

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

 MINISTERE DE L’ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

 UNIVERSITE IBN KHALDOUN - TIARET

MEMOIRE

Présenté à :

FACULTÉ DES MATHEMATIQUES ET DE l’INFORMATIQUE

 DÉPARTEMENT D’INFORMATIQUE

 Pour l’obtention du diplôme de :

MASTER

Spécialité : Génie Logiciel

Par :

NACHEF Abd el karim

BOUMEDIENE Noureddine

Sur le thème

Détection d'objet en temps réel en utilisant une

approche basée sur l'apprentissage profond

 Soutenu publiquement le 27 / 06 / 2022 à Tiaret devant le jury composé de :

Mr MOSTEFAOUI Kadda Grade Université MAA Président

Mr SAFA Khaled Grade Université MAA Encadrant

Mr BEKKI Khadir Grade Université MAA Examinateur

 2021-2022

TABLE OF CONTENTS:

ABSTRACT: ..

ACKNOWLEDGMENT: ..

LIST OF FIGURES: ...

LIST OF TABLES: ...

LIST OF ABBREVIATIONS:..

CHAPTER 1: INTRODUCTION .. 1

1. INTRODUCTION: ... 2

1.1. Motivation and problem statement: ... 2

1.2. Scope of the master’s thesis: .. 3

1.3. Outline: ... 3

CHAPTER 2: BACKGROUND & RELATED WORK 4

2. BACKGROUND AND RELATED WORK:.. 5

2.1. Deep learning: .. 5

2.1.1. The history of deep Learning: .. 5

2.1.2. Types of learning: ... 7

2.1.2.1. Supervised Learning: ... 7

2.1.2.2. Unsupervised Learning: ... 8

2.1.2.3. Semi-supervised Learning: .. 8

2.1.3. Artificial neural network: ... 8

2.1.3.1. Multilayer perceptron(mlp): .. 9

2.1.3.2. Back-propagation: .. 11

2.1.3.3. Activation Function: .. 13

2.1.3.4. Batch Normalization: ... 15

2.1.4. Convolutional neural network: ... 16

2.1.4.1. The Convolutional Layer: .. 16

2.1.4.2. Pooling Layer:.. 19

2.1.4.3. Fully Connected Layer: ... 20

2.1.4.4. Why Convolutional Neural Networks? 21

2.2. Object detection: .. 22

2.2.1. History of detection algorithms: ... 23

2.2.2. Two-stage detection: ... 24

2.2.2.1. R-CNN: .. 24

2.2.2.2. Spp-net (Spatial Pyramid Pooling): ... 25

2.2.2.3. Fast R-CNN: .. 25

2.2.2.4. Faster R-CNN: ... 26

2.2.2.5. Mask R-CNN: .. 27

2.2.3. One-stage detection: ... 28

2.2.3.1. Yolo (you only look one):.. 28

2.2.3.1.1. IOU (Intersection over union):... 30

2.2.3.1.2. Loss Function Explanations: .. 30

2.2.3.1.3. Non-max suppression: .. 31

2.2.3.1.4. Anchor boxes: .. 32

2.2.3.2. SSD (single shot detector): .. 32

2.2.3.3. Retina NET: ... 34

2.2.3.4. Yolo v2: ... 35

2.2.3.5. Yolo v3: ... 37

2.2.3.5.1. Backbone: ... 38

2.2.3.5.2. Feature Pyramids: ... 38

2.2.3.5.3. Loss function: ... 38

2.2.3.6. Tiny-yolov3: .. 39

2.2.3.7. Yolo v4: ... 40

2.2.3.7.1. Backbone: ... 41

2.2.3.7.2. SPP in YOLOv4: .. 41

32.2.3.7. . Activation function:.. 42

2.2.3.7.4. Feature Pyramids: ... 42

2.2.3.7.5. Data Augmentation: ... 42

2.2.3.8. Yolo v5: ... 43

2.2.3.8.1. Backbone: ... 44

2.2.3.8.2. SPP: .. 44

2.2.3.8.3. Activation function: ... 44

2.2.3.8.4. Feature Pyramids: .. 44

2.2.3.8.5. Focus (also called by DepthToSpace): 44

2.2.4. Comparison of Faster-RCNN, YOLO, and SSD for Real-Time: ... 44

2.3. Conclusion: .. 46

CHAPTER 3: PROJECT DEVELOPMENT: 47

3. PROJECT DEVELOPMENT: .. 48

3.1. Performance metrics: ... 48

3.1.1. Detection cases: .. 48

3.1.1.1. True Positive (TP): .. 48

3.1.1.2. True Negative (TN): .. 48

3.1.1.3. False Positive (FP): .. 49

3.1.1.4. False Negative (FN): .. 49

3.1.2. Average precision (AP): ... 49

3.1.3. Mean Average Precision (MAP): ... 49

3.1.4. Recall: ... 50

3.1.5. Precision: .. 50

3.2. Implementation: ... 50

3.2.1. Software Environment: ... 50

3.2.2. Hardware Environment: ... 50

3.2.3. Virtual environment: ... 50

3.2.4. Preparation of the data: ... 51

3.2.5. Object Detector: .. 51

3.2.6. Yolov3 architecture: ... 52

3.2.7. Training: ... 54

3.2.8. Results: ... 54

3.2.9. Conclusion: ... 57

GENERAL CONCLUSION: .. 58

ABSTRACT:

 :ملخص

Résumé:

Moving object detection is a key step in many computer vision algorithms such as

video surveillance, human motion analysis, robotics, sports footage analysis and others.

Recently, the accuracy of object detection has been improved through the performance of

approaches based on deep learning algorithm such as region-based convolutional network

(R-CNN), YOLO (You Only Look Once) and others. The objective of this Master's thesis is

to identify and evaluate the performance of existing deep learning models that are suitable

and highly efficient for real-time object recognition.

Keywords: object detection, deep learning, R-CNN, SSD, YOLO.

La détection d’objets mobiles est une étape clé de nombreux algorithmes de vision par

ordinateur tels que la vidéo surveillance, l’analyse du mouvement humain, la robotique,

l’analyse de séquences sportives et autres. Récemment, la précision de la détection d'objets a

été améliorée grâce aux performances des approches basées sur un algorithme d'apprentissage

profond tel qu'un réseau convolutif basé sur la région (R-CNN), YOLO (You Only Look

Once) et d'autres. L'objectif de ce mémoire de Master est d'identifier et d'évaluer les

performances des modèles d'apprentissage profond existants qui sont appropriés et très

efficaces pour la reconnaissance d'objets en temps réel.

Mots clés : détection d’objets, apprentissage profond, R-CNN, SSD, YOLO.

يعد اكتشاف الأجسام المتحركة خطوة أساسية في العديد من خوارزميات الرؤية الحاسوبية مثل

المراقبة بالفيديو، وتحليل الحركة البشرية، والروبوتات، وتحليل اللقطات الرياضية وغيرها. في الآونة

على خوارزمية التعلم العميق الأخيرة، تم تحسين دقة اكتشاف الأشياء من خلال أداء الأساليب القائمة

)أنت تنظر مرة واحدة فقط(وغيرها. YOLO(و R-CNNالقائمة على المنطقة) التلاففيةمثل الشبكة

الهدف من أطروحة الماستر هذه هو تحديد وتقييم أداء نماذج التعلم العميق الحالية المناسبة وذات الكفاءة

 ي.العالية للتعرف على الأشياء في الوقت الفعل

 . R-CNN، SSD ،YOLOاكتشاف الكائن، التعلم العميق، :الكلمات الدالة

ACKNOWLEDGMENT:

This thesis was made possible by the support of many people to whom

we would like to express our gratitude.

We'd like to thank my supervisor Mr. Safa Khaled for guiding us over

these months. He never seemed to tire of responding to our inquiries. This

helped us identify our shortcomings and taught us an appropriate scientific

research method as we progressed in our investigation.

We thank our teachers for their welcome, support and all the knowledge

they shared with us.

We'd like to thank our parents for their unwavering support, as well as

our graduating friends “Monis Ibrahim”, “Abdelkarim Chanane”, and

“Hocine Bouarara”, who guided us through the writing of their graduation

theses.

Finally, we thank all our relatives, friends and colleagues who have

supported us in many ways during the development of this thesis.

LIST OF FIGURES:

FIGURE 1: STRUCTURE OF A SINGLE PERCEPTRON OR NEURON 9

FIGURE 2: MULTILAYER PERCEPTRON OF NEURAL NETWORKS

 .. 10

FIGURE 3: FORWARD / BACKWARD PROPAGATION 12

FIGURE 4: SIGMOID FUNCTIONS [15]. .. 13

FIGURE 5: TANCH FUNCTIONS [15]. ... 14

FIGURE 6: RELU FUNCTIONS [15]. .. 14

FIGURE 7: LEAKY FUNCTIONS [15]. ... 15

FIGURE 8: SOFTMAX FUNCTIONS [15]. .. 15

FIGURE 9: REPRESENTATION OF CNN (CAMACHO ET AL., 2018).

[92] .. 16

FIGURE 10: FEATURE FILTERS OF FRONT, MIDDLE AND REAR-

END LAYERS IN A CNN [96] ... 17

FIGURE 11: THE INPUT VOLUME OF SIZE [𝑾𝟏 × 𝑯𝟏 × 𝑫𝟏] IS

CONVOLVED WITH A 𝑲 × 𝑲 × 𝑲KERNEL OBTAINING AN OUTPUT

VOLUME [𝑾𝟐 × 𝑯𝟐 × 𝑲] [22]. ... 18

FIGURE 12: CONVOLUTION 2D WITH STRIDE AND PADDING [103].

 .. 19

FIGURE 13: CONVOLUTIONS 3D TO USE MULTIPLE FILTERS [104]

 .. 19

FIGURE 14: A PORTRAIT SHOWING MAX POOLING [97]. 20

FIGURE 15: A PORTRAIT SHOWING AVERAGE POOLING [97]. 20

FIGURE 16: A PICTURE SHOWING THE FLATTENING OF THE

OUTPUT [105]. ... 21

FIGURE 17: CLASSIFICATION WITH LOCALIZATION [106]. 22

FIGURE 18: R-CNN [91]. .. 24

FIGURE 19: SPP-NET (SPP ILLUSTRATION). 25

FIGURE 20: FAST R-CNN [91]. .. 26

FIGURE 21 : FASTER R-CNN [109]. ... 27

file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817110
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817110
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817111
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817111
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817112
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817112
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817113
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817113
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817113
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817114
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817114
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817114
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817115
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817115
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817115
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817115
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817116
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817116
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817117
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817117
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817118
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817118
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817119
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817119
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817120
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817120
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817120
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817121
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817121
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817122
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817122
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817123
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817123
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817124
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817124
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817125
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817125

FIGURE 22: (FPN ARCHITECTURE) PYRAMID ALTERNATIVES

MASK R-CNN [101] .. 27

FIGURE 23: MASK R-CNN [101]. ... 28

FIGURE 24: GRID (3 X 3) REPRESENTATION OF THE IMAGE 28

FIGURE 25: OUTPUT STRUCTURE IN YOLO 29

FIGURE 26: INTERSECTION OVER UNION. 30

FIGURE 27: CALCULATION (INTERSECTION OVER UNION) [53]. . 30

FIGURE 28: DISCOVERED MORE THAN ONCE (HUMAN) [55]. 31

FIGURE 29: EXAMPLE ANCHOR BOX ... 32

FIGURE 30: SSD FRAMEWORK [99].(A): THE PHOTOS WITH THEIR

RESPECTIVE BOUNDING BOXES ARE THE INPUT TO SDD. (B):

DEFAULT BOXES WITH VARIOUS ASPECT RATIOS CORRELATE

TO A SMALLER REGION IN FINE-GRAINED FEATURE MAPS. (C):

FOR COARSE-GRAINED FEATURE MAPS THESE BOXES ARE

BIGGER AND THUS MORE SUITABLE FOR LARGER OBJECTS. ... 33

FIGURE 31: MODEL PERFORMANCE IN TERMS OF LOSS VALUES

WITH VARIOUS FOCUSING PARAMETER VALUES, WHILE Α=1

[60]. ... 35

FIGURE 32: THE RETINANET NETWORK ARCHITECTURE USED A

FEATURE PYRAMID NETWORK ON TOP OF THE FEED-FORWARD

RESNET ARCHITECTURE. ... 35

FIGURE 33: DIMENSION PRIORS AND POSITION PREDICTION FOR

BOUNDING BOXES [61]. .. 36

FIGURE 34: COMPARISON OF YOLOV3 AND THE OTHER STATE-

OF-THE-ART ALGORITHMS [64]. .. 38

FIGURE 35: YOLOV3 MODEL [98]. ... 39

FIGURE 36: ARCHITECTURE OF TINY-YOLOV3 [102]. 40

FIGURE 37: COMPARISON OF YOLOV4 AND THE OTHER STATE-

OF-THE-ART ALGORITHMS [111]. .. 41

FIGURE 38: PANET ADVANCES THIS APPROACH WITH AN

ADDITIONAL BOTTOM-UP CONNECTION [76]. 42

FIGURE 39: MOSAIC DATA AUGMENTATION [111]. 43

FIGURE 40: COMPARISON OF YOLOV5 AND EFFICIENTDET WITH

DIFFERENT NETWORK SIZES [112]. ... 43

file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817126
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817126
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817126
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817127
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817127
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817128
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817128
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817129
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817129
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817130
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817130
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817131
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817131
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817132
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817132
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817133
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817133
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817134
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817135
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817135
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817135
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817135
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817136
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817136
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817136
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817136
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817137
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817137
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817137
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817138
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817138
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817138
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817139
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817139
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817140
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817140
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817141
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817141
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817141
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817142
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817142
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817142
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817143
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817143
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817144
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817144
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817144

