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Abstract

Image classification is fundamental in the field of artificial intelligence, recently Deep
Residual Learning  [1]  and the new coming model CapsulNet[2] have shown state-of-the-art
performance for image classification tasks , they takes data-sets mostly as input in the form of
RGB images even though we have many other colorspaces available. 
In this thesis we try to understand the impact of image color-space on the performance of CNN
models in Image classification . 

We evaluate this on CIFAR10  [3]data-set by converting it into five other color-spaces
HLS, HSV,  LUV,  LAB, YUV and trained each one  of  them in  two different  deep learning
architecture models namely ResNet20 and CapsulNet , the results obtained show a minor change
in accuracy but even a small percentage may make the difference, in the other hand LUV is good
alternative it show improvement about 0.92% comparison to RGB in ResNet20 and 0.39%  in
CapsulNet.

Keywords: Deep learning,  Color-spaces, Convolutional Neural Networks, ResNet, CapsuleNet 
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INTRODUCTION

 
INTRODUCTION

Deep  learning  has  turned  applications  that  previously  required  vision  expertise  into
engineering  challenges  solvable  by  non-vision  experts.  Deep  learning  transfers  the  logical
burden from an application developer, who develops and scripts a rules-based algorithm, to an
engineer training the system. It also opens a new range of possibilities to solve applications that
have never been attempted without a human. In this way, deep learning makes machine vision
easier to work with, while expanding the limits of what a computer and camera can accurately
inspect.

Deep learning convolutional neural network models have shown greatest performance in image
recognition which sometimes exceeds the human vision, but we continue to face some issues
with over-fitting and vanishing gradient. To get over, data augmentation, batch normalization and
dropout are used. Can we use different image color-space than the usually used RGB to get better
performance? This what we shall show in this thesis by converting  CIFAR10 data-set into five
other color-spaces  namely HLS, HSV, LUV, LAB, YUV and train each one of them in two
different deep learning architecture models : ResNet20 [1] and CapsulNet[2] .

1. Background

This is not the first time such an experimentation is done to understand the performance of CNN
on different color spaces, to our knowledge there is two controversy published papers, in [4]  the
authors claim that image color space have impact over CNN performance, they said that LUV
color space is a best alternative to work with CNN model while YUV color space is the worst
one. A more recent paper [5]   shows that image color space by itself have no effect over CNN
performance, they said that the accuracy did not vary too much using different color spaces but it
can be used as a sort of data augmentation by combined different image color-spaces from the
original data-set using dense-net model,  this will help to deal with common issues such as the
vanishing gradient problem and the problem of over-fitting and get better performance.

2. The Scope of this Research

This thesis focus on study of the impact of color-space in image classification by deep learning
model, especially Deep Residual Learning (ResNet) won the first place in the ILSVRC 2015
classification competition with top-5 error rate of 3.57% ,  and the new model capsule Network
by experimenting using Keras [6] which is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow. There are other architectures like AlexNet, VGG,
GoogLeNet and framework like Caffe, Pytorch . We also focus in CPU computing .
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INTRODUCTION

3. Research Goals and Questions

Our goal is to answer a simple question: The RGB color space is the most color space used
for datasets  in image classification using deep learning model,  can the performance of deep
learning model be improved by using different color spaces?

4.  Structure of the manuscript

Chapter 1 is a theoretical background it focuses in the context and definition of deep learning
it also describes the artificial neuron which is the building block of artificial neural network and
Convolutional  neural  network  (CNN),  it  also  describes  the  gradient  descent  and  the  back-
propagation algorithm with some mathematical notation, it also describe briefly  the architecture
ResNet and CapsulNet .

Chapter 2 describes  image color  spaces  especially  RGB,  HSV,  HSL,  YUV,  LUV,  LAB,
sRGB and how to convert from a RGB to other colors spaces.

Chapter 3 describes the tool, library and the data-set CIFAR10 used in the experimentation.
The  conversion  process  of  the  data-set  to  other  colors  spaces,  it  also  briefly  describes  the
implementation. It ended by analyzing the results obtained.
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CHAPTER I : DEEP LEARNING AND ITS APPLICATION

  CHAPTER I 
DEEP LEARNING AND ITS APPLICATION

I.1 Historical Context

I.1.1 Artificial intelligence [7]

Artificial intelligence has a rich history going back to 1950, when a handful of pioneers
from the nascent field of computer science started asking whether computers could be made to
“think” a question whose ramifications are still in exploring today. A concise definition of the
field would be as follows:  the effort  to automate intellectual  tasks normally  performed by
humans.

Artificial  intelligence  is  a  general  field  that  encompasses  machine  learning and deep
learning (see Figure 1), but that also includes many more approaches that don’t  involve any
learning  early  chess  programs,  for  instance,  only  involved  hard-coded  rules  crafted  by
programmers,  and  didn’t  qualify  as  machine  learning,  for  a  fairly  long  time,  many  experts
believed  that  human-level  artificial  intelligence  could  be  achieved  by  having  programmers
handcraft a sufficiently large set of explicit rules for manipulating knowledge. This approach is
known as symbolic AI , and it was the dominant paradigm in AI from the 1950s to the late 1980s.
It reached its peak popularity during the expert systems boom of the 1980s.
Although symbolic  AI proved suitable  to  solve well-defined,  logical  problems  that  could be
easily described formally, such as playing chess, it  turned out to be intractable to figure out
explicit rules for solving more complex, fuzzy problems, such as image classification, speech
recognition, and language translation. 
A new approach arose to take symbolic AI ’s place: machine learning. 

Figure 1 Deep Learning is a subfield of Machine Learning which is a subfield of AI

I.1.2 Machine learning [7]

Machine learning arises from this question: could a computer go beyond “what we know
how to order it to perform” and learn on its own how to perform a specified task? , Could a
computer surprise us? Rather than programmers crafting data-processing rules by hand, could a
computer automatically learn these rules by looking at data? 
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CHAPTER I : DEEP LEARNING AND ITS APPLICATION

This question opens the door to a new programming paradigm. In classical programming,
the paradigm of symbolic AI, humans input rules (a program) and data to be processed according
to these rules, and outcome answers , With machine learning, humans input data as well as the
answers expected from the data, and outcome the rules (a program). These rules can then be
applied to new data to produce original answers (see Figure 2).

 Figure 2 traditional programming vs machine learning

A machine-learning system is trained rather than explicitly programmed As a subbranch of
Artificial intelligence (AI) it focuses on teaching computers how to learn without the need to be
programmed  for  specific  tasks,  learning  in  the  context  of  machine  learning  describes  an
automatic search process for better representations.
A popular definition of learning in the context of computer programs is “A computer program is
said to learn from experience E with respect to some class of tasks T and performance measure
P , if its performance at tasks in T , as measured by P , improves with experience E”  [8]
Machine learning systems, with shallow or deep architectures (see Figure3), have ability to learn
and improve with experience. The process of machine learning begins with the raw data which is
used for extracting useful information that helps in decision-making.

Figure 3 shallow learning vs deep learning

The primary  aim is  to  allow a machine to  learn useful  information just  like  humans do,  at
abstract level, machine learning can be carried out using following approaches :

4



CHAPTER I : DEEP LEARNING AND ITS APPLICATION

I.1.2.1 Supervised learning adapts a system such that for a given input data it produces a target
output. The learning data is made up of tuples (attributes, label) where “attributes” represent the
input data and “label” represents the target output. The goal here is to adapt the system so that for
a new input the system can predict the target output. Supervised learning can use both continuous
and discrete types of input data. 

I.1.2.2 Unsupervised learning  involves data that comprises of input vectors without any target
output.  There  are  different  objectives  in  unsupervised  learning,  such  as  clustering  ,density
estimation, and visualization. 
The goal of clustering is to discover groups of similar data items on the basis of measured or
perceived similarities between the data items. The purpose of density estimation is to determine
the distribution of the data within the input space. In visualization, the data is projected down
from a high-dimensional space to two or three dimensions to view the similar data items.

I.1.2.3 Semi-supervised  learning first uses unlabeled data to learn a feature representation of
the input data and then uses the learned feature representation to solve the supervised task.
The training data-set can be divided into two parts: the data samples with corresponding labels
and the data samples where the labels are not known. Semi-supervised learning can involve not
providing with an explicit form of error at each-time but only a generalized reinforcement is
received giving indication of how the system should change its behavior, and this is sometimes
referred to as reinforcement learning. Reinforcement learning has been successful in applications
as diverse as autonomous helicopter flight, robot legged locomotion, cell-phone network routing,
marketing strategy selection, factory control and efficient web-page indexing.

I.1.2.4 Shallow Learning 
Shallow  architectures  are  a  simple  artificial  neural  networks,  they  perform  good  on  many
common machine learning problems, and they are still used in a vast majority of today’s machine
learning  applications.  However,  there  has  been  an  increased  interest  in  deep  architectures
recently,  in the hope to find means to solve more complex real-world problems (e.g.,  image
analysis or natural language understanding) for which shallow architectures are unable to learn
models adequately.

I.2 Deep Learning
“Deep learning methods are representation-learning methods with multiple levels

of representation, obtained by composing simple but nonlinear modules 
that each transform the representation at one level (starting with the raw input) 

into a representation at a higher, slightly more abstract level. [. . . ] 
The key aspect of deep learning is that these layers are not designed by human engineers: they

are learned from data using a general-purpose learning procedure”  [9]

Deep learning is a new area of machine learning which has gained popularity in recent past , it
use artificial neural networks (ANN) slightly inspired by the structure of neurons located in the
human brain . 
Informally, The word deep in deep learning isn’t a reference to any kind of deeper understanding
achieved by the approach, rather, it stands for this idea of successive layers of representations,
how many hidden layers contribute to a model of the data is called the depth of the model, other
appropriate names for the field could have been layered representations learning and hierarchical
representations learning. 
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Modern  deep  learning  often  involves  tens  or  even  hundreds  of  successive  layers  of
representations and they’re all learned automatically from exposure to training data.
Another  definition  defines  deep  learning  [10] as  neural  networks  with  large  number  of
parameters and layers in one of four fundamental network architectures:

(1) Unsupervised pretrained networks
(2) Convolutional neural networks
(3) Recurrent neural networks
(4) Recursive neural networks

Automatic feature extraction[11] is another one of the great advantages that deep learning has
over traditional machine learning algorithms (see Figure 4 )
By feature extraction, we mean that the network’s process of deciding which characteristics of a
dataset  can  be  used  as  indicators  to  label  that  data  reliably.  Historically,  machine  learning
practitioners have spent months, years, and sometimes decades of their lives manually creating
exhaustive feature sets for the classification of data.

