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Introduction

The convexity of functions is an important tool in different disciplines of applied
mathematics. In a number of cases, non-convex functions are used in the mod-
eling of real-world problems. As a result, it’s critical to determine whether these
functions, despite not being convex, retain certain properties common to convex
functions. This led to the invention of several generalizations of the classic concept
of convex functions, which can be used to a variety of fields including economics,
probability theory, and other scientific fields.

In recent years, important generalizations have been made in the context of con-
vexity: pseudo-convex, invex and preinvex, strongly convex, approximately convex,
MT-convex, (a;m)-convex, and strongly (s;m)-convex.

A vast class of quasi-convex functions is introduced.

This idea is stated to De Finetti [1](1949), while its use dates back to 1928 as a
technical hypothesis in John Von Neumann’s minimaximization theory.
Hadamard’s inequality is connected tenaciously with convexity and versions, this
inequality for convex functions has received renewed attention in recent years and a
remarkable variety of refinements and generalisations have been found, for example,
we mention the works of Dragomir ([5]1992, [6]1995), ’On Hadamard’s inequalities
for convex functions’, ’Some inequalities of Hadamard type’, Alomari et al [1](2010)
dealt with Refinements of Hadamard-type inequalities for quasi-convex functions
with applications to trapezoidal formula and to special means.

In recent years, some other kinds of Hermite-Hadamard type inequalities were gen-
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erated, we refer the researches of Bai et al ([2]2012, [3]2013), Wang et al [11](2013),
Xi et al [13](2013).

Many researchers were interested on the study of Hermite-Hadamard’s inequal-
ity for quasi-convex functions for example: Pearce et al [7](2000), Kirmaci et al
[11](2004), we mention also the work of Ion [10](2007) Some estimates on the
Hermite-Hadamard inequality through quasi-convex functions.

In our work we shed light on some properties of Hermite-Hadamard’s inequality
for quasi-convex functions and its application to the fractional case by considering
the k-Riemann-Liouville integrals and the Katugampula integrals, some fractional

inequalities of Hermite-Hadamard type are obtained.




Chapter 1

Preliminaries

In this chapter we define convex and quasi-convex function, then we recall some of
their properties, furthermore we present Hermite-Hadamard’s type inequalities via

convexity and quasi-convexity.

1.1 Convex function

1.1.1 Definitions and properties

Let I be an interval in R,

Definition 1.1.1. f: I — R is said to be convex function on I if only if

V(a,b) € I?,V\ € [0,1], we have:
Fa+ (T =X)b) < Af(a) + (1 —=X)f(b). (1.1)

Definition 1.1.2. f : [ — R is said to be strictly convex function on I if only if
V(a,b) € I*,V) €)0, 1], we have:

Fha+ (1= N)b) < Mf(a)+ (1= N\)f(b). (1.2)
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Figure 1.1: Convex Function

Examples

Let f, g be functions on R defined as follows:
f(z)=¢€"and g(x) = 2% a>1.

f, g are convex functions on R .

Remark 1.1.1. We say that f : I — R is a concave function (strictly concave) if
only if (—f) is convex function (strictly convex), thus (1.1) and (1.2) are reversed.
Examples

Let h, k be functions defined as follows:
h(xz) = In(x) is a concave function on |0, +oo] .

k(x) = z® with 0 < a < 1 is a concave function on R.

Properties

(8] Let f, g convex functions and a € R,
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1) af is convex function for @ > 0 and concave function for a < 0.

2) f+ «aand f — « are convex functions.

3) f+ g is convex function.

4) f convex function, g increasing convex function so g o f is convex function.

Theorem 1.1.1. let f : I — R a differentiable function, we say that f is convex if

only if f’ is increasing.
Corollary 1 let f: 1 — R a differentiable function, we say that f is convex if only

if f" is positive.

1.2 Quasi-convex function

1.2.1 Definitions

Let I be an interval of R,

Definition 1.2.1. f: I — R is said quasi-convex function on [ if

fAa+ (1= A)b) < max{f(a), f(b)}. (1.3)

for any a,b € I and X € [0,1].

Definition 1.2.2. f: [ — R is said strictly quasi-convex function on [ if
f(Aa+ (1 = X)b) < max{f(a), f(b)}. (1.4)
for any a,b € I and X €]0, 1[.

Remark 1.2.1. Quasi-convexity is a weaker convexity, that is it generalizes the
notion of convexity, therefore every convex function is quasi-convex, there are quasi-

convex functions which are not convex.
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Figure 1.2: Quasi-Convex Function .

Example

Let f be function, f:[—2,2] — R, defined by:

1 ifxre[-2,—1]
2? x€]—1,2

fx) =

iy

4 g K 4
L N R I VR U R

5]

7 —y=f(x)
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Figure 1.3: quasi-convex functions which are not convex.
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Remark 1.2.2. We say that f : I — R a quasi-concave function (strictly quasi-
concave) if and only if (—f) is quasi-convex function(strictly quasi-convex), thus

(1.3) and (1.4) are reversed.

1.2.2 Definition of class P(I)

Definition 1.2.3. [7] Let I an interval in R, we say that a function f : I — R is of
P type, or that f belongs to the class P(I), if f is nonnegative and for all a,b € I
and A € [0, 1] we have:

Fa+ (1= \b) < f(a) + F(b). (L5)

Definition 1.2.4. [7] Let [ an interval in R, we say that a function f : [ —

R is Jensen-convex function or shortly (J-convex), that is function satisfying the

W,be[,f(a;rb)gf(a);rf(b). (1.6)

condition:

Definition 1.2.5. [7] Let I an interval of R. We say that a function f: I — R is

Jensen-quasi-convex function, that is, function satisfying the condition:

a+b
2

Va,be I, f ( ) < max{f(a), f(b)}. (1.7)

1.3 Some classical inequalities

We present the diagram of classical Hermite-Hadamard’s inequalities

1.3.1 Hermite-Hadamard’s inequality

Let f : [a,b] — R be a convex function defined on the interval of real numbers, the

following inequality holds

1O < o [ < 10 19

This inequality is known as the Hermite-Hadamard’s inequality for convex function

[1].

10
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Classical Hermite - Hadamard's inequalities § J

v

@
Convex fonction | Quasi -convex fonction |

|l Convex : (&) is valid |£'] Quas x : (7) is valid

. —
171 *fp-1 Convex : (5) is valid Vil /p-1 Quasi -convex : (8) is valid

1#19 Convex: (6) is valid [£’19 Quasi -convex : (9) is valid

Figure 1.4: Hermite-Hadamard Diagram.

1.3.2 Hermite-Hadamard’s inequality via convexity

[5] The following lemma allows us to prove Theorems (1.3.1), (1.3.2) and (1.3.3).
Lemma 1.3.1. Let f: I C R — R be differentiable function on I° where a,b € I

with a < b. If f' € Liy[a,b], the following equality holds:

f(a) + f(b) I _b—a
2 _b—a/af(x)dx_ 2

01(1 C o) f(ta+ (1 —t)B)d.  (1.9)

Proof

We set
b—a

J= /01(1 —20)f(ta + (1 — t)b)dt.

