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ABSTRACT: 
 
 
 
 
 
 
 
 
 

 :ملخص

 
 
 
 
 
 
 
 
 
 
Résumé: 

 

 
 
 
 
 
 
 
 
 

Moving object detection is a key step in many computer vision algorithms such as 

video surveillance, human motion analysis, robotics, sports footage analysis and others. 

Recently, the accuracy of object detection has been improved through the performance of 

approaches based on deep learning algorithm such as region-based convolutional network 

(R-CNN), YOLO (You Only Look Once) and others. The objective of this Master's thesis is 

to identify and evaluate the performance of existing deep learning models that are suitable 

and highly efficient for real-time object recognition. 

 

Keywords: object detection, deep learning, R-CNN, SSD, YOLO. 

 

La détection d’objets mobiles est une étape clé de nombreux algorithmes de vision par 

ordinateur tels que la vidéo surveillance, l’analyse du mouvement humain, la robotique, 

l’analyse de séquences sportives et autres. Récemment, la précision de la détection d'objets a 

été améliorée grâce aux performances des approches basées sur un algorithme d'apprentissage 

profond tel qu'un réseau convolutif basé sur la région (R-CNN), YOLO (You Only Look 

Once) et d'autres.   L'objectif de ce mémoire de Master est d'identifier et d'évaluer les 

performances des modèles d'apprentissage profond existants qui sont appropriés et très 

efficaces pour la reconnaissance d'objets en temps réel. 

 

Mots clés : détection d’objets, apprentissage profond, R-CNN, SSD, YOLO. 

يعد اكتشاف الأجسام المتحركة خطوة أساسية في العديد من خوارزميات الرؤية الحاسوبية مثل  

المراقبة بالفيديو، وتحليل الحركة البشرية، والروبوتات، وتحليل اللقطات الرياضية وغيرها. في الآونة 

على خوارزمية التعلم العميق    الأخيرة، تم تحسين دقة اكتشاف الأشياء من خلال أداء الأساليب القائمة

)أنت تنظر مرة واحدة فقط( وغيرها.   YOLO( و R-CNNالقائمة على المنطقة ) التلاففيةمثل الشبكة 

الهدف من أطروحة الماستر هذه هو تحديد وتقييم أداء نماذج التعلم العميق الحالية المناسبة وذات الكفاءة  

 ي.العالية للتعرف على الأشياء في الوقت الفعل

 

 . R-CNN، SSD ،YOLOاكتشاف الكائن، التعلم العميق،  :الكلمات الدالة
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1. INTRODUCTION: 

In the areas of artificial intelligence (AI) and machine learning, there are a 

number of exciting and amazing advances that will ultimately benefit the lives of 

billions of people with greater impact than ever before. Many previously 

unsolvable issues have been addressed, and significant funds have been 

committed in research and development in this field. 

 

In the recent years, computer vision is one of the most important sub-fields 

of artificial intelligence and machine learning, due to its wide variety of 

applications and enormous potential. Its major purpose is to mimic human vision's 

tremendous capabilities. 

 

Organizations, especially security companies, have made computer vision 

a challenge by striving to build new and more efficient deep learning algorithms 

and methodologies in order to produce intelligent applications, with one of the 

aims being real-time object detection. 

 

The process of object classification and localization in a real-time scenario 

is challenging. However, this did not hinder the growth of this branch. In classical 

methods it was difficult to keep up with this development, which necessitated the 

development of more efficient deep learning-based methods, such as two-stage 

detection learning, which was slow and time-consuming to learn, and single-stage 

detection learning, which opened a path for real-time object discovery. 

 

Our focus is to identify and evaluate the performance of existing deep 

learning-based methods that are suitable and highly efficient for real-time object 

recognition. 

 

1.1. Motivation and problem statement: 

Object detection research has opened up new and exciting prospects in 

practically every business. As a result, many businesses and organizations are 

considering how to incorporate them into their operations. Object detection is a 

key ability required by most computer visions, which can be applied to many 

applications, especially surveillance applications. Pedestrian detection is a key 

issue in surveillance, with several applications such as person identification, 

person count and tracking. Object detection's main goal is to help us recognize 
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and locate object in images and videos. Deep learning methods are the most 

effective way for object detection in this scenario where a sophisticated Object 

detector, specifically created for high-end surveillance applications, is required to 

not only locate the bounding box and label it but also provide their relative 

locations. In this master thesis, we present a person and cat detection approach 

from webcam video utilizing an efficient method called yolo (you only look once). 

 

1.2. Scope of the master’s thesis: 

Since object detection is a new field, it is still being developed. As a result, 

we decided to create an object detection model in real time. After reading a few 

publications in this field, we became interested in this topic. As a result, we're 

extremely motivated to develope a real time object detection algorithm using 

YOLO, and acronym for “You Only Look Once”. 

 

1.3. Outline: 

Our topic is a real-time object detection system, In the subsequent chapters 

we present the following. In Chapter 2, we will discuss about deep learning and 

object detection, as well as previous work related to it. In Chapter 3, We will state 

the differences between detection cases, we will evaluate the current fastest 

detection models, and we select the fastest model to train our data on after it's 

been gathered and recorded in a certain format. we'll discuss the application we're 

attempting to create. We will implement a yolo model that's both accurate and 

relatively fast, and then discuss the results obtained. finally, we address the 

project's conclusions and future work. 
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2. Background and related work: 

2.1. Deep learning: 

2.1.1.The history of deep Learning: 

The history of deep learning goes back to a field that is now called 

cybernetics. This science started in the 1940s with McCulloch and Pitts, where 

they came up with the idea that neurons are units with finite values and enabled 

and disabled states. One can build a Boolean circuit by connecting these cells 

together and making a logical deduction. The brain is basically a logical reasoning 

machine because neurons are binary. The neuron calculates a weighted sum of the 

inputs and compares it to the lower bound: if the value is higher than the lower 

limit then the neuron starts working, or if it is lower than that, it stops. This is a 

simplified explanation of how neural networks work [1]. 

 

In 1947, Donald Hebb came up with the idea that neurons in the brain learn 

by changing the strength of the connections between neurons, which is called 

hyper learning: if two neurons are activated together, the connection between 

them increases, but if they don't work together, the connection less [1]. 

 

Later in 1948, Norbert Wiener proposed cybernetics, which is based on the 

idea that by having systems with sensors and actuators, you have a feedback loop 

and a self-regulating system. All Elements The fundamentals of automotive 

reactions derive from this craft [1]. 

 

In 1957, Frank Rosenblatt published the Perceptron, an educational 

algorithm that changes the weight of very simple neural networks [1]. 

 

Generally speaking, the idea of building thinking machines that mimic 

neurons originated in the 1940s, then took off in the 1950s, and died out 

completely in the late 1960s. of this field of research in 1960 are: 

 

The researchers used bi-valent neurons. On the other hand, the backscatter 

operation is to use a continuous activation function. At the time, the researchers 

had no idea of using connected neurons and did not think to be able to train with 

gradients because neurons are binary and indistinguishable [1]. 
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The use of connected neurons requires multiplying the cell's activation 

function by a weight to obtain the contribution of this value to the weighted sum. 

But before 1980, the process of multiplying two numbers, especially floating-

point numbers, was very slow, which prevented the use of cells. Deep learning. 

Was born in 1985 [1]. 

 

It was introduced as a term by (Rina Decher) in 1986, and to artificial neural 

networks by Igor Eisenberg and colleagues in 2000, in the context of logic 

neurons [1]. 

 

Deep learning restarted in 1985 with the advent of error backpropagation. 

In 1995, the field stagnated again and the machine learning community abandoned 

the idea of neural networks. In the early 2010s, researchers  started using neural 

networks for speech recognition and there was a significant improvement in 

performance, after which neural networks spread widely in the commercial field. 

In 2013, the field of computer vision began to shift towards the use of neural 

networks. The same transition happened in natural language processing in 2016. 

Soon, similar revolutions will occur in robotics, control and many other fields [2]. 

 

The first supervised, feed-forward, multi-level deep learning algorithm was 

published by (Alexei Evakhenko) and Lapa in 1965 [3]. 

 

Work on other construction methods for deep learning, particularly those 

designed for computer vision, began with (Neocognitron), a multi-layered 

artificial neural network introduced by (Kunihiko Fukushima) in 1980. to a deep 

neural network in the purpose of recognizing a handwritten postal code by mail. 

While the algorithm was working, the training required 3 days [3]. 

In 1991, these systems were used to recognize isolated 2D handwritten 

numbers, while 3D objects were recognized by manually matching 2D images to 

a 3D object model. Wong et al suggested that the human brain does not use a 

federated 3D object model, and in 1992 they published (Cresceptron), a method 

for performing 3D object recognition in noisy scenes. Since he uses natural 

images directly, (Cristron) started with general-purpose visual learning of natural 

3D worlds. (Cristron) is a series of layers similar to a (neocogonitron). But while 

Neocognitron requires a human programmer for manual merging features, 

Cresceptron has learned an open number of features in each layer without 

supervision, where each feature is represented by the convolution kernel. Cristron 
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segmented each learned object of a clutter scene through back-end analysis on the 

network. Maximum pooling, which is now often adopted by deep neural networks 

(e.g., ImageNet tests), was first used to reduce position accuracy by a factor of (2 

x 2) to 1 throughout the sequence to improve generalization. In 1994, André de 

Carvalho, together with Mike Fairhurst and David Bisset, published the 

experimental results of a Boolean algebra multilayer neural network, also known 

as a weightless neural network, consisting of 3 self-organizing layers of the 

extraction unit neural network (SOFT) followed by a multi-layer classification 

neural network (GSN) unit, which was trained independently. Each layer of the 

feature extraction module extracts features of increasing complexity compared to 

the previous layer [3]. 