Figure 4 Feature extraction  in machine learning vs deep learning

Deep  learning  is  still  far  from  being  a  mature  and  well-understood  field,  many  real-world
applications such as vision-based detection and recognition, product recommendation, speech
recognition  and  synthesis,  energy  conservation,  drug  discovery,  finance,  and  marketing  are
already using deep learning algorithms. 
A field that is not completely mature is a double-edged sword. On one edge, it offers a lot of
opportunities  for  discovery  and  exploitation.  There  are  many  unsolved  problems  in  deep
learning.  This  translates  into  opportunities  to  be  the  first  to  market  product  development,
publication, or recognition. 
The other edge is that it would be difficult to trust a not completely well-understood field in a
mission-critical  environment.  We  can  safely  say  that  if  asked,  very  few  machine  learning
engineers will ride an auto-pilot plane controlled by a deep learning system. There is a lot of
work to be done to gain this level of trust. 
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I.2.1 The Neuron
The foundational unit of the human brain is the neuron. A tiny piece of the brain, about the size
of  grain  of  rice,  contains  over  10,000  neurons,  each  of  which  forms  an  average  of  6,000
connections with other neurons, it’s this massive biological network that enables us to experience
the world around us. 
At its  core,  the neuron is  optimized to receive information from other  neurons,  process this
information in a unique way, and send its result to other cells. This process is summarized in
Figure 5 , 
The neuron receives  its  inputs  along antennae-like structures  called dendrites.  Each of these
incoming connections is dynamically strengthened or weakened based on how often it is used
(this is how we learn new concepts!),
and it’s  the strength of each connection that  determines  the contribution of  the input  to  the
neuron’s output. After being weighted by the strength of their respective connections, the inputs
are summed together in the cell body. This sum is then transformed into a new signal that’s
propagated along the cell’s axon and sent off to other neurons.[10]

Figure 5 structur of Neuron

I.2.2 Artificial neuron:
this functional understanding of the neurons in our brain is translated into an artificial model that
can be represented on computer. Such a model is described in Figure 6 , it takes in some number
of inputs, x 1 , x 2 , . . . , x n , each of which is multiplied by a specific weight, w 1 , w 2 , . . . , w n .
These  weighted  inputs  are,  as  before,  summed together  to  produce  the  logit  of  the  neuron,

z=∑
i=0

n

wi x i  In many cases, the logit also includes bias, which is a constant .

Figure 6  Artificial Neuron
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CHAPTER I : DEEP LEARNING AND ITS APPLICATION

The logit is then passed through a function f to produce the output y= f (z ) . This output can
be transmitted to other neurons,  mathematically the artificial neuron functionality can be re-
expressing  in vector form,  the inputs as a vector x = [x  1  x  2 ... x  n ] and the weights of the
neuron as w = [w 1 w 2 ... w n ] , and the  output of the neuron as  y= f (x .w+b)  , where b is
the bias term. In other words, the output  is computing by performing the dot product of the input
and  weight  vectors,  adding  in  the  bias  term  to  produce  the  logit,  and  then  applying  the
transformation function [10]. 

I.2.3 Artificial Neural Networks
Neural networks are one type of model for machine learning; they have been around for at least
50 years. in the mid-1980s and early 1990s, many important architectural advancements were
made in neural networks. However, the amount of time and data needed to get good results
slowed  adoption.   In  the  early  2000s  computational  power  expanded  exponentially  and  the
industry saw a “Cambrian explosion” of computational techniques that were not possible prior to
this, This made the interest come back in Neural networks [10].
Neural networks  are a computational model that shares some properties with the animal brain in
which many simple units are working in parallel with no centralized control unit. 
The weights between the units are the primary means of long-term information storage in neural
networks.  Updating  the  weights  is  the  primary  way  the  neural  network  learns  new
information.
The most well-known and simplest-to-understand neural network is the feed-forward multilayer
neural network (see figure 7). It has an input layer, one or many hidden layers, and a single
output layer. Each layer can have a different number of neurons and each layer is fully connected
to the adjacent layer.

Figure 7 Artificial Neural Networks

A feed-forward multilayer neural network can represent any function, given enough artificial
neuron units. It is generally trained by a learning algorithm called Back-propagation learning. It
uses gradient descent on the weights of the connections in a neural network to minimize the error
on the output of the network.[10]
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I.2.3.1 Input layer. This layer is how we get input data (vectors) fed into our network. The
number of neurons in an input layer is typically the same number as the input feature to the
network. Input layers are followed by one or more hidden layers  Input layers in classical feed-
forward  neural  networks  are  fully  connected  to  the  next  hidden layer,  yet  in  other  network
architectures, the input layer might not be fully connected.

I.2.3.2 Hidden layer. There are one or more hidden layers in a feed-forward neural network.
The weight values on the connections between the layers are how neural networks
encode the learned information extracted from the raw training data. Hidden layers
are the key to allowing neural networks to model nonlinear functions.

I.2.3.3 Output layer. We get the answer or prediction from our model from the output layer.
Given that we are mapping an input space to an output space with the neural network model, the
output layer gives us an output based on the input from the input layer. Depending on the setup
of the neural  network,  the final  output  may be a  real-valued output  (regression)  or a  set  of
probabilities (classification). This is controlled by the type of activation function we use on the
neurons in the output layer. 
The output layer typically uses either a softmax or sigmoid activation function for classification. 

I.2.3.4 Activation Functions
activation functions are used to propagate the output of one layer’s nodes forward to the next
layer (up to and including the output layer) , it has also the ability to filter out data , some usual
Activation functions are :

I.2.3.4.1 Linear

Figure 8  identity function

A linear  transform is  basically  the  identity  function ,(داليية محايييدة)   and  f (x)=wx where  the
dependent  variable  has  a  direct,  proportional  relationship  with  the  independent  variable.  In
practical  terms, it  means the function passes the signal  through unchanged (figure 8)  Linear
neurons are easy to compute with, but they run into serious limitations. In fact, it can be shown
that any feed-forward neural network consisting of only linear
neurons can  be  expressed  as  a  network with  no  hidden layers.  This  is  problematic  because
hidden layers are what enable us to learn important features from the input data. In other words,
in  order  to  learn  complex  relationships,  we  need  to  use  neurons  that  employ  some sort  of
nonlinearity.

9
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I.2.3.4.2 None linear activation functions 
There are three major types of neurons that are used in practice that introduce nonlinearities in
their computations. 

a) Sigmoid neuron, which uses the function:

f (z)=
1

1+e− z           (1)

Intuitively, this means that when the logit is very small, the output of a logistic neuron is very
close to 0. When the logit is very large, the output of the logistic neuron is close to 1. In-between
these two extremes, the neuron assumes an S-shape, as shown in Figure 9

Figure 9  The output of a sigmoid neuron as z varies

b) Tanh  neurons use a similar kind of S-shaped nonlinearity, but instead of ranging from 0 to 1,
the output of tanh neurons range from −1 to 1, they use f (z)= tanh (z ) , tanh represents the
ratio of the hyperbolic sine to the hyperbolic cosine: tanh(x) = sinh(x) / cosh(x) .
The resulting relationship between the output y and the logit z is described by Figure 10  When
S-shaped nonlinearities are used, the tanh neuron is often preferred over the sigmoid neuron
because it is zero-centered.

Figure 10 The output of a tanh neuron as z varies
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c) ReLU a different kind of nonlinearity is used by the restricted linear unit neuron. It uses the
function f (z)=max(0 , z) (Figure 11) .
The ReLU has recently become the neuron of choice for many tasks (especially in computer
vision) for a number of reasons,  one of it  as strategies to combat the potential pitfalls , because
the gradient  of a ReLU is  either  zero or a constant,  it  is  possible  to  reign in the vanishing
exploding gradient issue. ReLU activation functions have shown to train better in practice than
sigmoid activation functions.

Figure 11 The output of a ReLU neuron as z varies

d) Softmax
Softmax is a generalization of logistic regression inasmuch as it can be applied to continuous
data (rather than classifying binary) and can contain multiple decision boundaries. It handles
multinomial  labeling  systems.  Softmax  is  the  function  often  find  at  the  output  layer  of  a
classifier.(see Figure12)

Figure 12 Softmax 
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The output of a neuron in a softmax layer depends on the outputs of all the other neurons in its
layer. This is because we require the sum of all the outputs to be equal to 1. Letting z i be the logit
of the i th softmax neuron, we can achieve this normalization by setting its output to:

yi=
e zi

∑
j

ez j      (2)

A strong prediction would have a single entry in the vector close to 1,  while the remaining
entries were close to 0. A weak prediction would have multiple possible labels that are more or
less equally likely.