By applying integration by parts, we get:

_ b—ua f(ta+ (1 — f(ta+ (1 —1)b)
J = 5 l(1—2t) " 2/ — dt]
_ b—a|f(a)+ L f(ta+ (1 —1t)b)
B 2 [ b—a 2/ a—2>b dt]
B f()+fb fta—i—l—t))dt
B 2 a—>b

Making use of change of the variable x = ta + (1 — t)b, we get:

fla) + f(b) o f(x)
J . +(b—a)/b R

FO 2 IO T paya

11
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So we get

f(a);f(b) B bia /abf(x)dx _ b;“ 01(1 —2t) f'(ta+ (1 — t)b)dt

The following inequalities of the Hermite-Hadamard type were established for the

above convex function.

Theorem 1.3.1. Let f : [a,b] — R be differentiable function on [a,b]. If |f'| is

convex on [a,b]. Then

'f(a) +f0) 1 /bfmdx

< b=a)(f (@] +]fG)])
2 b—a Ja -

8

(1.10)

Proof

By using (1.3.1), we have:

f(a) + f(b) I
‘ _b—a/af(x)dx

‘b ; ¢ /01(1 —2t)f'(ta + (1 — t)b)dt’

— 24| (ta + (1 — £)b)|dt
(@) + (1 =t)[f'(b)]] dt
a [/01 I —2t|t]f’(a)|dt+/01 11— 2¢[(1 —t)|f'(b>|dt}

b;“ [/%1 — 200t (a)|dt +

PP 2 - 1 )

v [@- 1 — o))

1
2

b—

IN

IN

IN

IN

Yot 1>t|f'<a>|dt]

1
2

IN

[ @)+ 717 0)
2@+ o).

IN

Theorem 1.3.2. Let f : [a,b] — R be differentiable function on [a,b]. If |f'|? is
convex on |a,b] with ¢ > 1. Then:

f(a) b—a/f

b-a <|f'<a>|q;|f'<b>lq>q. (1.11)

12
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Proof

By using (1.3.1), we have:

HOPTO L [ paye

|b - ¢ /01(1 o) f'(ta+ (1 — t)b)dt'

"(ta + (1 —t)b)|dt.

And by the power-mean inequality:

L0 L [ o

IN

< b;“@fam¢4tﬁ+wﬂww/<1—ww]
) b—anWW+wﬂ>wr
- 4 2

which completes the proof.

Theorem 1.3.3. Let f : [a,b] — R be differentiable function on [a,b]. If |f|77 is

convex on [a,b] with p > 1. Then:

fa2r8) LT b (@ w7
‘ 2 _b—a/af(x)dx §2(p+1)11’( 5 )
(1.12)
Proof
By using (1.3.1), we have:

)L ] - [be

And by the power-mean inequality:

/01(1 — o) f(ta+ (1 — t)b)dt| |

b_ 1 1 b NG
- [ 1241 ta+(1-0)0) </ - 2t\dt> (/0 f(ta + (1 — t)b)]pldt) ,
For ; =1- ; and similarly to (1.3.2), we get:
@)+ f®) 1 b—a (1@ 41O
s _b—alfwmx§2@+ni( 2 ) |

13
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1.3.3 Hermite-Hadamard’s inequality via quasi-convexity

[1] The proof of the theorem below is based on Theorem (1.3.1).

Theorem 1.3.4. Let f : [a,b] — R be differentiable function on [a,b], if |f’| is

quasi-convex on [a,b]. The inequality is valid:

fla)+fb) 1
2 b—a

Lbf(t)dt < b;amax{\f'(an, L£(0)]}- (1.13)

Proof 1 Since

W < maz{f(a), f(b)}.
Because f is convexr, we have:
We have:
|f'(a)] ; IO st (@), 17 B)]},
Then

b (1@ PO _bma
Tl G ) R (GO C)

From (1.10) we get:

‘f(a);f(b) Iy

b—a

< 2= max{|f @£ O]}

Theorem 1.3.5. Let f : I ¢ R — R be differentiable function on I°,a,b € I°
with a < b. If | f'|? is quasi-convex on [a,b], with ¢ > 1. Then:

TR RN

<P max{[ @ F O (L1

Proof

‘f(a) O

5 b-a /01“ —2t)f'(ta+ (1 = t)b)dt

‘b—a

h—
2

IN

“/01 11— 26|/ (ta + (1 — £)b)|dt.

14
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That is:

OESICI Y

< (b;“/ol 11— 2t\dt>qq1 (/01 f(ta+ (1 —t)b)\thf

[ araras o t>|f’<b>|qcpJé

b—arp 1 11 g
L Sl @paes [
b—afl 1 i
T g mallF @I 1)) + 5 max{f @], |7/ (0)])

P max{IF @17 17 O) )

IN

IN

IN

IN

Theorem 1.3.6. Let f : [a,b] — R be differentiable function on |a,b|. If |f’|ﬁ is

quasi-convex on [a,b] with p > 1. Then:

fla)+70) 1 b—a e
2 —b_alf<t>dt|éw(max{|f<>rp O
(1.15)

Proof
The proof is similarly to the proof of 1.3.5.

Lemma 1.3.2. Let f: I C R — R be differentiable function on I° where a,b € I
with a < b. If f' € Ly[a,b], the following equality holds:

f(a)+f(b)_ 1 b _b-a 1_ 1+t 1—t¢
e [ fwar = (0 (at bt
1+4+¢
+/ tf'( ib+— )dt]. (1.16)
Proof
It suffices to note that
LTt 1—t
L = /0(—t)f< = b)dt
2 Lt 1=t Lt 1t
- a—bf< g ¢t 2 b)“ / < 2 b>dt
1—|—t 1—t
- f a—b ( 2 b>dt

15
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1+ 1-— b
Setting x = ;_ a+ b and dr = ——dt, which gives

2 4 gl

1+t 1—1t
L = /tf(+ bt ——a)dt

4
= SO~ G fe S
Thus

b;a[h—i-fz]:f(a);f(b) _bia/abf@j)dx'

Theorem 1.3.7. Let f: I C [0,00) — R be differentiable function on I° such that
f" € Lila,b], where a,b € I with a < b.if |f’| is quasi-convex function on [a,b]. The

subsequent inequality is valid

fla)+f0) 1 b—a
| — o | fwa < 2E

2 b—alta
max{| /(T 1)) + max{ DL 0))) (1.17)
Proof
From (1.3.2), we have
|f(a);f(b)—bia/(lbf(x)dx] +ta+1;tb)dt

1 1+t 1—1t
+ e 2 Ly
0 2 2

Since |f’| is quasi-convex on [a, b], for any ¢ € [O 1] we have

‘f(a);f(b)_bia/abf(w)dwl < O 1+t 1_tb)]dt
+/0 s ﬂm— ]
< “”>| (a)
+/01tmax{\f(a+b)l 7 @)
b—a a+b a+b

) 1 (@)} + max{] f(

= T max{l (5 INFEOI

16



1. PRELIMINARIES

Which completes the proof.