 

In 1995, (Branden Fry) demonstrated that a network containing six fully 

connected layers and several hundred hidden units could be trained using the 

sleep-wake algorithm (over two days), developed jointly with Peter Dean and 

(Hinton). Many factors contribute to the slow speed, including the vanishing 

gradient problem analyzed in 1991 by Sepp (Hockerter). Simpler models that use 

task-specific manual features such as Gabor filters and support vector machines 

(SVMs) were a popular choice in the 1990s and 2000s, but because of artificial 

neural networks (ANN), we became computationally expensive and did not 

understand how to connect the brain to its biological networks [3]. 

 

2.1.2.Types of learning: 

There are three types of learning: supervised, unsupervised and semi-

supervised. 

2.1.2.1. Supervised Learning: 

Supervised learning is considered to be the most elementary class of 

machine learning algorithms [4]. As the name suggests, these algorithms require 

direct supervision. supervised learning is based on training. models are trained 

using labelled dataset, where the model learns about each type of data. Once the 

training process is completed, the model is tested on the basis of test data (a subset 

of the training set), and then it predicts the output. 

 

Supervised learning problems can be further grouped into regression and 

classification problems. 
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When the output variable is a category, such as "spam " and "not spam," or 

"disease" and "no disease," it is referred to as a classification problem. When the 

output variable is a real value, such as "salary" or "weight," it is referred to as a 

regression problem. 

The following are some well-known supervised machine learning 

algorithms: 

For regression issues, linear regression is used. 

For classification and regression issues, random forest is used. 

For classification tasks, support vector machines are useful. 

 

2.1.2.2. Unsupervised Learning: 

In unsupervised learning the goal is to learn relationships among elements 

in a data set D = {x1, x2, ..., xn} and classify the raw data without relying on a 

ground truth. Since it is not clear which patterns should be learned there is no 

obvious error metric which leads to search indirect hidden structures, patterns or 

features in the data [5]. 

 

2.1.2.3. Semi-supervised Learning: 

Semi-supervised learning combines the advantages of both methods by 

combining a little quantity of labeled data with a large amount of unlabeled data 

[6]. 

 

2.1.3.Artificial neural network: 

A neural network is a method in artificial intelligence that teaches 

computers to process data in a way that is inspired by the human brain. It is a type 

of machine learning process a supervised learning, called deep learning, that uses 

interconnected nodes or neurons (perceptron) in a layered structure that resembles 

the human brain [7]. A perceptron is a function that maps the dot product of a 

weight vector 𝑤 ∈ 𝑅𝐿 and its corresponding input vector 𝑥 ∈ 𝑅𝐿 plus a bias to an 

output value 𝑦𝑗: 

𝑦𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝐿
𝑖=1 ), 𝑗 = {1, 2, … , 𝑀}                        (1)   

 

where f: R → R is an activation function.   
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Figure 1 represents a perception, it is a neural network unit (an artificial 

neuron) that does certain computations to detect features in the input data. 

 
Figure 1: Structure of a single perceptron or neuron 

 

There are various types of neural networks such as Hopfield network, the 

multilayer perceptron, the Boltzmann machine, and the Kohonen network. The 

most commonly used and successful neural network is the multilayer perceptron 

and will be discussed in the following section. 

 

2.1.3.1. Multilayer perceptron(mlp): 

There are three kinds of layers in mlp network. The input layer is the raw 

data of the neural network, this layer transmits information (features) to the hidden 

layers. The hidden layers are the intermediate layers between the input layer and 

the output layer and is where all the calculations are performed [7]. The output 

layer is the layer that gives the results of a given input. 

 

Figure 2 represents a multi-layer neural network architecture where each 

layer consists of a certain number of perceptions. In contrast, the number of 

perceptions in the last layer represents the number of classifications. 
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Figure 2: Multilayer perceptron of neural networks 

The output 𝑂𝑙𝜖𝑅𝑀 of an arbitrary layer l is computed as: 
 

𝑂𝑙 = 𝑓1(𝑤𝑙𝑥 + 𝑏𝑙)                      (2) 

 

The output of the first layer becomes the input to the second layer, the 

second to the third and so on successively [8]. A hidden layer 𝑙 with 𝑁 perceptrons 

and 𝑀 input values can be defined as a function 𝑅𝑀 → 𝑅𝑁 where 𝑁 is the number 

of perceptrons in the layer and 𝑀 is the number of inputs. A neural network with 

𝑛 layers can be seen as a series of nested functions where the output of the first 

layer becomes the input to the second, the second to the third and so on 

successively. This can be described mathematically as 
 

0 = 𝑓𝑛(𝑤𝑛 … 𝑓2(𝑤2𝑓1(𝑤1𝑥 + 𝑏1)) + 𝑏2) … ) + 𝑏𝑛             (3) 

 

In the equation y, ‘x’ is the input value given at the neuron, ‘w’ is the 

weighted value of the synapse, ‘n’ is the number of neurons, ‘b’ is the bias and 

‘y’ is the output of the network [9]. Therefore, according to the equation, the value 

of output ‘y’ is equal to the summation of the product of the values of ‘x’ with 

their corresponding weights and bias ‘b’. 

𝑦 = ∑(𝑤𝑛 × 𝑥𝑛) + 𝑏                   (4)

𝑛

𝑖=1

 

 

A neural network can perform binary classification with just one perceptron 

in its simplest form, but by increasing the number of perceptrons and building the 

network in specific architectures, they can be universal approximators to almost 

any continuous set function, making them suitable for a variety of machine 

learning tasks. Even though there are multiple different types of neural networks, 
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the word ANN is used to refer to all of them: Modular Neural Networks, 

Convolutional Neural Networks, Recurrent Neural Networks, and so on [10]. 

 

Recall that in order for a neural network to learn, weights associated with 

neuron connections must be updated after forward passes of data through the 

network. These weights are adjusted to help reconcile the differences between the 

actual and predicted outcomes for subsequent forward passes. Since we are 

talking about the difference between actual and predicted values, the error would 

be a useful measure here, and so each neuron will require that their respective 

error be sent backward through the network to them in order to facilitate the 

update process. hence, backpropagation of error. But how, exactly, do the weights 

get adjusted? 

 

2.1.3.2. Back-propagation: 

Backward Propagation is the preferable method of adjusting or correcting 

the weights to reach the minimized loss function [11]. 

Rumelhart et al. were the first to propose the approach in 1986. If the result 

differs from the predicted output, networks can use this strategy to change the 

weights of hidden layers. The error is calculated and backpropagated to all the 

layers of the network to adjust the weights according to the requirement [12]. 
 

A loss function calculates the difference between a predicted output 𝑦̂𝑖 and 

its actual value 𝑦𝑖 . A classic error function for back-propagation is the mean 

squared error [13]. 

𝐿(𝑋, 𝑤) =
1

2𝑁
∑(𝑦̂𝑖(𝑋, 𝑤) − 𝑦𝑖)2

𝑁

𝑖=1

           (5) 

where 𝑦𝑖  is the target value for an input pair (𝑥𝑖 , 𝑦𝑗) and 𝑦̂𝑖 is the computed 

output of the network on input 𝑥𝑖. Other error functions can be used but its 

convenient mathematical properties make it a good choice for generalized 

learning methods [13]. 

Back-propagation refers to the process of calculating the gradient 

backwards across the network, starting with the gradient of the weight in the last 

layer, then the penultimate, and so on. When opposed to the naive approach of 

calculating each layer separately, the gradient computations from one layer are 

reused in the computations of the preceding layer, allowing for efficient gradient 

computation at each layer [13]. 
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As a result, back-propagation tries to minimize the loss function L with 

respect to the weights of the neural network by computing the value of 
𝛿𝐿

𝛿𝑤𝑖𝑗
𝑘   for 

each weight 𝑤𝑖𝑗
𝑘 . This derivative can be calculated separately for each input-output 

pair and then combined at the end [13]. 

𝛿𝐿(𝑋, 𝑤)

𝛿𝑤𝑖𝑗
𝑘 =

1

𝑁
∑

𝜕

𝜕𝑤𝑖𝑗
𝑘 (

1

2
(𝑦̂𝑑 − 𝑦𝑑)2)

𝑁

𝑑=1

= 1/𝑁 ∑
𝜕𝐸𝑑

𝜕𝑤𝑖𝑗
𝑘

𝑁

𝑑=1

                    (6) 

 

Finally, the weights can be updated according to the learning rate α and 

the total gradient: 

𝛥𝑤𝑖𝑗
𝑘 = −𝛼

𝛿𝐿(𝑋, 𝑤)

𝛿𝑤𝑖𝑗
𝑘                  (7) 

Figure 3 represents the complete cycle of a multi-layer neural network, 

where. (1): Forward propagation refers to the calculation and storage of 

intermediate variables (including outputs) for a neural network in order from the 

input layer to the output layer. (2): It represents the difference between the truth 

value and the expected value. (3): shows the Backpropagation, which updates the 

weights based on the value of the extracted error. 