I.2.3.5 Loss Functions
Loss functions [10]quantify how close a given neural network is to the ideal toward which it is
training. The idea is simple. We calculate a metric based on the error we observe in the network’s
predictions. We then aggregate these errors over the entire dataset and average them and now we
have a single number representative of how close the neural network is to its ideal.
Looking for this ideal state is equivalent to finding the parameters (weights and biases) that will
minimize the “loss” incurred from the errors. In this way, loss functions help re-frame training
neural networks as an optimization problem.
We want  to  train  the  neuron so that  we pick  the  optimal  weights  possible  the  weights  that
minimize the errors we make on the training examples. 
In most cases, these parameters cannot be solved for analytically, but, more often than not, they
can be approximated well with iterative optimization algorithms like gradient descent.
In this case, let’s say we want to minimize the square error over all of the training examples that
we encounter. More formally, if we know that t(i) is the true answer for the i(th) training example
and y(i)  is the value computed by the neural network, we want to minimize the value of the error
function E :

E=
1
2
∑
i

(t(i)− y(i)
)
2

 (3)

I.2.4 Gradient Descent 
Gradient is defined as the generalization of the derivative of a function in one dimension to a
function f  in several dimensions.  It  is represented as a vector of n partial  derivatives of the
function f. It is useful in optimization in that the gradient points in the direction of the greatest
rate of increase of the function for which the magnitude is the slope of the graph in that direction.
Gradient descent calculates the slope of the loss function by taking a derivative, which should be
a familiar term from calculus. On a two-dimensional loss function, the derivative would simply
be the tangent of any point on the parabola.
As we know from trigonometry,  a tangent is just  a ratio: the opposite side (which measures
vertical change) over the adjacent side (which measures horizontal change) of a right triangle.
One definition of a curve is a line of constantly changing slope. The slope of each point on the
curve is represented by the tangent line touching that point. Because slopes are derived from two
points, how exactly does one find the slope of one point on a curve? We find the derivative by
calculating the slope of a line between two points on the curve separated by a small distance and
then slowing decreasing that distance until it approaches zero. In calculus, this is a limit.
Let’s visualize how we might minimize the squared error over all of the training examples by
simplifying the problem. Let’s say our linear neuron only has two inputs (and thus only two

12



CHAPTER I : DEEP LEARNING AND ITS APPLICATION

weights, w 1 and w 2 ). Then we can imagine a three-dimensional space where the horizontal
dimensions correspond to the weights w 1 and w 2 , and the vertical dimension corresponds to
the value of the error function E . In this space , points in the horizontal plane correspond to
different settings of the weights, and the height at those points corresponds to the incurred error.
If we consider the errors we make over all  possible weights, we get a surface in this three-
dimensional space, in particular, a quadratic bowl as shown in (Figure 13)

Figure 13 The quadratic error surface for a linear neuron

Now we can develop a high-level strategy for how to find the values of the weights
that minimizes the error function. Suppose we randomly initialize the weights of our network so
we find ourselves somewhere on the horizontal plane. By evaluating the gradient at our current
position, we can find the direction of steepest descent, and we can take a step in that direction.
Then we’ll find ourselves at a new position that’s closer to the minimum than we were before.
We can reevaluate the direction of steepest descent by taking the gradient at this new position
and taking a step in this new direction. It’s easy to see that, as shown in Figure 14 , following this
strategy  will  eventually  get  us  to  the  point  of  minimum error.  This  algorithm is  known as
gradient descent, and it is used to tackle the problem of training individual neurons and the more
general challenge of training entire networks. 

Figure 14 Visualizing the error surface as a set of contours
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learning  algorithms  also  require  a  couple  of  additional  parameters  to  carry  out  the  training
process. One of these so-called hyperparameters is the learning rate.
In practice, at each step of moving perpendicular to the contour, we need to determine how far
we want to walk before recalculating our new direction. This distance needs to depend on the
steepness of the surface. Why? The closer we are to the minimum, the shorter we want to step
forward. We know we are close to the minimum, because the surface is a lot flatter, so we can
use the steepness as an indicator of how close we are to the minimum. However, if our error
surface is rather mellow, training can potentially take a large amount of time. As a result, we
often multiply the gradient by a factor   ɛ , the learning rate. Picking the learning rate is a hard
problem ,  if we pick a learning rate that’s too small, we risk taking too long during the training
process. But if we pick a learning rate that’s too big (see Figure 15), we’ll mostly likely start
diverging away from the minimum.[10]

Figure 15 Convergence is difficult when our learning rate is too large

In order to calculate how to change each weight, we evaluate the gradient, which is essentially
the partial derivative of the error function with respect to each of the weights. In other words, we
want:

Δw k=−ϵ
∂E
∂w k

=−ϵ

∂(
1
2∑i

(t(i)− y(i)
)

2
)

∂wk

=∑
i

ϵ(t(i)− y(i)
)
∂ y i
∂wk

=∑
i

ϵ Xk
(i)
(t (i )− y (i)

)
 (4)

Applying this method of changing the weights at every iteration, we are finally able to utilize
gradient descent.

I.2.4.1 Gradient Descent with Sigmoidal Neurons [10]
training neurons and neural networks that utilize nonlinearities like sigmoidal neuron as a model,
we merely need to assume that the bias is a weight on an incoming connection whose input value
is always one.
Let’s recall  the mechanism by which logistic  neurons compute their  output value from their
inputs:

z=∑
k

wk xk

y=
1

1+e−z

 (5)

The neuron computes the weighted sum of its inputs, the logit z . It then feeds its logit into the
input function to compute y , its final output. Fortunately for us, these functions have very nice
derivatives, which makes learning easy! For learning, we want to compute the gradient of the
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error function with respect to the weights. To do so, we start by taking the derivative of the logit
with respect to the inputs and the weights:

∂ z
∂w k

=xk

∂ z
∂ xk

=w k

 (6)

Also, quite surprisingly, the derivative of the output with respect to the logit is quite simple if
you express it in terms of the output:

∂ y
∂ z

=
e− z

(1+e− z
)

2 =
1

1+e−z

e−z

1+e− z=
1

1+e−z (1−
1

1+e−z )= y (1− y)  (7)

We then use the chain rule to get the derivative of the output with respect to each
weight:

∂ y
∂w k

=
∂ y
∂ z

∂ z
∂w k

=xk y (1− y)  (8)

Putting all of this together, we can now compute the derivative of the error function with respect
to each weight:

∂ E
∂w k

=∑
i

∂E
∂ y(i)

∂ y(i)

∂w k

=−∑
i

xk
(i ) y(i )

(1− y(i )
)(t (i)− y(i)

)  (9)

Thus, the final rule for modifying the weights becomes:

Δw k=∑
i

ϵ xk
(i) y(i)

(1− y(i)
)(t(i)− y(i)

)  (10)

I.2.5 The Backpropagation Algorithm [10]
to  training  multilayer  neural  networks  we’ll  use  an  approach  known  as  backpropagation,
pioneered by David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams . [12] So what’s
the idea behind backpropagation? We don’t know what the hidden units ought to be doing, but
what we can do is compute how fast the error changes as we change a hidden activity. From
there, we can figure out how fast the error changes when we change the weight of an individual
connection. Essentially, we’ll be trying to find the path of steepest descent! The only catch is that
we’re going to be working in an extremely high-dimensional space. We start by calculating the
error derivatives with respect to a single training example.
Each hidden unit  can affect  many output  units.  Thus,  we’ll  have to  combine many separate
effects on the error in an informative way. Our strategy will be one of dynamic programming.
Once we have the error derivatives for one layer of hidden units, we’ll use them to compute the
error derivatives for the activities of the layer below. And once we find the error derivatives for
the activities of  the hidden units,  it’s  quite  easy to  get  the error  derivatives  for the weights
leading into a hidden unit. We’ll redefine some notation for ease of discussion and refer to the
(Figure 16 ) The subscript we use will refer to the layer of the neuron. The symbol y will refer to
the activity of a neuron, as usual. Similarly, the symbol z will refer to the logit of the neuron.
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Figure 16 Reference diagram for the derivation of the backpropagation algorithm

We start by taking a look at the base case of the dynamic programming problem. Specifically, we
calculate the error function derivatives at the output layer:

E=
1
2 ∑

j∈output

(t j− y j)
2
⇒

∂E
∂ y j

=−(t j− y j)  (10)

Now we tackle the inductive step. Let’s presume we have the error derivatives for layer j . We
now aim to calculate the error derivatives for the layer below it,  layer i  To do so,  we must
accumulate information about how the output of a neuron in layer i affects the logits of every
neuron in layer j . This can be done as follows, using the fact that the partial derivative of the
logit with respect to the incoming output data from the layer beneath is merely the weight of the
connection wij 

∂ E
∂ y i

=∑
j

∂E
∂ z j

∂ z j
∂ y i

=∑
i

wij
∂E
∂ z j

 (11)

Furthermore, we observe the following:
∂E
∂ z j

=
∂ E
∂ y j

∂ y j
∂ z j

= y j(1− y j)
∂E
∂ y j

 (12)

Combining these two together, we can finally express the error derivatives of layer i in terms of
the error derivatives of layer j :

∂ E
∂ y i

=∑
j

w ij y j(1− y j)
∂E
∂ y j

 (13)

Then once we’ve gone through the whole dynamic programming routine, having filled up the
table appropriately with all of our partial derivatives (of the error function with respect to the
hidden unit activities), we can then determine how the error changes with respect to the weights.
This gives us how to modify the weights after each training example:

∂E
∂w ij

=
∂ z j
∂wij

∂E
∂ z j

= y i y j(1− y j)
∂ E
∂ y j

 (14)

Finally, to complete the algorithm, just as before, we merely sum up the partial derivatives over
all the training examples in our dataset. This gives us the following modification formula:

ΔW ij=− ∑
k∈dataset

ϵ y i
(k) y j

(k)
(1− y j

(k)
)
∂E(k)

∂ y j
(k)  (15)
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I.2.6 Convolutional Neural Networks (CNNs / ConvNets) [13]

Convolutional Neural Network also known as ConvNet or CNN are inspired by the biological
visual cortex. The visual cortex has small regions of cells that are sensitive to specific regions of
the visual field. Different neurons in the brain respond to different features. For example, certain
neurons  fire  only  in  the  presence  of  lines  of  a  certain  orientation,  some neurons  fire  when
exposed to vertical edges and some when shown horizontal or diagonal edges, this idea of certain
neurons having a specific task is the basis behind ConvNets.

