D(A^n) = X$$

1.3 Théorème de Hille-Yosida

Dans se paragraphe, nous présentons l'un des résultats les plus importantes concernant les C_0 -semi-groupes. Il s'agit du théorème de Hille-Yosida, qui permet de caractériser les opérateurs qui sont générateurs de C_0 -semi-groupes. Nous allons commencer tout d'abord par introduite quelques notions et résultats intermédiaires. **Préliminaires**:

Définition 1.3. Soit X un espace de Banach et soit $A:D(A)\in X\to X$ un opérateur linéaire quelconque.

(1) on appelle ensemble résolvante de A, qu'on note : $\rho(A)$, l'ensemble :

$$\rho(A) = \{ \lambda \in \mathbb{C} : \lambda I - A : D(A) \to Xestbijectif \}$$

- (2) on appelle spectre de A, l'ensemble noté $\sigma(A)$, défini par : $\sigma(A) = \mathbb{C} \setminus \rho(A)$
- (3) pour $\lambda \in \rho(A)$, l'opérateur linéaire, $R(\lambda, A) = (\lambda I A)^{-1}$ est appelé la résolvante de A au point λ .

Théorème 1.8. Soit $(T(t))_{t\geq 0}$ un C_0 -semi-groupe sur X, le générateur infinitésimal A et soient $w\geq 0$ et $M\geq 1$ tels que : $||T(t)||\geq M\exp^{wt}$, $\forall t\geq 0$. si $\lambda\in\mathbb{C}$ tq $Re\lambda>w$, alors :

1) L'application $R_{\lambda}: X \to X$ défini par :

$$R_{\lambda}x = \int_{0}^{\infty} \exp^{-\lambda s} T(t)x ds$$

définie un opérateur linéaire borné sur X

2)
$$\lambda \in \rho(A)$$
 et $R(\lambda, A)x = R_{\lambda}x, \forall x \in X$

preuve

1) soit $\lambda \in \mathbb{C}$ tq $Re\lambda > w$ il est facile de voir que R_λ est un opérateur linéaire de plus, pour tout $s \geq 0$

et $x \in X$ on a :

$$||\exp^{-\lambda s} T(t)x|| \leq \exp^{-Re\lambda s} ||T(t)|| ||x||$$

$$\leq \exp^{-Re\lambda s} M \exp^{ws} ||x||$$

$$= M \exp^{-} (Re\lambda - w)s||x||$$

ce qui entraine alors que :

$$\begin{array}{lcl} ||R_{\lambda}x|| & \leq & \int_0^{\infty} ||\exp^{-\lambda s} T(s)x|| \mathrm{d}s \\ & \leq & M||x|| \int_0^{\infty} \exp^{-(Re\lambda - w)s} \mathrm{d}s \\ & = & \frac{M}{Re\lambda - w} \cdot ||x|| & \forall x \in X \end{array}$$

Il s'ensuit alors que R_{λ} est un opérateur linéaire borné sur X et que :

$$||R_{\lambda}|| \le \frac{M}{Re\lambda - w}$$

2) pour $\forall x \in X \text{ et } h > 0$, on a :

$$\begin{array}{rcl} \frac{T(h)R_{\lambda}x-R_{\lambda}x}{h} & = & \frac{1}{h}\int_{0}^{\infty}\exp^{-\lambda s}T(t+s)x\mathrm{d}s - \frac{1}{h}\int_{h}^{\infty}\exp^{-\lambda s}T(s)x\mathrm{d}s \\ & = & \frac{\exp^{\lambda h}}{h}\int_{h}^{\infty}\exp^{-\lambda s}T(s)x\mathrm{d}s - \frac{1}{h}\int_{0}^{\infty}\exp^{-\lambda s}T(s)x\mathrm{d}s \\ & = & \frac{\exp^{\lambda h}}{h}(\int_{0}^{\infty}\exp^{-\lambda s}T(s)x\mathrm{d}s - \int_{0}^{h}\exp^{-\lambda s}T(s)x\mathrm{d}s) - \frac{1}{h}\int_{0}^{\infty}\exp^{-\lambda s}T(t)x\mathrm{d}s \\ & = & (\frac{\exp^{\lambda h}-1}{h})\int_{0}^{\infty}\exp^{-\lambda h}T(s)x\mathrm{d}s - \frac{\exp^{\lambda h}}{h}\int_{0}^{h}\exp^{-\lambda h}T(t)x\mathrm{d}s \end{array}$$

par passage à la limite quand $h \to 0^+$, on obtient que : $\lim_{h \to 0^+} \frac{T(h)R_{\lambda}x - R_{\lambda}x}{h} =$

$$\lambda R_{\lambda} x - x$$

donc, $R_{\lambda}x \in D(A)$ et que $:AR_{\lambda}x = \lambda R_{\lambda}x - x, \forall x \in X$

càd:
$$(\lambda I - A)R_{\lambda}x = x$$
, $\forall x \in X$

soit $x \in D(A)$, alors d'après le th (4) -assertion (3), on a : (on peut utiliser th (6))

$$\frac{d}{ds}(\exp^{-}\lambda s) = -\lambda \exp^{-}\lambda s T(s)x + \exp^{-}\lambda s \frac{d}{ds} T(s)x$$
$$= -\lambda \exp^{-}\lambda s T(s)x + \exp^{-}\lambda s T(s)Ax$$

Il vient alors que:

$$R_{\lambda}Ax = \int_{0}^{\infty} \exp^{-\lambda s}T(s)Axds$$

$$= \int_{0}^{\infty} \frac{d}{ds}(\exp^{-\lambda s}T(s)x)ds + \lambda \int_{0}^{\infty} \exp^{-\lambda s}T(s)xds$$

$$= [\exp^{-\lambda t}T(s)x]_{0}^{\infty} + \lambda R_{\lambda}x$$

$$= -x + \lambda R_{\lambda}x$$

ce qui entraine alors que :

$$\lambda R_{\lambda} x - R_{\lambda} A x = x$$

, càd :
$$R_{\lambda}(\lambda I-A)x=x \qquad \forall x\in D(A)$$
 donc
$$(\lambda I-A)R_{\lambda}=I_XetR_{\lambda}(\lambda I-A)=I_{D(A)}$$

Proposition 1.1. Soit $(T(t))_{t\geq 0}$ un C_0 -semi-groupe sur X de générateur infinitésimal A et soient $w\geq 0$ et $M\geq 1$ tels que : $||T(t)||\geq M\exp wt$, $\forall t\geq 0$ Alors pour tout $\lambda\in\mathbb{C}$ tel que $Re(\lambda)>w$ et pour tout $x\in D(A)$ on a:

$$AR(\lambda, A)x = R(\lambda, A)Ax$$

preuve Pour tout t > 0 et tout $x \in D(A)$, on a : (on peut utiliser th (6) et $R_{\lambda} = R(\lambda, A)$)

$$\int_0^t \exp^- \lambda s T(s) x ds \to \int_0^\infty \exp^- \lambda s T(s) x ds$$

et

$$A(\int_0^t \exp^- \lambda s T(s) x ds) = \int_0^t \exp^- \lambda s T(s) Ax ds \to \int_0^\infty \exp^- \lambda s T(s) Ax ds$$

comme A est un opérateur fermé, alors :

$$AR(\lambda, A)x = A(\int_0^\infty \exp^- \lambda s T(s)x ds) = \int_0^\infty \exp^- \lambda s T(s)Ax ds = R(\lambda, A)x$$

D'où le résultat.