 
Figure 3: forward / backward Propagation 
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2.1.3.3. Activation Function: 

Activation functions are used in ANNs to convert the input signal into an 

output signal which in turn is fed as input to the next layer. It plays an important 

role on the accuracy of the ANN prediction thus its selection must be careful. If 

an ANN does not have an activation function, the output signal would be a linear 

function and the network acts as a Linear Regression Model. The result of this is 

a network with limited performance [14]. An important feature that needs to be 

considered is that it must be differentiable to be able to perform back-propagation 

optimization for gradient error calculations. There are several activation functions 

but the use of each of them depend heavily on the goal of each layer in the ANN 

as they have different properties. Some common activation functions are 

presented below [14]. 

• Sigmoid:𝒇(𝒙) = 𝝈(𝒙) =
𝟏

𝟏+ⅇ−𝒙  Sigmoid function is a mathematical 

function which has a characteristic S-shaped curve. There are a 

number of common sigmoid functions, such as the logistic function, 

the hyperbolic tangent, and the arctangent. All sigmoid functions 

have the property that they map the entire number line into a small 

range such as between 0 and 1, or -1 and 1, so one use of a sigmoid 

function is to convert a real value into one that can be interpreted as 

a probability. 

 
Figure 4: Sigmoid Functions [15]. 

 

• Tanh:𝒇(𝒙) = 𝐭𝐚𝐧𝐡(𝐱) =
𝟏−ⅇ−𝟐𝐱

𝟏+ⅇ−𝟐𝐱  Because the non-linear activation 

function's values span between -1 and 1, it's comparable to the 

exponential function in the negative inputs give negative results, and 

only zero-valued inputs are allocated to outputs close to zero. The 

distinctions are in the symmetry (Tanh is symmetric about the origin) 

and the gradient (Tanh has a steeper gradient). As a result, the outputs 
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from previous layers will have various signs when fed as input to the 

following layer. 

 

 
Figure 5: Tanch Functions [15]. 

 

• ReLU: 𝒇(𝒙) = 𝑹ⅇ𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙) The fundamental advantage of 

the rectified linear activation function, also known as ReLU 

(Rectified Linear Unit), is that it does not activate all perceptrons at 

the same time because it returns zero for negative inputs. As a result, 

the network becomes sparse and efficient. However, because the 

gradient is 0 for negative values, the vanishing problem still exists, 

preventing the network from being updated during back propagation. 

 

 

 

 

 

 

 

 

 

• Leaky ReLU: 𝒇(𝒙) = 𝑳𝑹ⅇ𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝜶𝒙, 𝒙), 𝜶 ≤ 𝟏, is an improved 

version of ReLU. It solves the vanishing gradient problem by 

inserting a small linear component for negative values. to make the 

derivation a slightly positive value instead of 0. 

 

 

 

 

 

 
Figure 6: ReLU Functions [15]. 
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• Softmax: 𝒇(𝒙) = 𝝈(𝒙)𝒋 =
ⅇ𝒙𝒋

∑ ⅇ𝒙𝒌𝑴
𝒌=𝟏

 , 𝒇𝒐𝒓 𝒋 = 𝟏, 𝟐, … , 𝑴 𝒂𝒏𝒅 𝒙 = (𝒙𝟏, … , 𝒙𝑴)𝝐𝑹𝑴  ,It is 

a classification of more than one variable. It is used in place of the 

sigmoid function as a classification. It squeezes the outputs for each 

variable in the feature vector x between 0 and 1 dividing it by the sum 

of all variables. This makes it so that the sum of all variables in x will 

result in 1 after being run through the softmax activation function. 

This activation function is best employed at the classifier's output 

layer to obtain probabilities that may be used to classify each input. 

 

 

 

 

 

 

 

 

2.1.3.4. Batch Normalization: 

Deep neural networks are difficult to Learn. Batch normalization (also 

known as batch norm) is a method used to make training of artificial neural 

networks faster and more stable through normalization of the layers' inputs by re-

centering and re-scaling.  [16]. 

Batch normalization is a routine operation in the construction of neural 

network models, which not only speeds up the convergence of the model to some 

extent but also plays the most important role in solving the gradient dispersion 

problem in the network, i.e., the phenomenon of unstable gradient variation. If 

normalization is not used, the distribution of data obtained by the model after 

training at each layer has differences, and the computational volume of the model 

 
Figure 7: Leaky Functions [15]. 

                                 

 
Figure 8: SoftMax Functions [15]. 
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network will increase for different data processing, causing the network model to 

be more complex, and thus prone to overfitting and slower convergence of the 

model. that is, the essence of normalization is to make the model acquired picture 

feature data more reasonable, optimize the learning ability of the model, improve 

the generalization ability of the model, and improve the counting ability [16]. 

 

2.1.4.Convolutional neural network: 

A CNN is a subset of the neural networks mentioned above. A 

convolutional neural network is a sort of supervised deep learning method that is 

an extension of artificial neural networks (ANN) [17]. It is primarily used for jobs 

involving picture recognition. Image/video recognition [18], semantic parsing, 

natural language processing, and paraphrase detection are among applications 

where convolutional neural networks (CNNs) are useful [19]. The Convolutional 

layer, Pooling layer, and Fully-connected layer are the three layers that make up 

a convolutional neural network. Convolution's main goal is to extract features 

from input photos while keeping the spatial relationship between pixels intact 

[20]. It accomplishes this by learning visual attributes from small squares of input 

data. 

 

 

 

 

 

 

 

 

 

 

2.1.4.1. The Convolutional Layer: 

A series of filters with learnable parameters are used to extract features from 

input data in this sort of layer. They can be compared to CNN's weights and biases. 

The layers are constructed in such a way that the first detects a collection of low-

dimensional patterns in the input, such as edges, blobs of color, and so on [21]. 

The second detects patterns of patterns, and so on. The convolutional layer learns 

features by back-propagation in the same way as a multi-layer perceptron network 

(or ANN) does. 

 
Figure 9: Representation of CNN (Camacho et al., 2018). [92] 
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Convolution is performed by sliding a fixed-size kernel over the input 

matrix. At each stage, the elements that fall inside the kernel are combined using 

matrix multiplication of the kernel and the region in the input matrix where the 

kernel overlaps. Other parameters are zero-padding, which adds zeros around the 

input matrix to preserve the size of the input matrix (because a convolution 

reduces the dimension of the input matrix), and stride, which specifies how many 

elements the kernel should bounce over between steps. In terms of output volume, 

the larger the stride, the smaller the output volume. An important parameter to 

specify for a convolutional layer is the number of filters, which determines the 

depth of the convolutional layer. Each filter learns to look for different visual 

features in the input. The convolutional layer accepts an input of size 

𝑊1 × 𝐻1 × 𝐷1. It requires four parameters: the number of filters K, the kernel size 

F, the stride S, and the zero-padding P. The layer produces an output of size 

𝑊2 × 𝐻2 × 𝐷2 where [22] see Figure 11: 

𝑊2 = (𝑊1 −F +2P)/S +1                         

𝐻2 = (𝐻1 −F +2P)/S +1,                          (8)              

D2 = K.   

 

 

 

 

         

 

 
Figure 10: Feature Filters of Front, Middle and Rear-End Layers in a CNN 

[96] 
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A feature filter, when slid on the input layer of a neural network, performs 

the convolution process, resulting in the generation of a feature map. A 

convolutional layer is the layer that performs the convolution process. 

convolutional neural networks are networks made up of convolutional layers. The 

filter searches the input layer for any given pattern in the beginning. The filter 

searches for the purpose of learning to detect a pattern during the training of the 

algorithm, which finally becomes a search to validate the existence of a specific 

pattern. Each of the filters in each convolutional layer with its respective number 

of kernels produce a separate activation map. Stacking these activation maps 

along the depth dimension lead to that deeper layers in the network can perform 

more complex associations. There are two types of convolutions [22]: 

• 2D Convolution: Convolution is used in 2D CNNs to extract features 

from only 2D space. The value of a unit at (x, y) in the i-th layer of 

the j-th feature map, written as 𝑣𝑖𝑗
𝑥𝑦

 in formal terms, is given by: 

 𝑽𝒊𝒋
𝒙𝒚

= 𝒇(𝒃𝒊𝒋 + (∑ ∑ ∑ 𝒘𝒊𝒋𝒎
𝒑𝒒𝑸𝒊=𝟏

𝒒=𝟎
𝑷𝒊=𝟏
𝒑=𝟎𝒎 𝒗(𝒊=𝟏)𝒎

(𝒙+𝒑)(𝒚+𝒒)
)            (𝟗) 

where f is an activation function, 𝒃𝒊𝒋is the bias for the feature map, 

𝒎 is the number of filters in the (ⅈ − 1)th layer, 𝑊𝑖𝑗𝑚
𝑝𝑞

 is the value at 

the position (p, q) of the kernel connected to the kth feature map, and 

𝑝𝑖 and 𝑄𝑖 are the height and width of the kernel, respectively. 