FIGURE 41: TRUE POSITIVE EXAMPLE [113]. 48

FIGURE 42: TRUE NEGATIVE EXAMPLE [107]. 48

FIGURE 43: FALSE POSITIVE EXAMPLE. ... 49

FIGURE 44: FALSE NEGATIVE EXAMPLE [108]. 49

FIGURE 45: PROCESS OF LABELLING AND AN XML FILE

EXAMPLE. ... 51

FIGURE 46: MODEL OF YOLOV3. .. 52

FIGURE 47: ARCHITECTURE OF YOLOV3. 53

FIGURE 48: SHOWING THE STEPS OF LEARNING AND

REDUCTION OF THE LOSS FUNCTION. ... 54

FIGURE 49: PRECISION-RECALL CURVE FOR YOLOV3

(CATEGORY CAT). .. 55

FIGURE 50: PRECISION-RECALL CURVE FOR YOLOV3

(CATEGORY PERSON). ... 55

FIGURE 51: MEAN AVERAGE PRECISION (MAP) OF TESTING

YOLOV3 ON OUR DATASET. ... 56

FIGURE 52: YOLOV3 FOR DETECTING CAT ON TEST VIDEO. 56

FIGURE 53: YOLOV3 FOR DETECTING PERSON ON TEST VIDEO. 57

file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817145
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817145
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817146
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817146
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817147
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817147
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817148
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817148
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817149
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817149
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817149
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817150
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817150
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817151
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817151
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817152
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817152
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817152
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817153
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817153
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817153
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817154
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817154
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817154
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817155
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817155
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817155
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817156
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817156
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817157
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817157

LIST OF TABLES:

TABLE 1: YOLOV1 MODEL. ... 29

TABLE 2: SSD MODEL. ... 34

TABLE 3: YOLOV2 MODEL. ... 37

TABLE 4: TINY-YOLOV3 MODEL. ... 40

TABLE 5: COMPARISON OF FASTER-RCNN, YOLO, AND SSD FOR

OBJECT DETECTION [114]. .. 45

TABLE 6: HARDWARE PRAMETRE... 50

file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817161
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817161
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817162
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817162
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817163
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817163
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817164
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817164
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817165
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817165
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817165
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817166
file:///C:/Users/KARIMNACHEF/Desktop/memoire%20master%2002/Mi2MGL99947.docx%23_Toc107817166

LIST OF ABBREVIATIONS:

AI Artificial Intelligence

NN Neural Network

ANN Artificial Neural Network

FFNN Feed Forward Neural Networks

FBNN Feedback Neural Networks

ReLU Rectified Linear Unit

DL Deep Learning

CNN Convolutional Neural Network

RNN Recurrent Neural Network

mAP Mean average precision

RoI Regions of Interest

YOLO You Only Look Once

DNN Deep Neural Network

JSON JavaScript Object Notation

API Application Programming Interface

REST Representational State Transfer

R-CNN Region-based Convolutional Neural Network

SVM Support Vector Machine

RPN Region Proposal Network

RoI pooling Region of Interest pooling

XML Extensible Mark-up Language

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

TP True Positive

FP False Positive

TN True Negative

FN False Negative

SSD Single Shot Detector

ADS Autonomous Drive System

AP Average Precision

BEV Bird’s Eye View

BN Batch Normalization

CM Convolutional-Maxpooling

DATMO Detection and Tracking of Moving Objects

EKF Extended Kalman Filter

FEN Feature Extractor Network

FPN Feature Pyramid Network

FPS Frames Per Second

ICP Iterative Closest Point

IoU Intersection over Union

LiDAR Light Detection and Ranging

MSE Mean Squared Error

NMS Non-Maximum Suppression

SLAM Simultaneous Localization and Mapping

LOAM Lidar Odometry and Mapping

LReLU Leaky Rectified Linear Unit

CHAPTER 1: INTRODUCTION

CHAPTER I INTRODUCTION

2

1. INTRODUCTION:

In the areas of artificial intelligence (AI) and machine learning, there are a

number of exciting and amazing advances that will ultimately benefit the lives of

billions of people with greater impact than ever before. Many previously

unsolvable issues have been addressed, and significant funds have been

committed in research and development in this field.

In the recent years, computer vision is one of the most important sub-fields

of artificial intelligence and machine learning, due to its wide variety of

applications and enormous potential. Its major purpose is to mimic human vision's

tremendous capabilities.

Organizations, especially security companies, have made computer vision

a challenge by striving to build new and more efficient deep learning algorithms

and methodologies in order to produce intelligent applications, with one of the

aims being real-time object detection.

The process of object classification and localization in a real-time scenario

is challenging. However, this did not hinder the growth of this branch. In classical

methods it was difficult to keep up with this development, which necessitated the

development of more efficient deep learning-based methods, such as two-stage

detection learning, which was slow and time-consuming to learn, and single-stage

detection learning, which opened a path for real-time object discovery.

Our focus is to identify and evaluate the performance of existing deep

learning-based methods that are suitable and highly efficient for real-time object

recognition.

1.1. Motivation and problem statement:

Object detection research has opened up new and exciting prospects in

practically every business. As a result, many businesses and organizations are

considering how to incorporate them into their operations. Object detection is a

key ability required by most computer visions, which can be applied to many

applications, especially surveillance applications. Pedestrian detection is a key

issue in surveillance, with several applications such as person identification,

person count and tracking. Object detection's main goal is to help us recognize

CHAPTER I INTRODUCTION

3

and locate object in images and videos. Deep learning methods are the most

effective way for object detection in this scenario where a sophisticated Object

detector, specifically created for high-end surveillance applications, is required to

not only locate the bounding box and label it but also provide their relative

locations. In this master thesis, we present a person and cat detection approach

from webcam video utilizing an efficient method called yolo (you only look once).

1.2. Scope of the master’s thesis:

Since object detection is a new field, it is still being developed. As a result,

we decided to create an object detection model in real time. After reading a few

publications in this field, we became interested in this topic. As a result, we're

extremely motivated to develope a real time object detection algorithm using

YOLO, and acronym for “You Only Look Once”.

1.3. Outline:

Our topic is a real-time object detection system, In the subsequent chapters

we present the following. In Chapter 2, we will discuss about deep learning and

object detection, as well as previous work related to it. In Chapter 3, We will state

the differences between detection cases, we will evaluate the current fastest

detection models, and we select the fastest model to train our data on after it's

been gathered and recorded in a certain format. we'll discuss the application we're

attempting to create. We will implement a yolo model that's both accurate and

relatively fast, and then discuss the results obtained. finally, we address the

project's conclusions and future work.

CHAPTER 2: BACKGROUND & RELATED

WORK

CHAPTER 2 BACKGROUND AND RELATED WORK

5

2. Background and related work:

2.1. Deep learning:

2.1.1.The history of deep Learning:

The history of deep learning goes back to a field that is now called

cybernetics. This science started in the 1940s with McCulloch and Pitts, where

they came up with the idea that neurons are units with finite values and enabled

and disabled states. One can build a Boolean circuit by connecting these cells

together and making a logical deduction. The brain is basically a logical reasoning

machine because neurons are binary. The neuron calculates a weighted sum of the

inputs and compares it to the lower bound: if the value is higher than the lower

limit then the neuron starts working, or if it is lower than that, it stops. This is a

simplified explanation of how neural networks work [1].

In 1947, Donald Hebb came up with the idea that neurons in the brain learn

by changing the strength of the connections between neurons, which is called

hyper learning: if two neurons are activated together, the connection between

them increases, but if they don't work together, the connection less [1].

Later in 1948, Norbert Wiener proposed cybernetics, which is based on the

idea that by having systems with sensors and actuators, you have a feedback loop

and a self-regulating system. All Elements The fundamentals of automotive

reactions derive from this craft [1].

In 1957, Frank Rosenblatt published the Perceptron, an educational

algorithm that changes the weight of very simple neural networks [1].

Generally speaking, the idea of building thinking machines that mimic

neurons originated in the 1940s, then took off in the 1950s, and died out

completely in the late 1960s. of this field of research in 1960 are:

The researchers used bi-valent neurons. On the other hand, the backscatter

operation is to use a continuous activation function. At the time, the researchers

had no idea of using connected neurons and did not think to be able to train with

gradients because neurons are binary and indistinguishable [1].

CHAPTER 2 BACKGROUND AND RELATED WORK

6

The use of connected neurons requires multiplying the cell's activation

function by a weight to obtain the contribution of this value to the weighted sum.

But before 1980, the process of multiplying two numbers, especially floating-

point numbers, was very slow, which prevented the use of cells. Deep learning.

Was born in 1985 [1].

It was introduced as a term by (Rina Decher) in 1986, and to artificial neural

networks by Igor Eisenberg and colleagues in 2000, in the context of logic

neurons [1].

Deep learning restarted in 1985 with the advent of error backpropagation.

In 1995, the field stagnated again and the machine learning community abandoned

the idea of neural networks. In the early 2010s, researchers started using neural

networks for speech recognition and there was a significant improvement in

performance, after which neural networks spread widely in the commercial field.

In 2013, the field of computer vision began to shift towards the use of neural

networks. The same transition happened in natural language processing in 2016.

Soon, similar revolutions will occur in robotics, control and many other fields [2].

The first supervised, feed-forward, multi-level deep learning algorithm was

published by (Alexei Evakhenko) and Lapa in 1965 [3].

Work on other construction methods for deep learning, particularly those

designed for computer vision, began with (Neocognitron), a multi-layered

artificial neural network introduced by (Kunihiko Fukushima) in 1980. to a deep

neural network in the purpose of recognizing a handwritten postal code by mail.

While the algorithm was working, the training required 3 days [3].

In 1991, these systems were used to recognize isolated 2D handwritten

numbers, while 3D objects were recognized by manually matching 2D images to

a 3D object model. Wong et al suggested that the human brain does not use a

federated 3D object model, and in 1992 they published (Cresceptron), a method

for performing 3D object recognition in noisy scenes. Since he uses natural

images directly, (Cristron) started with general-purpose visual learning of natural

3D worlds. (Cristron) is a series of layers similar to a (neocogonitron). But while

Neocognitron requires a human programmer for manual merging features,

Cresceptron has learned an open number of features in each layer without

supervision, where each feature is represented by the convolution kernel. Cristron

CHAPTER 2 BACKGROUND AND RELATED WORK

7

segmented each learned object of a clutter scene through back-end analysis on the

network. Maximum pooling, which is now often adopted by deep neural networks

(e.g., ImageNet tests), was first used to reduce position accuracy by a factor of (2

x 2) to 1 throughout the sequence to improve generalization. In 1994, André de

Carvalho, together with Mike Fairhurst and David Bisset, published the

experimental results of a Boolean algebra multilayer neural network, also known

as a weightless neural network, consisting of 3 self-organizing layers of the

extraction unit neural network (SOFT) followed by a multi-layer classification

neural network (GSN) unit, which was trained independently. Each layer of the

feature extraction module extracts features of increasing complexity compared to

the previous layer [3].

In 1995, (Branden Fry) demonstrated that a network containing six fully

connected layers and several hundred hidden units could be trained using the

sleep-wake algorithm (over two days), developed jointly with Peter Dean and

(Hinton). Many factors contribute to the slow speed, including the vanishing

gradient problem analyzed in 1991 by Sepp (Hockerter). Simpler models that use

task-specific manual features such as Gabor filters and support vector machines

(SVMs) were a popular choice in the 1990s and 2000s, but because of artificial

neural networks (ANN), we became computationally expensive and did not

understand how to connect the brain to its biological networks [3].

2.1.2.Types of learning:

There are three types of learning: supervised, unsupervised and semi-

supervised.

2.1.2.1. Supervised Learning:

Supervised learning is considered to be the most elementary class of

machine learning algorithms [4]. As the name suggests, these algorithms require

direct supervision. supervised learning is based on training. models are trained

using labelled dataset, where the model learns about each type of data. Once the

training process is completed, the model is tested on the basis of test data (a subset

of the training set), and then it predicts the output.

Supervised learning problems can be further grouped into regression and

classification problems.

CHAPTER 2 BACKGROUND AND RELATED WORK

8

When the output variable is a category, such as "spam " and "not spam," or

"disease" and "no disease," it is referred to as a classification problem. When the

output variable is a real value, such as "salary" or "weight," it is referred to as a

regression problem.

The following are some well-known supervised machine learning

algorithms:

For regression issues, linear regression is used.

For classification and regression issues, random forest is used.

For classification tasks, support vector machines are useful.

2.1.2.2. Unsupervised Learning:

In unsupervised learning the goal is to learn relationships among elements

in a data set D = {x1, x2, ..., xn} and classify the raw data without relying on a

ground truth. Since it is not clear which patterns should be learned there is no

obvious error metric which leads to search indirect hidden structures, patterns or

features in the data [5].

2.1.2.3. Semi-supervised Learning:

Semi-supervised learning combines the advantages of both methods by

combining a little quantity of labeled data with a large amount of unlabeled data

[6].

