République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Ibn Khaldoun Tiaret

Faculté des Sciences appliquées Département de Génie Civil

Mémoire de fin d'études en vue de l'obtention du diplôme de Master

Spécialité : Génie Civil Option : Structures

Présenté par :

Mr: ABADA Abdellah

Sujet du mémoire

Solutions Analytique et Numérique des Poutres Hyperstatiques

Soutenu publiquement le 04 Octobre 2020 devant le jury composé de :

Mr, DRAICHE.K	President
Mr : HADJ HENNI Abdelaziz	Encadreur
Mr, TLIDJI.Y	Examinateur
Mm, KHELIFA.Z	. Examinateur.

Promotion 2019/2020

 \mathbf{OOO}

Remerciments

Je remercie avant tous Allah tout puissant, de m'avoir guidé et de m'avoir donné la volonté, la patience et le courage afin de réaliser ce travail.

Au terme de cette étude, j'aimerai exprimer ma gratitude à tous ceux qui ont contribué à sa réalisation et en particulier à mon encadreur Mr ABDELAZIZ H, qui m'a bien permis de bénéficier de ses conseils judicieux et ses orientations dispensées avec beaucoup de coordialité, Qu'il trouve ici l'expression de ma reconnaissance et ma très respectueuse sympathie.

Je tien également à remercier les membres de jury pour l'honneur qu'ils m'ont fait en acceptant de siéger à ma soutenance,

Dédicace

Je dédie ce travail à

Toute ma famille,

À mes proches amis, specialement

Dr Benchibout ophtalmologue specialiste au CHU de Sidi Belabes.

ZEROUKI	ophtalmologue	au CHU	de Sidi	Belabes.
AEK	TOUHAMI	ingenieur	GC - Sidi	Belabes;
Au Dr MAL	DANI Yazid ophta	lmologue spe	cialiste -Tisse	emsilt
A	mes confrers	s BERGAD	Med	
	Et MOKHTAR	Ahm	ed	
	ZEROUKI AEK Au Dr MAL A	ZEROUKI ophtalmologue AEK TOUHAMI Au Dr MADANI Yazid ophta A mes confrers Et MOKHTARI	ZEROUKI ophtalmologue au CHU AEK TOUHAMI ingenieur Au Dr MADANI Yazid ophtalmologue spe A mes confrers BERGAD Et MOKHTARI Ahmu	ZEROUKIophtalmologueauCHUdeSidiAEKTOUHAMIingenieurGC - SidiAuDr MADANIYazidophtalmologuespecialiste - TisseAmesconfrersBERGADMedEtMOKHTARIAhmed

À toutes les personnes qui me connaissent de prés ou de loin.

Abdellah

Sommaire

Résumé	5
Abstract	6
ملخص	7
Liste des figures	8
Liste des tableaux	10
Notations	11
Introduction generale	12

Chapitre 1	Intro	duction s	sur la mécan	ique des stru	ictures	13
		1.1.1	Introductio	n		14
		1.1.2	Définition	d'une structu	re	14
		1.1.3	Analyse de	es structures .		14
		1.1.4	Historique	de l'analyse	des structures	15
	1.2	Structu	ires isostatiqu	ies et hyperst	atiques	15
		1.2.1	Indétermin	ation statique		15
		1.2.2	Déterminat	tion du degré	d'hyperstaticité	17
	1.3	Les tre	eillis			17
		I.3.1	Introductio	n		17
		I.3.2	Degré d'hy	perstaticité d	'un treillis plan	17
	1.4	Les por	utres et portio	ques		18
		1.4.1	Les poutres	s		18
		1.4.2	Les portiqu	ies		18
	1.5	Princip	es fondamen	taux de la thé	forie des poutres	19
	I.6	Method	des de calcul			20
		1.6.1	Methode d	les forces		20
			1.6.1.1	Système c	oncordant	20
			1.6.1.2	Théorème	de Menabrea	20
			1.6.1.3	Principe d	e la méthode des forces	21
			1.6.1.4	Equations	de continuité	22
			1.6.1.5	Exemples	d'application	23
				1.6.1.5.1	Exemple 1 : inconnues hyperstatiques externes.	23