 

 

 

 

 
Figure 11:  The input volume of size [𝑾𝟏 × 𝑯𝟏 × 𝑫𝟏] is convolved with a 

𝑲 × 𝑲 × 𝑲kernel obtaining an output volume [𝑾𝟐 × 𝑯𝟐 × 𝑲] [22]. 
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• 3D Convolution: Used either for spatial feature extraction of 3D 

images, or spatio-temporal feature extraction of 2D images [23]. The 

above equation can be extended as follows: 

  𝑽𝒊𝒋
𝒙𝒚

= 𝒇 (𝒃𝒊𝒋 + (∑ ∑ ∑ ∑ 𝒘𝒊𝒋𝒎
𝒑𝒒𝒓

𝒗(𝒊=𝟏)𝒎

(𝒙+𝒑)(𝒚+𝒒)(𝒛+𝒓)𝑹𝒊=𝟏
𝒓=𝟎

𝑸𝒊=𝟏
𝒒=𝟎

𝑷𝒊=𝟏
𝒑=𝟎𝒎 ))     (10)     

where 𝑅𝑖 is the size of the 3D kernel along the third spatial dimension 

and 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 is the (p, q, r) th value of the kernel connected to the mth 

feature map in the previous layer. 

 

 

 

 

 

 

2.1.4.2. Pooling Layer: 

After convolution, the procedure of pooling is conducted [24]. Its key 

characteristic is that it compresses the input into a patch. The following are two 

common pooling functions: 

• Average Pooling: Calculate the average value for each patch on the 

feature map Figure 15. 

• Maximum Pooling (or Max Pooling): Calculate the maximum 

value for each patch of the feature map Figure 14. 

The network gains two things: 

 
Figure 12: Convolution 2d with stride and padding [103]. 

                                 

 
Figure 13: convolutions 3D to use multiple filters [104]  
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- Controls overfitting by reducing the amount of training parameters 

and the cost of computation. 

- Makes the network invariant to certain distortion. 

[24] 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4.3. Fully Connected Layer: 

The final convolution or pooling layer's output feature maps are converted 

into a 1-Dimension array of numbers and connected to one or more fully 

connected layers, in which a weighted connection is made between every input 

and every output by a weight. Using a fully connected layer to learn non-linear 

combinations of these features is a good approach to start. As a result, fully 

connected layers are frequently used as the CNN's final layers. They add the 

weighted total of the previous layer's features, showing the precise parameter 

inputs, to arrive at a certain output goal result [25]. 

 

 

 

 

 
Figure 14: a portrait showing max pooling [97]. 

                                 

 
Figure 15: a portrait showing average pooling [97]. 
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2.1.4.4. Why Convolutional Neural Networks? 

While neural networks have been present for over 50 years, there are a few 

reasons why CNNs have become the industry standard for object recognition and 

categorization [26]. The following are some of their primary advantages [21]: 
 

• CNNs have fewer memory requirements: CNNs use the fact that 

the input data can be viewed as a multi-channel image to reduce the 

dimensionality of the input while keeping characteristics that can be 

recovered for classification within the input image. 

• They are easier and better to train: A CNN's training time is 

proportionately less than that of a normal neural network due to its 

lower architectural complexity. Moreover, because of a lower 

number of parameters, the susceptibility to noise is lower during the 

training process. Hence, the performance of a standard neural 

network will always be poorer than a CNN for image classification 

purposes. 

• They are rugged to shifts and distortion in the input: Because the 

same weight configuration is employed across space, CNNs are shift 

invariant. Although a typical neural network may achieve this, many 

units with similar weight values at different regions of the input 

would be required, adding memory and training time loads. CNNs 

can withstand a variety of distortions, including shape shifts, partial 

occlusions, horizontal and vertical shifts, and so on. 

 
Figure 16: A picture showing the flattening of the output [105]. 
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However, because the specific spatial correlations between higher-level 

data are lost in the subsequent down-sampling step, CNNs are only effective for 

broad object detection tasks [27]. 

 

2.2. Object detection:   

Computer vision is an interdisciplinary field that has sparked a lot of interest 

in recent years [28]. 

Object detection is a supervised machine learning process that determines 

the instance of the class to which the object belongs while also estimating the 

object's location by reporting the bounding box around it. Each image in the 

training dataset must be accompanied with a file containing the object's 

boundaries and classes. Object localization and categorization are the first two 

stages of the process. 

For classification, the one dominant object in a given image should be 

determined and labelled. The next more demanding task is object localisation: In 

addition to labelling the dominant object, it also needs to be localised in the image, 

usually by determining a bounding box around the image region that is occupied 

by the object. The difficulty of this task again increases if not only one but all 

objects in an image need to be labelled and multiple objects of the same category 

can appear in one image. 

Object detection can be used in a variety of situations, including human-

computer interaction, defense, robotics, and transportation (auto-pilot) [29]. 

 

 

 

 

 

 

 

 

 

 
Figure 17: classification with localization [106]. 
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2.2.1.History of detection algorithms: 

In this section will simply provide a cursory review of current 

developments. 

A good means of judging how close the computer vision community has 

come to solving the problems of object detection is to look at the results of 

challenges like the PASCAL Visual Object Challenge (VOC), and later the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [30]. 

Pascal VOC began in 2005 and was hosted every year till 2012. It usually 

included classification as well as localisation tasks, among other things. The 

organizers published a report in 2009 that went into greater detail about the 

challenge and this year's contributions [31]. Most of the entries at the time used a 

bag-of-visual-words technique based on hand-crafted features like SIFT [32] and 

HOG [33], in which feature vectors are computed at key point locations in the 

image and then a histogram over the feature vectors is used to identify the image 

content. 

When the PASCAL VOC ended in 2012, the ILSVRC was held annually 

from 2010 onwards and became the key benchmark for object detection. It uses 

images from the massive ImageNet dataset (over 14 million images) to perform 

classification and detection tasks, with up to 1000 possible classes for 

classification and 200 classes for detection. 

When Krizhevsky et al. [34] used a deep convolutional neural network 

(CNN) for the first time in 2012, the challenge experienced a significant boost in 

performance. They reduced the top-5 classification error1 from 25.2 percent (for 

the second-best entry) to 15.3 percent, as well as the localization error from 50 

percent to 34.3 percent. Since then, convolutional neural networks of increasing 

depth have dominated the ILSVRC. [35] The winning entry had a top-5 error of 

6.7 percent in 2014, indicating that the categorization process has become 

reasonably simple. The best detection mean average precision (mAP) has 

increased from 22.58 percent in 2013 to 43.93 percent in 2014. The localisation 

error has decreased to 25% [36]. 

 

The requirement to develop discovery methods in a convolutional neural 

network has led to the development of many methods that fall into two categories: 

two-stage detection A selective search algorithm or a region proposal network 

first proposes a set of regions of interest in two-stage object detectors [37][42]. 

The region candidates are then processed by a classifier. The R-CNN family is an 
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example of this type of 2D object detector [38]. One-stage detectors, on the other 

hand, bypass the region proposal stage and conduct detection across a large 

number of potential locations. It's faster and easier to use than two-stage detectors, 

but there's a trade-off in terms of accuracy. To yet, achieving real-time capabilities 

has necessitated an unavoidable trade-off [39]. 

 

2.2.2.Two-stage detection: 

The following methods are examples of older two-stage detection methods: 

 

2.2.2.1. R-CNN: 

RCNN is introduced after the success of CNN on image categorization with 

AlexNet [40]. R-CNN [41] is a hybrid method that uses both traditional and 

learning-based techniques. Selective Search is used to generate proposals in this 

method [42]. The feature extraction for each region proposal is done with CNN, 

and the feature vectors are classed with SVM, while the bounding box regression 

is done with a fully connected neural network Figure 18. 

 

 

 

 

 

 

 

 

The main drawback of this RCNN is that it takes a long time to train. 

Furthermore, because the detection takes a lengthy time, the algorithm cannot be 

done in real-time. 

 

 

 

 

 
Figure 18: R-CNN [91]. 
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2.2.2.2.  Spp-net (Spatial Pyramid Pooling): 

SPP is a technique for extracting characteristics from regions of various 

sizes. SPP-Net As a result, it takes advantage of parameter sharing at the CNN 

layer and can adapt to a variety of input sizes (since input size is limited by the fc 

layers not conv layers, in R-CNN the crop has to be warped to fulfil certain size; 

SPP in SPP-Net elevates this size constraint) [43]. in Figure 19 

SPP Net replaces the last pooling layer of traditional convolutional neural network 

with a spatial pyramid pooling layer. It can diversify the size of the input image, 

avoiding the information loss and distortion caused by the image distortion, and 

improving the detection accuracy [44]. 

 

 

 

 

 

 

 

 

 

 

2.2.2.3.  Fast R-CNN: 

Fast R-CNN was created to boost the detection speed of its R-CNN 

processor [45]. To lower the computational cost, this approach added Roi Pooling 

layers. Roi Pooling is a type of pooling that consists of suggestions for fixed-sized 

forms. As a result, instead of processing feature extraction for each proposal, it is 

done once for each image. They also introduced a deep learning-based method for 

classification, and a regression network for finding bounding boxes, which is 

integrated with the feature extraction network. The most notable modifications 

are that the feature map is generated over the image before the region suggestions 

are created, and the SVM is replaced with a SoftMax layer [46]. The training and 

testing time has been significantly shortened as a result of these enhancements. 