2.1.3.Artificial neural network:

A neural network is a method in artificial intelligence that teaches

computers to process data in a way that is inspired by the human brain. It is a type

of machine learning process a supervised learning, called deep learning, that uses

interconnected nodes or neurons (perceptron) in a layered structure that resembles

the human brain [7]. A perceptron is a function that maps the dot product of a

weight vector 𝑤 ∈ 𝑅𝐿 and its corresponding input vector 𝑥 ∈ 𝑅𝐿 plus a bias to an

output value 𝑦𝑗:

𝑦𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝐿
𝑖=1), 𝑗 = {1, 2, … , 𝑀} (1)

where f: R → R is an activation function.

CHAPTER 2 BACKGROUND AND RELATED WORK

9

Figure 1 represents a perception, it is a neural network unit (an artificial

neuron) that does certain computations to detect features in the input data.

Figure 1: Structure of a single perceptron or neuron

There are various types of neural networks such as Hopfield network, the

multilayer perceptron, the Boltzmann machine, and the Kohonen network. The

most commonly used and successful neural network is the multilayer perceptron

and will be discussed in the following section.

2.1.3.1. Multilayer perceptron(mlp):

There are three kinds of layers in mlp network. The input layer is the raw

data of the neural network, this layer transmits information (features) to the hidden

layers. The hidden layers are the intermediate layers between the input layer and

the output layer and is where all the calculations are performed [7]. The output

layer is the layer that gives the results of a given input.

Figure 2 represents a multi-layer neural network architecture where each

layer consists of a certain number of perceptions. In contrast, the number of

perceptions in the last layer represents the number of classifications.

CHAPTER 2 BACKGROUND AND RELATED WORK

10

Figure 2: Multilayer perceptron of neural networks

The output 𝑂𝑙𝜖𝑅𝑀 of an arbitrary layer l is computed as:

𝑂𝑙 = 𝑓1(𝑤𝑙𝑥 + 𝑏𝑙) (2)

The output of the first layer becomes the input to the second layer, the

second to the third and so on successively [8]. A hidden layer 𝑙 with 𝑁 perceptrons

and 𝑀 input values can be defined as a function 𝑅𝑀 → 𝑅𝑁 where 𝑁 is the number

of perceptrons in the layer and 𝑀 is the number of inputs. A neural network with

𝑛 layers can be seen as a series of nested functions where the output of the first

layer becomes the input to the second, the second to the third and so on

successively. This can be described mathematically as

0 = 𝑓𝑛(𝑤𝑛 … 𝑓2(𝑤2𝑓1(𝑤1𝑥 + 𝑏1)) + 𝑏2) …) + 𝑏𝑛 (3)

In the equation y, ‘x’ is the input value given at the neuron, ‘w’ is the

weighted value of the synapse, ‘n’ is the number of neurons, ‘b’ is the bias and

‘y’ is the output of the network [9]. Therefore, according to the equation, the value

of output ‘y’ is equal to the summation of the product of the values of ‘x’ with

their corresponding weights and bias ‘b’.

𝑦 = ∑(𝑤𝑛 × 𝑥𝑛) + 𝑏 (4)

𝑛

𝑖=1

A neural network can perform binary classification with just one perceptron

in its simplest form, but by increasing the number of perceptrons and building the

network in specific architectures, they can be universal approximators to almost

any continuous set function, making them suitable for a variety of machine

learning tasks. Even though there are multiple different types of neural networks,

CHAPTER 2 BACKGROUND AND RELATED WORK

11

the word ANN is used to refer to all of them: Modular Neural Networks,

Convolutional Neural Networks, Recurrent Neural Networks, and so on [10].

Recall that in order for a neural network to learn, weights associated with

neuron connections must be updated after forward passes of data through the

network. These weights are adjusted to help reconcile the differences between the

actual and predicted outcomes for subsequent forward passes. Since we are

talking about the difference between actual and predicted values, the error would

be a useful measure here, and so each neuron will require that their respective

error be sent backward through the network to them in order to facilitate the

update process. hence, backpropagation of error. But how, exactly, do the weights

get adjusted?

2.1.3.2. Back-propagation:

Backward Propagation is the preferable method of adjusting or correcting

the weights to reach the minimized loss function [11].

Rumelhart et al. were the first to propose the approach in 1986. If the result

differs from the predicted output, networks can use this strategy to change the

weights of hidden layers. The error is calculated and backpropagated to all the

layers of the network to adjust the weights according to the requirement [12].

A loss function calculates the difference between a predicted output 𝑦̂𝑖 and

its actual value 𝑦𝑖 . A classic error function for back-propagation is the mean

squared error [13].

𝐿(𝑋, 𝑤) =
1

2𝑁
∑(𝑦̂𝑖(𝑋, 𝑤) − 𝑦𝑖)2

𝑁

𝑖=1

 (5)

where 𝑦𝑖 is the target value for an input pair (𝑥𝑖 , 𝑦𝑗) and 𝑦̂𝑖 is the computed

output of the network on input 𝑥𝑖. Other error functions can be used but its

convenient mathematical properties make it a good choice for generalized

learning methods [13].

Back-propagation refers to the process of calculating the gradient

backwards across the network, starting with the gradient of the weight in the last

layer, then the penultimate, and so on. When opposed to the naive approach of

calculating each layer separately, the gradient computations from one layer are

reused in the computations of the preceding layer, allowing for efficient gradient

computation at each layer [13].

CHAPTER 2 BACKGROUND AND RELATED WORK

12

As a result, back-propagation tries to minimize the loss function L with

respect to the weights of the neural network by computing the value of
𝛿𝐿

𝛿𝑤𝑖𝑗
𝑘 for

each weight 𝑤𝑖𝑗
𝑘 . This derivative can be calculated separately for each input-output

pair and then combined at the end [13].

𝛿𝐿(𝑋, 𝑤)

𝛿𝑤𝑖𝑗
𝑘 =

1

𝑁
∑

𝜕

𝜕𝑤𝑖𝑗
𝑘 (

1

2
(𝑦̂𝑑 − 𝑦𝑑)2)

𝑁

𝑑=1

= 1/𝑁 ∑
𝜕𝐸𝑑

𝜕𝑤𝑖𝑗
𝑘

𝑁

𝑑=1

 (6)

Finally, the weights can be updated according to the learning rate α and

the total gradient:

𝛥𝑤𝑖𝑗
𝑘 = −𝛼

𝛿𝐿(𝑋, 𝑤)

𝛿𝑤𝑖𝑗
𝑘 (7)

Figure 3 represents the complete cycle of a multi-layer neural network,

where. (1): Forward propagation refers to the calculation and storage of

intermediate variables (including outputs) for a neural network in order from the

input layer to the output layer. (2): It represents the difference between the truth

value and the expected value. (3): shows the Backpropagation, which updates the

weights based on the value of the extracted error.

Figure 3: forward / backward Propagation

CHAPTER 2 BACKGROUND AND RELATED WORK

13

2.1.3.3. Activation Function:

Activation functions are used in ANNs to convert the input signal into an

output signal which in turn is fed as input to the next layer. It plays an important

role on the accuracy of the ANN prediction thus its selection must be careful. If

an ANN does not have an activation function, the output signal would be a linear

function and the network acts as a Linear Regression Model. The result of this is

a network with limited performance [14]. An important feature that needs to be

considered is that it must be differentiable to be able to perform back-propagation

optimization for gradient error calculations. There are several activation functions

but the use of each of them depend heavily on the goal of each layer in the ANN

as they have different properties. Some common activation functions are

presented below [14].

• Sigmoid:𝒇(𝒙) = 𝝈(𝒙) =
𝟏

𝟏+ⅇ−𝒙 Sigmoid function is a mathematical

function which has a characteristic S-shaped curve. There are a

number of common sigmoid functions, such as the logistic function,

the hyperbolic tangent, and the arctangent. All sigmoid functions

have the property that they map the entire number line into a small

range such as between 0 and 1, or -1 and 1, so one use of a sigmoid

function is to convert a real value into one that can be interpreted as

a probability.

Figure 4: Sigmoid Functions [15].

• Tanh:𝒇(𝒙) = 𝐭𝐚𝐧𝐡(𝐱) =
𝟏−ⅇ−𝟐𝐱

𝟏+ⅇ−𝟐𝐱 Because the non-linear activation

function's values span between -1 and 1, it's comparable to the

exponential function in the negative inputs give negative results, and

only zero-valued inputs are allocated to outputs close to zero. The

distinctions are in the symmetry (Tanh is symmetric about the origin)

and the gradient (Tanh has a steeper gradient). As a result, the outputs

CHAPTER 2 BACKGROUND AND RELATED WORK

14

from previous layers will have various signs when fed as input to the

following layer.

Figure 5: Tanch Functions [15].

• ReLU: 𝒇(𝒙) = 𝑹ⅇ𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝟎, 𝒙) The fundamental advantage of

the rectified linear activation function, also known as ReLU

(Rectified Linear Unit), is that it does not activate all perceptrons at

the same time because it returns zero for negative inputs. As a result,

the network becomes sparse and efficient. However, because the

gradient is 0 for negative values, the vanishing problem still exists,

preventing the network from being updated during back propagation.

• Leaky ReLU: 𝒇(𝒙) = 𝑳𝑹ⅇ𝑳𝑼(𝒙) = 𝒎𝒂𝒙(𝜶𝒙, 𝒙), 𝜶 ≤ 𝟏, is an improved

version of ReLU. It solves the vanishing gradient problem by

inserting a small linear component for negative values. to make the

derivation a slightly positive value instead of 0.

Figure 6: ReLU Functions [15].

CHAPTER 2 BACKGROUND AND RELATED WORK

15

• Softmax: 𝒇(𝒙) = 𝝈(𝒙)𝒋 =
ⅇ𝒙𝒋

∑ ⅇ𝒙𝒌𝑴
𝒌=𝟏

 , 𝒇𝒐𝒓 𝒋 = 𝟏, 𝟐, … , 𝑴 𝒂𝒏𝒅 𝒙 = (𝒙𝟏, … , 𝒙𝑴)𝝐𝑹𝑴 ,It is

a classification of more than one variable. It is used in place of the

sigmoid function as a classification. It squeezes the outputs for each

variable in the feature vector x between 0 and 1 dividing it by the sum

of all variables. This makes it so that the sum of all variables in x will

result in 1 after being run through the softmax activation function.

This activation function is best employed at the classifier's output

layer to obtain probabilities that may be used to classify each input.

2.1.3.4. Batch Normalization:

Deep neural networks are difficult to Learn. Batch normalization (also

known as batch norm) is a method used to make training of artificial neural

networks faster and more stable through normalization of the layers' inputs by re-

centering and re-scaling. [16].

Batch normalization is a routine operation in the construction of neural

network models, which not only speeds up the convergence of the model to some

extent but also plays the most important role in solving the gradient dispersion

problem in the network, i.e., the phenomenon of unstable gradient variation. If

normalization is not used, the distribution of data obtained by the model after

training at each layer has differences, and the computational volume of the model

Figure 7: Leaky Functions [15].

Figure 8: SoftMax Functions [15].

CHAPTER 2 BACKGROUND AND RELATED WORK

16

network will increase for different data processing, causing the network model to

be more complex, and thus prone to overfitting and slower convergence of the

model. that is, the essence of normalization is to make the model acquired picture

feature data more reasonable, optimize the learning ability of the model, improve

the generalization ability of the model, and improve the counting ability [16].

2.1.4.Convolutional neural network:

A CNN is a subset of the neural networks mentioned above. A

convolutional neural network is a sort of supervised deep learning method that is

an extension of artificial neural networks (ANN) [17]. It is primarily used for jobs

involving picture recognition. Image/video recognition [18], semantic parsing,

natural language processing, and paraphrase detection are among applications

where convolutional neural networks (CNNs) are useful [19]. The Convolutional

layer, Pooling layer, and Fully-connected layer are the three layers that make up

a convolutional neural network. Convolution's main goal is to extract features

from input photos while keeping the spatial relationship between pixels intact

[20]. It accomplishes this by learning visual attributes from small squares of input

data.

2.1.4.1. The Convolutional Layer:

A series of filters with learnable parameters are used to extract features from

input data in this sort of layer. They can be compared to CNN's weights and biases.

The layers are constructed in such a way that the first detects a collection of low-

dimensional patterns in the input, such as edges, blobs of color, and so on [21].

The second detects patterns of patterns, and so on. The convolutional layer learns

features by back-propagation in the same way as a multi-layer perceptron network

(or ANN) does.

Figure 9: Representation of CNN (Camacho et al., 2018). [92]

CHAPTER 2 BACKGROUND AND RELATED WORK

17

Convolution is performed by sliding a fixed-size kernel over the input

matrix. At each stage, the elements that fall inside the kernel are combined using

matrix multiplication of the kernel and the region in the input matrix where the

kernel overlaps. Other parameters are zero-padding, which adds zeros around the

input matrix to preserve the size of the input matrix (because a convolution

reduces the dimension of the input matrix), and stride, which specifies how many

elements the kernel should bounce over between steps. In terms of output volume,

the larger the stride, the smaller the output volume. An important parameter to

specify for a convolutional layer is the number of filters, which determines the

depth of the convolutional layer. Each filter learns to look for different visual

features in the input. The convolutional layer accepts an input of size

𝑊1 × 𝐻1 × 𝐷1. It requires four parameters: the number of filters K, the kernel size

F, the stride S, and the zero-padding P. The layer produces an output of size

𝑊2 × 𝐻2 × 𝐷2 where [22] see Figure 11:

𝑊2 = (𝑊1 −F +2P)/S +1

𝐻2 = (𝐻1 −F +2P)/S +1, (8)

D2 = K.