ConvNets  have  shown  excellent  performance  on  several  applications  such  as  image
classification,  object  detection,  speech recognition,  natural  language processing,  and medical
image analysis. Convolutional neural networks are powering core of computer vision that has
many  applications  which  include  self-driving  cars,  robotics,  and  treatments  for  the  visually
impaired.  The main  concept  of  ConvNets  is  to  obtain  local  features  from input  (usually  an
image) at higher layers and combine them into more complex features at the lower layers. 

I.2.6.1 Convolution Operation

Convolution is a mathematical operation performed on two functions and is written as (f * g),
where f and g are two functions. 

The output of the convolution operation for domain n is defined as

(f∗g)(n)=∑
m

f (m)g(n−m)  (16)

For time-domain functions,  n is  replaced by t.  The convolution operation is  commutative in
nature, so it can also be written as

(f∗g)(n)=∑
m

f (n−m) g(m)  (17)

Convolution operation is one of the important operations used in digital signal processing and is
used in many areas which includes statistics, probability, natural language processing, computer
vision, and image processing and can be applied to higher dimensional functions as well.

It  can  be  applied  to  a  two-dimensional  function  by  sliding  one  function  on  top  of  another,
multiplying  and  adding.  Convolution  operation  can  be  applied  to  images  (treated  as  two-
dimensional functions) to perform various transformations.

An example of a two-dimensional filter, a two-dimensional input, and a two-dimensional feature
map is shown in Figure 17 Let the 2D input (i.e., 2D image) be denoted by A, the 2D filter of
size m × n be denoted by K, and the 2D feature map be denoted by F. Here, the image A is
convolved  with  the  filter  K and  produces  the  feature  map  F.  This  convolution  operation  is
denoted by A*K and is mathematically given as

f (i , j)=(A∗k )(i , j)=∑
m
∑
n

A (m ,n)k (i−m, j−n)  (18)
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The convolution operation is commutative in nature, so we can write

f (i , j)=(A∗k )(i , j)=∑
m
∑
n

A (i−m , j−n)k (m,n)  (19)

Figure 17 Convolution operation

The kernel  K is  flipped  relative  to  the  input.  If  the  kernel  is  not  flipped,  then  convolution
operation will be same as cross-correlation operation that is given below:

f (i , j)=(A∗k )(i , j)=∑
m
∑
n

A (i+m, j+n)k (m,n)  (20)

Many  CNN  libraries  use  cross-correlation  function  as  convolution  function  because  cross-
correlation is more convenient to implement than convolution operation itself. 

I.2.6.2 Architecture of CNN

In a traditional neural network, Each hidden layer is made up of a number of neurons, where
each neuron is fully connected to all neurons in the preceding layer. The problem with the fully
connected neural network is that its densely connected network architecture does not scale well
to large images. For large images, the most preferred approach is to use convolutional neural
network.
Convolutional neural network is a deep neural network architecture designed to process data that
has a known, grid-like topology, for example, 1D time-series data, 2D or 3D data such as images
and speech signal, and 4D data such as videos. ConvNets have three key features: local receptive
field, weight sharing, and subsampling (pooling).

(i) Local Receptive Field
In a  traditional neural  network,  each neuron or hidden unit  is  connected to every neuron in
previous layer or every input unit. Convolutional neural networks, however have local receptive
field architecture, , each hidden unit can only connect to a small region of the input called local
receptive field. This is accomplished by making the filter/weight matrix smaller than the input.
With local receptive field, neurons can extract elementary visual features like edges, corners, end
points, etc.
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(ii) Weight Sharing
Weight  sharing  refers  to  using  the  same filter/weights  for  all  receptive  fields  in  a  layer.  In
ConvNet, since the filters are smaller than the input, each filter is applied at every position of the
input , same filter is used for all local receptive fields.

(iii) Subsampling (Pooling)
Subsampling reduces the spatial size of the input, thus reducing the parameters in the network.
There are few subsampling techniques available, and the most common subsampling technique is
max-pooling.

ConvNet consists of a sequence of different types of layers to achieve different tasks, a typical
convolutional neural network consists of the following layers:

➢ Convolutional layer,
➢ Activation function layer (ReLU),
➢ Pooling layer,
➢ Fully connected layer and

Figure 18 use of ConvNet  in deep learning

These layers are stacked up to make a full ConvNet architecture. Convolutional and activation
function  layers  are  usually  stacked  together  followed  by  an  optional  pooling  layer.  Fully
connected layer makes up the last layer of the network, and the output of the last fully connected
layer produces the class scores of the input image as showing in figure 18.
In addition to these main layers mentioned above, ConvNet may include optional layers like
batch  normalization  layer  to  improve  the  training  time  and  dropout  layer  to  address  the
overfitting issue.

I.2.6.2.1 Convolution Layer
Convolution  layer  is  the  core  building  block of  a  convolutional  neural  network  which  uses
convolution operation (represented by *) in place of general matrix multiplication. Its parameters
consist of a set of learnable filters also known as kernels. The main task of the convolutional
layer  is  to  detect  features  found  within  local  regions  of  the  input  image  that  are  common
throughout the dataset and mapping their appearance to a feature map. 
A feature map is obtained for each filter in the layer by repeated application of the filter across
subregions of the complete image, convolving  the filter with the input image, adding a bias
term, and then applying an activation function. 
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The input area on which a filter is applied is called local receptive field.
The size of the receptive field is same as the size of the filter, (Figure 19 ) shows how a filter (T-
shaped) is convolved with the input to get the feature map.
Feature map is obtained after adding a bias term and then applying a nonlinear function to the
output  of  the  convolution  operation.  The  purpose  of  nonlinearity  function  is  to  introduce
nonlinearity in the ConvNet model.

I.2.6.2.1.1Filters/Kernels
The weights in each convolutional layer specify the convolution filters and there may be multiple
filters in each convolutional layer. Every filter contains some feature like edge, corner, etc. and
during forward pass, each filter is slid across the width and height of the input generating feature
map of that filter.

        Input image           convolution        Kernel                                            Final Feature Map
Figure 19 Example of convolution operation

I.2.6.2.1.2 Hyperparameters
Convolutional neural network architecture has many hyperparameters that are used to control the
behavior of the model. Some of these hyperparameters control the size of the output while some
are  used  to  tune  the  running  time  and  memory  cost  of  the  model,  the  four  important
hyperparameters in the convolution layer of the ConvNet are given below:

a. Filter Size: Filters can be of any size greater than 2 × 2 and less than the size ofthe input but
the conventional size varies from 11 × 11 to 3 × 3. The size of a filter is independent of the size
of input.

b. Number of Filters: There can be any reasonable number of filters. AlexNet used 96 filters of
size 11 × 11 in the first convolution layer. VGGNet used 96 filters of size 7 × 7, and another
variant of VGGNet used 64 filters of size 11 × 11 in first convolution layer.
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c. Stride:  It is the number of pixels to move at a time to define the local receptive field for a
filter. Stride of one means to move across and down a single pixel. The value of stride should not
be too small or too large. Too small stride will lead to heavily overlapping receptive fields and
too large value will overlap less and the resulting output volume will have smaller dimensions
spatially.
d. Zero Padding: This hyperparameter describes the number of pixels to pad the input image
with zeros. Zero padding is used to control the spatial size of the output volume.
Each filter in the convolution layer produces a feature map of size ([A − K + 2P]/S)+ 1 where A
is the input volume size, K is the size of the filter, P is the number of padding applied and S is the
stride. 
Suppose the input image has size 128 × 128, and 5 filters of size 5 × 5 are applied, with single
stride and zero padding, i.e., A # 128, F # 5, P # 0 and S # 1. The number of feature maps
produced will be equal to the number of filters applied, i.e., 5 and the size of each feature map
will be ([128 − 5 + 0]/1) + 1 # 124. Therefore, the output volume will be 124 × 124 × 5.

I.2.6.2.2 Pooling Layer
In ConvNets, the sequence of convolution layer and activation function layer is followed by an
optional pooling or down-sampling layer to reduce the spatial size of the input and thus reducing
the number of parameters in the network. 
A pooling layer takes each feature map output from the convolutional layer and down-samples it,
pooling layer summarizes a region of neurons in the convolution layer. There are few pooling
techniques available and the most common pooling technique is max-pooling. 
Max-pooling simply outputs the maximum value in the input region.
The input region is a subset of input (usually 2 × 2). For example, if input region is of size 2 × 2,
the max-pooling unit will output the maximum of the four values as shown in Figure 20 Other
options for pooling layers are average pooling and L2-norm pooling.
Pooling layer operation discards less significant data but preserves the detected features in a
smaller representation. The intuitive reasoning behind pooling operation is that feature detection
is more important than feature’s exact location. This strategy works well for simple and basic
problems but it has its own limitations and does not work well for some problems.

Figure20 Max-pooling

I.3 Regularization for Deep Learning
“A central problem in machine learning especially in deep learning is how to make an algorithm
that will perform well not just on the training data, but also on new inputs. Many strategies used

in machine learning are explicitly designed to reduce the test error, possibly at the expense of
increased training error. These strategies are known collectively as regularization. ” [14].
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Regularization is often done by putting some extra constraints on a machine learning model,
such as adding restrictions on the parameter values or by adding extra terms in the objective
function  (penalizes  the  weight  matrices) that  can  be  thought  of  as  corresponding  to  a  soft
constraint on the parameter values. If chosen correctly these can lead to a reduced testing error.
An effective regularizer is said to be the one that makes a profitable trade by reducing variance
significantly while not overly increasing the bias.
Regularization helps us control our model capacity, ensuring that our models are better at making
(correct) classifications on data points that they were not trained on, which we call the ability to
generalize. If we don’t apply regularization, our classifiers can easily become too complex and
overfit to our training data, in which case we lose the ability to generalize to our testing data .
However, too much regularization can be a bad thing. We can run the risk of  underfitting , in
which  case  our  model  performs  poorly  on  the  training  data  and  is  not  able  to  model  the
relationship between the input data and output class labels (because we limited model capacity
too much).  
Our goal when building deep learning classifiers is to obtain a model that fit our training data
nicely, but avoid overfitting. Regularization can help us obtain this type of desired fit (Figure 21)

Figure 21example of underfitting (orange line), overfitting (blue line), and generalizing (green line)

Overfitting and  underfitting are detected by looking to the training and test error behave (Figure
22)  At the left end of the graph, training error and generalization error are both high. This is the
underfitting  regime  As  we  increase  capacity,  training  error  decreases,  but  the  gap  between
training  and  generalization  error  increases.  Eventually,  the  size  of  this  gap  outweighs  the
decrease in training error, and we enter the overfitting regime, where capacity is too large, above
the optimal capacity

Figure 22 Typical relationship between capacity and error. 
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There are many Regularization technique in use some of them are briefly describe below.