Instead of repeating the convolution process for each of the 2000 regions, the 

operation is completed once. In Figure 20. 

 

 

 

 
Figure 19: Spp-net (SPP illustration). 
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Nonetheless, despite the improvements, the selective search algorithm for 

generating region proposals had to be modified. 

 

2.2.2.4.  Faster R-CNN: 

The fundamental idea behind Faster R-CNN was to use a fast neural net to 

replace the slow selective search algorithm. 

Specifically. Ren et al. later introduced Faster R-CNN [47]. The proposal 

generating step is likewise accomplished by CNN layers (Region Proposal 

Network - RPN) instead of additional proposal generators, which is the key 

distinction from Fast R-CNN. Fast R-CNN is utilized for the rest, and the two 

structures are integrated into one network for the first time, making the 

architecture trainable from start to finish.in Figure 21.  

To anticipate the regions, a separate Region Proposal Network (RPN) was 

deployed. The predictions are then made and filtered with a Roi pooling kernel 

before being fed into a Fast R-CNN [47]. The projected object's name and 

bounding boxes are the outcomes. 

As a result, the Faster R-CNN is the fastest CNN and can-do real-time 

detections. 

 

 

 

 

 

 

 
Figure 20: Fast R-CNN [91]. 



CHAPTER 2                                                            BACKGROUND AND RELATED WORK 

 

 

27 
 

 

 

 

 

 

 

 

2.2.2.5.  Mask R-CNN: 

Mask R-CNN was created as a modified version of Faster R-CNN by He et 

al [48]. to develop a framework for object instance segmentation. ResNet-FPN 

[49](feature pyramid network) is used after the feature extraction backbone in the 

Mask R-CNN method to connect deeper layers with the preceding ones. This 

approach improves algorithm accuracy while cutting down on computing time. 

The FPN architecture. in Figure 22. 

 

 

 

 

 

 

 

 

 

 

So, the overall structure can be illustrated by the following figure 23. 

 

 

 

 
Figure 21 : Faster R-CNN [109]. 

 
Figure 22: (FPN architecture) pyramid alternatives Mask R-CNN [101] 
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2.2.3.One-stage detection: 

One-stage detection methods are one of the most recent advancements in 

the field of speedy and precise detection, and they are summarized as follows: 

 

2.2.3.1. Yolo (you only look one): 

YOLO (You Only Look Once) is a real-time detector created by Redmon 

et al [50]. Its distinguishing feature is that it approaches detection as a regression 

problem. It is a one-stage detector that does both evaluation and detection at the 

same time. It's a single neural network that predicts multiple bounding boxes and 

class probabilities for each box at the same time. The YOLOv1 uses Darknet, 

which is an open-source neural network framework written in C and CUDA [51]. 

The main idea of how this network works is the algorithm divides the image into 

grids and runs the image classification and localization algorithm on each of the 

grid cells [52]. For example, we have an input image of size (256 × 256). We 

place a (3× 3) grid on the image (see Fig. 24). 

 

 

 

 

 

 

 
Figure 23: Mask R-CNN [101]. 

 
Figure 24: Grid (3 x 3) representation of the image 
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In Figure 25, the image is divided into 9 squares, and therefore the output 

matrix is 9 matrices, each with a depth of (c+5) which describe the center 

coordinates, the dimensions, the objectness score and C class confidences for each 

bounding box. 

 

 

 

 

 

 

The YOLO [52] model is the first attempt to construct a rapid real-time 

object detector (see Table 1 for architecture details). 

However, YOLO had certain limitations: it could only detect up to two 

things at a time, making it difficult to detect small or cluttered objects [50]. only 

the last feature map was used for prediction, which was not suitable for predicting 

objects at multiple scales and aspect ratios. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25: Output structure in YOLO 

 
Table 1: YOLOv1 model. 
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2.2.3.1.1. IOU (Intersection over union): 

Is a metric for measuring the accuracy of an object detection model. used to 

describe the extent of overlap of two boxes.  where we train a model to output a 

box that fits perfectly around an object. For example, in the image below, we have 

a green box, and a blue box. The green box represents the correct box, and the 

blue box represents the prediction from our model. If the prediction is completely 

correct, (IOU = 1). The lower the (IOU), the worse the prediction result [53]. 

 

 

 

 

 

 

 

 

Let us assume that box 1 is represented by [x1, y1, x2, y2], and box 2 is 

represented by [x3, y3, x4, y4] [53]. (Figure 27 shows the calculation.) 

 

 

 

 

 

 

2.2.3.1.2. Loss Function Explanations: 

The location 𝑥, 𝑦, and size 𝑤, ℎ of bounding boxes, as well as the objectness 

𝑝(𝐶) (or confidence) and class probabilities C, determine the multi-part loss 

function. Two gain factors (𝜆𝑐𝑜𝑜𝑟𝑑 𝑎𝑛𝑑 𝜆𝑛𝑜𝑜𝑏𝑗) are used to control the 

contribution of each part to the total loss. During the training, the function utilized 

to optimize is [52]. 

 

 
Figure 26: Intersection over union. 

 
Figure 27: Calculation (Intersection over union) [53]. 
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It calculates the difference between true and forecasted parameters' Mean 

Squared Error (MSE) [52]. 1𝑖
𝑜𝑏𝑗

 indicates whether cell i includes an item, and 

1𝑖𝑗
𝑜𝑏𝑗

 indicates whether the grid cell i's j-th bounding box predictor is a contender 

for the prediction. The λ parameters are used to increase the loss from bounding 

box coordinate and to decrease the loss from confidence predictions in boxes that 

don’t contain objects [54]. 
 

2.2.3.1.3. Non-max suppression: 

This method is used to "suppress" the less likely bounding boxes and only 

maintain the best [55]. is a technique used primarily in object detection that aims 

to select the best bounding box out of a set of overlapping boxes, ensuring that 

the algorithm will recognize the required part once and not more than once, then 

the algorithm will determine the efficiency of each square if it covers the object 

in the image well, and the efficiency is determined by the IOU mentioned above, 

and it deletes the minimum values of the non-maximum suppression, i.e. it keeps 

only the highest values of the non-maxim [55]. 

 

 

 

 

 

 

 

   (11) 

 
Figure 28: Discovered more than once (human) [55]. 
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2.2.3.1.4. Anchor boxes: 

A set of predetermined bounding boxes of a specific height and breadth are 

known as anchor boxes. These boxes are often chosen depending on object sizes 

in your training datasets to capture the scale and aspect ratio of various object 

classes you want to detect. The number of tiled anchor boxes equals the number 

of network outputs. The network produces predictions for all outputs [56]. 

 

 

 

 

 

 

 

Note: Because there are instances when an object does not fit in the Anchor boxes, 

it is vital to select appropriate boxes because this error may damage the output 

results and accuracy (IOU) [56]. 

 

2.2.3.2. SSD (single shot detector): 

SSD [57] is one of the earliest attempts at using convolutional neural 

networks in pyramidal feature hierarchies for effective identification of objects of 

varied sizes, proposed by Liu et al. shortly after the YOLO technique is introduced 

[58]. functions as a single-stage multiple-class object detector that regresses class 

confidences and bounding boxes from a fixed collection of bounding boxes of 

various sizes and scales. SSD incorporates concepts from RPN of Faster R-CNN 

and YOLO, as well as multiscale convolutional layers for feature extraction, to 

improve detection speed while maintaining accuracy. Per feature map location, 

SSD discretizes the output space of bounding boxes into a set of default boxes at 

various aspect ratios and scales. The network generates scores for the existence 

of each object type in each default box at the moment of prediction, as well as 

modifications to the box to better reflect the object shape. In addition, to handle 

objects of varied sizes naturally, the network combines predictions from many 

 
Figure 29: Example Anchor box 
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feature maps with different resolutions. SSD achieved comparable detection 

accuracy with Faster R-CNN but enjoyed the ability to do real-time inference [57]. 

 

 

 

 

 

 

 

 

 

The anchor boxes on various levels are rescaled such that a single feature 

map is solely responsible for objects at a single scale. An anchor box's width, 

height, and center placement are all normalized to be (0, 1). Every position (ⅈ, 𝑗) of 

the l-th feature layer of size 𝑚 × ℎ has a linear scale value proportionate to its 

layer level and 6 possible width-to-height ratios associated with it [58]. There are 

a total of 6 anchor boxes per feature cell, where the scale at each level is 

𝒔𝒍 = 𝒔𝒎𝒊𝒏 +
𝒔𝒎𝒂𝒙 − 𝒔𝒎𝒊𝒏

𝑳 − 𝟏
(𝒍 − 𝟏)            (12) 

Where the level index 𝑙 = 1, … , 𝐿, the aspect ratios r ∈ {1,2,3,1/2,1/3}, with 

an additional scale 𝑠𝑙
′ = √𝑆𝑙𝑆𝑙 + 1 when r = 1. Each box's width and height can 

therefore be calculated as 𝑤𝑙
𝑟 = 𝑠𝑙√𝑟  and ℎ𝑙

𝑟 = 𝑠𝑙/√𝑟 , with the center location 

(𝑥𝑙
𝑖 , 𝑦𝑙

𝑖) = (
ⅈ+0,5

𝑚
,

𝑗+0.5

𝑛
). The model generates four anchor box offsets and C class 

probabilities for each of k anchor boxes at each location of each feature map, 

yielding 𝑘. 𝑚. 𝑛(𝑐 + 4) outputs [57]. 