Figure 10: Feature Filters of Front, Middle and Rear-End Layers in a CNN

[96]

CHAPTER 2 BACKGROUND AND RELATED WORK

18

A feature filter, when slid on the input layer of a neural network, performs

the convolution process, resulting in the generation of a feature map. A

convolutional layer is the layer that performs the convolution process.

convolutional neural networks are networks made up of convolutional layers. The

filter searches the input layer for any given pattern in the beginning. The filter

searches for the purpose of learning to detect a pattern during the training of the

algorithm, which finally becomes a search to validate the existence of a specific

pattern. Each of the filters in each convolutional layer with its respective number

of kernels produce a separate activation map. Stacking these activation maps

along the depth dimension lead to that deeper layers in the network can perform

more complex associations. There are two types of convolutions [22]:

• 2D Convolution: Convolution is used in 2D CNNs to extract features

from only 2D space. The value of a unit at (x, y) in the i-th layer of

the j-th feature map, written as 𝑣𝑖𝑗
𝑥𝑦

 in formal terms, is given by:

 𝑽𝒊𝒋
𝒙𝒚

= 𝒇(𝒃𝒊𝒋 + (∑ ∑ ∑ 𝒘𝒊𝒋𝒎
𝒑𝒒𝑸𝒊=𝟏

𝒒=𝟎
𝑷𝒊=𝟏
𝒑=𝟎𝒎 𝒗(𝒊=𝟏)𝒎

(𝒙+𝒑)(𝒚+𝒒)
) (𝟗)

where f is an activation function, 𝒃𝒊𝒋is the bias for the feature map,

𝒎 is the number of filters in the (ⅈ − 1)th layer, 𝑊𝑖𝑗𝑚
𝑝𝑞

 is the value at

the position (p, q) of the kernel connected to the kth feature map, and

𝑝𝑖 and 𝑄𝑖 are the height and width of the kernel, respectively.

Figure 11: The input volume of size [𝑾𝟏 × 𝑯𝟏 × 𝑫𝟏] is convolved with a

𝑲 × 𝑲 × 𝑲kernel obtaining an output volume [𝑾𝟐 × 𝑯𝟐 × 𝑲] [22].

CHAPTER 2 BACKGROUND AND RELATED WORK

19

• 3D Convolution: Used either for spatial feature extraction of 3D

images, or spatio-temporal feature extraction of 2D images [23]. The

above equation can be extended as follows:

 𝑽𝒊𝒋
𝒙𝒚

= 𝒇 (𝒃𝒊𝒋 + (∑ ∑ ∑ ∑ 𝒘𝒊𝒋𝒎
𝒑𝒒𝒓

𝒗(𝒊=𝟏)𝒎

(𝒙+𝒑)(𝒚+𝒒)(𝒛+𝒓)𝑹𝒊=𝟏
𝒓=𝟎

𝑸𝒊=𝟏
𝒒=𝟎

𝑷𝒊=𝟏
𝒑=𝟎𝒎)) (10)

where 𝑅𝑖 is the size of the 3D kernel along the third spatial dimension

and 𝑤𝑖𝑗𝑚
𝑝𝑞𝑟

 is the (p, q, r) th value of the kernel connected to the mth

feature map in the previous layer.

2.1.4.2. Pooling Layer:

After convolution, the procedure of pooling is conducted [24]. Its key

characteristic is that it compresses the input into a patch. The following are two

common pooling functions:

• Average Pooling: Calculate the average value for each patch on the

feature map Figure 15.

• Maximum Pooling (or Max Pooling): Calculate the maximum

value for each patch of the feature map Figure 14.

The network gains two things:

Figure 12: Convolution 2d with stride and padding [103].

Figure 13: convolutions 3D to use multiple filters [104]

CHAPTER 2 BACKGROUND AND RELATED WORK

20

- Controls overfitting by reducing the amount of training parameters

and the cost of computation.

- Makes the network invariant to certain distortion.

[24]

2.1.4.3. Fully Connected Layer:

The final convolution or pooling layer's output feature maps are converted

into a 1-Dimension array of numbers and connected to one or more fully

connected layers, in which a weighted connection is made between every input

and every output by a weight. Using a fully connected layer to learn non-linear

combinations of these features is a good approach to start. As a result, fully

connected layers are frequently used as the CNN's final layers. They add the

weighted total of the previous layer's features, showing the precise parameter

inputs, to arrive at a certain output goal result [25].

Figure 14: a portrait showing max pooling [97].

Figure 15: a portrait showing average pooling [97].

CHAPTER 2 BACKGROUND AND RELATED WORK

21

2.1.4.4. Why Convolutional Neural Networks?

While neural networks have been present for over 50 years, there are a few

reasons why CNNs have become the industry standard for object recognition and

categorization [26]. The following are some of their primary advantages [21]:

• CNNs have fewer memory requirements: CNNs use the fact that

the input data can be viewed as a multi-channel image to reduce the

dimensionality of the input while keeping characteristics that can be

recovered for classification within the input image.

• They are easier and better to train: A CNN's training time is

proportionately less than that of a normal neural network due to its

lower architectural complexity. Moreover, because of a lower

number of parameters, the susceptibility to noise is lower during the

training process. Hence, the performance of a standard neural

network will always be poorer than a CNN for image classification

purposes.

• They are rugged to shifts and distortion in the input: Because the

same weight configuration is employed across space, CNNs are shift

invariant. Although a typical neural network may achieve this, many

units with similar weight values at different regions of the input

would be required, adding memory and training time loads. CNNs

can withstand a variety of distortions, including shape shifts, partial

occlusions, horizontal and vertical shifts, and so on.

Figure 16: A picture showing the flattening of the output [105].

CHAPTER 2 BACKGROUND AND RELATED WORK

22

However, because the specific spatial correlations between higher-level

data are lost in the subsequent down-sampling step, CNNs are only effective for

broad object detection tasks [27].

2.2. Object detection:

Computer vision is an interdisciplinary field that has sparked a lot of interest

in recent years [28].

Object detection is a supervised machine learning process that determines

the instance of the class to which the object belongs while also estimating the

object's location by reporting the bounding box around it. Each image in the

training dataset must be accompanied with a file containing the object's

boundaries and classes. Object localization and categorization are the first two

stages of the process.

For classification, the one dominant object in a given image should be

determined and labelled. The next more demanding task is object localisation: In

addition to labelling the dominant object, it also needs to be localised in the image,

usually by determining a bounding box around the image region that is occupied

by the object. The difficulty of this task again increases if not only one but all

objects in an image need to be labelled and multiple objects of the same category

can appear in one image.

Object detection can be used in a variety of situations, including human-

computer interaction, defense, robotics, and transportation (auto-pilot) [29].

Figure 17: classification with localization [106].

CHAPTER 2 BACKGROUND AND RELATED WORK

23

2.2.1.History of detection algorithms:

In this section will simply provide a cursory review of current

developments.

A good means of judging how close the computer vision community has

come to solving the problems of object detection is to look at the results of

challenges like the PASCAL Visual Object Challenge (VOC), and later the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [30].

Pascal VOC began in 2005 and was hosted every year till 2012. It usually

included classification as well as localisation tasks, among other things. The

organizers published a report in 2009 that went into greater detail about the

challenge and this year's contributions [31]. Most of the entries at the time used a

bag-of-visual-words technique based on hand-crafted features like SIFT [32] and

HOG [33], in which feature vectors are computed at key point locations in the

image and then a histogram over the feature vectors is used to identify the image

content.

When the PASCAL VOC ended in 2012, the ILSVRC was held annually

from 2010 onwards and became the key benchmark for object detection. It uses

images from the massive ImageNet dataset (over 14 million images) to perform

classification and detection tasks, with up to 1000 possible classes for

classification and 200 classes for detection.

When Krizhevsky et al. [34] used a deep convolutional neural network

(CNN) for the first time in 2012, the challenge experienced a significant boost in

performance. They reduced the top-5 classification error1 from 25.2 percent (for

the second-best entry) to 15.3 percent, as well as the localization error from 50

percent to 34.3 percent. Since then, convolutional neural networks of increasing

depth have dominated the ILSVRC. [35] The winning entry had a top-5 error of

6.7 percent in 2014, indicating that the categorization process has become

reasonably simple. The best detection mean average precision (mAP) has

increased from 22.58 percent in 2013 to 43.93 percent in 2014. The localisation

error has decreased to 25% [36].

The requirement to develop discovery methods in a convolutional neural

network has led to the development of many methods that fall into two categories:

two-stage detection A selective search algorithm or a region proposal network

first proposes a set of regions of interest in two-stage object detectors [37][42].

The region candidates are then processed by a classifier. The R-CNN family is an

CHAPTER 2 BACKGROUND AND RELATED WORK

24

example of this type of 2D object detector [38]. One-stage detectors, on the other

hand, bypass the region proposal stage and conduct detection across a large

number of potential locations. It's faster and easier to use than two-stage detectors,

but there's a trade-off in terms of accuracy. To yet, achieving real-time capabilities

has necessitated an unavoidable trade-off [39].

2.2.2.Two-stage detection:

The following methods are examples of older two-stage detection methods:

2.2.2.1. R-CNN:

RCNN is introduced after the success of CNN on image categorization with

AlexNet [40]. R-CNN [41] is a hybrid method that uses both traditional and

learning-based techniques. Selective Search is used to generate proposals in this

method [42]. The feature extraction for each region proposal is done with CNN,

and the feature vectors are classed with SVM, while the bounding box regression

is done with a fully connected neural network Figure 18.

The main drawback of this RCNN is that it takes a long time to train.

Furthermore, because the detection takes a lengthy time, the algorithm cannot be

done in real-time.

Figure 18: R-CNN [91].

CHAPTER 2 BACKGROUND AND RELATED WORK

25

2.2.2.2. Spp-net (Spatial Pyramid Pooling):

SPP is a technique for extracting characteristics from regions of various

sizes. SPP-Net As a result, it takes advantage of parameter sharing at the CNN

layer and can adapt to a variety of input sizes (since input size is limited by the fc

layers not conv layers, in R-CNN the crop has to be warped to fulfil certain size;

SPP in SPP-Net elevates this size constraint) [43]. in Figure 19

SPP Net replaces the last pooling layer of traditional convolutional neural network

with a spatial pyramid pooling layer. It can diversify the size of the input image,

avoiding the information loss and distortion caused by the image distortion, and

improving the detection accuracy [44].

2.2.2.3. Fast R-CNN:

Fast R-CNN was created to boost the detection speed of its R-CNN

processor [45]. To lower the computational cost, this approach added Roi Pooling

layers. Roi Pooling is a type of pooling that consists of suggestions for fixed-sized

forms. As a result, instead of processing feature extraction for each proposal, it is

done once for each image. They also introduced a deep learning-based method for

classification, and a regression network for finding bounding boxes, which is

integrated with the feature extraction network. The most notable modifications

are that the feature map is generated over the image before the region suggestions

are created, and the SVM is replaced with a SoftMax layer [46]. The training and

testing time has been significantly shortened as a result of these enhancements.

Instead of repeating the convolution process for each of the 2000 regions, the

operation is completed once. In Figure 20.

Figure 19: Spp-net (SPP illustration).

CHAPTER 2 BACKGROUND AND RELATED WORK

26

Nonetheless, despite the improvements, the selective search algorithm for

generating region proposals had to be modified.

2.2.2.4. Faster R-CNN:

The fundamental idea behind Faster R-CNN was to use a fast neural net to

replace the slow selective search algorithm.

Specifically. Ren et al. later introduced Faster R-CNN [47]. The proposal

generating step is likewise accomplished by CNN layers (Region Proposal

Network - RPN) instead of additional proposal generators, which is the key

distinction from Fast R-CNN. Fast R-CNN is utilized for the rest, and the two

structures are integrated into one network for the first time, making the

architecture trainable from start to finish.in Figure 21.

To anticipate the regions, a separate Region Proposal Network (RPN) was

deployed. The predictions are then made and filtered with a Roi pooling kernel

before being fed into a Fast R-CNN [47]. The projected object's name and

bounding boxes are the outcomes.

As a result, the Faster R-CNN is the fastest CNN and can-do real-time

detections.

Figure 20: Fast R-CNN [91].

CHAPTER 2 BACKGROUND AND RELATED WORK

27

2.2.2.5. Mask R-CNN:

Mask R-CNN was created as a modified version of Faster R-CNN by He et

al [48]. to develop a framework for object instance segmentation. ResNet-FPN

[49](feature pyramid network) is used after the feature extraction backbone in the

Mask R-CNN method to connect deeper layers with the preceding ones. This

approach improves algorithm accuracy while cutting down on computing time.

The FPN architecture. in Figure 22.

So, the overall structure can be illustrated by the following figure 23.

Figure 21 : Faster R-CNN [109].

Figure 22: (FPN architecture) pyramid alternatives Mask R-CNN [101]

CHAPTER 2 BACKGROUND AND RELATED WORK

28

2.2.3.One-stage detection:

One-stage detection methods are one of the most recent advancements in

the field of speedy and precise detection, and they are summarized as follows:

2.2.3.1. Yolo (you only look one):

YOLO (You Only Look Once) is a real-time detector created by Redmon

et al [50]. Its distinguishing feature is that it approaches detection as a regression

problem. It is a one-stage detector that does both evaluation and detection at the

same time. It's a single neural network that predicts multiple bounding boxes and

class probabilities for each box at the same time. The YOLOv1 uses Darknet,

which is an open-source neural network framework written in C and CUDA [51].