1

				1.6.1.5.2	Exemple2: inconnues hyperstatiques internes	24
		1.6.2	Méthode de	s trois mom	ents	25
			1.6.2.1	Formules of	le Clapeyron	25
			1.6.2.2	Méthode d	e résolution	27
			1.6.2.3	Exemple:		28
		1.6.3	Théorème de	CASTIGLIA	ANO	28
			1.6.3.1	Introductio	on	28
			1.6.3.2	Principe de	e la conservation de l'énergie	29
			1633	Travail de	e déformation des sollicitations simples	•
			1.0.5.5	dans le cas	des poutres	30
				1.6.3.3.1	Effort normal	30
				1.6.3.3.2	Moment fléchissant	31
				1.6.3.3.3	Effort tranchant	32
				1.6.3.3.4	Moment de torsion	32
			1.6.3.4	Expression déformation	générale de l'énergie potentielle de	33
			1.6.3.5	Travail vir	tuel	34
			1.6.3.6	Première f	orme du théorème	35
			1.6.3.7	Exemples	d'application	36
				1.6.3.7.1	Exemple 1:	36
				1.6.3.7.2	Exemple 2:	37
			1.6.3.8	Utilisation	d'une sollicitation auxiliaire	37
			1.6.3.9	Exemples	d'application	38
			1.7	conclusion	·	38
Chapitre 2	Gener	ralité sur	la méthode	des élement	s finis	39
		2.1.1	Introductio	on		40
		2.1.2	Noeuds et	éléments		40
		2.1.3	Etapes d'a	nalyse par la	a MEF	41
		2.1.4	Classificat	ion des prot	blèmes d'analyse des contraintes	41
		2.1.5	Etapes d'a	nalyse par la	a MEF	42
		2.1.6	Connaissa	nces nécessa	aires à un utilisateur MEF	43
		2.1.7	Discrétisat	ion		43
	2.2	Analyse	lineaire stati	que des barı	es articulees et des poutres	45

		2.2.1	Introduction	45
		2.2.2	Déduction de la matrice de rigidité pour l'élément de barre articulée	45
		2.2.3	Déduction de la matrice de rigidité pour l'élément de poutre	47
		2.2.4	Systèmes de coordonnées globals et locals	49
		2.2.5	Propriétés de la matrice de rigidité	50
	2.3	Expositio	n de la méthode aux problèmes unidimensionnels	50
		2.3.1	Elément de barre à deux nœuds avec joints rigides	50
		2.3.2	Interpolation nodale sur les déplacements	50
		2.3.3	Relation déplacement –déformation	52
		2.3.4	Relation déformation – contrainte	53
		2.3.5	Calcul des efforts internes	53
		2.3.6	Calcul de la matrice de rigidité élémentaire	54
		2.3.7	Formulation globale	55
	2.4	Assembla	ge pour plusieurs éléments	56
		2.4.1	Formulation élémentaire	56
		2.4.2	Matrice de rigidité globale (par assemblage)	57
	2.5	Logiciel l	Maple	57
		2.5.1	Entrée des données	57
		2.5.2	Organigramme du programme de calcul	57
	2.6	La résolu	tion d'un modèle éléments finis	59
		2.6.1	Résolution et analyse des résultats	59
		2.6.2	La résolution du système d'équations	59
		2.6.3	Le calcul des résultats demandés par l'utilisateur : le post-	- 0
			traitement	60
		2.6.4	Déplacements et déformées	60
		2.6.5	Déformations, contraintes et efforts de liaison	60
		2.6.6	Choix raisonné du degré de complexité du modèle	62
	2.7	Conclusio	on	64
Chapitre 3 :	Etude	du compo	ortement des poutres hyperstatiques par les méthodes analytiques	66
	et nu	mériques		60
	3.1	Introduct		67
	3.2	Represent	tation de la théorie des poutres en éléments finis	67
		3.2.1	Rappel sur la théorie des poutres	67
		3.2.2	2 Formulation en élément finis	68