Corollary 2 1) If |f'| is increasing with a < b, we have: |f'(a)| < |f'(b)|. Then
a + b

[f (@) < f (=) < [0
From (1.17), we get
HEIO L [ pwyant < 2w+ 17
2) If |f'] is decreasing with a < b, we have: |f'(a)| > |f'(b)| Then
1@ 2 17D 21O

From (1.17) we get

LI L[ i < P )+ 1)L

Theorem 1.3.8. Let f : I € R — R be differentiable function on I°,a,b € I°

with a < b. If |f'|? is quasi-convex on [a,b], with ¢ > 1. The following inequality is

valid

HOEIO L [ pwad < P max{lr (S L))

a—l—b

+(max{| (@)%, | /' (“=) D3], (1.18)

Proof

From (1.3.2) and using known power mean inequality, we have

‘f(a);f(b)_bia/abf(t)dt‘ < O 1+t 1_tb)|dt
+/ o (2 >|dt]
< 2 tdt)l"(/ tlf( at 1o )’
([ aany i [ t|f<ﬂb ~Layjuaryi
< b;aumax{\f(“b)rq 7))}

Q=

a7/ 1P B3]

17
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Theorem 1.3.9. Let f : [a,b] — R be differentiable function on [a,b]. If | |77 is

quasi-convex on [a,b] with p > 1. The following inequality is valid

fla+fo) 1 * Ve b—a i a—i—b . p=1
=22 b_aLf<M|f;4@+Dg< U N1 G)7)

+(max{|f'(a)|7T, | f'(

“*)z%»%ﬂ<1w>

Proof

From (1.3.2) and using Holder’s integral inequality, we have

|ﬂ@;ﬂm_bia£}@ﬁ|§ Hf1+t 1;%Wﬁ
+A|®H (b el
< b;amftwﬁp/Wfl*¢w+1;%Wﬁﬁ
[ i[5 b 2
b— a+b 1
< SIRLES S
R RO

Q=

-HmwﬂfﬁgbwmfwwnJ

Corollary 3 1) If ]f'|ﬁ is increasing, then we have:

f@)+f0) 1 g b atb
1522 —b_aLf@Mﬂ<4@+);W(ﬂ FESN

2) If |f’|p}%1 is decreasing, then we have:

fy+f®) 1 b atb
=22 b_a/)()d|<4@+ﬁﬂf(ﬂ+ﬁ( -

18



Chapter 2

k-fractional inequalities

This chapter brings together some inequalities associated with Hermite-Hadamard’s

inequality by way of k-Riemann-Liouville and Riemann-Liouville fractional integrals.

Special-functions
) tk
k-Gamma function given as I'y(«) = / t* e~ ®wdt If k = 1 then I';(a) = I'(a)
0

Beta function .[11]
11— 1Pt (Re(a) > 0, Re(B) > 0)
2.1)

B(a, 8) =\ Ta)r(3) )
Tlatf) (a, € C\Zy)

2.1 k-Riemann-Liouville fractional integral

[5] We give the definition of k-Riemann-Liouville fractional integrals,
Definition 2.1.1. Let f € Ly[a,b] , the k-Riemann-Liouville fractional integrals
kJoy f(u) and Ji* f(u) of order w > 0 with a > 0,k > 0, are defined by

karf(u) = k,F:@ '/au(u — ) (H)dt, 0 < a <u<b.

and
@ 1 b x_1
VL) = G / (t—w)E L f(1)dt,0 < a < u < b.

respectively , where I'y(a) is the k-gamma function .

19



2. K-FRACTIONAL INEQUALITIES

Remark 2.1.1. If k£ =1, we get the Riemann-Liouville fractional integrals Jg, f(u)
and J;* f(u) of order o« > 0 with a > 0, are defined by

Jo flu) = 1_‘(10[)/au(u—15)()‘_1l}£(t)dt,0 <a<u<b.

and
« 1 b a—1
I = 5 /u (t—w)* Lf(£)dt, 0 < a < u < b.

If we put a = 1 we obtain a inequality classic of Hermite-Hadamard

Jor f(u) = /auf(t)dt,() <a<u<b.

and
b
Ty f(u) = / F(£)dt,0 < a <u<b.

u

2.2 Fractional integral via convexity

Theorem 2.2.1. Let f : [a,b] — R be a positive convex function. Then for «, f >

k, the following inequality for the k-Riemann-Liouville fractional integrals holds :

(u—a)? f(a) + (b~ wH/®

o f(u) +r S f(u)] <

+H(w) <(u s U)k) -

Proof

We observe that for a > k and u € [a,b] and t € [a,u] :
u—t<u—a

and for o > k we obtain:

(u_t)%_l < (u - a’)%_lvt S [CL7U] (2 3)
Writing:
u—1 t—a
t= a U
u—a uU—a
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since f is convex, we have

u—t t—a

fla)+ ——f(u),t € [a,u],u € (a,b). (2.4)

u—a u—a

ft) <

From (2.3) and (2.4) , we obtain

(=070 < (=08 (@) + =2 )
< (- @F (2l )+ (w))

By integrating with respect to t over [a,u] , we get :

/au(u_t)ck”f(t)dt < (u-a)™ [ﬂa) /u(“_t>dt+ o /u(t_a)dt]’

Then
/au(u—t)%lf(t)dt < W(f(@/a(u—tdwf / (t — a)d )
(u—a)x? (u—
- ) s ()
= U+ U )
- L)+ )

Therefore, in view of the definition of the k-Riemann-Liouville fractional integrals,

we get
(u—a)¥

Wi () S () + () (2.5)
Now, for u € [a,b] and 8 > k , and t € [u, b]
t—u<b—u

the following inequality can be observed :

(t =)t < (b—w)i! (2.6)
We have
. t—ub+ b—t
b—u b—u%

21



2. K-FRACTIONAL INEQUALITIES

By the convexity of f , we also have

t—u b—t

£ < 5 0) +

b_uf(u),te [u, b]. (2.7)

From the inequalities (2.6) and (2.7) , we obtain

B_
b 54 (b _ u) z—1 b b
[ = wi e < e (f) [ (=)t + f) [ (b—tdt)
Therefore, in view of the definition of the k-Riemann-Liouville fractional integrals,

we conclude that

(b— )k
k*]bﬁ—f(u) < m(f(b) + f(u)). (2.8)

Adding (2.5) and (2.8), we get the required inequality (2.2).

2.2.1 Particular cases of k-Riemann-Liouville fractional in-
tegral via convexity

Corollary 4 By setting a, 6 > 1 and k = 1, the following inequality for the

Riemann-Liouville fractional integrals holds :

(u—a)*f(a) + (b—u)?f(b)

[ay f(w) + Ty f(w)] < 20 () ) ( 20(5)

Corollary 5 By setting o = (3 in (2.2), this inequality reduces to the fractional

integral inequality

pdoy fuw) i f(u) < lei(a) ((u —a)* f(a)+ (b—u)* f(b) + f(u) ((u —a)t +(b— u)%)) ,

Corollary 6 By setting o« = =k =1 and taking u =0 or u = a in (2.2), we get
the inequality

bia/abf(t)dtg f(a)—QFf(b)

Corollary 7 By setting « = 3 =1 and taking u = (a + b)/2 in (2.2), we have the

inequalities
1 b a+b f(a)+ f(b)
Ogb—a/af(t)_f< 2 )dtﬁ >
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2. K-FRACTIONAL INEQUALITIES

Remark 2.2.1. It is interesting to see that if in Theorem 2.2.1, the function f is
concave and 0 < o,  and «, 5 > k, then the reverse of inequality (2.2) holds.