Théorème de Hille-Yosida pour les C_0 -semi groupes de contractions :

Définition 1.4. Soit $(T(t))_{t\geq 0}$ un C_0 -semi-groupe sur X

- (1) $(T(t))_{t\geq 0}$ est dit uniformément borné . s'il existe $M\geq 1$ $tq:||T(t)||\leq M$, $\forall t > 0$
- (2) $(T(t))_{t\geq 0}$ est dit un C_0 -semi-groupe de contractions $si: ||T(t)|| \leq 1$, $\forall t \geq 0$

Théorème 1.9. (Hille-Yosida)

un opérateur linéaire A est le générateur infinitésimal d'un C_0 -semi-groupe de contractions $(T(t))_{t\geq 0}$ sur X, ssi:

- 1) $\overline{D(A)} = X$ et A est un opérateur fermé
- 2) $]0, +\infty[\subset \rho(A) \text{ et pour tout } \lambda > 0 \text{ on } a : ||R(\lambda, A)|| \leq \frac{1}{h}$

preuve(condition nécessaire) Soit A est le générateur infinitésimal d'un C_0 -semigroupe "de contraction" alors d'après le corollaire (3), on a : D(A) = X et A est un opérateur fermé

D'autre part, il vient dy théorème (8) que pour $\lambda > w = 0$, on a : $\lambda \in \rho(A)$ et pour tout $x \in X : R(\lambda, A)x = R_{\lambda}x = \int_0^{\infty} \exp^{-\lambda s} T(s)x ds$ ce qui entraine alors que :

$$\begin{array}{lll} ||R(\lambda,A)x|| &=& ||\int_0^\infty exp^-\lambda sT(s)x\mathrm{d}s||^\epsilon\\ &\leq& \int_0^\infty \exp^-\lambda s||T(s)x||\mathrm{d}s\\ &\leq& \int_0^\infty \exp^-lambdas||x||\mathrm{d}s & (car||T(s)||\leq 1\forall s\geq 0)\\ &\leq& \frac{1}{h}||x|| & \forall x\in X \end{array}$$

Donc $||R(\lambda, A)|| \leq \frac{1}{\lambda}$ d'où le résultat.

pour montrer les condition 1) et 2) du théorème 9 sont suffisantes pour que A soit le générateur infinitésimale d'un C_0 -semi-groupe de contraction $(T(t))_t \geq 0$ on aura besoin de démontrer les lemmes suivants :

Lemme 1.3. Soit A un opérateur linéaire sur X vérifiant les condition du théorème

$$\begin{array}{lll} g \; . \\ Alors : \lim_{\lambda \to +\infty} \lambda R(\lambda,A)x = x, \forall x \in X \\ & ||\lambda R(\lambda,A)x - x|| & = & ||AR(\lambda,A)x|| \\ Soit \; x \in D(A) \; . \; Alors : & ||R(\lambda,A)x|| & = & ||R(\lambda,A)Ax|| \\ & d'aprslaproposition 1 \; \leq \; ||R(\lambda,A)||||Ax|| \\ & \leq \; \frac{||Ax||}{\lambda} \to 0 \end{array}$$
 Il s'ensuit alors que $\lim_{\lambda \to +\infty} \lambda R(\lambda,A)x = x \; , \forall x \in D(A)$

comme $\overline{D(A)}=X$ et $||\lambda R(\lambda,A)||\leq 1$, $(\lambda R(\lambda,A)$ est un opérateur uniformément borné) alors : il en résulte que $\lim_{\lambda\to+\infty}\lambda R(\lambda,A)x=x\ \forall x\in X$

Définition 1.5. pour $\lambda > 0$, on appelle approximation de Yosida de l'opérateur linéaire A, l'opérateur : $A_{\lambda} = \lambda AR(\lambda, A) = \lambda^2 R(\lambda, A) - \lambda I$, (16)

Remarques 1.4. on a:

$$\begin{array}{rcl} (\lambda I - A)R(\lambda,A) & = & Icequientraineque \\ \lambda R(\lambda,A) - AR(\lambda,A) & = & I,donc \\ AR(\lambda,A) & = & \lambda R(\lambda,A) - I \\ D'o\lambda AR(\lambda,A) & = & \lambda^2 R(\lambda,A) - \lambda I \end{array}$$

Lemme 1.4. Soit A un opérateur linéaire satisfaisant les condition 1) et 2) du théorème 9 :

 $Si A_{\lambda}$ est l'approximation de Yosida de A, alors :

$$\lim_{\lambda \to +\infty} A_{\lambda} x = Ax, \forall x \in D(A)$$

preuve Soit $x \in D(A)$ D'après le lemme 3, on a :

$$\lim_{\lambda \to +\infty} \lambda R(\lambda, A) Ax = Ax$$

Il s'ensuit alors que :

$$\lim_{\lambda \to +\infty} A_{\lambda} x = \lim_{\lambda \to +\infty} \lambda R(\lambda, A) Ax(d'aprslaprop1)$$

$$= Ax$$

Lemme 1.5. Soit A un opérateur linéaire sur X satisfaisant les condition 1) et 2) du th 9 et soit A_{λ} l'approximation de Yosida de A. Alors A_{λ} est le générateur infinitésimale de semi-groupe uniformément continue de contraction $(\exp^{tA_{l}ambda})_{t} \geq 0$. De plus , pour tous $x \in X$ et $\lambda, \mu > 0$, on a :

$$||\exp^{tA_lambda}x - \exp^{tA_\mu}x|| \le t||A_lambdax - A_\mu x||$$

preuve De la formule (16) de la déf de A_{λ} , il est clair que A_{λ} est un opérateur linéaire borné sur X, donc d'après le th 1, A_{λ} est le générateur infinitésimal du semi-groupe uniformément continu . $(\exp^{tA_{\lambda}})_t \geq 0$. De plus pour tout $t \geq 0$, on a :

$$\begin{split} ||\exp^{tA_{\lambda}}|| &= ||\exp^{t\lambda^2R(\lambda,A)}\exp^-t\lambda I|| \\ &\leq \exp^-t\lambda||\exp^{t\lambda^2R(\lambda,A)}|| \exp^{-t\lambda I} = \exp^{-t\lambda I} \\ &\leq \exp^{-t\lambda}|\exp^{t\lambda^2R(\lambda,A)}|| & \text{Il en résulte alors que} \\ &\leq \exp^{-t\lambda}\exp^{t\lambda^2||R(\lambda,A)||} \\ &\leq \exp^{-t\lambda}\exp^{t\lambda} = 1 \quad car||R(\lambda,A)|| \leq \frac{1}{\lambda} \\ (\exp^{tA_{\lambda}})_t \geq 0 \text{ est un semi-groupe "uniformément continue" de contraction sur } X \;. \end{split}$$