The main idea of how this network works is the algorithm divides the image into

grids and runs the image classification and localization algorithm on each of the

grid cells [52]. For example, we have an input image of size (256 × 256). We

place a (3× 3) grid on the image (see Fig. 24).

Figure 23: Mask R-CNN [101].

Figure 24: Grid (3 x 3) representation of the image

CHAPTER 2 BACKGROUND AND RELATED WORK

29

In Figure 25, the image is divided into 9 squares, and therefore the output

matrix is 9 matrices, each with a depth of (c+5) which describe the center

coordinates, the dimensions, the objectness score and C class confidences for each

bounding box.

The YOLO [52] model is the first attempt to construct a rapid real-time

object detector (see Table 1 for architecture details).

However, YOLO had certain limitations: it could only detect up to two

things at a time, making it difficult to detect small or cluttered objects [50]. only

the last feature map was used for prediction, which was not suitable for predicting

objects at multiple scales and aspect ratios.

Figure 25: Output structure in YOLO

Table 1: YOLOv1 model.

CHAPTER 2 BACKGROUND AND RELATED WORK

30

2.2.3.1.1. IOU (Intersection over union):

Is a metric for measuring the accuracy of an object detection model. used to

describe the extent of overlap of two boxes. where we train a model to output a

box that fits perfectly around an object. For example, in the image below, we have

a green box, and a blue box. The green box represents the correct box, and the

blue box represents the prediction from our model. If the prediction is completely

correct, (IOU = 1). The lower the (IOU), the worse the prediction result [53].

Let us assume that box 1 is represented by [x1, y1, x2, y2], and box 2 is

represented by [x3, y3, x4, y4] [53]. (Figure 27 shows the calculation.)

2.2.3.1.2. Loss Function Explanations:

The location 𝑥, 𝑦, and size 𝑤, ℎ of bounding boxes, as well as the objectness

𝑝(𝐶) (or confidence) and class probabilities C, determine the multi-part loss

function. Two gain factors (𝜆𝑐𝑜𝑜𝑟𝑑 𝑎𝑛𝑑 𝜆𝑛𝑜𝑜𝑏𝑗) are used to control the

contribution of each part to the total loss. During the training, the function utilized

to optimize is [52].

Figure 26: Intersection over union.

Figure 27: Calculation (Intersection over union) [53].

CHAPTER 2 BACKGROUND AND RELATED WORK

31

It calculates the difference between true and forecasted parameters' Mean

Squared Error (MSE) [52]. 1𝑖
𝑜𝑏𝑗

 indicates whether cell i includes an item, and

1𝑖𝑗
𝑜𝑏𝑗

 indicates whether the grid cell i's j-th bounding box predictor is a contender

for the prediction. The λ parameters are used to increase the loss from bounding

box coordinate and to decrease the loss from confidence predictions in boxes that

don’t contain objects [54].

2.2.3.1.3. Non-max suppression:

This method is used to "suppress" the less likely bounding boxes and only

maintain the best [55]. is a technique used primarily in object detection that aims

to select the best bounding box out of a set of overlapping boxes, ensuring that

the algorithm will recognize the required part once and not more than once, then

the algorithm will determine the efficiency of each square if it covers the object

in the image well, and the efficiency is determined by the IOU mentioned above,

and it deletes the minimum values of the non-maximum suppression, i.e. it keeps

only the highest values of the non-maxim [55].

 (11)

Figure 28: Discovered more than once (human) [55].

CHAPTER 2 BACKGROUND AND RELATED WORK

32

2.2.3.1.4. Anchor boxes:

A set of predetermined bounding boxes of a specific height and breadth are

known as anchor boxes. These boxes are often chosen depending on object sizes

in your training datasets to capture the scale and aspect ratio of various object

classes you want to detect. The number of tiled anchor boxes equals the number

of network outputs. The network produces predictions for all outputs [56].

Note: Because there are instances when an object does not fit in the Anchor boxes,

it is vital to select appropriate boxes because this error may damage the output

results and accuracy (IOU) [56].

2.2.3.2. SSD (single shot detector):

SSD [57] is one of the earliest attempts at using convolutional neural

networks in pyramidal feature hierarchies for effective identification of objects of

varied sizes, proposed by Liu et al. shortly after the YOLO technique is introduced

[58]. functions as a single-stage multiple-class object detector that regresses class

confidences and bounding boxes from a fixed collection of bounding boxes of

various sizes and scales. SSD incorporates concepts from RPN of Faster R-CNN

and YOLO, as well as multiscale convolutional layers for feature extraction, to

improve detection speed while maintaining accuracy. Per feature map location,

SSD discretizes the output space of bounding boxes into a set of default boxes at

various aspect ratios and scales. The network generates scores for the existence

of each object type in each default box at the moment of prediction, as well as

modifications to the box to better reflect the object shape. In addition, to handle

objects of varied sizes naturally, the network combines predictions from many

Figure 29: Example Anchor box

CHAPTER 2 BACKGROUND AND RELATED WORK

33

feature maps with different resolutions. SSD achieved comparable detection

accuracy with Faster R-CNN but enjoyed the ability to do real-time inference [57].

The anchor boxes on various levels are rescaled such that a single feature

map is solely responsible for objects at a single scale. An anchor box's width,

height, and center placement are all normalized to be (0, 1). Every position (ⅈ, 𝑗) of

the l-th feature layer of size 𝑚 × ℎ has a linear scale value proportionate to its

layer level and 6 possible width-to-height ratios associated with it [58]. There are

a total of 6 anchor boxes per feature cell, where the scale at each level is

𝒔𝒍 = 𝒔𝒎𝒊𝒏 +
𝒔𝒎𝒂𝒙 − 𝒔𝒎𝒊𝒏

𝑳 − 𝟏
(𝒍 − 𝟏) (12)

Where the level index 𝑙 = 1, … , 𝐿, the aspect ratios r ∈ {1,2,3,1/2,1/3}, with

an additional scale 𝑠𝑙
′ = √𝑆𝑙𝑆𝑙 + 1 when r = 1. Each box's width and height can

therefore be calculated as 𝑤𝑙
𝑟 = 𝑠𝑙√𝑟 and ℎ𝑙

𝑟 = 𝑠𝑙/√𝑟 , with the center location

(𝑥𝑙
𝑖 , 𝑦𝑙

𝑖) = (
ⅈ+0,5

𝑚
,

𝑗+0.5

𝑛
). The model generates four anchor box offsets and C class

probabilities for each of k anchor boxes at each location of each feature map,

yielding 𝑘. 𝑚. 𝑛(𝑐 + 4) outputs [57].

The loss function seems a lot like the one in YOLO. With some minor

alterations, it's defined as the sum of a localization loss and a classification loss.

Figure 30: SSD framework [99].(a): The photos with their respective bounding

boxes are the input to SDD. (b): Default boxes with various aspect ratios

correlate to a smaller region in fine-grained feature maps. (c): For coarse-

grained feature maps these boxes are bigger and thus more suitable for larger

objects.

CHAPTER 2 BACKGROUND AND RELATED WORK

34

2.2.3.3. Retina NET:

(Lin et al). presented RetinaNet as another popular one-stage object

detection in 2018 [59]. The key innovation of the RetinaNet method is the addition

of a new loss function, called focal loss, to provide robustness against class

imbalance. RetinaNet addresses the great disparity between the background,

which includes no items, and the foreground, which contains things of interest, by

modifying the usual cross entropy loss function such that it down-weights the loss

assigned to well-classified examples [60].

The cross entropy (CE) function is used over the confidence scores as

below: 𝐶𝐸(𝑝) = −𝑙𝑜𝑔(𝑝) (13)

The following relationship describes focal loss as a function:

𝐹𝐿(𝑝) = −𝛼(1 − 𝑝)𝛾 log(𝑝) (14)

where 𝛾 is a focusing parameter and 𝛼 is a correction factor. Hard sample

losses are more important than simple sample losses when the parameter 𝛾 is

greater than zero [60]. (See Figure 31).

Table 2: SSD model.

CHAPTER 2 BACKGROUND AND RELATED WORK

35

Furthermore, feature pyramid networks were employed to detect multi-

scale objects at various layers of feature maps [59]. (See Figure 32).

2.2.3.4. Yolo v2:

Later, Redmon et al [61]. refined their work YOLO by creating YOLOv2,

which uses an entirely new feature extractor backbone called Darknet19, which

has 19 convolutional layers. To predict bounding boxes in YOLOv2, fully

connected layers are deleted and only convolutional layers are used [61]. Batch

normalization is applied to all convolutional layers, resulting in a considerable

speedup in the learning process and an increase in the mAP [62]. which improved

detection performance while keeping inference speed in real time. The weights

obtained by YOLOv2 were more sensitive to capturing fine-grained information

because it used a more powerful deep convolutional backbone architecture that

Figure 31: Model performance in terms of loss values with various focusing

parameter values, While α=1 [60].

Figure 32: The RetinaNet network architecture used a Feature Pyramid

Network on top of the feed-forward ResNet architecture.

CHAPTER 2 BACKGROUND AND RELATED WORK

36

was pretrained on higher resolution photos from ImageNet (from 224 224 to 448

448). In addition, the anchor method utilized in SSD was a source of inspiration.

The improvement aspects are [63]:

• Batch normalization.

• High resolution classifier.

• Anchor Boxes.

• Fine-grained features.

• Multi-scale training.

• Darknet-19.

Given an anchor size (𝑝𝑤, 𝑝ℎ)at a certain grid cell with its left corner at

(𝐶𝑥, 𝐶𝑦) the model predicts the offset scale, (𝑡𝑥, 𝑡𝑦 , 𝑡𝑤 , 𝑡ℎ) and a confidence

prediction representing the IoU between the predicted box and any ground truth

box. The corresponding predicted bounding box b has center (𝑏𝑥, 𝑏𝑦) and size

(𝑏𝑤, 𝑏ℎ) [62]. (See Figure 33).

Although fine-grained characteristics from a previous layer are passed to

the output detection layer, the detection is still done at the final coarse-grained

layer, which misses many of the smaller items [62]. (See Table 3).

Figure 33: Dimension priors and position prediction for bounding boxes [61].

CHAPTER 2 BACKGROUND AND RELATED WORK

37

2.2.3.5. Yolo v3:

YOLOv3 is a new version of the YOLO baseline algorithm developed by

Redmon et al [64]. Because there may be occasions where a cell contains more

than one class, YOLOv3 uses the logistic loss function instead of the softmax

layer to enable multi-class detection.

In terms of detection performance, YOLOv3 surpasses SSD and R-FCN, as

well as Faster R-CNN and RetinaNet in terms of detection time, as shown in

Figure 34. There are a few key differences between YOLOv3 and previous

algorithms in terms of detection performance and/or detection time [64].

Table 3: YOLOv2 model.

CHAPTER 2 BACKGROUND AND RELATED WORK

38

The most significant modifications are as follows [64]:

• Bounding Box Prediction.

• Class Predictions.

• Predictions across scales.

• Feature Extractor.

• Darknet53.

2.2.3.5.1. Backbone:

The Darknet backbone has been upgraded to Darknet53, which has 53

convolutional layers with batch normalization and Leaky-ReLU activation after

each [65]. Figure 35.

2.2.3.5.2. Feature Pyramids:

 For diverse sized objects, YOLOv3 detects at three different scales. Each of these

layers is connected to the other utilizing FPN architecture in a top-down way.

Shallower layers can use the semantic information gathered in deeper layers

because to this connection [66].

2.2.3.5.3. Loss function:

 Calculates the objectness score with logistic regression for each bounding box

[67].

Figure 34: Comparison of YOLOv3 and the other state-of-the-art algorithms

[64].

CHAPTER 2 BACKGROUND AND RELATED WORK

39

2.2.3.6. Tiny-yolov3:

Tiny-YOLOv3 is a reduced and scaled-down version of YOLOv3. Despite

the fact that Tiny-YOLOv3 has fewer layers than YOLOv3, the model's accuracy

is nearly identical to that of its larger counterpart when high frame rates are

considered. Tiny-YOLOv3 has only 13 convolutional layers and 8 max-pool

layers, hence it takes far less memory to execute than YOLOv3. The main

distinction between YOLOv3 and TinyYOLOv3 is that the former can detect

items at three different scales, whereas the latter can only detect objects at two

scales. Apart from these differences, both variations work in the same way [68].

Tiny-YOLOv3 has a significantly lower number of convolutional layers

than YOLOv3. Tiny-YOLOv3 features only 13 convolutional layers in its basic

structure, with a total of 23 layers Table 4. Tiny-YOLOv3 uses a restricted number

of 1 x 1 and 3 x 3 kernels to extract the characteristics. Unlike YOLOv3, which

uses stride 2 convolutional layers for down sampling, Tiny-YOLOv3 employs the

pooling layer [68]. TinyYOLOv3's convolutional layer structure is comparable to

that of YOLOv3. Figure 36.

Figure 35: YOLOv3 model [98].

CHAPTER 2 BACKGROUND AND RELATED WORK

40

2.2.3.7. Yolo v4:

Yolov4 was announced in 2020 by Bochkovskiy et al [69]., and it is an

upgraded version of the YOLOv3 algorithm, with a mAP improvement of up to

10% and a 12 percent increase in the number of frames per second. Darknet, the

same framework utilized for its predecessors, is also employed to construct this

new structure [70]. Figure 37 shows a detailed performance comparison.