Theorem 2.2.2. Let f : [a,b] — R be a differentiable function. If f  is convex,
then for a < b, and «, 3 > 0, the following inequality for the k-Riemann-Liouville

fractional integrals holds :
IDe(a+ k)edgy fu) + Tr(B+ k)idy f(w) = ((uw—a)E f(a) + (b= u)F £(b))]

<5 (=B @]+ = 0 FF O+ 1 @] (0= 0+ (- wF)).

(2.10)
Proof
By the convexity of | f/], we have:
’ u—t, t—a, .
) < t b
701 < U P @+ S )t € ol e (a,b),
Then, it follows that
u—=t. t—a, . ’ u—=t, t—a, .
— < f(t) < . 2.11
(A=l @+ 20wl < £ 0 < S @l = Wl e
We firstly consider the right hand side of (2.11) :
’ u—t ’ t—a ’
t) < 2.12
P < @ 2w, (2.12)
Now, using the inequality
(u—t)% < (u—a)*,telaul,a k>0, (2.13)

By multiplying (2.12) and (2.13) side to side and integrating over [a,u] , we get

[w-ntfwd < -t (1f @) [ w=tde+ 15 @) [ (¢~ apt)
:(u_@$40fm»+vﬁm>’

2
By integrating by part, we have

u a

[w=0trwa = r@-nik+ 3 [w-0t o,

— —f(a)(u — (1)% + Fk(Oé + k)ktﬁi-pf(“)
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2. K-FRACTIONAL INEQUALITIES

by the definition of the k-Riemann-Liouville fractional integral, and from (2.14), we

have:

=l

P+ k)rJgy f(u) = fla)(u—a)

Sw_aﬁH<MWM;umm>7 1)

Now, considering the left hand side of (2.11) and proceeding as we did for (2.12),

we get

Tyt k)2 f(u) < (u— a)F ('f (‘l)';’f (“>|>. (2.15)

e

fla)(u—a)

From (2.14) and (2.15), we conclude that

e

T+ k)Jg f(u) = f(a)(u— a)

On the other hand, using the convexity of |f |, for ¢t € [u,b] we have

t—u
b—u

for t € [u,b] and 5,k > 0, one has

7Ol < U+l ), (217)

=@
Ealjey

(t =)

by adapting the same approach as we did for (2.12) and (2.13) from (2.17) and (2.18)

< (b—u)r, (2.18)

we obtain the inequality

8
k

Te(B + k)l f(a) — FO)(b— u)f

Combining (2.16) and (2.19) via the triangular inequality, we get the required result

Particular cases

Corollary 8 Fora < b, a,8 > 0 and k = 1 , the following inequality for the

Riemann-Liouville fractional integrals holds:
D(a)J2, £ (u) + T(B)T) f(w) = ((u—a)*f(a) + (b—u)* (b))
1
< Z
-2

((w=a) 17 @] + (b= w1 @)+ 1 @) (@ = @)™ + (b= w)™*))
(2.20)
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2. K-FRACTIONAL INEQUALITIES

Corollary 9 By setting o = [ in 2.2.2, this inequality reduces to the fractional

integral inequality:
Tila + ) [k J2 £ (w) + Jg F)] = ((u = a) fla) + (b—w)¥ (b))
<5 (=P F @]+ -0 F B+ 17 )] (0= @+ - w))).

Corollary 10 By setting o« = =k =1 and u = (a + b)/2 in 2.2.2 |, we get the

inequality:

‘b i a /abf(t)dt B

We use the following lemma to prove our next theorem

fla) + f(b)
2

<2t (@i oner ).

Lemma 2.2.1 Let f : [a,b] — R be a convex function. If f is symmetric with

respect to (a +b)/2, then

f (“;b> < f(u),u € [a,b]. (2.21)

Proof

We have, for all u € [a, b] ;

a—+b U—a b—u uU—a b—u
2 _1/2{b—aa+b—ab}+1/2{b—ab+b—aa}’

We have,
22 _ _ — — —
av—a”+b"—bu _ (b—a)lat+b)—ulb—a) (b—a)la+b u):a+b—u,
b—a b—a b—a
and
bu—ba+ab—au u(b—a)
= :u,
b—a b—a
Then :

12f(a+b—u) +1/2f(u) = 1/2f(u) +1/2f(u) = f(u),

Since f is convex and symmetric




2. K-FRACTIONAL INEQUALITIES

Theorem 2.2.3. Let f : [a,b] — R be a positive convex function. If f is symmetric

with respect to (a+0b)/2 , then the following inequalities for fractional integrals holds

1 ( Lo, ) f <a + b) ~ DB+ B f(@) | Talat k)edad* f(0)
2k \§+1 £+1 2 ) T o(h—a)it! 2(b— a)F !
[+ 1)
- 2k
Proof
For u € [a,b] and 3,k > 0, we have:
(u—a)t < (b—a)F. (2.22)
By the convexity of f , we have
uU—a b—u
< —_— .
Flu) < S22 0) T f(a),w e fo,b) (223

From the inequalities (2.22) and (2.23) it follows that:

(b—a)*

b—a

/ab(u — a)%f(U)du < (f(b) /ab(u —a)du + f(a) /ab(b - u)du) .

Thus, by the definition of the k-fractional integral, we have

Le(B+ K)ed) " f(a) _ f(a) + £ (D)
(b— a)f+! - 2%

, (2.24)

On the other hand, since

e
i

(b—u)r < (b—a)r,u€ [a,b],a,k >0,

From (2.23), we get

2 f(@)+ f(b)

[[6-wf fudu< (o - i 17T

Thus, by the definition of the k-fractional integral, we have

Ty (o + k)sJSH f(a) < fla)+ f(b)
(b — a)%""l - 2k ’

(2.25)
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2. K-FRACTIONAL INEQUALITIES

Adding (2.24) and (2.25), we get

Ce(B+ Ry " f(a) | Tula + k)pJi™" f(a) _ f(a) + f(0)
2(b — q)F+! 2(b—a)r ! = 2%

Eliey

Using Lemma 2.2.1 ,and multiplying (2.21) by (u — a)*, integrating over [a,b], gives

f(“;b) /ab(u—a)gdug/ab(u—a)

<a n b) 1 Tw(B+ k)i, f(a)
f 3 < B
2 ) 2k(f+1) 2(b — a)r ™

Using Lemma 2.2.1 and multiplying (2.21) , by (b — )%, integrating over [a,b] gives

(o L _ Tula+ kst f(b)
2 ) 2k(E+1) — 2(b—a)ft!