I.3.1 Dataset Augmentation
The best way to make a machine learning model generalize better is to train it on more data. Of
course, in practice, the amount of data we have is limited. One way to get around this problem is
to create fake data and add it to the training set.
Dataset augmentation is a common practice to virtually increase the size of training dataset, and
is also used as a regularization technique, making the model more robust to slight changes in the
input data has been a particularly e ective technique for a specific classification problem: objectffective technique for a specific classification problem: object
recognition. Images are high dimensional and include an enormous range of factors of variation,
many of which can be easily simulated.
Operations like translating the training images a few pixels in each direction can often greatly
improve generalization, even if the model has already been designed to be partially translation
invariant by using the convolution and pooling techniques.
Many other operations, such as rotating the image or scaling the image, have also proved quite
e ective (see Figure 23 ).ffective technique for a specific classification problem: object
One must  be  careful  not  to  apply  transformations  that  would  change  the  correct  class.  For
example, optical character recognition tasks require recognizing the di erence between “b” andffective technique for a specific classification problem: object
“d”  and  the  di erence  between  “6”  and “9,”  so  horizontal  flips  and  180°  rotations  are  notffective technique for a specific classification problem: object
appropriate ways of augmenting datasets for these tasks.

Figure 23 Example of Data Augmentation on the CIFAR10 dataset

“Injecting noise in the input to a neural network (Sietsma and Dow, 1991)
can also be seen as a form of data augmentation. For many classification and

even some regression tasks, the task should still be possible to solve even if small
random noise is added to the input. Neural networks prove not to be very robust

to noise, however (Tang and Eliasmith, 2010). One way to improve the robustness
of neural networks is simply to train them with random noise applied to their

inputs. ”  [14]
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I.3.2 Dropout [14]
In order to overcome the problem of overfitting, a dropout layer can be introduced in the model
in which some neurons along with their connections are randomly dropped from the network
during training (See Figure 24). A reduced network is left; incoming and outgoing edges to a
dropped-out node are also removed. Only the reduced network is trained on the data in that
stage. 
The removed nodes are then reinserted into the network with their original weights. Dropout
notably reduces overfitting and improves the generalization of the model.

Figure 24 a simple neural network, b neural network after dropout

I.4 Deep Learning Architectures
Many supervised deep learning architectures have evolved over the last few years, achieving top
scores on many tasks. In this paragraph we will   discussed  briefly  one of the most recent
supervised CNN architectures proposed by researchers ResNet .

I.4.1 ResNet [1]
As the number of layers of deep networks increases, its accuracy improves and the accuracy
saturates once the network has converged. However, if the depth is further increased, then the
performance starts getting degraded rapidly. This degradation is caused by adding more layers to
an already converged deep model which results in higher training error. Thus, there is a need for
a strategy that obtains an optimal deep network for a given application. 
ResNet was proposed with a residual learning framework that lets new layers to fit a residual
mapping. It is easier to push the residual to zero when a model has converged than to fit the
mapping by a stack of nonlinear layers.
Given an underlying mapping H(x) to be fit by a few stacked layers, where x is the input to these
layers, the residual learning uses the residual function.

 F (x)=H (x)−x      (21)

 It is easier to optimize the residual mapping than to optimize the original, and it can be realized
by a feedforward neural network with shortcut connection as shown in (Figure 25)  The shortcut
link simply accomplishes identity mapping, and the output of the shortcut link is added to the
outcomes of the stacked layers .
The identity shortcut link does not add calculation complexity or parameters.
The residual function F uses a stack of 2 or 3 layers (more layers are also possible) as shown in
(Figure 26 ), the building block is defined by 

y=F (x , {W i })+x   (22)

where x and y represent the input and output vectors of layers considered. 
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Figure 25 ResNet residual learning building block 

The function F(x,  {W i }) represents the residual mapping which is to be learnt.  The linear
projection Ws is performed by a shortcut link to match the dimensions as in 

y=F (x , {W i })+W s x  (23)

Figure 26 a ResNet building block, b “Bottleneck” ResNet building block
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The architecture diagram of ResNet-34 is shown in (Figure 27)

Figure 27 Architecture diagram of ResNet-34 layers

I.4.2 Capsule Network [13]
Every day there are improvements in deep learning new Regularization technique are invented
and new architecture are created but the main innovation came from a work conducted by the
godfather  of  deep  learning  Geoffrey  E.  Hinton  how  published  a  scientific  paper  Dynamic
Routing Between Capsules [2] .

The human brain has a mechanism to route image data to parts of the brain where it is perceived.
Convolutional neural networks use layers of filters to extract high-level features from image data
but the routing mechanism is absent in it.
Capsule Network (CapsNet) has been proposed that provides a routing mechanism. A CapsNet
can have many capsule layers, where each layer is comprised of a number of capsules. A capsule
is a group of neurons that can perform computations on their inputs and then compute an output
in the form of a vector. The computations of the neurons within a capsule can represent various
properties like pose, size, position, deformation, orientation, etc. of an entity (object or a part of
an object)  that is present in a given image. CapsNet uses the length of the output vector to
represent the existence of an entity. The length of the output vector of a capsule is not allowed to
exceed 1 by applying a nonlinearity that leaves the orientation of the vector unchanged but scales
down its magnitude. 

A CapsNet proposed incorporating a routing mechanism between two capsule layers. The routing
mechanism makes a capsule in one layer to communicate to some or all capsules in the next
layer.
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Architecture diagram of a simple capsule network is shown in Figure 28 and Table 1  gives
details of various layers of the capsule network.

Figure28  Architecture diagram of a simple capsule network

Table 1 detail of various layers of simple capsule network
Layer name Input

size 
filter
size

filters capsul
es

stride paddin
g 

future maps Output
size 

Conv 1 28 x 28 9 x 9 256 1 0 256 20 x 20

Capsule  layer
1

20 x 20 9x 9 8 32 2 0 32  (each  with
depth 8)

6 x 6 

Capsule  layer
2

6 x 6 10 digital capsule one for each digit

fully
connected 

512  Neurones

fully
connected 

1024 Neurones

fully
connected 

784 (which after reshaping give back 28 x 28 decoded image)

softmax 10 classes 

27



CHAPTER I : DEEP LEARNING AND ITS APPLICATION

The first layer of this simple CapsNet is a convolutional layer that uses 256 filters of size of 9×9
with a stride of 1. It uses ReLU activation function. This layer converts pixel intensities into
features which are used as inputs to the primary capsules.
The second layer of the CapsNet is the first capsule layer. This layer has 32 primary capsules.
Each primary capsule has eight convolutional filters of size 9 × 9 used with a stride of two. Each
primary capsule receives all 256 feature maps of size 20 × 20 produced by the first layer.
The primary capsules’ layer produces 32 feature maps of size 6 × 6. Each feature map has a
depth of 8,  each feature map is an 8D vector.
The next layer is the second capsule layer which has one 16D capsule for each digit class. Each
capsule in this layer receives input from all the capsules in the first capsule layer.
The simple CapsNet has a routing mechanism between the two capsule layers only. Initially, a
capsule output from the first capsule layer is sent to all capsules in the second capsule layer with
equal probability. A dynamic routing mechanism is used to ensure that the output of a capsule is
sent  to  the  appropriate  capsules  in  the  next  capsule  layer  and  is  determined  by  coupling
coefficients. 
The coupling coefficients between a capsule in the first layer and all the capsules in the next
layer sum to 1 and are determined by a routing softmax. 
The coupling coefficients can be learnt discriminatively at the same time as all other weights.
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CHAPTER II 
COLOR SYSTEMS

Color images are involved in every aspect of our lives, where they play an important role
in  everyday  activities  such  as  television,  photography,  and  printing.  Color  perception  is  a
fascinating  and  complicated  phenomenon  that  has  occupied  the  interest  of  scientists,
psychologists, philosophers, and artists for hundreds of years . In this chapter,we focus on those
technical aspects of color that are most important for working with digital color images. Our
emphasis will be on understanding the various representations of color and correctly utilizing
them when converting the Cifar10 dataset. 

 II.1 RGB Color Images[15]

The RGB color schema encodes colors as combinations of the three primary colors: red (R),
green (G), and blue (B). This scheme is widely used for transmission, representation, and storage
of  color  images  on  both  analog  devices  such  as  television  sets  and digital  devices  such as
computers, digital cameras, and scanners. For this reason, many image-processing and graphics
programs  use  the  RGB schema  as  their  internal  representation  for  color  images,  and  most
language libraries use it as their standard image representation.

RGB is an additive color system, which means that all colors start with black and are created by
adding the primary colors. You can think of color formation in this system as occurring in a dark
room where you can overlay three beams of light—one red, one green, and one blue—on a sheet
of white paper. To create different colors, you would modify the intensity of each of these beams
independently.  The  distinct  intensity  of  each  primary  color  beam  controls  the  shade  and
brightness of the resulting color.  The colors gray and white are created by mixing the three
primary color beams at the same intensity. A similar operation occurs on the screen of a color
television or CRT based computer monitor, where tiny, close-lying dots of red, green, and blue
phosphorous  are  simultaneously  excited  by  a  stream  of  electrons  to  distinct  energy  levels
(intensities), creating a seemingly continuous color image.