Table 4: Tiny-YOLOv3 model.

Figure 36: Architecture of Tiny-YOLOv3 [102].

CHAPTER 2 BACKGROUND AND RELATED WORK

41

Figure 37 shows that YOLOv4 outperforms YOLOv3 and EfficientDet in

terms of inference time. In their publication, the authors of YOLOv4 present a

series of contributions dubbed a "bag of freebies." There are a number of things

that may be done to increase the model's performance without adding to the

inference time lag [70].

2.2.3.7.1. Backbone:

YOLOv4 employs CSP-Darknet-53, a variation of the Darknet framework's

Cross Stage Partial Network (CSPNet). By partially concatenating the top and

bottom layers of the network, the suggested topology merely connects feature

maps. On the ImageNet dataset [71], this method reduces computation costs by

20% while maintaining at least the same accuracy [72].

2.2.3.7.2. SPP in YOLOv4:

The backbone of YOLOv4 is Spatial Pyramid Pooling (SPP) [73]. SPP is

another option for dealing with objects of various sizes. The SPP block takes input

feature maps and feeds them into three parallel max pooling layers with variable

scales and strides. Originally, the approach was employed to generate fixed size

output for different sized inputs to feed the output to a fully connected layer [74].

The three layers are then joined together to create multi-scaled input features.

Figure 37: Comparison of YOLOv4 and the other state-of-the-art algorithms

[111].

CHAPTER 2 BACKGROUND AND RELATED WORK

42

2.2.3.7.3. Activation function:

In the feature extraction backbone, YOLOv4 employs Mish activation on

several convolutional layers, in addition to Leaky-ReLU activation, which was

originally utilized in YOLOv3 [75]. 𝑓(𝑥) = 𝑥 𝑡𝑎𝑛𝑐ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) can define

Mish, which is a continuously differentiable activation function. On AP with CSP-

Darknet-53 backbone, it outperforms Leaky-ReLU by 2.1 percent in the MS-

COCO dataset [70].

2.2.3.7.4. Feature Pyramids:

In YOLOv4, a Path Aggregation Network (PANet) is added to the generic

Feature Pyramid Network, allowing for the use of deeper features for the

preceding outputs. PANet merely adds a bottom-up path that improves

communication between the lower and upper layers [76]. Figure 38.

2.2.3.7.5. Data Augmentation:

YOLOv4 is educated in a unique way. Rather of using the same photos at

each epoch, it crops four separate images and merges them into a single network-

sized image, so the network encounters a fresh input every time it runs.

Furthermore, four separate scenes can be used to learn batch normalization

parameters in each image. As a result, there is less need for bigger mini-batch

sizes. Mosaic is the name given to this procedure [77]. Figure 39.

Figure 38: PANet advances this approach with an additional bottom-up

connection [76].

CHAPTER 2 BACKGROUND AND RELATED WORK

43

2.2.3.8. Yolo v5:

YOLOv5 was only released on GitHub in 2020, with no accompanying

paper. It differs from all previous releases in that it is a PyTorch implementation

rather than a fork of Darknet [78]. According to their repository, YOLOv5

outperforms EfficientDet, another state-of-the-art algorithm, by roughly 10% AP

in MS-COCO [70] dataset in similar depth networks, resulting in a similar level

of FPS. Figure 40 shows a detailed comparison of various algorithms.

Mosaic data augmentation and autolearning bounding box anchors are two

of the most significant enhancements. YOLOv5 is significantly faster and lighter

Figure 39: Mosaic data augmentation [111].

Figure 40: Comparison of YOLOv5 and EfficientDet with different network

sizes [112].

CHAPTER 2 BACKGROUND AND RELATED WORK

44

than YOLOv4, with accuracy comparable to the YOLOv4 test. YOLOv5 feeds

training data through a data loader with each training batch, which augments data

online. Scaling, color space changes, and mosaic augmentation are the three types

of augmentations performed by the data loader. Mosaic data augmentation is the

most novel of all, as it mixes four photos into four random-ratio tiles [78].

2.2.3.8.1. Backbone: YOLOv5 uses CSPNet like YOLOv4.

2.2.3.8.2. SPP: YOLOv5 uses SPP as in YOLOv4.

2.2.3.8.3. Activation function: Unlike YOLOv4, YOLOv5 utilizes the

Leaky-ReLU function after all convolutional layers, similar to YOLOv3.

2.2.3.8.4. Feature Pyramids: Just like YOLOv4, YOLOv5 adds a Path

Aggregation Network (PANet) to the generic Feature Pyramid Network [78].

2.2.3.8.5. Focus (also called by DepthToSpace): Focus is a basic strategy

that seeks to speed up the process by lowering the input resolution and

convolution operation cost. This method simply reduces a tensor's width and

height while increasing the number of channels [79].

Note: Because YOLOv5 is open source, there is no paper or documentation

that explains the algorithm.

2.2.4. Comparison of Faster-RCNN, YOLO, and SSD for Real-

Time:

The following experiment compared the speed of YOLO, SSD, and Faster-

RCNN when they were trained on the same data set. Regional proposal and

classification are two steps of the R-CNN detector. The detector first finds 2,000

boxes that represent the target object's region using Selective Search. Following

that, all Bounding Boxes are classified using CNN. The processing speed slows

as the quantity of calculation cost rises. Faster RCNN performs object detection

once in the output feature map after going through CNN to adjust for the

processing speed. The Region Proposal Network is utilized by Faster RCNN to

address the bottleneck produced by the selective search algorithm. Faster R-CNN

is 200 times faster than R-CNN in terms of processing performance [80]. Object

detection with RCNN family has the drawback of sluggish processing speed,

CHAPTER 2 BACKGROUND AND RELATED WORK

45

making it unsuitable for real-time applications, unlike Yolo and SSD which are

faster because they both use one-stage detection algorithms [81].

Pascal VOC2007 has 20 categories with 5k images in the train Val set and

5k images in the test set.

Table 5. represents previous studies' results for the three algorithms: Faster

RCNN, YOLO, and SSD. The first column contains the algorithm name; the

second column contains the reference number. The detection model is the used

network structure. Train data and Test data are the used train set and test set [80].

FPS is the number of processed frames per second; mAP is the mean average

precession mentioned in section 3.1.3. The (-) was used for values that were not

mentioned in the reference. VOC07 and VOC12 are Pascal VOC 2007 and Pascal

VOC 2012. VOC07++12 means using both train and evaluation sets in Pascal

Table 5: comparison of Faster-RCNN, YOLO, and SSD for object detection

[114].

CHAPTER 2 BACKGROUND AND RELATED WORK

46

VOC 2007 with the train set of Pascal VOC 2012 for training [81]. The number

after algorithm name (300, 512) represents the dimensions of network input, (*)

after algorithm name mean using data augmentation (generating more data from

the original by applying some image transformations like rotating, scaling, adding

noise, and other methods) for training data, the increase in training data usually

requires more training steps too [82].

2.3. Conclusion:

In this chapter we discussed deep learning, as well as the neural network

that relies on it. Then there was the object detection in the image. We concentrated

on the convolutional neural network, which is the most important neural network

in this sector. After that, the most significant ancient and modern techniques that

resulted from this idea were then covered. then we analyzed the results of training

conducted by researchers on the best models using.

CHAPTER 3: PROJECT DEVELOPMENT:

CHAPTER 3 PROJECT DEVELOPMENT

48

3. Project development:

In this chapter, we begin discussing the experimental part of the thesis. First,

we will discuss selection criteria for methods and datasets. Then we will describe

the selected methods, their parameters and the selected datasets. Finally, we will

discuss postprocessing and evaluation.

3.1. Performance metrics:

3.1.1.Detection cases:

When the detector is used with the image to search for people, it can

produce four different cases:

3.1.1.1. True Positive (TP):

Detecting the object while it is in the photo frame .

3.1.1.2. True Negative (TN):

 The object is not detected in the empty image of the requested object .

Figure 41: True Positive example [113].

Figure 42: True Negative example [107].

CHAPTER 3 PROJECT DEVELOPMENT

49

3.1.1.3. False Positive (FP):

Detection of another object instead of the requested object.

3.1.1.4. False Negative (FN):

 No detection of objects in an image with objects.

3.1.2.Average precision (AP):

It is calculated using area under the curve (AUC) of the Precision x Recall

curve. by averaging the precision of all recall values between 0 and 1.

3.1.3.Mean Average Precision (MAP):

The compares the real box to the detected box and returns a score. The

higher the score, the more accurate the model is in its detections.

Figure 43: False Positive example.

Figure 44: False Negative example [108].

CHAPTER 3 PROJECT DEVELOPMENT

50

3.1.4.Recall:

Measures how good you find all the positives. For example, we can find

80% of the possible positive cases in our top K predictions.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (15)

3.1.5.Precision:

The percentage of your predictions are correct.

 𝑃𝑟𝑒𝑐ⅈ𝑠ⅈ𝑜𝑛 =
𝑇𝑃

TP+FP
 (16)

3.2. Implementation:

3.2.1.Software Environment:

Python was chosen as the programming language because it is a high-level

programming language that is simple to learn and code, making it a popular choice

for constructing machine learning and deep learning algorithms [83].

CUDA and cuDNN were installed because they allow the algorithm to be

trained on a GPU, which is faster and more efficient than training on a CPU [84].

3.2.2.Hardware Environment:

Table 10 shows the hardware specs of the system on which the algorithm

was trained and implemented.

3.2.3.Virtual environment:

It is the environment for running Python codes .

• PyCharm Community Edition 2021.3.2. [85].

• Jupyter Notebook (anaconda3). [86]

• Activate the environment using the activation codes in Python on

CMD “python -m venv name-virtual “.

 System Windows 10/2021

GPU NVIDIA GT 630M 2GB

CPU Intel Core I7 2generation

RAM 10GB

Table 6: Hardware pramétre.

CHAPTER 3 PROJECT DEVELOPMENT

51

3.2.4.Preparation of the data:

• Data set: The program in this project was created to detect two different

objects: a person and cat. The photos of the two categories were collected

from various perspectives to form a dataset. which are divided into three

groups: Training set (80%) and test set (10%) and Val (10%). After that, in

order to train the model, the photos must be labeled and annotations must

be created.

• Labelling: The labeling procedure entails creating an XML or CSV file

for each frame that contains the names of the items displayed as well as the

coordinates (in pixels) of their placements. Labeling is an opensource

program that makes the task easier by allowing you to visualize the process

graphically [87]. In Figure 45.

3.2.5.Object Detector:

A Convolutional Neural Network derived from the TensorFlow deep

learning framework was utilized as the classifier. The model utilized is yolov3

[88], which was chosen after studying the characteristics of various algorithms. It

has a simple and adaptable structure. It performs high-accuracy real-time

detections as a result of its features. Furthermore, it is built using TensorFlow

Object Detection [89], which is simple to use and understandable.

Figure 45: Process of labelling and an XML file example.

CHAPTER 3 PROJECT DEVELOPMENT

52

3.2.6. Yolov3 architecture:

We will discuss our model we're using in this project (i.e., Yolo). We retrain

the yolo models to detect a person or cat by fine tuning the parameters of only the

last three layers, as well as hyperparameters like learning rate and number of

iterations used in the model. and by freezing all the parameters of the first 249

layers, in our model the first 249 layer are considered as feature extraction, while

the last three layers are considered as classification and localization. The last three

layers are layers responsible for outputting the object class to be detected, so the

weights in these layers are updated during training. YOLOv3 has three final

layers, the first has a dimension divided by 31 compared to the initial image, the

second by 16 and the third by 8. Thus, starting from an image of size 480×640

pixels, the three features’ maps output from the network will have respective sizes

of 13×13, 26×26 and 52×52 pixels. It is in this sense that YOLOv3 predicts three

levels of detail, to detect large, medium and small respectively. Figure 46.

figure 47 shows the detailed structure of our yolov3 model using keras.

Figure 46: Model of YOLOv3.