 $(\exp^{tA_{\lambda}})_t \geq 0$ est un semi-groupe "uniformément continue" de contraction sur X. Il est facile de voir à partir de la définition que pour tout $\lambda, \mu > 0$, A_{λ} et A_{μ} et $\exp^{tA_{\lambda}}$ et $\exp^{tA_{\mu}}$ commutent entre eux, Il en résulte alors que pour tout $x \in X$:

$$||\exp^{tA_{\lambda}} - \exp^{tA_{\mu}}|| = ||\int_{0}^{1} (\exp^{tsA_{\lambda}} \exp^{t(1-s)A_{\mu}})x ds||$$

$$\leq \int_{0}^{1} ||\frac{d}{ds} (\exp^{tsA_{\lambda}} \exp^{t(1-s)A_{\mu}} x)|| ds$$

$$\leq \int_{0}^{1} t||\exp^{tsA_{\lambda}} \exp^{t(1-s)A_{\mu}} (A_{\lambda}x - A_{\mu}x)|| ds$$

$$\leq t||A_{\lambda}x - A_{\mu}x||car||\exp^{tsA_{\lambda}}|| \leq 1et||\exp^{t(1-s)A_{\mu}}|| \leq 1$$

th 9 : (condition suffisantes) Soit $x \in D(A)$. Alors pour tous $\lambda, \mu > 0$ on a :

$$||\exp^{tA_{\lambda}} x - \exp^{tA_{\mu}} x|| \le t||A_{\lambda}x - A_{\mu}x|| \le t||A_{\lambda}x - Ax|| + t||A_{\mu}x - Ax||$$
 (17)

Il vient de l'inégalité (17) et du lemme 4 que pour tout $x \in D(A)$, $\exp^{tA_\lambda x}$ converge quand λ tend vers $+\infty$ et la convergence est uniforme sur les intervalles bornés . Posons : $\lim_{\lambda \to +\infty} \exp^{tA_\lambda} x = T(t)x$, $\forall x \in D(A)$. ([critère de Cauchy uniforme dans $L_b(x)$]) comme D(A) est dense dans X et $||\exp^{tA_\lambda}|| \le 1$, $\forall t \ge 0$ (\exp^{tA_λ} est uniformément borné) alors :

$$\lim_{\lambda \to +\infty} \exp^{tA_{\lambda}} x = T(t)x, \forall x \in X$$
 (18)

La limite dans la formule (18) est uniforme sur les intervalles bornés .

De la formule (18) , on voit que : T(0) = I , T(t+s) = T(t)T(s), $\forall t, s \geq 0$ et $||T(t)|| \leq 1$, $\forall t \geq 0$. De plus $t \mapsto T(t)x$ est continue pour $t \geq 0$ car :

limite uniforme de fonction continue $t \mapsto \exp^{tA_{\lambda}} x$, ainsi $(T(t))_t \ge \text{est un } C_0$ -semi-groupe de contraction sur X. pour conclure, il nous reste à montrer que A est le générateur infinitésimale de $(T(t))_t \ge 0$.

pour cela , soit $x\in D(A)$, En utilisant la formule (18) et le théorème 4 et compte tenu de la convergence uniforme de $\exp^{tA_\lambda}A_\lambda x$, vers T(t)Ax sur les intervalles bornés , on obtient :

$$T(t)x - x = \lim_{\lambda \to \infty} (\exp^{tA_{\lambda}} x - x)$$

$$= \lim_{\lambda \to \infty} \int_{0} t \exp^{sA_{\lambda}} A_{\lambda} x ds$$

$$= \int_{0}^{t} t \lim_{\lambda \to \infty} \exp^{sA_{\lambda}} A_{\lambda} x ds \quad \text{Soit } B \text{ le générateur infinitésimal de } (T(t))_{t \ge 0}$$

$$= \int_{0}^{t} \lim_{\lambda \to \infty} \exp^{sA_{\lambda}} A_{lambda} x ds$$

$$= \int_{0}^{t} T(s) A x ds \quad (19)$$

et soit $x \in D(A)$. En divisant la formule par t > 0 et en faisant $t \to 0$,on voit que $x \in D(B)$ et on a :

$$Bx = \lim_{t \to 0} \frac{T(t)x - x}{t}$$
$$= \lim_{t \to 0} \frac{1}{t} \int_0^t T(s) Ax ds$$
$$= Ax$$

ce qui entraine alors que $D(A) \subseteq D(B)$ et $Ax = Bx, \forall x \in A$ comme B est le générateur infinitésimal de $(T(t))_{t\geq 0}$ qui est de contraction, alors d'après la condition nécessaire (2),on a $1 \in \rho(B)$. D'autre part, puisque A vérifie (2) du

théorème(9) alors $1 \in \rho(A)$. Mais puisque $D(A) \subset D(B)$ et $Ax = Bx, \forall x \in D(A)$ on a :

$$(I-B)D(A) = (I-A)D(A) = X$$
 (car $I-A$ est surjectif) ce qui entraine alors que $D(B) = (I-B)^{(-1)}X = D(A)$

D'où A = B comme conséquence du théorème(9) de Hille Yosida, on obtient :

Corollaire 1.4. Soit A le générateur infinitésimale d'un C_0 -semi-groupe de contractions $(T(t))_t \geq 0$ et soit A_{λ} l'approximation de Yosida de A . Alors :

$$T(t)x = \lim_{\lambda \to +\infty} \exp^{tA_{\lambda}} x, \forall x \in X$$

preuve Il vient de la démonstration du th 9 , que $(\lim_{\lambda \to +\infty} \exp^{tA_{\lambda}})_t \geq 0$ définit un C_0 -semi-groupe de contraction $(S(t))_t \geq 0$ dont le générateur infinitésimale est A. Le th 5 "d'unicité de l'engendrement nous permet donc de conclure que :

$$T(t) = S(t), \forall t \ge 0$$

Corollaire 1.5. Soit $w \ge 0$. Un opérateur linéaire A est le générateur infinitésimale d'un C_0 -semi-groupe $(T(t))_t \ge 0$ vérifiant $||t(t)|| \le \exp^{wt}$, $\forall t \ge 0$ ssi:

- 1) $\overline{D(A)} = X$ et A est fermé.
- 2) $]w, +\infty[\subset \rho(A) \text{ et pour tout } \lambda > w \text{ on } a: ||R(\lambda, A)|| \leq \frac{1}{\lambda w}$

preuve Découle du th 9 de Hille-Yosida appliquée au semi-groupe de contraction : $S(t) = \exp^{-wt} T(t) \ \forall t \geq 0$ et de générateur infinitésimale : B = A - xI et pour tout $\lambda - w > 0$.

Lemme 1.6. Soit $A: D(A) \subset X \to X$ un opérateur linéaire "fermé", Alors :

1) L'ensemble résolvant $\rho(A)$ est un ouvert de $\mathbb C$, de plus pour tout $\mu \in \rho(A)$ et tout $\lambda \in \mathbb C$ tq $|\mu - \lambda| < \frac{1}{||R(\mu,A)|}$, on ait : $\lambda \in \rho(A)$

$$R(\lambda, A) = \sum_{n=0}^{+\infty} (\mu - \lambda)^n R(\mu, A)^{n+1}, (20)$$

2) L'application $\lambda \mapsto R(\lambda, A)$ est localement analytique et pour tout $n \in \mathbb{N}$, on a :

$$\frac{d^n}{d\lambda^n}R(\lambda,A) = (-1)n!R(\lambda,A)^{n+1},(21)$$

preuve

1) Soit $\mu \in \rho(A)$ et soit $\lambda \in \cap$ tq , $|\mu - \lambda| < \frac{1}{||R(\mu,A)||}$. Alors :

$$\lambda I - A = \mu I - A + \lambda I - \mu I$$

$$= \mu I - A + (\lambda - \mu)I \quad \text{comme } |\lambda - \mu| < \frac{1}{\|R(\mu, A)\|}, \text{ alors}$$

$$= [I - (\mu - \lambda)R(\mu, A)](\mu I - A)s$$

l'opérateur $[I - (\lambda - \mu)R(\mu, A)]$ est inversible d'inverse :

$$\sum_{n=0}^{+\infty} (\mu - \lambda)^n R(\mu, A)^n = [I - (\mu - \lambda)R(\mu; A)]^{-1}$$