 

The loss function seems a lot like the one in YOLO. With some minor 

alterations, it's defined as the sum of a localization loss and a classification loss. 

 

 

 

 
Figure 30: SSD framework [99].(a): The photos with their respective bounding 

boxes are the input to SDD. (b): Default boxes with various aspect ratios 

correlate to a smaller region in fine-grained feature maps. (c): For coarse-

grained feature maps these boxes are bigger and thus more suitable for larger 

objects. 
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2.2.3.3. Retina NET: 

(Lin et al). presented RetinaNet as another popular one-stage object 

detection in 2018 [59]. The key innovation of the RetinaNet method is the addition 

of a new loss function, called focal loss, to provide robustness against class 

imbalance. RetinaNet addresses the great disparity between the background, 

which includes no items, and the foreground, which contains things of interest, by 

modifying the usual cross entropy loss function such that it down-weights the loss 

assigned to well-classified examples [60]. 

 

The cross entropy (CE) function is used over the confidence scores as 

below:                             𝐶𝐸(𝑝) = −𝑙𝑜𝑔(𝑝)                      (13) 

The following relationship describes focal loss as a function: 

𝐹𝐿(𝑝) = −𝛼(1 − 𝑝)𝛾 log(𝑝)                   (14) 

 

where 𝛾 is a focusing parameter and 𝛼 is a correction factor. Hard sample 

losses are more important than simple sample losses when the parameter 𝛾 is 

greater than zero [60]. (See Figure 31). 

 

 

 

 

 

 

 
Table 2: SSD model. 
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Furthermore, feature pyramid networks were employed to detect multi-

scale objects at various layers of feature maps [59]. (See Figure 32). 

 

 

 

 

 

 

 

2.2.3.4. Yolo v2: 

Later, Redmon et al [61]. refined their work YOLO by creating YOLOv2, 

which uses an entirely new feature extractor backbone called Darknet19, which 

has 19 convolutional layers. To predict bounding boxes in YOLOv2, fully 

connected layers are deleted and only convolutional layers are used [61]. Batch 

normalization is applied to all convolutional layers, resulting in a considerable 

speedup in the learning process and an increase in the mAP [62]. which improved 

detection performance while keeping inference speed in real time. The weights 

obtained by YOLOv2 were more sensitive to capturing fine-grained information 

because it used a more powerful deep convolutional backbone architecture that 

 
Figure 31: Model performance in terms of loss values with various focusing 

parameter values, While α=1 [60]. 

 
Figure 32: The RetinaNet network architecture used a Feature Pyramid 

Network on top of the feed-forward ResNet architecture. 
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was pretrained on higher resolution photos from ImageNet (from 224 224 to 448 

448). In addition, the anchor method utilized in SSD was a source of inspiration. 

The improvement aspects are [63]: 

• Batch normalization. 

• High resolution classifier. 

• Anchor Boxes. 

• Fine-grained features. 

• Multi-scale training. 

• Darknet-19. 

 

Given an anchor size (𝑝𝑤, 𝑝ℎ)at a certain grid cell with its left corner at 

(𝐶𝑥, 𝐶𝑦) the model predicts the offset scale, (𝑡𝑥, 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ) and a confidence 

prediction representing the IoU between the predicted box and any ground truth 

box. The corresponding predicted bounding box b has center (𝑏𝑥, 𝑏𝑦) and size 

(𝑏𝑤, 𝑏ℎ) [62]. (See Figure 33). 

 

 

 

 

 

 

 

Although fine-grained characteristics from a previous layer are passed to 

the output detection layer, the detection is still done at the final coarse-grained 

layer, which misses many of the smaller items [62]. (See Table 3). 

 

 

 

 

 

 

 

 

 
Figure 33: Dimension priors and position prediction for bounding boxes [61]. 
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2.2.3.5. Yolo v3: 

YOLOv3 is a new version of the YOLO baseline algorithm developed by 

Redmon et al [64]. Because there may be occasions where a cell contains more 

than one class, YOLOv3 uses the logistic loss function instead of the softmax 

layer to enable multi-class detection. 

 

In terms of detection performance, YOLOv3 surpasses SSD and R-FCN, as 

well as Faster R-CNN and RetinaNet in terms of detection time, as shown in 

Figure 34. There are a few key differences between YOLOv3 and previous 

algorithms in terms of detection performance and/or detection time [64]. 

 

 

 

 

 

 

 
Table 3: YOLOv2 model. 
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The most significant modifications are as follows [64]: 

• Bounding Box Prediction. 

• Class Predictions. 

• Predictions across scales. 

• Feature Extractor. 

• Darknet53. 

 

2.2.3.5.1. Backbone:  

The Darknet backbone has been upgraded to Darknet53, which has 53 

convolutional layers with batch normalization and Leaky-ReLU activation after 

each [65]. Figure 35. 

 

2.2.3.5.2. Feature Pyramids: 

 For diverse sized objects, YOLOv3 detects at three different scales. Each of these 

layers is connected to the other utilizing FPN architecture in a top-down way. 

Shallower layers can use the semantic information gathered in deeper layers 

because to this connection [66].  

 

2.2.3.5.3. Loss function: 

 Calculates the objectness score with logistic regression for each bounding box 

[67]. 

 

 

 
Figure 34: Comparison of YOLOv3 and the other state-of-the-art algorithms 

[64]. 
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2.2.3.6. Tiny-yolov3: 

Tiny-YOLOv3 is a reduced and scaled-down version of YOLOv3. Despite 

the fact that Tiny-YOLOv3 has fewer layers than YOLOv3, the model's accuracy 

is nearly identical to that of its larger counterpart when high frame rates are 

considered.  Tiny-YOLOv3 has only 13 convolutional layers and 8 max-pool 

layers, hence it takes far less memory to execute than YOLOv3. The main 

distinction between YOLOv3 and TinyYOLOv3 is that the former can detect 

items at three different scales, whereas the latter can only detect objects at two 

scales.  Apart from these differences, both variations work in the same way [68].  

Tiny-YOLOv3 has a significantly lower number of convolutional layers 

than YOLOv3. Tiny-YOLOv3 features only 13 convolutional layers in its basic 

structure, with a total of 23 layers Table 4. Tiny-YOLOv3 uses a restricted number 

of 1 x 1 and 3 x 3 kernels to extract the characteristics. Unlike YOLOv3, which 

uses stride 2 convolutional layers for down sampling, Tiny-YOLOv3 employs the 

pooling layer [68]. TinyYOLOv3's convolutional layer structure is comparable to 

that of YOLOv3. Figure 36. 

 

 
Figure 35: YOLOv3 model [98]. 
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2.2.3.7. Yolo v4: 

Yolov4 was announced in 2020 by Bochkovskiy et al [69]., and it is an 

upgraded version of the YOLOv3 algorithm, with a mAP improvement of up to 

10% and a 12 percent increase in the number of frames per second. Darknet, the 

same framework utilized for its predecessors, is also employed to construct this 

new structure [70]. Figure 37 shows a detailed performance comparison. 

 
Table 4: Tiny-YOLOv3 model. 

 

 
Figure 36: Architecture of Tiny-YOLOv3 [102]. 
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Figure 37 shows that YOLOv4 outperforms YOLOv3 and EfficientDet in 

terms of inference time. In their publication, the authors of YOLOv4 present a 

series of contributions dubbed a "bag of freebies." There are a number of things 

that may be done to increase the model's performance without adding to the 

inference time lag [70]. 

 

2.2.3.7.1. Backbone:   

YOLOv4 employs CSP-Darknet-53, a variation of the Darknet framework's 

Cross Stage Partial Network (CSPNet). By partially concatenating the top and 

bottom layers of the network, the suggested topology merely connects feature 

maps. On the ImageNet dataset [71], this method reduces computation costs by 

20% while maintaining at least the same accuracy [72]. 

 

2.2.3.7.2. SPP in YOLOv4: 

The backbone of YOLOv4 is Spatial Pyramid Pooling (SPP) [73]. SPP is 

another option for dealing with objects of various sizes. The SPP block takes input 

feature maps and feeds them into three parallel max pooling layers with variable 

scales and strides. Originally, the approach was employed to generate fixed size 

output for different sized inputs to feed the output to a fully connected layer [74]. 

The three layers are then joined together to create multi-scaled input features. 

 
Figure 37: Comparison of YOLOv4 and the other state-of-the-art algorithms 

[111]. 
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2.2.3.7.3. Activation function: 

In the feature extraction backbone, YOLOv4 employs Mish activation on 

several convolutional layers, in addition to Leaky-ReLU activation, which was 

originally utilized in YOLOv3 [75]. 𝑓(𝑥) = 𝑥 𝑡𝑎𝑛𝑐ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) can define 

Mish, which is a continuously differentiable activation function. On AP with CSP-

Darknet-53 backbone, it outperforms Leaky-ReLU by 2.1 percent in the MS-

COCO dataset [70]. 

 

2.2.3.7.4. Feature Pyramids:  

In YOLOv4, a Path Aggregation Network (PANet) is added to the generic 

Feature Pyramid Network, allowing for the use of deeper features for the 

preceding outputs. PANet merely adds a bottom-up path that improves 

communication between the lower and upper layers [76]. Figure 38. 