Figure 29  Representation of the RGB color space as a three-dimensional unit cube. 
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The RGB color space can be visualized as a three-dimensional unit cube in which the three
primary colors form the coordinate axis. The RGB values are positive and lie in the range [0, C
max ]; for most digital images, C max = 255. Every possible color C  i corresponds to a point
within the RGB color cube of the form Ci=(Ri ,Gi , Bi) where 0 ≤ R i , G i , B i ≤ C max . 

RGB values are often normalized to the interval [0, 1] so that the resulting color space forms a
unit cube (Figure 29). The point S = (0, 0, 0) corresponds to the color black, W = (1, 1, 1)
corresponds to the color white, and all the points lying on the diagonal between S and W are
shades of gray created from equal color components R = G = B. Figure 30 shows a color test
image and its corresponding RGB color components, displayed here as intensity images. 

                         R                                           G                                                     B

Figure 30 A color image and its corresponding RGB channels. 

II.2 HSV Color Space[15]

In the HSV color space, colors are specified by the components hue, saturation, and value. It is 
traditionally shown as an upside-down, six-sided pyramid (Figure31 (a) ), where the vertical axis
represents the V (brightness) value, the horizontal distance from the axis the S (saturation) value,
and the angle the H (hue) value. The black point is at the tip of the pyramid and the white point 
lies in the center of the base. The three primary colors red, green, and blue and the pairwise 
mixed colors yellow, cyan and magenta are the corner points of the base. While this space is 
often represented as a pyramid, according to its mathematical definition, the space is actually a 
cylinder, as shown below (Figure 33).
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Figure 31  HSV color space vs  HLS color space

II.2.1 RGB→HSV

To convert from RGB to the HSV color space, we first find the saturation of the RGB color 
components R, G, B  [0, C ∈ [0, C max ], with C max being the maximum component value (typically 
255), as

SHSV={
Crng

Chigh

forChigh>0

0 otherwise

  (24)

and the luminance (value)

V HSV=
Chigh

Cmax

 (25)

with C high , C low , and C rng defined as

Chigh=max (R ,G, B) ,C low=min(R ,G ,B) ,Crng=Chigh−C low  (26)

Finally, we need to specify the hue value H HSV . When all three RGB color components have the
same value (R = G = B), then we are dealing with an achromatic (gray) pixel. In this particular
case Crng  = 0 and thus  the saturation value SHSV = 0,  consequently the hue is  undefined.  To
compute HHSV when Crng > 0, we first normalize each component using
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R '=
Chigh−R

C rng

,G '=
Chigh−G

Crng

, B'=
Chigh−B

Crng

 (27)

Then, depending on which of the three original color components had the maximal value, we
compute a preliminary hue H' as

H '={
B '−G' if R=Chigh

R '−B '+2 if G=Chigh

G'−R '+4 if B=Chigh

 (28)

Since the resulting value for H' lies on the interval [−1 . . . 5], we obtain the

final hue value by normalizing to the interval [0, 1] as

HHSV=
1
6
. {(H '+6) for H '<0

H ' otherwise
 (29)

Hence all three components H HSV , S HSV , and V HSV will lie within the interval [0, 1]. The hue
value H HSV can naturally also be computed in another angle interval, for example in the 0 to 360
◦ interval using

H °HSV=HHSV . 360  (30)

Under this definition, the RGB space unit cube is mapped to a cylinder with height and radius of
length 1 , In contrast to the traditional representation  all HSB points within the entire cylinder
correspond to valid color coordinates in RGB space. The mapping from RGB to the HSV space
is nonlinear, as can be noted by examining how the black point stretches ,  Figure 32 shows the
individual HSV components of the test image as grayscale images

                          H HSV                                          S HSV                                               V HSV   

Figure  32 HSV  color components

The darker areas in the h HSV component correspond to the red and yellow colors, where the hue 
angle is near zero.
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Figure 33 HSV color space. The illustration shows the HSV color space as a cylinder with the 
coordinates H (hue) as the angle, S (saturation) as the radius, and V (brightness value) as the 
distance along the vertical axis, which runs between the black point S and the white point W. The
table lists the (R, G, B) and (H, S, V ) values of the color points marked on the graphic. Pure 
colors (composed of only one or two components) lie on the outer wall of the cylinder (S = 1), as
exemplified by the gradually saturated reds (R 25 , R 50 , R 75 , R).

II.3 HLS Color Space[15]

The HLS color space  (hue, luminance, saturation) is very similar to the HSV space, and the hue
component is in fact completely identical in both spaces. The luminance and saturation values
also correspond to the vertical axis and the radius, respectively, but are defined differently than
in HSV space. The common representation of the HLS space is as a double pyramid (Figure  31
(b)), with black on the bottom tip and white on the top. The primary colors lie on the corner
points of the hexagonal base between the two pyramids.Even though it is often portrayed in this
intuitive way, mathematically the HLS space is again a cylinder (see Figure35  ).

II.3.1 RGB→HLS

In the HLS model, the hue value H HLS is computed in the same way as in the HSV model 

HHLS=HHSV  (31)

The other values, L HLS and S HLS , are computed as follows (for C high , C low ,and C rng )

LHLS=
Chigh+Clow

2
 (32)
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SHLS={
0 for LHLS=0

0.5 .
C rng

LHLS
for0<LHLS⩽0.5

0.5 .
C rng

1
−LHLS for0.5<LHLS<1

0 for LHLS=1

 (33)

                       H HLS                                           S HLS                                            L HLS

Figure  34 HLS color components H HLS (hue), S HLS (saturation), and L HLS (luminance).

 The  individual  HLS  components  of  the  test  image  as  grayscale  images  are   showing   in
(Figure 34) .  The unit cube in the RGB space is  mapped to a cylinder with height and length 1
(Figure 35). In contrast to the HSV space (Figure35 ), the primary colors lie together in the
horizontal plane at L HLS = 0.5 and the white point lies outside of this plane at L HLS = 1.0.
Using these nonlinear transformations, the black and the white points are mapped to the top and
the bottom planes of the cylinder, respectively.

Figure 35 HLS color space. 
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II.4 TV Color Spaces YUV [15]

YUV is the basis for the color encoding used in analog television in both the North American
NTSC and the European PAL systems. The luminance component Y is computed, just as in Eqn.
from the RGB components as

Y=0.299 . R+0.587 .G+0.114 . B  (34)

under the assumption that the RGB values have already been gamma corrected according to the
TV encoding standard (γ NTSC = 2.2 and γ PAL = 2.8, seeSec. 4.7) for playback. 

The UV components are computed from a weighted difference between the luminance and the 
blue or red components as

U=0.492 .(B−Y ) and V=0.877 .(R−Y )  (35)

                Y                                                   U                                                         V

Figure 36 YUV color components

II.5 Colorimetric Color Spaces

To make  colors  appear  similar  or  even  identical  on  different  media  modalities,  we  need  a
representation that  is  independent  of  how a  particular  device  reproduces  these colors.  Color
systems that describe colors in a measurable,device-independent fashion are called colorimetric
or calibrated

II.5.1 CIE Color Spaces [16]

The XYZ color system, developed by the CIE (Commission Internationale d’Èclairage) in the
1920s and standardized in 1931, is the foundation of most colorimetric color systems that are in
use today 

II.5.1.1 CIE XYZ color space

The  CIE XYZ color  scheme was  developed  after  extensive  measurements  of  human  visual
perception under controlled conditions. It is based on three imaginary primary colors X, Y , Z,
which are chosen such that all visible colors can be described as a summation of positive-only
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components, where the Y component corresponds to the perceived lightness or luminosity of a
color. All  visible colors lie inside a three-dimensional cone-shaped region (Figure 37) which
interestingly enough does not include the primary colors themselves.

Figure 37  CIE XYZ color space. 

Some common color spaces, and the RGB color space in particular, conveniently relate to XYZ
space by a linear coordinate transformation, as shown in Figure 37 (b), the RGB color space is
embedded in the XYZ space as a distorted cube, and therefore straight lines in RGB space map
to  straight  lines  in  XYZ again.  The CIE XYZ scheme is  (similar  to  the  RGB color  space)
nonlinear with respect to human visual perception, that it a particular fixed distance in XYZ is
not perceived as a uniform color change throughout the entire color space. 

The XYZ coordinates of the RGB color cube (based on the primary colors defined by ITU-R
BT.709) are listed in Table 2

Table  2 Coordinates of the RGB color cube in CIE XYZ space. The X, Y, Z values refer to
standard (ITU-R BT.709) primaries and white point D65 , x, y denote the corresponding CIE
chromaticity coordinates.
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II.6 sRGB

was developed (jointly by Hewlett-Packard and Microsoft) with the goal of creating a precisely
specified  color  space  for  display-oriented  applications,  such  as  computer  graphics  or
multimedia , based on standardized mappings with respect to the colorimetric CIE XYZ color
space. This includes precise specifications of the three primary colors, the white reference point,
ambient lighting conditions, and gamma values. Interestingly, the sRGB color specification is the
same as the one specified many years before for the European PAL/SECAM television standards.

sRGB exhibits  a  relatively  small  gamut  which,  however,  includes  most  colors  that  can  be
reproduced by current computer and video monitors. 

Although sRGB was not designed as a universal color space, its CIE-based specification at least
permits more or less exact conversions to and from other color spaces.

Linear vs. nonlinear color components

sRGB is a nonlinear color space with respect to the XYZ coordinate system, and it is important
to carefully distinguish between the linear and nonlinear RGB component values. The nonlinear
values (denoted R',G' ,B') represent the actual color tuples, the data values read from an image
file or received from a digital camera. These values are precorrected with a fixed Gamma (≈ 2.2)
such  that  they  can  be  easily  viewed  on  a  common  color  monitor  without  any  additional
conversion. 