Il en résulte alors que $\lambda I - A$ est bijectif .

$$Donc \qquad B(\mu, \frac{1}{||R(\mu, A)|}) \subseteq \rho(A), d'o\rho(A) estunouvert de \mathbb{C}.$$

De plus , pour tout $\lambda \in \mathbb{C}$ vérifiant $|\mu - \lambda| < \frac{1}{||R(\mu, A)||}$ on a :

$$\begin{array}{rcl} R(\lambda,A) & = & (\lambda I - A)^{-1} \\ & = & (\mu I - A)^{-1} [I - (\mu - \lambda)R(\mu,A)]^{-1} \\ & = & R(\mu,A) \sum_{n=0}^{+\infty} (\mu - A)^{n} R(\mu,A)^{n} \\ & = & \sum_{n=0}^{+\infty} (\mu - \lambda)^{n} R(\mu,A)^{n} + 1 \end{array}$$

2) Découle immédiatement de la représentation de la résolvante dans la série de la formule (20). si $f(Z) = \sum_{n \geq 0} a_n (Z_0 - Z)^n$ alors $a_n = \frac{(-1)^n}{n!} f^n(Z)$

Théorème 1.10. Si A est le générateur infinitésimale d'un C_0 -semi-groupe $(T(t))_t \ge 0$ vérifiant :

$$||T(t)|| \le M \exp^{wt} \forall t \ge 0$$
 avec $w \ge 0$ et $M \ge 1$. Alors:

- 1) $\overline{D(A)} = X$ et A est fermé.
- 2) Pour tout $\lambda \in \mathbb{C}$ tel que $Re\lambda > w$ on $a : \lambda \in \rho(A)$ et :

$$||R(\lambda, A)^n|| \le \frac{M}{(Re\lambda - w)^n}, \quad \forall x \in \mathbb{N}$$

preuve

2) D'après le th 8, comme $Re\lambda > w$, alors $\lambda \in \rho(A)$ et pour tout $x \in X$, on a :

$$R(\lambda, A)x = R_{\lambda}x = \int_{0}^{\infty} \exp^{-\lambda s} T(s)x ds.$$

$$|et||R(\lambda, A)|| \le \frac{M}{Re\lambda - w}$$

Il est facile de voir que

$$\frac{d}{d\lambda^n}R(\lambda,A)x = -\int_0^\infty s \exp^{-\lambda s} T(s)x ds$$

 $\forall x \in X$

et par récurrence on obtient pour tout $\forall x \in X$ et $\forall n \in \mathbb{N}$, que :

$$\frac{d^n}{d\lambda^n}R(\lambda,A)x = (-1)^n \int_0^\infty s^n \exp^{-\lambda s} T(s)x ds.$$

par ailleurs, par le lemme 6, on a:

$$\frac{d^n}{d\lambda^n}R(\lambda,A) = (-1)^n n!R(\lambda,A)^n + 1$$

Il en résulte alors que :

$$R(\lambda, A)^n + 1x = \frac{1}{n!} \int_0^\infty s^n \exp^{-\lambda s} T(s) x ds \qquad \forall x \in X$$

D'où

$$R(\lambda, A)^n x = \frac{1}{(n-1)!} \int_0^\infty s^n - 1 \exp^{-\lambda s} T(s) x ds \qquad \forall x \in X, \forall n \in \mathbb{N} *$$

Il vient alors pour tout
$$x \in X$$
 et tout $n \in \mathbb{N}*$, on a :
$$||R(\lambda,A)^nx|| = \frac{1}{(n-1)!}||\int_0^\infty s^n - 1\exp^{-\lambda s}T(s)x\mathrm{d}s||$$

$$\leq \frac{1}{(n-1)!}\int_0^\infty s^n - 1||\exp^{-\lambda s}T(s)x||\mathrm{d}s$$

$$\leq \frac{1}{(n-1)!}\int_0^\infty s^n - 1\exp^{-Re(\lambda)s}M\exp^{ws}||x||\mathrm{d}s$$
 D'où
$$\leq \frac{M}{(Re\lambda - w)^n}||x||$$

$$||R(\lambda,A)^n|| \le \frac{M}{(Re\lambda - w)^n}; \forall \lambda \in \mathbb{C}tq : Re\lambda > wet \forall n \in \mathbb{N}$$

Proposition 1.2. (Équation de la résolvante) Si $A:D(A)\subset X\to X$ est un opérateur linéaire , alors pour tous $\lambda,\mu\in\rho(A)$, on a :

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A)$$

preuve De la définition de la résolvante, on a :

$$[\lambda R(\lambda, A) - AR(\lambda, A)]R(\mu, A) = R(\mu, A)$$

$$et[\mu R(\mu, A) - AR(\mu, A)]R(\lambda, A) = R(\lambda, A)$$

En faisant la différence des deux égalités et compte tenu que $R(\lambda,A)$ et $R(\mu,A)$ commutent; on obtient :

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A)$$

Théorème de Hille-Yosida dans le cas général : Dans ce paragraphe , on va démontrer le théorème de Hille-Yosida dans le cas générale d'un C_0 -semi-groupe sur X. Tout d'abord on va commencer par démontrer le lemme suivant :

Lemme 1.7. Soit A un opérateur linéaire sur X $tq:]0, +\infty[$. Si de plus: $||\lambda^n R(\lambda, A)^n|| \le M$ $\forall n \in \mathbb{N}, \forall \lambda > 0$ Alors il existe un norme $||\cdot||_1$ sur X équivalent à la norme d'origine $||\cdot||$ vérifiant :

1)
$$||x|| < ||x||_1 < M||x||, \forall x \in X.$$

2)
$$||\lambda R(\lambda, A)x||_1 \le ||x||_1, \forall x \in X$$

preuve Soit $\mu > 0$.

Posons : $||x||_{\mu} = \sup_{n\geq 0} ||\mu^n R(\mu, A)^n||$, $\forall x \in X$ (22) Il facile de voir que $||\cdot||_{\mu}$ définit une norme sur X vérifiant :

$$||x|| \le ||x||_{\mu} \le M||x||, \forall x \in X$$
 (23)

et
$$\|\mu R(\mu, A)\|_{\mu} \le 1$$
, (24)

Montrons alors que:

$$\|\lambda R(\lambda, A)\|_{\mu} \le 1$$

, pour $0<\lambda\leq\mu$ (25) soit $x\in X$. posons $y=R(\lambda,A)X$

Il vient alors de l'équation de la résolvante que :

$$y = R(\lambda, A)x = R(\mu, A)(x + (\mu - \lambda)y)$$

et par l'inégalité triangulaire et l'inégalité (24)on obtient :

$$||y||_{\mu} = |R(\mu, A)x + (\mu - \lambda)R(\mu, A)y||_{\mu}$$

$$\leq ||R(\mu, A)x||_{\mu} + (\mu - \lambda)||R(\mu, A)y||_{\mu}$$

$$\leq \frac{1}{\mu}||x|| + \frac{\mu - \lambda}{\mu}||y||_{\mu}$$

$$||y||_{\mu}(1 - \frac{\mu - \lambda}{\mu}) \leq \frac{||x||_{\mu}}{\mu}$$

$$donc \lambda ||y||_{\mu} \leq ||x||_{\mu}$$

Donc $\|\lambda R(\lambda, A)x\|_{\mu} \le \|x\|_{\mu}, \forall x \in X$

D'où $\|\lambda R(\lambda, A)x\|_{\mu} \leq 1$ pour $0 < \lambda \leq \mu$

Des inégalités(23)et (25), on voit facilement que :