CHAPTER 3 PROJECT DEVELOPMENT

53

__

Layer (type) Output Shape Param # Connected to

==

input_1 (InputLayer) (None, 480, 640, 3) 0

__

conv2d_1 (Conv2D) (None, None, None, 3 864 input_1[0][0]

__

batch_normalization_1 (BatchNor (None, None, None, 3 128 conv2d_1[0][0]

leaky_re_lu_1 (LeakyReLU) (None, None, None, 3 0 batch_normalization_1[0][0]

zero_padding2d_1 (ZeroPadding2D (None, None, None, 3 0 leaky_re_lu_1[0][0]

__

conv2d_2 (Conv2D) (None, None, None, 6 18432 zero_padding2d_1[0][0]

__

batch_normalization_2 (BatchNor (None, None, None, 6 256 conv2d_2[0][0]

__

leaky_re_lu_2 (LeakyReLU) (None, None, None, 6 0 batch_normalization_2[0][0]

__

conv2d_3 (Conv2D) (None, None, None, 3 2048 leaky_re_lu_2[0][0]

__

batch_normalization_3 (BatchNor (None, None, None, 3 128 conv2d_3[0][0]

__

leaky_re_lu_3 (LeakyReLU) (None, None, None, 3 0 batch_normalization_3[0][0]

__

conv2d_4 (Conv2D) (None, None, None, 6 18432 leaky_re_lu_3[0][0]

__

batch_normalization_4 (BatchNor (None, None, None, 6 256 conv2d_4[0][0]

__

leaky_re_lu_4 (LeakyReLU) (None, None, None, 6 0 batch_normalization_4[0][0]

add_1 (Add) (None, None, None, 6 0 leaky_re_lu_2[0][0]

 leaky_re_lu_4[0][0]

__

zero_padding2d_2 (ZeroPadding2D (None, None, None, 6 0 add_1[0][0]

__

conv2d_5 (Conv2D) (None, None, None, 1 73728 zero_padding2d_2[0][0]

batch_normalization_5 (BatchNor (None, None, None, 1 512 conv2d_5[0][0]

leaky_re_lu_5 (LeakyReLU) (None, None, None, 1 0 batch_normalization_5[0][0]

__

conv2d_6 (Conv2D) (None, None, None, 6 8192 leaky_re_lu_5[0][0]

__

batch_normalization_6 (BatchNor (None, None, None, 6 256 conv2d_6[0][0]

__

leaky_re_lu_6 (LeakyReLU) (None, None, None, 6 0 batch_normalization_6[0][0]

__

conv2d_7 (Conv2D) (None, None, None, 1 73728 leaky_re_lu_6[0][0]

__

batch_normalization_7 (BatchNor (None, None, None, 1 512 conv2d_7[0][0]

leaky_re_lu_7 (LeakyReLU) (None, None, None, 1 0 batch_normalization_7[0][0]

__

add_2 (Add) (None, None, None, 1 0 leaky_re_lu_5[0][0]

 leaky_re_lu_7[0][0]

yolo_loss (Lambda) (None, 1) 0 conv2d_59[0][0]

 conv2d_67[0][0]

 conv2d_75[0][0]

 input_2[0][0]

 input_3[0][0]

 input_4[0][0]

==

======
Total params: 61,581,727

Trainable params: 37,695

Non-trainable params: 61,544,032

__

Figure 47: Architecture of YOLOv3.

CHAPTER 3 PROJECT DEVELOPMENT

54

3.2.7.Training:

The training procedure is started after you've completed all of the steps

above and made any necessary adjustments to the configuration file. Figure 48

shows the step count and classification loss for each step on the screen. It's worth

noting that the classification loss begins at a very high number and steadily

reduces as the algorithm learns over time.

Following training, a set of data representing the trainer's weights and the

value of the loss she has achieved is prepared.

3.2.8.Results:

The result is a square box that surrounds the detected object and displays

the object's name as well as the detective's certainty [90].

Following the completion of the algorithm's training process, data a person

and a cat was utilized to evaluate the yolov3 algorithm. The following are the

results of the test:

Figure 49 and 50 represent the result of applying precision and Recall to the

training data for the cat and person groups, respectively. When a model has high

Figure 48: showing the steps of learning and reduction of the loss function.

CHAPTER 3 PROJECT DEVELOPMENT

55

recall but low precision, then the model classifies most of the positive samples

correctly but it has many false positives (i.e., classifies many Negative samples as

Positive). When a model has high precision but low recall, then the model is

accurate when it classifies a sample as Positive but it may classify only some of

the positive samples. The precision-recall curve encapsulates the tradeoff of both

metrics and maximizes the effect of both metrics. It gives us a better idea of the

overall accuracy of the model.

We have implemented our program code responsible for calculating both

the Average Precision and Mean Average Precision, the results of the calculation

appeared in Figure 51 .

Figure 49: Precision-Recall Curve for Yolov3 (category cat).

Figure 50: Precision-Recall Curve for Yolov3 (category person).

CHAPTER 3 PROJECT DEVELOPMENT

56

The following results (figure 52 and figure 53) were obtained after

running the code to distinguish between two categories (cat and person).

Figure 52: YOLOv3 for detecting cat on test video.

Figure 51: Mean Average Precision (mAP) of testing Yolov3 on our dataset.

76,16

72,82

71 72 73 74 75 76 77

cat

person

Average Precision (AP)

C
la

ss

mAP : 74,49

CHAPTER 3 PROJECT DEVELOPMENT

57

3.2.9.Conclusion:

By studying the performance of these algorithms on a standard dataset,

YOLOv3 have been identified as the most suitable and efficient deep-learning

models to perform real-time object detection and recognition. An experiment has

been carried out to evaluate the classification performance of these deep-learning

algorithm. After the preparation of dataset, the algorithm has been trained on the

(person and cat) dataset. The trained model has been evaluated on the collected

test image, from which the number of true positives, true negatives, false positives

and false negatives have been identified for each frame of the detections made by

our deep-learning model. Using these results, the Accuracy, Precision, Recall and

Average precision the of the model have been calculated and the performance of

the YOLOv3, model have been evaluated.

Figure 53: YOLOv3 for detecting person on test video.

 GENERAL CONCLUSION

58

GENERAL CONCLUSION:

This thesis report discusses about the most suitable deep-learning models

for real-time object detection and recognition and evaluates the performance of

these algorithms on the detection and recognition of two classes (person and cat).

The results of this research are discussed in chapter 3. The main objective of our

work was to find the best answer to the following question: what are the most

suitable and efficient Deep Learning models for real-time object recognition? to

do this, a literature review has been performed to obtain knowledge about various

deep learning models that are capable of performing real-time object detection

and recognition. This project started with the aim of creating an application

capable of identifying and classifying person from a camera. After months of

intensive investigation, we have come to the conclusion that Yolo (you only look

once) is the best model in terms of accuracy and speed that can be used in real-

time object detection. Supervised learning-based object detection models are data-

hungry that require large amounts of annotated data in order to achieve high

performance. Data annotation process is a costly work which requires lots of time.

we were partially successful, but not totally, especially given the difficulty of

training yolo network while utilizing a relatively weak device. After the model

was trained, the process of detecting a person or other object from webcam video

capture was fine. However, the accuracy was low in comparison to what could be

achieved with certain adjustments.

In terms of possible enhancements, we'll aim to make the model's structure

more balanced in order to improve the precision of the object's detection and

localization. Attempting to extend the data and select more powerful training

devices. Finally, highlight that the technologies employed in this project have a

potential future as well as a successful present. Though this project has an impact

on the security sector, by modifying the data set, this program might be used in

any field where object detection is required.

References:

[1] H. Geoffrey , Deep Learning, Canadian Institute for Advanced Research : Department

of Computer Science University of Toronto , 2012.

[2] C. Alfredo , «Eigen-stuff,» 23 Aug 2021. [En ligne]. Available:

https://atcold.github.io.

[3] A. Courville, «Deep learning,» 2016. [En ligne]. Available:

https://www.marefa.org/%D8%AA%D8%B9%D9%84%D9%85_%D8%B9%D9%85

%D9%8A%D9%82.

[4] C. Sai Krishna et V. B, «Machine Learning Algorithms,» 2018. [En ligne]. Available:

https://www.analyticsvidhya.com/blog/category/intermediate/.

[5] M. Usama, «Techniques, Applications and Research Challenges,» 2019. [En ligne].

Available: https://ieeexplore.ieee.org/document/8713992.

[6] M. Batta, «Machine Learning Algorithms. International Journal of Science and

Research,» 2020. [En ligne]. Available: https://doi.org/10.21275/ART20203995.

[7] Stanford University, «Convolutional neural networks for visual recognition,» 2019.

[En ligne]. Available: http://cs231n.stanford.edu/, 2019. Online; accessed 11 February

2019.

[8] V. V. FJODOR , «Multilayer feedforward networks areuniversal,» 31 MARCH 2017.

[En ligne]. Available: https://www.asimovinstitute.org/author/fjodorvanveen/.

[9] B. C.M, «Pattern recognition and machine learning,» springer, 2006.

[10] V. V. F, «Neural network zoo prequel,» 10 May 2019. [En ligne]. Available:

https://www.asimovinstitute.org/author/fjodorvanveen/.

[11] R. D.E et H. G.E, «Learning representations by back-propagating errors,» nature, p.

533–536, 1986.

[12] L. D, «What Is an Artificial Neural Network?,» 2019. [En ligne]. Available:

www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/.

[13] Brilliant, «Backpropagation,» 10 May 2019. [En ligne]. Available:

https://brilliant.org/wiki/backpropagation/.

[14] U. Stanford, «Deep Learning for Computer Vision,» 2022. [En ligne]. Available:

http://cs231n.stanford.edu/.

[15] S. Sharma et A. Athaiya, «Activation Functions in Neural Networks.,» International

Journal of Engineering Applied Sciences and Technology., 2020.

[16] S. Christian , «Accelerating Deep Network Training by Reducing Internal Covariate

Shift,» 11 Feb 2015. [En ligne]. Available: https://arxiv.org/abs/1502.03167.

[17] K. R, H. S et R. C, «Using convolutional neural networks for image,» 11 February

2019.

[18] C. Z, F. Q, F. R.S et V. N, «A unified multi-scale deep convolutional neural network

for fast object detection,» in European conference on computer vision, pp. 354-370,

2016.

[19] A. M, «A Comprehensive Guide to Types of Neural Networks,» 25 Jan 2019. [En

ligne]. Available: https://www.digitalvidya.com/blog/types-of-neural-networks/.

[20] H. t. H. Dang , «The Modern History of Object Recognition – Infographic,» 28 Apr

2017. [En ligne]. Available: https://medium.com/@RaghavPrabhu/understanding-of-

convolutional-neural-network-cnn-deep-learning-99760835f148.

[21] K. R, H. S and R. C, "Using convolutional neural networks for image recognition," 11

February 2019.

[22] Stanford, University, «Convolutional neural networks for visual recognition.,» 11

February 2019. [En ligne]. Available: http://cs231n.stanford.edu/. [Accès le 11

February 2019].

[23] T. D, B. L, F. R, T. L et P. M, «Learning spa-tiotemporal features with 3d

convolutional networks,» chez Proceedings of IEEE International Conference on

Computer Vision, 2015, p. 4489–4497.

[24] B. Jason , «A Gentle Introduction to Pooling Layers for Convolutional Neural

Networks,» 22 April 2019. [En ligne]. Available:

https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-

networks/.

[25] Stanford, University, «Convolutional neural networks for visual recognition.,» 11

February 2019. [En ligne]. Available: http://cs231n.stanford.edu/.

[26] L. Samer, Hijazi, K. Rishi et R. Chris , «Using convolutional neural networks for

image recognition,» 2015.

[27] J. N, T. T, H. G, K. A et T. Y, «Does the brain do inverse graphics?,» Brain and

Cognitive Sciences Fall Colloquium, 2012.

[28] F. L, «Mit autonomous vehicle technology study,» Large-scale deep learning based

analysis of driver behavior and interaction with automation., p. arXiv:1711.06976,

Nov 2017.

[29] M. Kumar et R. Choudhary, «Artificial neural network related to biological neuron

network: a review.,» Emerging Trends in Big Data , IoT and Cyber Security, pp. 55-

62, 2017.

[30] R. Olga , D. Jia , S. Hao et K. Jonathan, ImageNet Large Scale Visual Recognition

Challenge, International Journal of Computer Vision 115(3), 2014.

[31] E. M, G. L, W. C.K, W. J et Z. A, «The Pascal Visual Object Classes (VOC)

Challenge.,» International Journal of Computer Vision, pp. 303-338, 2010.

[32] L. David, «Distinctive image features from scale-invariant keypoints,» International

Journal of Computer Vision, pp. 91-110, November 2004.

[33] D. N et T. B, «Histograms of oriented gradients for human detection,» in Computer

Vision and Pattern Recognition, pp. 886-893, 20-25 June 2005.

[34] K. A, S. I et H. G.E, «ImageNet Classification with Deep Convolutional Neural

Networks,» in Advances in Neural Information Processing Systems 25, 3 December

2012.

[35] S. C, L. W, j. Y, S. P, R. S, A. D, E. D, V. V et R. A, «Computer Vision and Pattern

Recognition,» Going deeper with convolutions, 14 Sep 2014.

[36] S. Karen et Z. Andrew , «Very Deep Convolutional Networks for Large-Scale Image

Recognition,» Computer Vision and Pattern Recognition , 4 Sep 2014.

[37] U. J.R., v. d. S. K.E.A., G. T et S. A.W.M., «Selective search for object recognition,»

International Journal of Computer Vision, pp. 154-171, Sep 2013.

[38] G. Ross, D. Jeff, D. Trevor et M. Jitendra, «Rich feature hierarchies for accurate

object detection and semantic segmentation,» Computer Vision and Pattern

Recognition, 22 Oct 2014.

[39] H. Jonathan , R. V. , S. Chen , Z. Menglong , B. A. , F. A, F. Ian S, W. Z, S. Yang ,

G. S. et M. K. , «Speed/accuracy trade-offs for modern convolutional object

detectors,» In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[40] A, Krizhevsky; I, Sutskever; G.E, Hinton, «“Imagenet classification with deep

convolutional neural networks,» Advances in neural information processing systems,

pp. 1097-1105, 3 December 2012.

[41] G. R.B., D. J, D. T et M. J, «Rich feature hierarchies for accurate object detection and

semantic segmentation,» Computer Vision and Pattern Recognition, 11 Nov 2013.

[42] U. J.R., V. D. S. K.E., G. T et S. A.W., «Selective Search for Object Recognition,»

International Journal of Computer Vision, pp. 104, 154-171, 2013.

[43] . L. Lingling, Y. Zhengyan , J. Licheng , L. Fang et L. Xu , «High-Resolution SAR

Change Detection Based on ROI and SPP Net,» Journals & Magazines, pp. 177009 -

177022, 2 December 2019.

[44] P. Pulak , Z. Cheng et Z. Christopher , «SPP-Net: Deep Absolute Pose Regression

with Synthetic Views,» Computer Vision and Pattern Recognition, 9 Dec 2017.