The corresponding linear components (denoted R, G, B) relate to the CIE XYZ color space by a
linear mapping and can thus be computed from X, Y, Z coordinates and vice versa by simple
matrix multiplication,

(
R
G
B)=MRGB .(

X
Y
Z ) and (

X
Y
Z )=M−1

RGB .(
R
G
B)  (36)

respectively, with

M RGB=(
3.240479 −1.537150 −0.498535

−0.969256 1.875992 0.041556
0.055648 −0.204043 1.057311 )  (37)

M−1
RGB=(

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227)  (38)
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II.6.1 Transformation CIE XYZ→sRGB

To transform a given XYZ color to sRGB (Figure38 ), we first compute the linear R, G, B values
by multiplying the (X, Y, Z) coordinate vector with the matrix M RGB 

(
R
G
B)=MRGB .(

X
Y
Z )  (39)

Subsequently,  a modified gamma correction with γ = 2.4 (which corresponds to an effective
gamma value of ca. 2.2) is applied to the linear R, G, B values,

R '=f γ(R) ,G '=f γ(G) , B'=f γ(B)  (40)

with 

f γ(c)={1.055 .C
1

2.4−0.055 for c>0.0031308
12.92 .c for c⩽0.0031308

 (41)

The resulting nonlinear sRGB components R'  , G' , B'  are limited to the interval [0, 1]. To 
obtain discrete numbers, the R ' , G'  , B'  values are finally scaled linearly to the 8-bit integer 
range [0, 255].

Figure 38  Color transformation from CIE XYZ to sRGB

II.6.2 Transformation sRGB→CIE XYZ

To compute the reverse transformation from sRGB to XYZ, the given (nonlinear) R ' , G'  , B'
values (in the range [0, 1]) are first linearized by inverting the gamma correction

R=f −1γ(R ' ) , G=f −1γ(G' ) , B=f−1γ (B ' ) (42)

with ( f−1 )γ(c ' )={ ( c '+0.055
1.055 )

2.4

for c '>0.03928

c '
12.92

for c '⩽0.03928    (43)
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Subsequently,  the  linearized  (R,  G,  B)  vector  is  transformed  to  XYZ  coordinates  by
multiplication with the inverse of the matrix M RGB 

(
X
Y
Z )=M−1

RGB .(
R
G
B)  (44)

Table 3 lists the nonlinear and the linear RGB component values for selected color points. Note
that component values of 0 and 1 are not affected by the gamma correction because these values
map to themselves. The coordinates of the extremal points of the RGB color cube are therefore
identical in nonlinear and linear RGB spaces. However, intermediate values are strongly affected
by the gamma correction, as illustrated by the coordinates for the color points K . . . P, which
emphasizes the importance of differentiating between linear and nonlinear color coordinates.

II.6.3 Calculating with sRGB values

Due to the wide use of sRGB in digital photography, graphics, multimedia, Internet imaging,
etc., there is a probability that a given image is encoded in sRGB colors. If, for example, a JPEG
image is opened with ImageJ or Java, the pixel values in the resulting data array are media-
oriented (i. e., nonlinear R ' , G'  , B'  components of the sRGB color space). Unfortunately, this
fact  is  often  overlooked  by  programmers,  with  the  consequence  that  colors  are  incorrectly
manipulated and reproduced.

As a general rule, any arithmetic operation on color values should always be performed on the
linearized R, G, B components, which are obtained from the nonlinear  R ' , G'  , B'  values
through the inverse gamma function f γ 

−1 and converted back again with f γ 

Table 3 CIE XYZ coordinates for selected sRGB colors. 
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II.7 CIE LUV (CIE L  u  v )color space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space [16]

commonly known by its abbreviation CIELUV, is a color space adopted by the International
Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931
CIE XYZ color space,  but which attempted perceptual uniformity.  It  is  extensively used for
applications  such  as  computer  graphics  which  deal  with  colored  lights.  Although  additive
mixtures of different colored lights will fall on a line in CIELUV's uniform chromaticity diagram
(dubbed the CIE 1976 UCS), such additive mixtures will not, contrary to popular belief, fall
along a line in the CIELUV color space unless the mixtures are constant in lightness. 

The non-linear relations for L*, u*, and v* are given below:

L*
={ ( 29

3 )
3

Y /Y n , Y /Y n⩽( 6
29 )

3

116(Y /Y n)

1
3−16 Y /Y n>( 6

29 )
3  (45)

u*
=13 L* .(u'−u 'n)  (46)

v*
=13 L* .(v '−v 'n)  (47)

The quantities u′n and v′n are the (u′, v′) chromaticity coordinates of a "specified white object" – 

which may be termed the white point – and Yn is its luminance. In reflection mode, this is often 

(but not always) taken as the (u′, v′) of the perfect reflecting diffuser under that illuminant. (For 
example, for the 2° observer and standard illuminant C, u′n = 0.2009, v′n = 0.4610.) Equations 

for u′ and v′ are given below

u '=
4 X

X+15Y +3Z
=

4 x
−2 x+12Y +3

 (48)

v '=
9Y

X+15Y +3Z
=

9 y
−2 x+12Y +3

 (49)

For typical images, u* and v* range ±100. By definition, 0 ≤ L* ≤ 100.
to convert rgb to CIELUV first we convert RGB to CIEXYZ and then we convert CIEXYZ to 
CIELUV

II.8 The 1976 CIE L  a  b  Color Space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space [16]

In 1976, the CIE convention recommended the CIE L  a  b  , or CIELAB, color space, mainly∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space
for use in the plastic,  textile,  and paint  industries.  As in the Hunter space,  the luminance is
represented along the z axis in a Cartesian system of coordinates, with values from zero for black
to 100 for a perfectly white body [constant reflectance R(λ) = 1]. The positive a ∗ axis represents) = 1]. The positive a  axis represents∗ u ∗ v ∗)color space
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the amount of purplish red, while the negative a  axis represents the amount of green. The∗ u ∗ v ∗)color space
positive b  axis represents the amount of yellow and the negative b  axis represents the amount∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space
of blue.  The maximum possible  magnitude of  the values  on these axes  is  a  function of the
luminance, between ±100 and ±200 for a  and b  , respectively.∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space

The transformation equations used for passing from the CIE x, y, z system to the CIE L  a  b ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space ∗ u ∗ v ∗)color space
system are

L*
=116 f (

Y
Y n )−16  (50)

a*
=500(f ( XX n

)− f (
Y
Y n

))  (51)

b*
=200(f ( YY n

)−f (
Z
Zn ))  (52)

where 

f (t)={
3
√t if t>δ

3

t
3δ2 +

4
29

otherwiseδ=
6
29

 (53)

Here, Xn, Yn and Zn are the CIE XYZ tristimulus values of the reference white point (the 
subscript n suggests "normalized") , Under Illuminant D65 with normalization Y = 100, the 
values are 

Xn=95.0489 ;Y n=100; Z n=108.8840      (54)

Search in color space style active  and new color space are invented every decade to
enhance  performance  in  image  processing  algorithms  like  gamut  mapping,  lossy  image
compression, image enhancement, image segmentation, image denoising etc , or to  minimum
computational cost for real time or quasi-real time processing , in 2017 a new  uniform color
space  named  J z A  z B  z  [17] has  been  developed  ,  it  is  proposed  for  color  and  imaging
applications  that  include  wide  color  gamut  and  high  dynamic  range   and  it  is  perceptually
uniform over a wide gamut, linear in iso-hue directions, and can predict both small and large
color differences as well as lightness in high dynamic range environments.
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CHAPTER III 
EXPERIMENTATION AND RESULTS

The main focus throughout this thesis has been to show if color space has impact over the
performance of deep learning model in image classification .
It begins by describing the characteristics of the CIFAR10 dataset , and the process of conversion
form the original dataset to other colors space , flowed by a short description of the Framework
keras[6] and Tensorflow , and a brief description of the implementation ,  followed by a section
containing the experimental results and performance evaluation , Finally, a short discussion of
the results .

III.1 CONVERTING CIFAR -10 DATASET TO DIFFERENT COLORSPACE
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch, each with 10000 images. The
test batch contains exactly 1000 randomly-selected images from each class. 
The training batches contain the remaining images in random order, but some training batches
may contain  more  images  from one  class  than  another.  Between them,  the  training  batches
contain  exactly  5000  images  from  each  class,  it  is  stored  in  a  files  that  contain  a  Python
”pickled” object produced with cPickle .

Figure 39 The CIFAR-10 dataset.
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each of the batch files contains a dictionary with the following elements: 
data – a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image.
The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024
the blue. 
labels – a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the
ith image in the array data. The number of columns(10000)indicates the number of sample data. 
As stated in the CIFAR-10 [2] dataset, the row vector, (3072) represents one color image of
32x32 pixels as showing in (Figure 40)

Figure 40 reshape and transpose 

we have converted the dataset to the choosing color space Figure41 by first loading the dataset
from  the  batch  file  to   numpy  array  using   the  function  load_data()  from  the  module
keras.datasets.cifar10 , then converting it to float32 numpy array to reduce loss of accuracy due
to the use of unsigned byte  and normalised by divide by 255 to get value in the intervail of [0, 1]
to  avoid  exploding/vanishing  gradient  problems  due  to  the  input  passed  to  the  activation
functions  ,  CIFAR  have  images  present  in  the  sRGB  format  so  there  is  NO  need  to  do
linearization by inverting  the gamma correction because the central color space in Scikit image
library is sRGB.

Figure 41 Visualization of image from CIFAR10 data batch 1 index 7 in LAB
,YUV, LUV, HSV,RGB and HSL colourspaces respectively (from left)
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and finally for HSV , YUV , LUV , LAB use the appropriate function from scikit-image[18] to
convert each image in the dataset , and for HSL use colorsys[19] module from Python Standard
Library , then we store the dataset in pickle file to be loaded during the training , the process of
converting the dataset to other color space is shown in the below Figure42

Figure 42 the process of converting the dataset to another color space
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III.2 Libraries

In order to simplify the process of implementing  deep learning model several software libraries
have been developed. These provide tools that automatically execute many of the tasks required
to set up a functional neural network. Though the libraries are based on the same theoretical ,
they differ in their approach on how to implement them. Below are short summaries of keras and
Tensorflow

III.2.1 Keras

Keras [6] is a high-level wrapper which runs on top of Theano Additionally, it is also able to run
on top of tensorflow.  It is designed to minimise overhead, to allow for fast and easy prototyping
of deep learning model .