@

f(u)du, (2.26)

: (2.27)

(2.28)

adding (2.27) and (2.28) , and then combining with (2.26) , we obtain the required

result.

Particular cases

Corollary 11 If we put k = 1, then the following inequalities for the Riemann-

Liouville fractional integrals holds:

1( 1 1 ) f<a+b> o LB | T(e)Jg ()

2\a+1 G+1 2 ) = 20—a)ftt " 2(b—a)t!
¢ 50

Corollary 12 If we put a = [ in (2.22) , then this inequality reduces to the frac-

tional integral inequality .

a-+b 1 Fe(a+ k) otk otk
f( 5 )k(z‘—i—l) < Q(Z];—W(kj_ fla) +r J4 f(b))

fla) + f(b)
- 2k
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2. K-FRACTIONAL INEQUALITIES

2.3 Fractional integral via quasi-convexity

Lemma 2.3.1 Let f : [a,b] — R be a differentiable function on (a,b), if f e Ly[a,b]

, the following equality for k-fractional integrals is valid

fla)+ f(b) _ Tila+k)
2 2(b—a)*

e £ (D) +x J5 [ (a)]

_b—a
2

/01[(1 — 0% — 2] (fa + (1 — £)b)dt.

Proof

We give the proof for £ =1 :

fla)+ f(b) TD(a+1) . )
2 T b—a)e (T2, f(b) + T2 f(a)]

_b—a 1

5 ), (=) — t°)f (ta + (1 — t)b)dt.

set
[ /01[(1 — 0% —°1f (ta+ (1 — D)b)dt,

We divide the field

I1=1 -1
where
1 !
I :/ (1= t)*F (ta+ (1 — t)b)dt,
0
and
1 /
I :/ 1o f (ta+ (1 — £)b)dt.
0
We have

I = /01(1 — 0% f (fa + (1 — D)b)dt.

We integrate by parts :

I, — (1_t)af(ta_;(_lb_t)b)%—/l—a(l—t)a1f(ta—+a_(_1b_t)b)dt
= —af@vaoz/ol(l—t)“1f(taz<_1b_t)b)dt,
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2. K-FRACTIONAL INEQUALITIES

With a change of variable

v=ta+(l-th=v=(a—bt+b
t=0=v=">
dv = (a —b)dt
pov=b
_a—g_a
1—t:b_a( .
a—1 __ v—a
S 1_(b—a)a71
We obtain :
_ f®) e rv-a T f@)
L = b—a_b—a,/b (b — a)*— 1a_bdv
_ f(b) « a(U—a)
= b—a b—a/b (b_a) f(U)dU
b b
N bfi)a (b _i)aﬂ /a (v —a)* " f(v)dv
Then, we have
b
h be)a b—aa+1/ (o U—aalf(v)dv
Q) al() 5
b—a_(b_a)a+1 * f(a)
Now, let
I = /01 tf (ta + (1 — t)b)dt,

We intégrateur I, we obtain :

f(ta+ (1

I t

o f(ta+ (1= 1))

a —

a—b

/ sa- flta+ (1 —=1)b)

_t)b)l(l) _/1a

b a—>b

dt.

a—>b
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2. K-FRACTIONAL INEQUALITIES

With a change of variable

v=ta+(1—t)b=>v=(a—b)t+b
t=0=v=">
t=1=v=a

dv = (a — b)dt
v—>b

Thus:
_ _J@ o b )
= -2 2 i )ala_bdv
_ f(a) « (b v)
= _b—a_b—a/b (b—a)a f('U)dU
_ f(a) a b -
B _b—a—i_(b_a)a—i-l/a(b_v) f(v)dv
That is

fa) + al(e) L (b—v)* f(v)dv

b= it o T
fla) , _ol(a) o
b-a * (b —a)et! T J(0)

So, we have

fO) __all@) o Fl@) o) .

[1_12:b—a (b —a)ott = b—a (b—a)t! Turt
Then
b ; a(Il 1)
Cb—a_ () al() fa)  al()
e (b_ | S )+ - S >)
e e L ORI

30



2. K-FRACTIONAL INEQUALITIES

2.3.1 Particular cases of k-Riemann-Liouville fractional in-

tegral via quasi-convexity

Corollary 13 If we take k = 1, the k-Riemann-Liouville fractinal integrals of order
a turn out to be Riemann-Liouville fractional integrals of order o .

fla)+f(b)  Tla+1)
2 2(b—a)~

[Jay S (0) + T f(a)]

_b—a 1
2 0

[(1 =) —t*]f'(ta + (1 — t)b)dt.

Corollary 14 If we put oo = 1, we obtain :

f(a) + f(b) L
2 ~ (b—a) /a f(tydt

/01(1 — o0 f(ta+ (1 — )b)dt.

_b—a

Lemma 2.3.2 Let f : [a,b] — R be positive function and f € Lq[a,b]. If f is

quasi-convez on [a,b], the subsequent inequality for k-fractional integrals is valid

20— a)F e 0) i S f()] < max {f(a), F(B)}-

!
th — > 0.
with -

Proof

Since f is quasi-convex on [a,b], we have

flta+ (1 =1)b) < max{f(a), f(b)},

and

f((1—=t)a+tb) < maz{f(a), f(b)},

by adding these inequalities, we get

;[f(ta + (1= 1)) + (1 = t)a + th)] < maz{f(a), F(b)},
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2. K-FRACTIONAL INEQUALITIES

-1

now multiplying both sides by ¢% ' and integrating the resulting inequality with

respect to ¢ over [0,1] , we obtain:

/tk flta+ (1 —1t)b dt+/tk‘1 (1 —t)a + th)dt

_/‘b—274f> b+lﬂzizﬁ”f@%%}
< Pmar(f(a), S0}

by using the definition of k-Riemann-Liouville fractional integrals, we get

Pk(Oé + k’)
2(b—a)®

hence the proof is complete.

o [k oy F(0) +i i f(a)] < mazx{f(a), f(b)}-

Particular cases

Corollary 15 If k = 1, we have an inequality for Riemann fractional integrals is

valid:
F(Oﬁ + 1) o «a
30—y £ 8) ()] < max{f(a). £(8).

with a > 0.

Corollary 16 If we put o =1, then

1
(b—a)

Theorem 2.3.1. Let f : [a,b] — R be a differentiable function on (a,b), if |f |is

[ £yt < max{f(a), 7).

quasi-convex on [a,b],« > 0, the inequality for k-Riemann fractional integrals is

valid:
f(a) + £(b) rk<a+k> .
< bma é)maxﬂ F@l £ o
(L +1 2%
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2. K-FRACTIONAL INEQUALITIES

Proof

Using Lemma 2.3.1 , the fact that |f| is quasi-convex and properties of modulus,

we have

Jla) : fo) al;(céoi Zfz) WIS F () i 5 f(@)]

< b;“ (1= 8)F —t% || f(ta+ (1 - t)b) | dt.
0

Bl

| (L= )% —t% | maz{| f'(a) || £(0) |}t

=Pt o) [ - -0 - - 0 Fdmar{] £(@) L] 6]}

_ 1 : /
= a1 geImar{] £ @) |1 £ 6) )

Here we have used

/01|(1—t)z— th | dt = A;[(l—t)i_t‘i]dwr l[t%—(l—t)%]dt

[V

which completes the proof.