3.2.4 l'expression du moment de flexion M ^e (x) 7 3.3 Code de calcul par éléments finis 7 3.4 Étude comparative 7 3.5 Exemple 01 7 3.5.1 Solution éléments finis 7 3.5.1 Solution éléments finis 7 3.5.1.2 Matrice de rigidité élémentaire 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de somments 7 3.5.1.7 diagramme des moments 7 3.5.1.6 Solution analytique 8 3.6.1 Solution analytique 8	72 72 73 73 73 73 74 75 75 76 77
3.3 Code de calcul par éléments finis 7 3.4 Étude comparative 7 3.5 Exemple 01 7 3.5.1 Solution éléments finis 7 3.5.1 Solution éléments finis 7 3.5.1.1 Matrice de rigidité élémentaire 7 3.5.1.2 Matrice de rigidité globale 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	72 73 73 73 73 73 74 75 75 75 76 77
3.4 Étude comparative 7 3.5. Exemple 01 7 3.5.1 Solution éléments finis 7 3.5.1.1 Matrice de rigidité élémentaire 7 3.5.1.2 Matrice de rigidité globale 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	72 73 73 73 73 74 74 75 75 76 77
3.5. Exemple 01 7 3.5.1 Solution éléments finis 7 3.5.1.1 Matrice de rigidité élémentaire 7 3.5.1.2 Matrice de rigidité globale 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	73 73 73 73 74 74 75 75 76 77
3.5.1 Solution éléments finis	73 73 73 74 74 75 75 75 76 77
3.5.1.1 Matrice de rigidité élémentaire 7 3.5.1.2 Matrice de rigidité globale 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	73 73 74 74 75 75 75 76 77
3.5.1.2 Matrice de rigidité globale 7 3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	73 74 74 75 75 76 77
3.5.1.3 vecteur des forces nodales {F} 7 3.5.1.4 Résolution du système 7 3.5.1.5 système de détermination déplacements inconnus 7 3.5.1.6 Système de détermination des réactions d'appuis 7 3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	74 74 75 75 76 77
3.5.1.4Résolution du système73.5.1.5système de détermination déplacements inconnus73.5.1.6Système de détermination des réactions d'appuis73.5.1.7diagramme des moments73.5.2Solution analytique73.6Exemple 0283.6.1Solution analytique83.6.2Solution éléments finis8	74 75 75 76 77
3.5.1.5système de détermination déplacements inconnus73.5.1.6Système de détermination des réactions d'appuis73.5.1.7diagramme des moments73.5.2Solution analytique73.6Exemple 0283.6.1Solution analytique83.6.2Solution éléments finis8	75 75 76 77
3.5.1.6Système de détermination des réactions d'appuis73.5.1.7diagramme des moments73.5.2Solution analytique73.6Exemple 0283.6.1Solution analytique83.6.2Solution éléments finis8	75 76 77 20
3.5.1.7 diagramme des moments 7 3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	76 77 20
3.5.2 Solution analytique 7 3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	77 20
3.6 Exemple 02 8 3.6.1 Solution analytique 8 3.6.2 Solution éléments finis 8	20
3.6.1Solution analytique83.6.2Solution éléments finis8	50
3.6.2 Solution éléments finis	30
	33
3.7 Exemple traitement	34
Influence de la position de la charge sur le comportement de la	
poutre continue	54
3.7.2 Présentation et interprétation des résultats §	35
3.7.2.1 Présentation des résultats	35
3.7.2.2 Commentaires	35
3.8 Conclusion	35
Conclusion generale	36
Références bibliographiques	37

Annexe

89

Résumé

Notre travail fait l'objet de l'utilisation des méthodes d'analyse de l' RDM qui présentent la base principale de mise en œuvre de l'analyse des structures hyperstatiques.