III.2.2 Tensorflow

Originally developed by Google as part of the Google Brain project, Tensorflow was made open
source in late 2015. Tensorflow [20]is a Python library and stands apart by being the only one of
the major libraries developed from the ground up by a major corporation, while the others have
their origin in the research community.

Tensorflow has some integrated quality of life tools such as TensorBoard, which allows the user
to easily produce graphs visualizing things such as learning rate, model weights, loss functions
and more. Tensorflow is also the only library that can distribute the workload not just across
GPUs on the same device but on several connected devices, which can be a major computational
advantage.

III.2.3 scikit-image

scikit-image[18] is  an  open-source  image  processing  library  for  the  Python  programming
language,  It includes a collection of algorithms for image processing, segmentation, geometric
transformations, color space manipulation, analysis, filtering, morphology, feature detection, and
more.

III.3 Implementation

For the implementation, the script CIFAR10_CNN_Capsule[21] and CIFAR10_ResNet[22] from
Keras was used as a base for this project. It was modified to be able to convert  the dataset to the
five  colors  space  HSV ,  LUV ,  LAB  ,  HSL ,YUV  using  scikit-image  [18] and  colorsys
[19]module from Python Standard Library, and additional functionality relevant to this project
was implemented, including the save and load of the training model the record of the history of
training to be able to compare the performance of each model and the design of the graphic user
interface to  load the training model , display the dataset and  predict  there class Figure43, also
accuracy evaluation  by class was implemented .
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Figure 43 GUI Cifar10 Predictor

III.4 EXPERIMENTS

After coverting the dataset to diffrent coulorspace HSL ,HSV ,LUV, YUV , LAB . We have
trained the modes in two different architecture model ResNet20 and CapsulNet with fixed hyper-
parameters  we  set  batch  size  equal  to  128  (the  number  of  training  examples  in  one
forward/backward pass)  and the number of epochs to 50 ,even if resnet20 can give an accuracy
of 91.25 with 200 epochs , we choice 50 epoch because of the limited computation resources and
because we went just to understand the effect of colourspace on the performance of the CNN
models, not to get the maximum performance of the model .

All the models were trained using CPU intel core I5-6200u with 4GB Ram with keras [9] as
backend. ResNet20 is just 0.27M learnable parameters It took around 4 hours to train each model
without data augmentation and 6 hours to train each model with data augmentation in ResNet20. 

For CapsulNet it took 3 hours to train each model with data augmentation We store the weights
of the CNN model for every epochs while training and  record the accuracy and loss for every
epoch to be able to evaluate and compare the results for each model .  
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III.5 Discussion RESULTS

from the experiments that we have conducted the results shown in table 4 was obtained, we
observed that there is a minor change in accuracy in ResNet20 and also in CapsulNet , but even a
small percentage may make the difference, an the other hand LUV is good alternative it show
improvement about 0.92% comparison to RGB in ResNet20 ,and 0.39% in CapsuNet.

Table 4 comparison of results for different color spaces on cifar-10 with resnet20 and capsulnet

The performance of the models can be further understood by looking at the per class recognition
accuracy of the CNN model ResNet20 and CapsulNet on test set of different colourspace which
is shown in Table 5 , 6 and 7 we can observe that some color space are well situated for some
class in some model but it not persistent as we change from ResNet20 to CapsuleNet or form
using data augmentation the highest accuracy change from color space to another taking for
example the class ship in ResNet20 without data augmentation the highest accuracy 91.10% is
obtained using LAB colorspace , for ResNet20 with data augmentation the highest accuracy
92.50% is  obtained using  YUV colorspace  ,  and for  CapsulNet  with  data  augmentation  the
highest accuracy 91.50% is obtained using RGB colorspace .

Table 5 per class accuracy of resnet 20 in different color space ( without data augmentation )
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Validation Accuracy
ResNet20 ResNet20 CapsulNet 

RGB 74.76% 85.02% 83.15%
HSL 73.48% 83.73% 81.65%
HSV 75.12% 84.81% 82.56%

LUV 75.59% 85.94% 83.54%
YUV 75.96% 85.88% 83.31%

LAB 76.52% 85.66% 82.94%

WITHOUT DATA WITH DATA WITH DATA 

AUGMENTATION AUGMENTATION AUGMENTATION

Class Name
Colourspace

RGB HSL HSV LUV YUV LAB
airplane 78.70% 72.20% 80.90% 77.30% 75.40% 76.60%
automobile 90.90% 84.00% 85.50% 86.90% 78.60% 90.00%
bird 65.40% 63.30% 49.80% 82.10% 74.00% 70.20%
cat 36.80% 69.90% 64.70% 47.20% 54.30% 57.10%
deer 66.20% 74.80% 77.00% 78.20% 81.30% 67.60%
dog 79.40% 59.80% 68.30% 67.40% 66.70% 63.60%
frog 83.20% 74.00% 86.60% 73.90% 83.50% 84.20%
horse 72.30% 66.40% 68.40% 81.30% 74.80% 74.60%
ship 89.00% 83.60% 86.20% 87.90% 90.50% 91.10%
truck 85.70% 86.80% 83.80% 73.70% 80.50% 90.20%
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Table 6 per class accuracy of resnet 20 in different colorspace ( with data augmentation )

Table 7 per class accuracy of capsulenet in different colorspace ( with data augmentation )

ResNet20 without data augmentation 

looking to the accuracy plot of the model for different colorspace trained with ResNet without
data augmentation we can see that all model have the same behavior they all overfitting we can
see that  by looking at  Figure44 and Figure45 we can  observe  that  starting at  epoch 10 the
training loss still going down but test loss is going up , this is obvious sign of overfitting.

Figure 44 ResNet20 without data augmentation training loss
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Class Name
Colourspace

RGB HSL HSV LUV YUV LAB
airplane 86.40% 84.80% 83.30% 81.00% 81.90% 86.40%
automobile 92.50% 90.30% 92.50% 94.20% 89.50%
bird 76.90% 70.90% 74.30% 77.00% 78.00% 70.80%
cat 67.40% 61.70% 68.50% 71.20% 64.40% 68.00%
deer 79.40% 80.00% 80.30% 84.00% 81.30% 82.20%
dog 70.20% 81.90% 71.90% 75.10% 77.10% 71.50%
frog 93.10% 88.20% 89.70% 90.40% 90.90% 90.20%
horse 84.90% 81.80% 87.00% 86.00% 86.30% 87.90%
ship 91.50% 84.70% 90.40% 88.00% 91.20% 89.00%
truck 87.50% 90.00% 89.90% 90.20% 87.80% 93.90%

0.942

Class Name
Colourspace

RGB HSL HSV LUV YUV LAB
airplane 83.10% 92.70% 91.60% 89.40% 89.40% 87.50%
automobile 95.00% 88.90% 96.20% 87.20% 97.80% 78.50%
bird 83.60% 78.30% 71.00% 73.30% 80.20% 81.30%
cat 65.10% 78.40% 67.90% 75.60% 77.80% 76.70%
deer 91.00% 83.70% 81.20% 93.70% 84.90% 90.70%
dog 74.00% 66.80% 79.20% 78.50% 65.40% 82.90%
frog 90.80% 88.40% 89.00% 88.50% 89.50% 91.20%
horse 87.20% 89.60% 93.80% 88.10% 94.80% 79.50%
ship 84.90% 78.70% 85.10% 90.90% 92.50% 91.30%
truck 95.50% 91.80% 93.10% 94.20% 86.50% 97.00%
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Figure 45 ResNet20 without data augmentation test loss

Figure 46 ResNet20 without data augmentation training accuracy

Figure 47 ResNet20 without data augmentation test accuracy
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ResNet20 with data augmentation we can observe by looking at Figure48 ,Figure49 , Figure50
and Figure51 that models are less overfitting still have a going up and down in test accuracy it
look  that  the  training  process  is  not  down  in  a  smooth  way  in  the  other  hand  looking  at
Figure52 ,Figure53 , Figure54 and Figure55 CapsuleNet with data augmentation is doing well
the test accuracy is going up in a smooth way .

Figure 48 ResNet20 with data augmentation training loss

Figure 49 ResNet20 with data augmentation test loss

Figure 50 ResNet20 with data augmentation training accuracy
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Figure 51 ResNet20 with data augmentation test accuracy

Figure 52 CapsulNet with data augmentation training loss

Figure 53 CapsulNet with data augmentation test loss
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Figure 54 CapsulNet with data augmentation training accuracy

Figure 55 CapsulNet with data augmentation test accuracy
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CONCLUSION

Converting dataset into different color space and trained each one of them in  two different
deep learning architecture model ResNet20 and CapsulNet have showing  minor change in accuracy
in ResNet20 and also in CapsulNet but even a small percentage may make the difference,  in the
other hand LUV is good alternative it  show improvement about 0.92% comparison to RGB in
ResNet20 and 0.39%  in CapsulNet.

The future scope is instead of making images captured in sRGB colorspace and then convert
it  to  other  color  space  we could  capture  image directly  in  the  desired  color  space  and use  an
appropriate structure to store the data to prevent the lose of information in the convert process from
one colorspace to another, but by capture image directly in the desired color space and use an
appropriate  structure  to  store the data  ,  we may be improve the  performance of  deep learning
model , but we also face the problem of the availability of labled data-set as the majority of data-set
are in RGB .

So, we may see in the future a machine that has trained with data-set in RGB have ability to capture
and label similar image in different color space in appropriate data structure and then retrained her
self to get better model.
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