Particular cases

Corollary 17 If k = 1, the inequality for Riemann-Liouville fractional integrals is

valid

J 0 S e )+ 5 £
b—a 1 ,
< U0 Ly max(7 )l 70

Corollary 18 If we put a = 1, we obtain

M)+ f6) 1 g
| R R

2 (b—a

< 2 max{I @), O]}
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2. K-FRACTIONAL INEQUALITIES

Theorem 2.3.2. Let f : [a,b] — R be a differentiable function on (a,b) such that
f € Lija,b). If | f |7 is quasi-convex on [a,b] and g > 1 , the sebsequent inequality
for k-fractional integrals is valid:
J@+f0)_Tiath)
2 2(b—a)®
_bza
S 2(gp+ 1)

e Jo f(B) 1 Sy f(a)] |

(max{| f'(a) |%,] /() |7})s.

3=

11
Where ~ + - =1 and © € [0,1] .
P q k

Proof

From Lemma 2.3.1 and using Holder’s inequality with properties of modulus, we

have
H IO et D 50) .5 10|
b —a

/|1_t%4%wﬂm+u—mﬂﬁ
b—ua

(A\u—a%4%vm%/|fm+u—w)wﬁﬁ

We know that for % € [0,1] and for all ¢, ¢, € [0, 1], | tF —t§ |<| t, —ty | ¥ therefore

1 « [e] 1 (7
/ 11— — ¢t Pdt < /|1—atwpﬁ
0 0

1 1
= /2 |1—2t|Epdt+/1 |1 — 2t |%7 dt
0 3

1
p+1

Since | f' |7 is quasi-convex onla, b], we have

f@+ S0 Dotk
2 2(b— a)f

| ooy F(0) +i Ty f(a)] |

b—a

< ——% (max{| f'(a) %] F'(b) |})7.
2(%]9 + 1)17
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Particular cases

Corollary 19 Ifk =1, the inequality for Riemann-Liouville fractional integrals is

valid

HO IO S DU 1) + 5 1))

b—a e
gy 1F S @ LSO 1)

1 1
Where — + — =1 and « € [0, 1].
p q

Corollary 20 If we put o = 1, we obtain :

fla)+ ) 1 g
B —(b_a)/af@)dﬂ

b—a
C2(p+1)

1 1
Where —+ — =1 and a € [0, 1].
p g

=2 (max{| f'(a) || £ (b) |"})7.

/\

'd\»—‘

Theorem 2.3.3. Let f : [a,b] — R be a differentiable function on (a,b) such that
f e Lyla,b]. If| f |7 is quasi-convex on [a,b] and q¢ > 1, the following inequality

for k-fractional integrals is valid:

H O St Rz, 1) f(a)|
< a1 )l £ 11 £ 0 1)}
with - > 0
Proof

From Lemma 2.3.1, using power mean inequality with properties of modulus and

using the fact that | f | is quasi-convex, we have

| fla)+f(b) _ Fk(a+k>[
2 2(b—a)¥

b—a

kay J(0) +i Ty f(a)] |

/ (1= ) —t% || f(ta+ (1—1)b) | dt
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2. K-FRACTIONAL INEQUALITIES

([1a=0F = a3 [ 1 (1= 0%~ ] £ (ta+ (01— 1)p) 17 )y

<P 1A= 0% e [ anmaxd] @) 1] £ 0) 17}

-2
=Pl - 0F — e+ /;w — (1=t (max{] f(a) %] £ ) 7))
!
= (1= ) max{] £(0) ] £ )19,
GV

Which complete the proof.

Particular cases

Corollary 21 If k =1, the following inequality for Riemann-Liouville fractional

integrals is valid:

HO IO e e ) + L fa)]

=0 Dy wmax{] £ (@) 1,] £ ®) |1}, with a € 0,1].

<
et 2

Corollary 22 [f we put « =1 , we put

H 10 G L 1< T ] £ @)1 8 P

We conclude the following diagram:

K-Riemann-Liouville fractional integral

if (k=1)

Riemann-Liouville fractional integral

I

il (ce=1)

Classical H Hadamard inequalities

Figure 2.1: K-Riemann-Liouville Diagram.
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Chapter 3

Hermite-Hadamard type

inequalities for quasi-convex
functions via katugampola

fractional integrals

The main purpose of this chapter is to establish Hermite-Hadmard’s inequalities
for quasi-convex functions via Katugampola fractional integral. We also obtain

Hermite-Hadmard type inequalities of these classes functions.|[l1]

3.1 Katugampola fractional integral

Definition 3.1.1. [12] Let 1 < p < co. The set X?(a,b) is the set of the functions
f :]a,b] = R, such that

1. f mesurable.

b d
2. / \fo(x)\pg < 0.

Theorem 3.1.1. The space X*(a,b) is a Banach space with the norm

b d 1/p
e = ([ P <o) .
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3. HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS VIA
KATUGAMPOLA FRACTIONAL INTEGRALS

Remark 3.1.1. If ¢ = 1/p, we obtain the classical L, space.

Katugampola gave a fractional integral that generalizes the Riemann-Liouville and

the Hadamard fractional integral into a single form.

Definition 3.1.2. Let [a,b] C R be a finite interval f € X?(a,b). Then, the left-and
right-side Katugampola fractional integrals of order (o > 0) are defined:

11—«

o1e, f(z) = 16(@) /jt”‘l(m"—tp)o‘_l £(t)dt. (3.1)
and .
PO f(zx) = ? ) / 1117 — aP) L f (1)t (3.2)

with a < 2 < b and p > 0, if the integral exist.
Proposition 3.1.2. Let o > 0 and p > 0. Then for x > a,

lim (*I3 f(0) = Ji. f(x).

p—1

We have :

1 @) = fs [ e 0

v — tr)lo

When p — 1 , we obtain
-« T p—1
P / li " t)dt
(F(a) s (xP — t/’)l—aﬂ )

_ F(la)/:(m—t)a—lf(t)dt

= J& f(x) 0<a<zx<b

Similar results also hold for right-sided operators.

Lemma 3.1.1. Let f : [a”,b’] — R be a differentiable function on (a”,b”) with

0 <a < b. Thene the following inequality holds if the fractional integral exist:

@)+ f(0")  ap'T(a+1)
2 200 — ar)e
B b? — aP

== /01 [(1 = t°) — 2] 771 f/(#aP + (1 — t9)bP)dt.

P12, (fog) (8) +* I (fog)(a)]
(3.3)
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3. HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS VIA
KATUGAMPOLA FRACTIONAL INTEGRALS

3.2 Katugampula fractional integral via convexity

Theorem 3.2.1. Let aj,as > 1, p1,pe > 0, Let f : [a,b] — R be a non-negative
differentiable function. If |f'| is convex function, then

(Do + 1™ = pal(az + 1718, + 52 (62 = 2 [(8) = g1 (0" = 2)™ f(a) <
pi(b = )b — @) 4 p7 L — a)(a — 0

@) ; .