 $\begin{aligned} &\|\lambda^n R(\lambda,A)^n x\| \leq \|\lambda^n R(\lambda,A)^n\|_{\mu} \leq \|x\|_{\mu} \text{ pour } 0 < \lambda \leq \mu \text{ (26) D'où } \|x\|_{\lambda} = \sup \|\lambda^n R(\lambda,A)^n x\| \leq \|x\|_{\mu} \quad \text{pour } 0 < \lambda \leq \mu \end{aligned}$

D'où $||x||_{\lambda} \le ||x||_{\mu}$ pour $0 < \lambda \le \mu$

Posons $||x||_1 = \lim_{\mu \to \infty} ||x||_{\mu}, \forall x \in X$

En faisant tendre $\mu \to \infty$ dans la formule (23)on obtient :

$$||x|| \le ||x||_1 \le M||x||, \forall x \in X$$

d'où
(1) En prenant n=1 dans la formule (26),
il vient que :

$$\|\lambda R(\lambda, A)x\|_{\mu} \le \|x\|_{\mu}$$

 $\forall x \in X$ En faisant tende $\mu \to \infty$ on obtient :

$$\|\lambda R(\lambda, A)x\|_1 \le \|x\|_1 \qquad \forall x \in X$$

D'où

$$\|\lambda R(\lambda, A)\|_1 \le 1$$

Théorème 1.11. (Hille-Yosida) Un opérateur linéaire A est le générateur infinitésimal d'un c_0 -semi groupe $(T(t))_{t\geq 0}$ sur X, vérifiant : $||T(t)|| \leq M \exp^{wt}$, $\forall t \geq 0$, avec $w \geq 0$, $M \geq 1$ si et seulement si :

- (1) $\overline{D(A)} = X$ et A est un opérateur fermé.
- (2) $\lambda \in \mathbb{C}/Re\lambda > w \subset \rho(A)$ et pour tout $\lambda \in \mathbb{C}tellequeRe\lambda > w$, on ait :

$$||R(\lambda, A)^n|| \le \frac{M}{(Re\lambda - w)^n}$$

 $\forall n \in \mathbb{N}$

preuve

- (⇒) si A est le générateur infinitésimal d'un c_0 -semi groupe $(T(t))_{t\geq 0}$ tq $||T(t)|| \leq M \exp^{wt}$ alors les assertions (1) et (2) découlent du théorème(10)
- (\Leftarrow) réciproquement, supposons que A vérifie les assertions (1) et(2) du théorème(11). Alors sans perte de généralité et quitte à considérer le semi groupe $S(t) = \exp^{-wt} T(t)$, $\forall t \geq 0$, on peut supposer que w = 0 l'assertion (2) implique dans ce cas que :

$$\|\lambda^n R(\lambda, A)^n\| \le M$$

 $\forall \lambda > 0, \forall n \in \mathbb{N}$

Soit $\|\cdot\|_1$ la norme équivalente à $\|\cdot\|$, définie dans le lemme (7) et vérifiant : $\|x\| \le \|x\|_1 \le M\|x\|, \forall x \in X$ (27)

$$et \|\lambda R(\lambda, A)\|_1 \le 1, \forall \lambda > 0$$

(28)

A étant un opérateur fermé à domaine dense , de plus $]0, \infty[\subset \rho(A)$ et $\|\lambda R(\lambda, A)\|_1 \le 1, \forall \lambda > 0$

Il vient alors du théorème(9) de Hille-Yosida concernant les c_0 -semi groupes de contractions que :

A est le générateur infinitésimal d'un c_0 semi groupe $(T(t))_{t\geq 0}$ de $\|\cdot\|_1$ contractions sur X, et en utilisant l'inégalité(27), on obtient pour tout $t\geq 0$ et toute $x\in X$,

$$\begin{array}{cccc} \|T(t)x\| & \leq & \|T(t)\|_1 \|x\|_1 \\ & \leq & \|x\|_1 & car\|T(t)\|_1 \leq 1 \\ & \leq & M\|x\| & \forall x \in X \end{array}$$

D'où $||T(t)|| \leq M, \forall t \geq 0$

Maintenant, nous donnons une extension de la formule de présentation du corollaire (4) au cas général des c_0 -semi groupe sur X

Théorème 1.12. soit A le générateur infinitésimal d'un c_0 -semi groupe $(T(t))_{t\geq 0}$ $sur\ X\ v\'{e}rifiant: ||T(t)|| \leq M \exp^{wt}, \forall t \geq 0 avecw \geq 0 et M \geq 1.$ si A_{λ} est l'approximation de Yosida de A, (ie: $A = \lambda AR(\lambda, A)$) alors:

$$T(t)x = \lim_{\lambda \infty} \exp^{tA_{\lambda}} x, \forall x \in X, \forall t \ge 0$$

preuve: Commençons tout d'abord par le cas ou $||T(t)|| \leq M, \forall t \geq 0$, (i,e: w =0). D'après le lemme (7), il existe une norme $\|\cdot\|_1$ sur X, équivalente à $\|\cdot\|$ tq $(T(t))_{t\geq 0}$ soit un c_0 -semi-groupe de $\|\cdot\|_1$ -contraction sur X.II vient alors du corollaire (4)que : $\|\exp^{tA_{\lambda}}x - T(t)x\|_1 \to 0$ quand $\lambda \infty$. comme $\|\cdot\|_1 et \|\cdot\|$ sont équivalentes, on déduit alors que : $\lim_{t\to\infty} \exp^{tA_{\lambda}} x = T(t)x, \forall x\in X, \forall t\geq 0$ Supposons maintenant que : $||T(t)|| \le M \exp^{wt}, \forall t \ge 0, avecw > 0$. Alors pour $\lambda > 2w$, la fonction $\lambda ||\exp^{tA_{\lambda}}||$ est bornée. En effet :pour $\lambda > 2w$,on a :

$$||R(\lambda, A)^k|| \le \frac{M}{(\lambda - w)^k}$$
 $\forall k \in \mathbb{N} \text{ donc}:$

$$\|\exp^{tA_{\lambda}}\| \leq \exp^{-\lambda t} \|\exp^{\lambda^{2}tR(\lambda,A)}\|$$

$$\leq \exp^{-\lambda t} \|\sum_{k=0}^{+\infty} \frac{\lambda^{2k}t^{k}}{k!} R(\lambda,A)^{k}\|$$

$$\leq \exp^{-\lambda t} \sum_{k=0}^{+\infty} \frac{\lambda^{2k}t^{k}}{k!} \|R(\lambda,A)^{k}\|$$

$$\leq \exp^{-\lambda t} \sum_{k=0}^{+\infty} \frac{\lambda^{2k}t^{k}}{k!} \frac{M}{(\lambda-w)^{k}}$$

$$\leq M \exp^{-\lambda t} \sum_{k=0}^{+\infty} (\frac{\lambda^{2}t}{\lambda-w})^{k} \frac{1}{k!}$$

$$\leq M \exp^{-\lambda t} \exp^{\frac{\lambda^{2}t}{\lambda-w}} = M \exp^{\frac{\lambda wt}{\lambda-w}}$$

$$\leq M \exp^{2wt} (29)$$

Chapitre 2

Applications aux équations d'évolution

Dans ce paragraphe , nous donnons quelques applications de la théorie des semi groupes à la résolution des équations différentielles. Plus précisément on étudie le problème linéaire abstrait de la forme :

$$\begin{cases} \dot{u}(t) = Au(t) &, \forall t \ge 0 \\ u(0) = x \end{cases}$$

ou t est la variable de temps

 $u(\cdot)$ est une fonction à valeur dans l'espace de Banach X.