 

 

 

 

 

 

 

 

 

 

2.2.3.7.5. Data Augmentation:  

YOLOv4 is educated in a unique way. Rather of using the same photos at 

each epoch, it crops four separate images and merges them into a single network-

sized image, so the network encounters a fresh input every time it runs. 

Furthermore, four separate scenes can be used to learn batch normalization 

parameters in each image. As a result, there is less need for bigger mini-batch 

sizes. Mosaic is the name given to this procedure [77]. Figure 39. 

 

 
Figure 38: PANet advances this approach with an additional bottom-up 

connection [76]. 
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2.2.3.8. Yolo v5: 

YOLOv5 was only released on GitHub in 2020, with no accompanying 

paper. It differs from all previous releases in that it is a PyTorch implementation 

rather than a fork of Darknet [78]. According to their repository, YOLOv5 

outperforms EfficientDet, another state-of-the-art algorithm, by roughly 10% AP 

in MS-COCO [70] dataset in similar depth networks, resulting in a similar level 

of FPS. Figure 40 shows a detailed comparison of various algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mosaic data augmentation and autolearning bounding box anchors are two 

of the most significant enhancements. YOLOv5 is significantly faster and lighter 

 
Figure 39: Mosaic data augmentation [111]. 

 
Figure 40: Comparison of YOLOv5 and EfficientDet with different network 

sizes [112]. 
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than YOLOv4, with accuracy comparable to the YOLOv4 test. YOLOv5 feeds 

training data through a data loader with each training batch, which augments data 

online. Scaling, color space changes, and mosaic augmentation are the three types 

of augmentations performed by the data loader. Mosaic data augmentation is the 

most novel of all, as it mixes four photos into four random-ratio tiles [78]. 

 

2.2.3.8.1. Backbone: YOLOv5 uses CSPNet like YOLOv4. 
 

2.2.3.8.2. SPP: YOLOv5 uses SPP as in YOLOv4. 

 

2.2.3.8.3. Activation function: Unlike YOLOv4, YOLOv5 utilizes the 

Leaky-ReLU function after all convolutional layers, similar to YOLOv3. 

 

2.2.3.8.4. Feature Pyramids: Just like YOLOv4, YOLOv5 adds a Path 

Aggregation Network (PANet) to the generic Feature Pyramid Network [78]. 

 

2.2.3.8.5. Focus (also called by DepthToSpace): Focus is a basic strategy 

that seeks to speed up the process by lowering the input resolution and 

convolution operation cost. This method simply reduces a tensor's width and 

height while increasing the number of channels [79]. 

 

Note: Because YOLOv5 is open source, there is no paper or documentation 

that explains the algorithm. 

 

2.2.4. Comparison of Faster-RCNN, YOLO, and SSD for Real-

Time: 

The following experiment compared the speed of YOLO, SSD, and Faster-

RCNN when they were trained on the same data set. Regional proposal and 

classification are two steps of the R-CNN detector. The detector first finds 2,000 

boxes that represent the target object's region using Selective Search. Following 

that, all Bounding Boxes are classified using CNN. The processing speed slows 

as the quantity of calculation cost rises.  Faster RCNN performs object detection 

once in the output feature map after going through CNN to adjust for the 

processing speed. The Region Proposal Network is utilized by Faster RCNN to 

address the bottleneck produced by the selective search algorithm.  Faster R-CNN 

is 200 times faster than R-CNN in terms of processing performance [80]. Object 

detection with RCNN family has the drawback of sluggish processing speed, 
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making it unsuitable for real-time applications, unlike Yolo and SSD which are 

faster because they both use one-stage detection algorithms [81]. 

Pascal VOC2007 has 20 categories with 5k images in the train Val set and 

5k images in the test set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. represents previous studies' results for the three algorithms: Faster 

RCNN, YOLO, and SSD. The first column contains the algorithm name; the 

second column contains the reference number. The detection model is the used 

network structure. Train data and Test data are the used train set and test set [80]. 

FPS is the number of processed frames per second; mAP is the mean average 

precession mentioned in section 3.1.3. The (-) was used for values that were not 

mentioned in the reference. VOC07 and VOC12 are Pascal VOC 2007 and Pascal 

VOC 2012. VOC07++12 means using both train and evaluation sets in Pascal 

 
Table 5: comparison of Faster-RCNN, YOLO, and SSD for object detection 

[114]. 
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VOC 2007 with the train set of Pascal VOC 2012 for training [81]. The number 

after algorithm name (300, 512) represents the dimensions of network input, (*) 

after algorithm name mean using data augmentation (generating more data from 

the original by applying some image transformations like rotating, scaling, adding 

noise, and other methods) for training data, the increase in training data usually 

requires more training steps too [82]. 

 

 

2.3. Conclusion: 

In this chapter we discussed deep learning, as well as the neural network 

that relies on it. Then there was the object detection in the image. We concentrated 

on the convolutional neural network, which is the most important neural network 

in this sector. After that, the most significant ancient and modern techniques that 

resulted from this idea were then covered. then we analyzed the results of training 

conducted by researchers on the best models using. 
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3. Project development: 

In this chapter, we begin discussing the experimental part of the thesis. First, 

we will discuss selection criteria for methods and datasets. Then we will describe 

the selected methods, their parameters and the selected datasets. Finally, we will 

discuss postprocessing and evaluation. 

 

3.1. Performance metrics: 

3.1.1.Detection cases: 

When the detector is used with the image to search for people, it can 

produce four different cases: 

3.1.1.1. True Positive (TP):  

Detecting the object while it is in the photo frame . 

 

 

 

 

 

 

3.1.1.2. True Negative (TN): 

 The object is not detected in the empty image of the requested object . 

 

 

 

 

 

 

 
Figure 41: True Positive example [113]. 

 
Figure 42: True Negative example [107]. 
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3.1.1.3. False Positive (FP):  

Detection of another object instead of the requested object. 

 

 

 

 

 

 

 

3.1.1.4. False Negative (FN): 

 No detection of objects in an image with objects. 

 

 

 

 

 

 

3.1.2.Average precision (AP): 

It is calculated using area under the curve (AUC) of the Precision x Recall 

curve. by averaging the precision of all recall values between 0 and 1. 

 

3.1.3.Mean Average Precision (MAP): 

The compares the real box to the detected box and returns a score. The 

higher the score, the more accurate the model is in its detections. 

 

 

 
Figure 43: False Positive example. 

 
Figure 44: False Negative example [108]. 
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3.1.4.Recall:  

Measures how good you find all the positives. For example, we can find 

80% of the possible positive cases in our top K predictions.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
                (15) 

3.1.5.Precision:  

The percentage of your predictions are correct.  

                            𝑃𝑟𝑒𝑐ⅈ𝑠ⅈ𝑜𝑛 =
𝑇𝑃

TP+FP
    (16) 

 

3.2. Implementation: 

3.2.1.Software Environment:  

Python was chosen as the programming language because it is a high-level 

programming language that is simple to learn and code, making it a popular choice 

for constructing machine learning and deep learning algorithms [83]. 

CUDA and cuDNN were installed because they allow the algorithm to be 

trained on a GPU, which is faster and more efficient than training on a CPU [84]. 

 

3.2.2.Hardware Environment:   

Table   10  shows the hardware specs of the system on which the algorithm 

was trained and implemented. 

 

 

 

 

 

 

3.2.3.Virtual environment: 

It is the environment for running Python codes . 

• PyCharm Community Edition 2021.3.2. [85]. 

• Jupyter Notebook (anaconda3). [86] 

• Activate the environment using the activation codes in Python on  

CMD “python -m venv name-virtual “.   

 

                       System Windows 10/2021 

GPU NVIDIA GT 630M 2GB 

CPU Intel Core I7 2generation 

RAM 10GB 

Table 6: Hardware pramétre. 
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3.2.4.Preparation of the data: 

• Data set: The program in this project was created to detect two different 

objects: a person and cat. The photos of the two categories were collected 

from various perspectives to form a dataset. which are divided into three 

groups: Training set (80%) and test set (10%) and Val (10%). After that, in 

order to train the model, the photos must be labeled and annotations must 

be created. 

• Labelling: The labeling procedure entails creating an XML or CSV file 

for each frame that contains the names of the items displayed as well as the 

coordinates (in pixels) of their placements. Labeling is an opensource 

program that makes the task easier by allowing you to visualize the process 

graphically [87]. In Figure 45. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5.Object Detector: 

A Convolutional Neural Network derived from the TensorFlow deep 

learning framework was utilized as the classifier. The model utilized is yolov3 

[88], which was chosen after studying the characteristics of various algorithms. It 

has a simple and adaptable structure. It performs high-accuracy real-time 

detections as a result of its features. Furthermore, it is built using TensorFlow 

Object Detection [89], which is simple to use and understandable. 

 

 

 

 
Figure 45: Process of labelling and an XML file example. 