(o B g A ) 2
2 2

Proof

We consider the function f on the interval [a,z], € (a,b), then for t € [a,z] and

a1 > 0, p; > 0 the following inequality holds
(Pt — )M < (2Pt — o). (3.4)
Since [’ is convex therefore for ¢ € [a, x], we have

- 2@+ @) < 10 < @)+

Xr — T —

t—a

L@l 35)

Multiplying inequalities (3.4) and the right hand side (3.5) and integrating the re-

sulting inequality over [a, x] with respect to ¢, we obtain:

Dlas = )P 21 () = @ = ) L) <
fa) + (@
2

P @ = a)((@” —a™)™)

b

on the other hand ay <0, py <0, t € [z,b], we have
(tﬂz _ xPQ)OéQ S (bp2 _ IP2)O¢2 (3.6)

Since f' is convex therefore for t € [z, ], we have
t—x

), (3.7)

From (3.6) and (3.7) and integrating over [z, b], we obtain:
b ! (b
oo [ = 2 (0t < gy (b - )2 — gyt LD L

By integrating by parts, we obtain:

Fi1) < o)+

pal' (a2 + )P 12 f(2) — py~ (0 — 2)™ f(b) <

ps (& —a)((a” — a)™)

f'(@) + f'(a)
2
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KATUGAMPOLA FRACTIONAL INTEGRALS

By adding inequalities (3.6) and (3.10), we get (3.2.1).
By setting a3 = s = a and p; = py = p in (3.6), we get the following corollary

Corollary 23 Under the assumptions of theorem (3.2.1), the inequality

(pF01+-U(EfJ1$)—-ﬁff(rn-rpgaf-xﬂ“faﬁ-—pa@f-—aﬂ“f(a)S
‘f@ﬂf®—wmf—WV+WWWI—®@”—MV+

2
A= D) =) T (e — a)(a? — at)e
7 : +17'(@) . .

Corollary 24 Letting p — 1 in (23), we get

Dla+ DG f(2) = - f (@) = (F(0) (b — )" + fla)(z —a)?) <

iy O T EH DT iy P2 (T
holds
Corollary 25 By setting a = 1 and & = =% in (24), we get the following in-
equality
bialwﬁmﬁ‘ﬂw;fm)Swgﬂ)@f<a;b+f®%+fm0>. s

We need the following result

b
Lemma 3.2.1. Let f : [a,b] — R be a convex function If f symmetric about a—2{— ,

then the following inequality holds

f (“;b> < f(z), € [abl. (3.9)

Theorem 3.2.2. Let ay > 0,0 > 0, p1,p2 > 0, let f : [a,b] — R, be a convex
a+b
, then

function, If f is symmetric about

b [+P1 _ p1\ M b [4+P1 _ 4P1
f<“+b> [ / (f “ ) d o [ (f “ )aldt]
2 a P1 a P1
D) I f(0) + (o) I f(a) <

lbm (M) " + b2 (bm_am> agdtl (b — Q)M
P1 P2 2

IN

holds
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3. HERMITE-HADAMARD TYPE INEQUALITIES FOR QUASI-CONVEX FUNCTIONS VIA
KATUGAMPOLA FRACTIONAL INTEGRALS

Proof
We have for ¢ € [a, b]
pl—altm (tm _ am)oq S pl—albm(bm _ am)oq' (3‘10)

Since f is convex therefore for t € [a, b], we have

t—a b—t

f(b) + faf(a)- (3.11)

f(t)gb—a b

Multiplying inequalities (3.10), (3.11), and integrating over [a, b], with respect to t,

we get
b b
ot [ = arym o < o — e IO g )
We have )
prr — P\ ¢ b
( >P1]a1f< ) < bpl(b _ a) < pla ) f(a);’ f ' (3‘13)
On the other hand
py 2t (172 — af?)*? < py 2bP2 (B2 — af?)*2 (3.14)
Similarly, we get
pr2 — qP2 \ 2 b
( )PQ[azf( ) < bp2(b _ a) ( p2a ) f(a)2+ f . (315)

By adding (3.13) and (3.13), we obtain

Do) g f(b) + T(a2) 52 f(a) <

lbm (bm_‘lm)al e <M> Oth] (b— a)M
P1 P2 2

Using lemma (3.2.1), we have

b\ [ b/ — gt \ M ]
f(a; > aﬂl/a <p1a> dt| < T(ay + 1) I £(b) (3.16)

Analogously

/ ( ) b) [ <t;> &| < Ton + VP @) (317)
L a 1 A

Combining (3.15), (3.16) and (3.17), we get the required inequality. By setting

ap =ay=aand py =py=p
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Corollary 26 Under the assumptions of (3.2.2) the following inequality

EORNCORCTR

(b a) (

<T(a+DIS) + I fa) <

b — af

) )+ s,
If we let p— 1 in (3.18), we get the corollary.

Corollary 27 Under the assumptions of (3.2.2) the following inequality

() = @+ )

(f(a) t f(b)> |

3.3 Katugampula fractional integral via quasi-convexity

Theorem 3.3.1. Let a > 0 and p > 0. Letf : [a”,b’] — R be a positive function
with 0 < a < b and f € XP(a”,b”). If f is a quasi-convex function on [a”, 0], then

the following inequality holds:

pT(a+1)

2008 — ar)e 712, (fog)(b) +° I (fog)(a)| < maz{f(a"), F(b")} (3.18)

where g(x) = x”.
Proof
Since f is quasi-convex function on [a?, b?], we get
f#Pal + (1 = t°)0%) < max{f(a”), f(/)}.

and
ftP0 + (1 = t*)a”) < maz{f(a), f(V*)}.

by adding inequalities we have

[f(tPa? + (1 = ")0°) + f(#°V + (1 = #7)a”)] < max{f(a), f()},  (3.19)

DN | —
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Multiplying both sides of (3.19) by t**~! and integrating the resulting inequality

with respect to ¢ over [a”, b’],we obtain

1 1
|t + (= )+ [ e 4 (1= 19)a?)
0 0

1

b [ hP — P aP\ P11
- /a(bp—ap> f(:cp b — aP +/ ( p—ap) f(xp)b/’—apdx

1 b 2Pl N b 2P Vi
- (bp—ap)a/a (o — oyl @)1 +(bp—af’)a/a (@ —aryiad @)
()

= e ey T 00)(0) 4 T (fog) (@)

2 P 2
pfamax{f(a ), f(¥)}

IA

So we get the desired result .

Particular cases

Corollary 28 In theorem 3.5.1, taking limit p — 1, we obtain inequality of Riemann-

Liouwville
['(a+1)

W[Jé’;f@) + St f(a)] < max{f(a), f(b)},

with o > 0.

Corollary 29 If we put a =1 , we obtain :

b i a /abf(f)dt < max{f(a), f(b)}.