 $A:D(A)\subseteq X\to X$ est un opérateur linéaire et $x\in X$ est la valeur initiale

Définition 2.1. (1) Le problème à valeur initiale : (PAC)=

$$\begin{cases} \dot{u}(t) = Au(t) & \forall t \ge 0 \\ u(0) = x \end{cases}$$

est dit problème abstrait de Cauchy associé à (A,D(A)) et de valeur initiale $X \in X$.

(2) Une fonction $u: \mathbb{R}^+ \to X$ est dite solution (classique) du problème (PAC), si u est continue ment dérivable, $u(t) \in D(A), \forall t \geq 0$, et u vérifie (PAC)

Théorème 2.1. Soit (A, D(A)) le générateur infinitésimal d'un c_0 -semi groupe $(T(t))_{t\geq 0}$ sur X . Alors pour toute $x \in D(A)$, la fonction :

$$u: t \mapsto u(t) := T(t)x$$

est l'unique solution du problème (PAC) de valeur initiale x .

preuve Soit $X \in D(A)$, alors il vient de l'assertion (3) du théorème (4) que : u(t) = T(t)x est une solution classique du problème (PAC). Soit V une autre solution de (PAC) c'est à dire :

$$\begin{cases} \dot{V}(t) = AV(t) &, \forall t \ge 0 \\ V(0) = x \end{cases}$$

Soit t > 0 .Alors pour toute $s \in [0, t]$ on a :

$$\frac{\mathrm{d}}{\mathrm{d}s}(T(t-s)V(s)) = -T(t-s)AV(s) + T(t-s)\dot{V}(s)$$
$$= -T(t-s)AV(s) + T(t-s)AV(s) = 0$$

En intégrant entre 0 et t on obtient :

$$[T(t-s)V(s)]_0^t = 0$$

ce qui entraine que T(0)V(t) - T(t)V(0) = 0

Soit alors V(t) = T(t)V(0) = T(t)x

Ce qui termine la démonstration du théorème.

Définition 2.2. Une fonction continue $u : \mathbb{R}^+ \to X$ est dite solution douce(ou mild solution) du problème (PAC) de valeur initiale x, si pour toute $t \ge 0$: $\int_0^t u(s) ds \in D(A) etu(t) = x + A \int_0^t u(s) ds$

Théorème 2.2. Soit (A, D(A)) le générateur infinitésimal d'un C_0 -semi groupe $(T(t))_{t\geq 0}$ sur X .Alors pour tout $x\in X$,l'application : $u:t\mapsto u(t):=T(t)x$.est l'inique solution douce (mild solution) du problème (PAC) de valeur initiale x.

preuve Copte tenu de l'assertion (2) du théorème (4), pour tout $x \in X$, on a : $T(t)x = x + A \int_0^t T(s)x \mathrm{d}s$, ce qui entraine que :u(t) = T(t)x est une solution douce du problème (PAC) de valeur initiale x.

Pour l'unicité, supposons que V est une autre solution douce du problème (PAC) de valeur initiale x. Alors : $u(t) = x + A \int_0^t u(\Omega)\omega$ et $V(t) = x + A \int_0^t V(\omega)\omega$. Soit $t \geq 0$, alors pour tout $s \in [0,t]$, on a :

$$\begin{array}{rcl} \frac{\mathrm{d}}{\mathrm{d}s}(T(t-s)\int_{0}^{s}(u(r)-V(r))\mathrm{d}r) & = & -T(t-s)A\int_{0}^{s}(u(\omega)-V(\omega))\mathrm{d}\omega + T(t-s)(u(s)-V(s)) \\ & = & -T(t-s)(u(s)-V(s)) + T(t-s)(u(s)-V(s)) \\ & = & 0 \end{array}$$

En intégrant entre 0 et t on obtient :

$$[T(t-s)\int_0^s (u(r) - V(r)) dr]_0^t = 0$$

ce qui entraine alors que :

$$T(0) \int_0^t (u(r) - V(r)) dr = 0$$

ce qui implique : $\int_0^t u(r)\mathrm{d}r = \int_0^t V(\omega)\mathrm{d}\omega$ D'où $u(t) = x + A \int_0^t u(r)\mathrm{d}r = x + A \int_0^t V(\omega)\mathrm{d}\omega = V(t)$, $\forall t \geq 0$.

2.1 problème de Cauchy abstrait non homogène

linéaire

$$\begin{cases} \dot{x}(t) = Ax(t) + f(t) \\ x(0) = x_0 \end{cases}$$

la fonction $f: \mathbb{R}^+ \to X$ est continue on suppose que A le générateur infinitésimale de C_0 -semi groupe $(T(t))_t \geq 0$. de sorte que l'équation elle est homogène c-à-dire : $f \equiv 0$ admet une unique solution à valeur initiale , $\forall x_0 \in D(A)$

Définition 2.3. la fonction $x : [0, a[\rightarrow X \text{ est une solution classique de (1) sur } [0, a[ssi :$

- 1) x continue sur [0, a[
- 2) x(t) continument différentiable sur]0,a[
- 3) $x(t) \in D(A)$, pour $t \ge 0$ et (1) satisfit

Soit $(T(t))_t \ge 0$ C_0 -semi-groupe de générateur infinitésimale A, est soit x une solution de (1) alors : les valeurs de g sont dans X et g(s) = T(t-s)x(s) différentiable avec 0 < s < t, et

$$\frac{dg}{ds}(s) = -AT(t-s)x(s) + T(t-s)\dot{x}(s)
= T(t-s)(Ax(s) + f(s)) - AT(t-s)x(s)
= -AT(t-s)x(s) + T(t-s)Ax(s) + T(t-s)f(s)
= T(t-s)f(s) (2)$$

 $f \in L^1([0,a],X)$ alors:

T(t-s)f(s) intégrable est on intègre (2) de 0 à t on a :

$$g(t) = g(0) + \int_0^t T(t-s)f(s)ds$$

par suite:

$$x(t) = T(t)x_0 + \int_0^t T(t-s)f(s)ds$$
 (3)

on particulier : $si\ A \in B(X,X)$ alors $\forall x_0 \in X$ donc (1) admet une unique solution $de\ \mathbb{R}^+$ définit comme : $x(t) = \exp^{tA} x_0 + \int_0^t \exp^{(t-s)A} f(s) \mathrm{d}s$

Corollaire 2.1. si $f \in L^1([0, a], X)$ alors : $\forall x \in X$ la valeur initiale de (1) admet au plus une solution si x est une solution écrit comme suit : $x(t) = T(t)x_0 + \int_0^t T(t-s)f(s)ds$

pour chaque $f \in L^1([0,a],X)$ le coté droit de (3) est continue sur [0,a] il est naturel de le considérer comme une solution généralisé de (1) même s'il n'est pas différentiable et ne satisfait nous définissons donc;

Définition 2.4. Soit A un générateur infinitésimale d'un C_0 -semi-groupe . Soit $x \in X$ et $f \in L^1([0,a],X)$ la fonction $x \in C([0,a],X)$ donner par : $x(t) = T(t)x_0 + \int_0^t T(t-s)f(s)\mathrm{d}s$, $0 \le t \le a$ c'est une solution faible de problème de valeur initiale (1) sur [0,a]

Remarques 2.1. En générale la continuité de f n'est pas suffisante pour assuré existence de solution (1) $x_0 \in D(A)$

Exemple 2.1.1. contenu...