CHAPTER 3                                                                                   PROJECT DEVELOPMENT 

 

 

52 
 

3.2.6. Yolov3 architecture: 

We will discuss our model we're using in this project (i.e., Yolo). We retrain 

the yolo models to detect a person or cat by fine tuning the parameters of only the 

last three layers, as well as hyperparameters like learning rate and number of 

iterations used in the model. and by freezing all the parameters of the first 249 

layers, in our model the first 249 layer are considered as feature extraction, while 

the last three layers are considered as classification and localization.  The last three 

layers are layers responsible for outputting the object class to be detected, so the 

weights in these layers are updated during training. YOLOv3 has three final 

layers, the first has a dimension divided by 31 compared to the initial image, the 

second by 16 and the third by 8. Thus, starting from an image of size 480×640 

pixels, the three features’ maps output from the network will have respective sizes 

of 13×13, 26×26 and 52×52 pixels. It is in this sense that YOLOv3 predicts three 

levels of detail, to detect large, medium and small respectively. Figure 46. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

figure 47 shows the detailed structure of our yolov3 model using keras. 

 

 

 

Figure 46: Model of YOLOv3. 
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____________________________________________________________________________ 

Layer (type)                    Output Shape         Param #     Connected to                      

================================================================== 

input_1 (InputLayer)            (None, 480, 640, 3) 0                                             

____________________________________________________________________________ 

conv2d_1 (Conv2D)               (None, None, None, 3 864         input_1[0][0]                     

____________________________________________________________________________ 

batch_normalization_1 (BatchNor (None, None, None, 3 128         conv2d_1[0][0]                    

_____________________________________________________________________________ 

leaky_re_lu_1 (LeakyReLU)       (None, None, None, 3 0           batch_normalization_1[0][0]       

_____________________________________________________________________________ 

zero_padding2d_1 (ZeroPadding2D (None, None, None, 3 0           leaky_re_lu_1[0][0]               

____________________________________________________________________________ 

conv2d_2 (Conv2D)               (None, None, None, 6 18432       zero_padding2d_1[0][0]            

____________________________________________________________________________ 

batch_normalization_2 (BatchNor (None, None, None, 6 256         conv2d_2[0][0]                    

__________________________________________________________________________________ 

leaky_re_lu_2 (LeakyReLU)       (None, None, None, 6 0           batch_normalization_2[0][0]       

____________________________________________________________________________ 

conv2d_3 (Conv2D)               (None, None, None, 3 2048        leaky_re_lu_2[0][0]               

__________________________________________________________________________________ 

batch_normalization_3 (BatchNor (None, None, None, 3 128         conv2d_3[0][0]                    

____________________________________________________________________________ 

leaky_re_lu_3 (LeakyReLU)       (None, None, None, 3 0           batch_normalization_3[0][0]       

__________________________________________________________________________________ 

conv2d_4 (Conv2D)               (None, None, None, 6 18432       leaky_re_lu_3[0][0]               

____________________________________________________________________________ 

batch_normalization_4 (BatchNor (None, None, None, 6 256         conv2d_4[0][0]                   

__________________________________________________________________________________ 

leaky_re_lu_4 (LeakyReLU)       (None, None, None, 6 0           batch_normalization_4[0][0]       

___________________________________________________________________________ 

add_1 (Add)                     (None, None, None, 6 0           leaky_re_lu_2[0][0]               

                                                                 leaky_re_lu_4[0][0]               

________________________________________________________________________ 

zero_padding2d_2 (ZeroPadding2D (None, None, None, 6 0           add_1[0][0]                       

__________________________________________________________________________________ 
_________________________________________________________________________ 

 

_____________________________________________________________________________ 

conv2d_5 (Conv2D)               (None, None, None, 1 73728       zero_padding2d_2[0][0]            

_____________________________________________________________________________ 

batch_normalization_5 (BatchNor (None, None, None, 1 512         conv2d_5[0][0]                    

_____________________________________________________________________________ 

leaky_re_lu_5 (LeakyReLU)       (None, None, None, 1 0           batch_normalization_5[0][0]       

____________________________________________________________________________ 

conv2d_6 (Conv2D)               (None, None, None, 6 8192        leaky_re_lu_5[0][0]               

____________________________________________________________________________ 

batch_normalization_6 (BatchNor (None, None, None, 6 256         conv2d_6[0][0]                    

____________________________________________________________________________ 

leaky_re_lu_6 (LeakyReLU)       (None, None, None, 6 0           batch_normalization_6[0][0]       

____________________________________________________________________________ 

conv2d_7 (Conv2D)               (None, None, None, 1 73728       leaky_re_lu_6[0][0]               

____________________________________________________________________________ 

batch_normalization_7 (BatchNor (None, None, None, 1 512         conv2d_7[0][0]                    

___________________________________________________________________________ 

leaky_re_lu_7 (LeakyReLU)       (None, None, None, 1 0           batch_normalization_7[0][0]       

__________________________________________________________________________ 

add_2 (Add)                     (None, None, None, 1 0           leaky_re_lu_5[0][0]               

                                                                 leaky_re_lu_7[0][0]               

_________________________________________________________________________ 

 

 

 
 

_______________________________________________________________________ 

yolo_loss (Lambda)              (None, 1)            0           conv2d_59[0][0]                   

                                                                 conv2d_67[0][0]                   

                                                                 conv2d_75[0][0]                   

                                                                 input_2[0][0]                     

                                                                 input_3[0][0]                     

                                                                 input_4[0][0]                     

======================================================================

====== 
Total params: 61,581,727 

Trainable params: 37,695 

Non-trainable params: 61,544,032 

____________________________________________________________________________ 

 

Figure 47: Architecture of YOLOv3. 
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3.2.7.Training: 

The training procedure is started after you've completed all of the steps 

above and made any necessary adjustments to the configuration file. Figure 48 

shows the step count and classification loss for each step on the screen. It's worth 

noting that the classification loss begins at a very high number and steadily 

reduces as the algorithm learns over time.  

 

Following training, a set of data representing the trainer's weights and the 

value of the loss she has achieved is prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.8.Results: 

The result is a square box that surrounds the detected object and displays 

the object's name as well as the detective's certainty [90]. 

Following the completion of the algorithm's training process, data a person 

and a cat was utilized to evaluate the yolov3 algorithm. The following are the 

results of the test: 

 

Figure 49 and 50 represent the result of applying precision and Recall to the 

training data for the cat and person groups, respectively. When a model has high 

 
Figure 48: showing the steps of learning and reduction of the loss function. 
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recall but low precision, then the model classifies most of the positive samples 

correctly but it has many false positives (i.e., classifies many Negative samples as 

Positive). When a model has high precision but low recall, then the model is 

accurate when it classifies a sample as Positive but it may classify only some of 

the positive samples. The precision-recall curve encapsulates the tradeoff of both 

metrics and maximizes the effect of both metrics. It gives us a better idea of the 

overall accuracy of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have implemented our program code responsible for calculating both 

the Average Precision and Mean Average Precision, the results of the calculation 

appeared in Figure 51 . 

 
Figure 49: Precision-Recall Curve for Yolov3 (category cat). 

 
Figure 50: Precision-Recall Curve for Yolov3 (category person). 
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The following results (figure 52 and figure 53) were obtained after 

running the code to distinguish between two categories (cat and person). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 52: YOLOv3 for detecting cat on test video. 

 
Figure 51: Mean Average Precision (mAP) of testing Yolov3 on our dataset. 
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3.2.9.Conclusion: 

By studying the performance of these algorithms on a standard dataset, 

YOLOv3 have been identified as the most suitable and efficient deep-learning 

models to perform real-time object detection and recognition. An experiment has 

been carried out to evaluate the classification performance of these deep-learning 

algorithm. After the preparation of dataset, the algorithm has been trained on the 

(person and cat) dataset. The trained model has been evaluated on the collected 

test image, from which the number of true positives, true negatives, false positives 

and false negatives have been identified for each frame of the detections made by 

our deep-learning model. Using these results, the Accuracy, Precision, Recall and 

Average precision the of the model have been calculated and the performance of 

the YOLOv3, model have been evaluated. 

 

 

 

 

 

 

 
Figure 53: YOLOv3 for detecting person on test video. 
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GENERAL CONCLUSION: 

This thesis report discusses about the most suitable deep-learning models 

for real-time object detection and recognition and evaluates the performance of 

these algorithms on the detection and recognition of two classes (person and cat). 

The results of this research are discussed in chapter 3. The main objective of our 

work was to find the best answer to the following question: what are the most 

suitable and efficient Deep Learning models for real-time object recognition? to 

do this, a literature review has been performed to obtain knowledge about various 

deep learning models that are capable of performing real-time object detection 

and recognition. This project started with the aim of creating an application 

capable of identifying and classifying person from a camera. After months of 

intensive investigation, we have come to the conclusion that Yolo (you only look 

once) is the best model in terms of accuracy and speed that can be used in real-

time object detection. Supervised learning-based object detection models are data-

hungry that require large amounts of annotated data in order to achieve high 

performance. Data annotation process is a costly work which requires lots of time. 

we were partially successful, but not totally, especially given the difficulty of 

training yolo network while utilizing a relatively weak device. After the model 

was trained, the process of detecting a person or other object from webcam video 

capture was fine. However, the accuracy was low in comparison to what could be 

achieved with certain adjustments. 

In terms of possible enhancements, we'll aim to make the model's structure 

more balanced in order to improve the precision of the object's detection and 

localization. Attempting to extend the data and select more powerful training 

devices. Finally, highlight that the technologies employed in this project have a 

potential future as well as a successful present. Though this project has an impact 

on the security sector, by modifying the data set, this program might be used in 

any field where object detection is required.  
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