Theorem 3.3.2. Let « > 0 and p > 0. Letf : [a”,b°] — R be a differentiable
function on [a”,b”] with 0 < a < b . If |f'| is a quasi-convex function on [a” V] ,

then the following inequalities holds:

fla?) + f(b) _ apT(a+1)

12, (fog)(b) +° I (fog)(a)] ‘

2 Q(bﬂ — ap)a
- pb(;_Jra:) (1 - 2p<c1u+1>> maz{|f' (@), [f' @)}, (3.20)

where g(z) = x”.
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Proof

Using the Beta-function and quasi-convex of |f'| with modulus, we get:

e 1) e 0 o gy 4 . g

b — aqf 1

< [(1—t")* — o]t~ f(tPa? + (1 — t7)b°)dt
b — qf 1 o , ,

< T =) = e man | (@) 0]}
b? — af

= —5—maz{|f (@) ()]}
X {/0211/” [(1 — 7)™ — Pt dt + 1 [tP* + (1 — t7)°] t”ldt}

1
20
where )

T 1
/zﬁ (L —")> — ]t tde+ | [t7* + (1 —t7)*) 7 dt
0

_1 {/0é [(1—uw)*—u]du+ /11 [u® — (1 —u)?] du} (3.21)

p 2

“aen ()

The proof is completed.

-

Sl

3.3.1 Particular cases of Katugampula fractional integral
via quasi-covexity

Corollary 30 In theorem 3.3.2 , taking limit p — 1 we obtain inequality of Rie-

J 0 e )+ 5 £
< P00 ymax{Fa), (),

a+1

Corollary 31 If we put oo =1 in previous corollary , we obtain

e T E

Theorem 3.3.3. Let o« > 0 and p > 0. Letf : [a”,b°] — R be a differentiable

b—a

max{[f"(a)], | ()]}

function on [a”,b”] with 0 < a < b . If|f'|? is a quasi-convex function on [a”, V"] and
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s > 1, then the following inequality holds:

‘ flat) # 70 _ an T+ 1) foga (rog)s) +# T2 (f 09)(“)}‘

2(bP — ar)®
bp_a'p / q !/ q 1 l’
= —— (maz{[f (@)% [/ (O)1})7 (K1 + K3)*
where
1 — 1 1
K — <3+ as—l—l) K :as—l— F1<1—s—|— ,1;as + 2 )
p2 2p
1 1
-+-=1
s q
and g(x) = z” .
Proof

Using Beta function, Holder’s inequality and quasi-convex of | f/| with properties of

modulus, we have

|f (@) + f(1) Oéfzbf(o‘ +)1) P12, (fog)(b) +° fz?—(fog)(“)}‘

p_ P
< C I =y = e e + (- )t

b"—a" 1 s , 01 1/q
< ([ 1=y =) = (([C1far + (1= o)) ar)

0

p_ p 1/s

s 7 () 102y Dar) s @

v

L maz{|f (@7, | ()|}

1 1/s
> {/21//J (1 2tp)asts p—1) dt + / 2tp 1)o¢sts(p—1)dt}
0 2l/p

b—a

= —5—(max{|f'(@")|", | ()"} (Ky + Ko)'* (3.22)
Where
1/21/» 1 1 Ll=s
K = / (1— 2yt — / w1 w)® du
0 p28+ - Jo
1

1_
- 1_SB<8+S,OCS+1>
; p
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! 1 1 s
Ko= [ =1 Va — —— [ a1 ) du
1/21/p 25t p 7o
1 -1 1
= s+ 2F; 1—5+7S s + 25—
2p p 2

So, if we use (3.23), (3.23) in(3.22) , we obtain desired result.

Particular cases

Corollary 32 In theorem 3.3.3, taking limit p — 1 we obtain inequality of Riemann-

Liouwille
fla)+f(b) T(a+1)

S = S s )+ T f (@)

b—a 1 1eNIg | 1L/
< sty 1y (1 ge) (sl @) 1 )

Corollary 33 If we put o = 1 in previous corollary , we obtain

HETO L

b—a / q / q\\1/q
< W(max{vw)l AF @Y.

Theorem 3.3.4. Let « > 0 and p > 0. Letf : [a”,b°] — R be a differentiable
function on [a”,b”] with 0 < a < b . If|f'|? is a quasi-convex function on [a”, V"] and

q = 1, then the following inequality holds:

fla?) + f(b) — ap®T(a+1)

12, (Fog) () +° I§. (fog)(a)] |

2 2(bF — ar)e
b—a 1 1PV | F1(pPY |21/ g
< sy (1= 5a) (mar{l @)l 7 @)

Where g(z) = x*.

Proof

From Lemma 3.1.1, quasi-convex of | f ,| and using power-mean inequality with prop-

erties of modulus, we have
f(a?) + f(0°)  apT'(a+1)
2 2(bP — ar)e

1, (fog)(b) +° I (fog)(a)] |
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b — aP 1
[ 1=y =l et + (1= )l
0

b? — aP 1 1-1/q
< ¢ (/ ](l—t”)a—t”a|tp1dt>
2 0
1 1/q
x (/ (1 = ) — |2 | £/ (taP + (1 — t”)bp)|th>
0

b — aP 1 1-1/q
<— (/ (1 — 7)™ — t”a|t”‘1dt>
0

<(mar{|f @) DY ([ 10 -0 = e

: 3 - (/01 (1 — t9) — tﬂalt”‘ldt) (maz{| f'(a®)|%, | f'(07)|7})"8

Using (3.21) we get desired result.

<

1/q

particular cases

Corollary 34 In theorem 3.5.3, taking limit p — 1, we obtain inequality of Riemann-

Liouville
| fla)+ f(b) T(a+1)
2 2(b—a)~

b—a ! q ! avy:
< 2= (] £ ) 1] £ 0) 1D,

[Jar f(0) + S5 f(a)] |

1 1
where —+ — =1 and a € [0, 1].
p gq

Corollary 35 If we put a =1 , we put

fla+f®) 1 p
S A e AL

b—a
<

<~ (max{| f'(a) .| f'(0) "})7.

We conclude the following diagram
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Katugampola fractional integral

if (p=1)
Riemann-Liouville fractional integral

_ if (=)
I

Classical H-Hadamard inequalities

Figure 3.1: Katugampula Diagram.
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General Conclusion

To sum up, In this work we have studied some notions on quasi-convexity and in-
tegral inequalities classic and fractional, we have dealt with Hermite-Hedamard’s
classic and fractional.

We have achieved the main objective which is the study of some classical integral
inequalities and we have established some results on fractional calculus.

In the first chapter we have presented some basic notions and important tools of
convexity and quasi-convexity, which led us to deal with Classical case of Hermite-
Hadamard’s inequalities via convexity and via quas-convexity . Then we have dis-
cussed in the second chapter the k-Riemann-Liouville Fractional Integral and some
special cases when k£ = 1, this case is Hermite-Hadamard inequality. The last
chapter shed light on Hermite-Hadamard type inequalities for quasi-convex func-
tions via katugampola fractional integrals which generalizes the previous results of

k-Riemann-Liouville Fractional Integral and Hermite-Hadamard fractional integral.
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