Théorème 2.3. Soit A le générateur infinitésimale de C_0 -semi-groupe, Soit $x_0 \in D(A)$ et $f: \mathbb{R}^+ \to X$ de C^1 alors: la solution faible devient une solution classique de (1)

preuve

Lemme 2.1. Soit $u : [a,b] \to X$ supposons que $: D^+(u(t))$ existe sur [a,b] et $t \to D^+(u(t))$ continue sur [a,b] alors : u de classe C^1 sur [a,b] D'après le lemme alors $: v \in c^1$ et

$$\begin{cases} \dot{v}(t) = Av(t) + f(t), t \ge 0\\ v(0) = 0 \end{cases}$$

la solution faible de (1) et $x(t) = v(t) + T(t)x_0$, on a x de C^1 Soit $x_0 \in D(A)$ alors : $DT(t)x_0 = AT(t)x_0$

$$\dot{x}(t) = \dot{v}(t) + AT(t)x_0
= Av(t) + f(t) + AT(t)x_0
= A[v(t) + T(t)x_0] + f(t)
= Ax(t) + f(t), t \ge 0$$
(4)

Autre coté (4) continue car x f continue pour $ca: x \in C^1$

Non linéaire

$$\{ \dot{x}(t) = Ax(t) + f(t, x(t)) \qquad (5)x(0) = x_0$$

Lorsque A le générateur infinitésimale d'un C_0 -semi-groupe $(T(t))_t \geq 0$ sur X un espace de Banach et $f: R^+ \to X$ est continue .

Définition 2.5. On dit que x est une solution (classique de (5)) ssi :

- 1) $x \in D(A), x \in C(\mathbb{R}^+, X), t \ge 0$
- 2) x satisfait (5)

Théorème 2.4. Si x est une solution de (5) alors : $T(t)x_0 + \int_0^t T(t-s)f(s,x(s))ds, t \ge 0$ (6)

preuve

Remarques 2.2. Si x satisfait (6) alors : x n'est pas nécessaire solution de (5)

Exemple 2.1.2.

Théorème 2.5. Supposons que $f: \mathbb{R}^+.X \to X$ est lipschitzienne par rapport à deuxième variable alors $\forall x_0 \in X$ admet une unique solution faible sur \mathbb{R}^+

preuve

2.2 le dépendance continue des valeurs initiale

$$P_n = \{ \dot{x}(t) = Ax_0(t) + f(t, x_n(t)), t \ge 0x(0) = x_0, n \}$$
$$\{ \dot{d}(t) = f(t, x(t))x(0) = x_0 \}$$

Si $x_0, n \to x_0$ donc $x_n \to x$ uniformément sur un compact de \mathbb{R}^+

Théorème 2.6. Soit $x(t, x_0)$ on note la solution faible de (5) au début de x_0 , $\forall a > 0$, $\exists \alpha(a) > 0$ et $\beta(a) > 0$, $|x(t, x_0) - x(t, y_0)| \le \alpha(a) \exp \beta(a)t|x_0 - y_0|$, $\forall t \in [0, a]$

preuve

Lemme 2.2. Soit x solution faible de (5) sur [0,a], si on pose :

- 1) $x_0 \in D(A)$
- 2) $t \to f(t, x(t))$ fonction de C^1

alors: x solution classique de (5)

preuve

Théorème 2.7. Soit $f: \mathbb{R}^+.X \to X$ continue et lipschitzienne par rapport à 2éme variable et de plus si f de $C^1(\mathbb{R}^+.X,X)$ est dérivée partielle $D_t f(t,x)$ et $D_x f(t,x)$ sont lipschitzienne par rapport à 2éme variable.

Soit $x_0 \in D(A)$ alors: l'équation (5) admet une solution classique sur \mathbb{R}^+

preuve

Lemme 2.3. A générateur infinitésimal de C_0 -semi-groupe sur $C_0([0,1], \mathbb{R}^+)$. on suppose que u solution de (H, E) équation de la chaleur

Soit $v: \mathbb{R}^+ \to C_0([0,1], \mathbb{R})$ $tq: v(t)x = u(t,x), t \geq 0$ et $x \in [0,1]$ Soit $f: C_0([0,1], \mathbb{R}) \to C_0([0,1], \mathbb{R})$ $tq: u \to f(u)$ et f(u)x = g(u(x))alors:

$$\{ \dot{v}(t) = Av(t) + f(v(t)), t \ge 0 \qquad (7)v(0) = u_0$$

Théorème 2.8. Soit $u_0 \in D(\triangle)$ si g est lipschitzienne, $g \in C^1$ et \dot{g} est lipschitzienne alors : (5) admet solution classique v et la fonction $u : \mathbb{R}^+ . [0,1] \to \mathbb{R}$ définit par : $u(t,x) = v(t)x, t \geq 0, x \in [0,1]$ est une solution de (H,E)

2.3 Stabilité et comportement asymptotique de solution

2.3.1 Équation linéaire

Nous considérons l'équation linéaire suivante :

$$\left\{ \frac{\partial u}{\partial t}(t) = Au(t), t \le 0u(0) = x_0 \right\}$$

Nous supposons que A et le générateur infinitésimale C_0 -semi-groupe sur un espace de Banach X .

 $u(t,x_0)=T(t)x_0$ est une solution faible puisque $x_0\in X$.

Nous souhaitons étudies : $\lim_{t\to +\infty} T(t)x_0$.

Nous avons qu'il existe : $M \leq 1, w \in \mathbb{R}$ tq : $\|T(t)\| \geq M \exp^{wt}, t \leq 0$.

Définition 2.6. Le type de $(T(t))_{t\leq 0}$ est définit par : $W_0(T) = \inf w \in \mathbb{R}$: $\sup \exp^{-wt} ||T(t)|| < \infty$

Remarques 2.3. Si $w_0(T) < 0$ alors : $T(t) \to 0$ comme $t \to +\infty$ exponentiellement

Proposition 2.1. Le type $W_0 = W_0(T)$ du semi groupe T(t) est calculé par la formule suivante :

$$w_0(T) = \lim_{t \to +\infty} \frac{\log ||T(t)||}{t} = \inf \frac{\log ||T(t)||}{t}$$

Corollaire 2.2. Si T est un C_0 -semi-groupe de type W_0 , alors pour tout $w > W_0$ il existe $M_w > 1$ tq:

$$||T(t)|| < M_w \exp wt, t > 0$$

preuve

Définition 2.7. On dit que $(T(t))_{t\geq 0}$ est éventuellement compact . S'il existe $t_0 > 0$ telle que $T(t_0)$ soit compact

Définition 2.8. On dit que $(T(t))t \ge 0$ est compact si T(t) est compact pour toute t > 0

Remarques 2.4. La loi de semi-groupe implique que T(t) soit compact pour $t \ge t_0$ si T(t) soit compact pour $t \ge t_0$

Définition 2.9. La boule spectrale S(A) définir par : $S(A) = \sup Re\lambda, \lambda \in \sigma(A)$