[45] G. Ross , «Fast R-CNN,» Computer Vision and Pattern Recognition, 30 Apr 2015.

[46] G. R. , «Fast R-CNN,» EEE Conference on Computer Vision (ICCV), pp. 1440-1448.,

September 2015.

[47] R. Shaoqing, H. Kaiming, G. Ross et S. Jian, «Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,» IEEE Transactions on Pattern

Analysis and Machine Intelligence, pp. 1137-1149, 6 Jun 2016.

[48] H. K, G. G, D. P et G. R.B., «Mask R-CNN,» IEEE Trans Pattern Anal Mach Intell,

5 Jun 2018.

[49] L. Tsung-Yi, D. Piotr , G. Ross , H. Kaiming, H. Bharath et B. Serge , «Feature

Pyramid Networks for Object Detection,» Computer Vision and Pattern Recognition,

19 Apr 2017.

[50] R. I. H. M et L. J, «Exploiting temporal information for 3d human pose estimation,»

23 November 2017.

[51] R. J, D. S, G. R et F. A, «You only look once: Unified ,real time object detection,»

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 779-788, Decem 2016.

[52] R. Joseph , D. Santosh, G. Ross et F. Ali , «You Only Look Once: Unified, Real-

Time Object Detection,» Computer Vision and Pattern Recognition, 8 Jun 2015.

[53] R. Hamid , T. Nathan , G. JunYoung , S. Amir , R. Ian et S. Silvio , «Proceedings of

the IEEE/CVF,» Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 658-666, 2019.

[54] R. Joseph et F. Ali, «Yolov3: An incremental improvement.,» Computer Vision and

Pattern Recognition, 8 Apr 2018.

[55] V. M. Lars et O. Roland , «Improving the Canny Edge Detector Using Automatic

Programming,» Improving Non-Max Suppression, pp. 461-468, 20 July 2016.

[56] Z. Yuanyi, W. Jianfeng , P. Jian et Z. Lei , «Proceedings of the IEEE/CVF Winter,»

Conference on Applications of Computer Vision (WACV), pp. 1286-1294, 2020.

[57] L. Wei , . A. Dragomir, E. Dumitru , S. Christian , R. Scott , F. Cheng-Yang et C. B.

Alexander , «SSD: Single Shot MultiBox Detector,» Computer Vision and Pattern

Recognition, 29 Dec 2016.

[58] L. Tsung-Yi, D. Piotr, G. Ross, H. Kaiming, H. Bharath et B. Serge, «Feature

Pyramid Networks for Object Detection.,» Computer Vision and Pattern

Recognition., 9 Dec 2016.

[59] L. T, G. P, G. R.B, H. K et D. P, «Focal Loss for Dense Object Detection,» Computer

Vision and Pattern Recognition, 7 Aug 2017.

[60] Y. W, C. W, H. Z, Y. D et S. Wei, «Automatic Ship Detection Based on RetinaNet

Using Multi-Resolution Gaofen-3 Imagery,» 19 January 2019.

[61] R. Joseph et F. Ali, «YOLO9000: Better, Faster, Stronger.,» Computer Vision and

Pattern Recognition., 25 Dec 2016.

[62] L. Wei , A. Dragomir , E. Dumitru , S. Christian , R. Scott , F. ChengYang et C.

Alexander, «SSD: Single Shot MultiBox Detector,» Computer Vision2016, pp. 21-37,

29 Dec 2015.

[63] R. J et F. Ali , «YOLOv3: An Incremental Improvement,» Computer Vision and

Pattern Recognition, 8 Apr 2018.

[64] R. J et F. A, «YOLOv3: An Incremental Improvement,» Computer Science,

Computer Vision and Pattern Recognition, 8 Apr 2018.

[65] A. Karl, G. Horst-Michael, S. Martin et M. Stefan, «Complex-YOLO:Real-time 3d

object detection on point clouds.,» European Conference on Computer Vision., 24

Sep 2018.

[66] I. Google , «Une plate-forme Open Source de bout en bout dédiée au machine

learning,» 13 june 2019. [En ligne]. Available: https://www.tensorflow.org/. [Accès le

13 june 2019].

[67] R. J, D. S, G. R et F. A, «You Only Look Once: Unified, Real-Time Object

Detection,» in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 779-788, 8 Jun 2015.

[68] X. Dong, S. Feng, L. Zesen , L. Ba.Tuan , L. Xiwen et L. Xuera, «A Target Detection

Model Based on Improved Tiny-Yolov3 Under the Environment of Mining Truck,»

Tiny-Yolov3, 15 July 2019.

[69] B. Alexey , W. Chien-Yao et M. L. Hong-Yuan , «YOLOv4: Optimal Speed and

Accuracy of Object Detection,» Computer Vision and Pattern Recognition, 23 Apr

2020.

[70] L. T, M. M, B. S.J., B. L.D., G. R.B., H. J, P. P, R. D, D. P et Z. C.L., «Microsoft

COCO: Common Objects in Context,» Computer Vision and Pattern Recognition, 1

May 2014.

[71] R. O, D. J, S. H, K. J, S. S, M. S, H. Z, K. A, K. A, B. M, B. A.C. et F.-F. L,

«ImageNet Large Scale Visual Recognition Challenge,» Computer Science

International Journal of Computer Vision, 1 Sep 2014.

[72] W. C.Y, L. H.Y.M., W. Y.H, C. P.Y., H. J.W. et Y. I.H., «Cspnet: A new backbone

that can enhance learning capability of cnn,» in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition workshops, pp. 390-391,

2020.

[73] k. He, W. Zhang, S. Ren et J. Sun, «Spatial pyramid pooling in deep convolutional

networks for visual recognition,» IEEE transactions on pattern analysis and machine

intelligence,, pp. 1904-1916, 15 June 2014.

[74] H. Z et W. J, «DC-SPP-YOLO: Dense connection and spatial pyramid pooling based

YOLO for object detection,» Information Sciences, pp. 241-258, June 2020.

[75] M. D, «Mish: A Self Regularized Non-Monotonic Activation Function,» Computer

Science > Machine Learning, 13 Aug 2020.

[76] S. Liu, L. Qi, H. Qin, J. Shi et J. Jia, «Path Aggregation Network for Instance

Segmentation,» Computer Science IEEE/CVF Conference on Computer Vision and

Pattern Recognition, p. 8759–8768, 5 March 2018.

[77] K. Taghi M, «A survey on Image Data Augmentation for Deep Learning,» Journal of

Big Data, 06 July 2019.

[78] J. G, S. A, B. J, NanoCode012, C. A, TaoXie, C. L, L. A.V., tkianai, yxNONG, H. A,

lorenzomammana, H. J, D. L, Marc et K. Y, «ultralytics/yolov5: v4.0 - nn.SiLU()

activations, Weights & Biases logging, PyTorch Hub integration,» semanticscholar, 5

January 2021.

[79] R. T, L. H, N. A, B. B. E, S. G et F. I, «Tresnet: High performance gpu-dedicated

architecture,» in Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer, pp. 1440-1409, 2021.

[80] B. Alexey, W. Chien-Yao et M. L. Hong-Yuan, «YOLOv4: Optimal Speed and

Accuracy of Object Detection.,» Computer Vision and Pattern Recognition., 23 Apr

2020.

[81] K. Jeong-ah, S. Ju-Yeong et P. Se-ho, «Comparison of Faster-RCNN, YOLO, and

SSD for Real-Time Vehicle Type Recognition,» Authorized licensed use limited to:

University of Gothenburg, pp. 1-4, 20 December 2020.

[82] R. S, H. K, G. R et S. J, «Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks.,» IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 91-99, 2015.

[83] H. William F, A. Robert W, L. Antonio T et S. Joshua S, «PVLIB Python 2015,»

2015 IEEE 42nd Photovoltaic S..., 2015.

[84] J. Marc , V.-L. Pedro et P. Antonio J, «Performance Evaluation of cuDNN

Convolution Algorithms on NVIDIA Volta GPUs».Journals & Magazines .

[85] X. Frank F, V. Bogdan et N. Graham , «In-IDE Code Generation from Natural

Language: Promise and Challenges,» pp. 1-47, 31 Apr 2022.

[86] R. Derek , E. Neil A, L. V. Enrique et S. Margaret-Anne D, «Error Identification

Strategies for Python Jupyter Notebooks,» Software Engineering, 7 Apr 2022.

[87] P. Sakrapee , S. Jamie , J. Pranam et V.-D. H. Anton , «Effective Semantic Pixel

Labelling With Convolutional Networks and Conditional Random Fields,»

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pp. 36-46, 2015.

[88] Pkulzc, «Faster R-CNN Inception Resnet v2,» 2019. [En ligne]. Available:

https://github.com/tensorflow/models/blob/master/research/object_detection/models/f

aster_rcnn_inceptio. [Accès le April 2020].

[89] TensorFlow, «TensorFlow Object Detection API,» 2020. [En ligne]. Available:

https://www.tensorflow.org/lite/models/object_detection/overview. [Accès le April

2020].

[90] J. Moran , L. Haibo , W. Zhongbo , H. Bin et C. Zheng , «The Application of

Improved YOLO V3 in Multi-Scale Target Detection,» 8 August 2019.

[91] X. Joyce, «Deep Learning for Object Detection: A Comprehensive Review Fast R-

CNN,» 11 Sep 2017. [En ligne]. Available: https://towardsdatascience.com/deep-

learning-for-object-detection-a-comprehensive-review-73930816d8d9.

[92] D. M. Camacho, K. M. Collins, R. K. Powers, . J. C. Costello et J. J. Collins, «Next-

Generation Machine Learning for Biological Networks,» CNN, 7 Jun 2018.

[93] S. Sharma et A. Athaiya, «Activation Functions in Neural Networks.,» International

Journal of Engineering Applied Sciences and Technology, pp. 310-316, 2020.

[94] S. S. et A. A., «Activation Functions in Neural Networks.,» International Journal of

Engineering Applied Sciences and Technology, pp. 310-316, 2020.

[95] t. re, «yuk fb,» n,h,ghgh,h,, 2012.

[96] M. Zeiler et R. Fergus, «Visualizing and understanding convolutional networks,» In

European conference on computer vision, pp. 818-833, 2014.

[97] F. P., «Pictorial example of max-pooling,» Max-pooling / Pooling, 2018.

[98] C. «A Closer Look at YOLOv3,» 2018. [En ligne]. Available:

https://www.cyberailab.com/home/a-closer-look-at-yolov3.

[99] L. Wei , A. Dragomir , E. Dumitru , S. Christian , R. Scott , F. ChengYang et B. d

Alexander C. , «Single shot multibox detector.,» Dec 2015.

[100] S. Liu, Q. L., Q. H, S. J. et J. J, «Path aggregation network for instance

segmentation.,» in Proceedings of the IEEE conference on computer vision and

pattern recognition, p. 8759–8768, 2018.

[101] A. E.H., A. C.H., B. J.R., B. P.J. et O. J.M., «Pyramid methods in image processing,»

RCA engineer, vol. 29, no. 6., pp. 33-41, 1984.

[102] . T. T. Alireza, R. Abbas et M. Muharram , «A lightweight Tiny-YOLOv3 vehicle

detection approach,» Journal of Real-Time Image Processing, p. 2389–2401, 21 May

2021.

[103] D. Vincent et V. Francesco , «A guide to convolution arithmetic for deep learning,»

Machine Learning, 23 Mar 2016.

[104] V. Nitika, B. Edmond et V. Jakob , «FeaStNet: Feature-Steered Graph Convolutions

for 3D Shape Analysis,» pp. 2598-2606, 2018.

[105] P. Dan C. , H. Mark et S. Thuraiappah , «A manifold flattening approach for

anchorless localization,» springer, p. 319–333, 04 December 2011.

[106] L. Ang , Y. Xue et Z. Chongyang , «Rethinking Classification and Localization for

Cascade R-CNN,» Computer Vision and Pattern Recognition, 27 Jul 2019.

[107] «This is how streets and places around the world looked because of Corona (watch),»

18 Mars 2020. [En ligne]. Available: https://arabi21.com/story/1253695.

[108] P. Mike , «HERE & NOW,» 5 SEPTEMBER 2018. [En ligne]. Available:

https://pbswisconsin.org/watch/here-and-now/noon-wednesday-guest-mike-parson-

tokopa.

[109] C. Nguyen, G. Tran, T. Nghiem, N. Doan, D. Gratadour, J. Burie et C. Luong,

«Towards real-time smile detection based on faster region convolutional neural

network,» 1st International Conference on Multimedia Analysis and Pattern

Recognition, pp. 1-6, 2018.

[110] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu et A. Berg, «Ssd: Single

shot multibox detector.,» In European conference on computer vision, pp. 21-37,

October 2016.

[111] A. Bochkovskiy, C. Wang et H. Liao, «Optimal speed and accuracy of object

detection,» Yolov4, 2020.

[112] N. T. t. y. l. G. Jocher, A. Stoken, J. Borovec, A. Chaurasia, L. Changyu, A. Laughing

et A. Hogan, «ultralytics/yolov5,» yolov5, Apr 2021.

[113] R. Vivek et H. Jonathan , «tensorflow,» Google Research, Sep 2020.

[114] S. alkentar et a. , «Practical comparation of the accuracy and speed of YOLO, SSD

and Faster RCNN for drone detection,» Journal of Engineering, vol. 27 , August

2021.