Théorème 2.9. Si $(T(t))_{t\geq 0}$ est éventuellement compact alors : $W_0(T)=S(A)$

Remarques 2.5. S(A) < 0 alors : $||T(t)|| \to 0$ comme $t \to +\infty$ en générale $S(A) \le W_0(t)$

Théorème 2.10. Si $(T(t))_{t\geq 0}$ est éventuellement compact alors : $\sigma(A) = \sigma_p(A)$

exemple
$$D(\Delta) = f \in C^2([0,1]) \cap C_0([0,1]), \Delta f = f'', f', f'' \in C_0([0,1])$$

Lemme 2.4. Δ est le générateur infinitésimale d'un semi-groupe compact

2.3.2 Cas non linéaire

Considérer l'équation d'évolution suivant :

$$\begin{cases} x'(t) = Ax(t) + f(x(t)), t \ge 0 \\ x(0) = x_0 \end{cases}$$

Nous supposons que : $f: X \to X$ est lipschitzienne alors l'équation 2.3.2 admet un unique solution $x(t, x_0)$ sur \mathbb{R}^+

Définition 2.10. Soit $\overline{x} \in X$, \overline{x} un équilibre (solution stationnaire) d'équation $2.3.2 \text{ ssi} : A\overline{x} + f(\overline{x}) = 0$ c'est $x(t) = \overline{x}$ est une solution constante (c-à-dire : $\overline{x} = x(t, \overline{x}), \forall t \geq 0$)

Définition 2.11. (Lyapunov) Soit \overline{x} un équilibre d'équation 2.3.2 on dit que \overline{x} est stable $si: \forall \epsilon > 0, \exists \delta > 0 \ tq: ||x_0 - \overline{x}|| < \delta \ alors: ||x(t, x_0) - \overline{x}|| < \epsilon, \forall t \geq 0$

Définition 2.12. On dit que \overline{x} est asymptotiquement stable si :

1 \overline{x} est stable

$$2 \ \forall \delta_0 > 0 \ , \ \forall x_0 \in B(\overline{x}, \delta_0) : x(t, x_0) \to \overline{x}$$

Définition 2.13. On dit que \overline{x} est localement stable de manière exponentielle si :

1 \overline{x} est asymptotiquement stable

2 La vitesse de la convergence est exponentielle, i.e : $\exists \delta_0 > 0, \alpha > 0, \beta > 0$ tq : pour toute $x_0 \in B(\overline{x}, \delta_0)$. Nous avons : $\|x(t, x_0) - x(t, \overline{x})\| \leq \beta \exp^{-\alpha t} \|x_0 - \overline{x}\|, \forall t \geq 0$

Définition 2.14. On dit que : \overline{x} est globalement asymptotiquement stable ssi :

1 \overline{x} est stable

$$2 \ \forall x_0 \in X : x(t, x_0) \to \overline{x} \ comme \ t \to +\infty$$

Stabilité linéaire 2.3.3

Supposons que \overline{x} soit un équilibre d'équation 2.3.2 et que f soit différentiable à \overline{x} .

Soit
$$B = f'(\overline{x}) \in B(X, X)$$

Considérons le système linéaire suivant :

$$\begin{cases} y'(t) = Ay(t) + By(t), t \ge 0\\ y(0) = y_0 \end{cases}$$
 (2.1)

L'équation 2.1 est bien posé, $\forall y \in X$, c'est la solution à l'équation existe, elle est unique et dépend continuellement des donnes initiales.

L'équation 2.1 a une solution unique $y(t, y_0)$ donnée par :

$$y(t, y_0) = T(t)y_0 + \int_0^t T(t - s)By(S, y_0)ds$$

Lemme 2.5. A+B est le générateur infinitésimale d'un C_0 -semi-groupe S(t) définit par:

$$S(t)y_0 = y(t, y_0)$$

preuve Évidement S(t) était donner par la relation 2.5 est un C_0 -semi-groupe. Soit C son générateur infinitésimal.

On a : C = A + B

Soit : $y_0 \in D(C)$ alors : $\lim_{t \to 0} \frac{S(t)y_0 - y_0}{t}$ existe Où : $\frac{S(t)y_0 - y_0}{t} = \frac{T(t)y_0 - y_0}{t} + \frac{1}{t} \int_0^t T(t - s)By(S, y_0) ds$ Comme : $t \to 0$ on a : $Cy_0 = Ay_0 + By_0$

Donc: C = A + B

Théorème 2.11. Supposons que $(T(t))_{t>0}$ est compact si S(A+B) < 0 alors : \overline{x} est localement stable exponentiellement

preuve Prendre : $S(A+B) = W_0(S)$

il suffit de prouver que : S(t) est compact pour t>0 Mais : $S(t)y_0=T(t)y_0+\int_0^t T(t-s)BS(s)y_0\mathrm{d}s$

$$v(t) = \lim_{\epsilon \to 0} \int_0^{t-\epsilon} T(t-s)BS(s)y_0 ds \in B(X,x)$$

$$= \lim_{\epsilon \to 0} K_{\epsilon}$$
où : $K_{\epsilon} = \int_0^{t-\epsilon} T(t-s)BS(s) ds$,

Soit :
$$v(t)y_0 = \int_0^t T(t-s)BS(s)y_0\mathrm{d}s$$
, nous devons montrer que $v(t)$ est compact $v(t) = \lim_{\epsilon \to 0} \int_0^{t-\epsilon} T(t-s)BS(s)y_0\mathrm{d}s \in B(X,x)$ où : $K_\epsilon = \int_0^{t-\epsilon} T(t-s)BS(s)\mathrm{d}s$, nous devons montrer que K_ϵ est compact .
$$K_\epsilon = \int_0^{t-\epsilon} T(t-s)BS(s)\mathrm{d}s$$
 où : $K_\epsilon = \int_0^{t-\epsilon} T(t-s)BS(s)\mathrm{d}s$ où : $K_\epsilon = \int_0^{t-\epsilon} T(t-s)BS(s)\mathrm{d}s$

puisque la composition de l'opérateur compact avec l'opérateur linéaire est compact alors: K_{ϵ} est compact donc v(t) est compact

Théorème 2.12. Le principe de stabilité linéaire Supposons que le type de S, $W_0(S) < 0$, alors \overline{x} est localement stable de manière exponentiellement pour l'équation 2.3.2

Cas spécial 2.3.4

Supposons : $f'(\overline{x}) = -\alpha I$, $\alpha > 0$

Proposition 2.2. Il existe $W_0 > 0$, $tq : \alpha > W_0$ alors \overline{x} est localement stable d'une manière exponentielle .

preuve(principe de stabilité linéaire) $W_0(S) = A - \alpha I$ générateur infinitésimale de $\exp^{-\alpha t} T(t)$ il s'ensuit que : $S(t) = \exp^{-\alpha t} T(t)$.

$$\|S(t)\| = \|\exp^{-\alpha t}T(t)\|$$
, mais il existe $M \ge 1$ tq : $\|T(t)\| \le M\exp^{W_0t}$, $W_0 > 0, \forall t \ge 0$

On a: $||S(t)|| \le M \exp^{(-\alpha + W_0)t}$

Si: $-\alpha + W_0 < 0 \iff W_0 < \alpha$, il est alors naturel d'écrire: $W_0(S) \le -\alpha + w < 0$ Pour conséquent \bar{x} est exponentielle localement stable pour notre système 2.3.2.