L'analyse numérique basée sur l'application de la méthode des éléments finis étant la méthode la plus largement répendue possédant une base mathématique rigoureuse qui est fort utile, et très pratique, En effet, cette base mathématique permet de prévoir jusqu'à un certain point la précision de notre approximation.

Il est aujourd'hui courant de réaliser, pour l'étude des projets, des analyses par éléments finis afin de vérifier la stabilité d'un ouvrage en interactions avec son environnement, de contrôler les valeurs de déplacements admissibles et d'aider au dimensionnement des structures.

Dans ce cadre en premier lieu une etude comparative est effectuée au calcul du comportement des poutres hyperstatiques en utilisant les solutions analytiques existantes ainsi que la methode des elemnts finis afin d'examiner la validite du model numerique proposé.

En second lieu, en executant le programme, les resultats de calcul numerique pour un exemple de traitement d'une poutre continue sont presentés.

Mots clés : méthodes d'analyse, méthodes des éléments fini, résistance des matériaux, hyperstatique, deplacements.

Abstract

Our work is the subject of the use of material resistance analysis methods which present the main basis for implementing the analysis of hyperstatic structures, numerical analysis based on the application of the element method finis being the most widespread method having a rigorous mathematical base which is very useful, and very practical. Indeed, this mathematical base makes it possible to predict up to a certain point the precision of our approximation.

It is today common to carry out, for the study of the projects, analyzes by finite elements in order to check the stability of a work in interactions with its environment, to control the values of admissible displacements and to help with the dimensioning of structures.

in this context, first of all a comparative study is carried out to calculate the behavior of hyperstatic beams using the existing analytical solutions as well as the finite element method in order to examine the validity of the proposed numerical model.

Second, by executing the program the results of numerical computation for an example of processing a continuous beam are presented.

Keywords: analysis methods, finite element methods, material resistance, hyperstatic, displacements.

موضوع عملنا هو استخدام طرق تحليل "مقاومة المواد " التي تعتبر الأساس لتنفيذ تحليل الهياكل لمفرطة ، والتحليل العددي القائم على تطبيق طريقة العناصر كونها الطريقة الأكثر انتشارًا التي لها قاعدة رياضية صارمة مفيدة جدًا وعملية جدًا ، وفي الواقع ، فإن هذه القاعدة الرياضية تمكن من حلول تحليلية دقيقة.

من الشائع اليوم لأجل إنجاز دراسة المشاريع , إسـتعمال طرق العناصر المحدودة للتحقق من اسـتقرار الهياكل في التفاعل مع بيئتها والتحكم في قيم النزوح المقبول و في تحديد أبعاد الهياكل.

في هذا السياق ، أولاً وقبل كل شيء ، يتم إجراء دراسـة مقارنة لحسـاب سـلوك الروافد مفرطة السكنون باسـتخدام الطرق التحليلية الموجودة وكذلك طريقة العناصر المحدودة من أجل فحص صحة النموذج العددي المقترح.

ثانيًا ، من خلال تنفيذ البرنامج ، يتم تقديم نتائج الحساب العددي لمثال لمعالجة الحزمة المستمرة. الكلمات المفتاحية: طرق التحليل ، طرق العناصر المحدودة ، مقاومة المواد ، إفراط السكنون ، نزوح.

Liste des figures

Figure I.1 :	Structures isostatiques et hyperstatiques	16
Figure I.2 :	Exemple de systèmes hyperstatique	16
Figure I.3 :	Exemple de systèmes hyperstatique	17
Figure I.4 :	Structure en treillis plane	17
Figure I.5 :	Poutres : différentes configurations	18
Figure I.6 :	Portiques : différentes configurations	18
Figure I.7 :	Systèmes concordant et non concordant	20
Figure 1.8 :	Exemple de Portiques	21
Figure 1.9 :	Diagramme des moments	23
Figure I.10 :	Signification des coefficients δ	23
Figure 1.11 :	Diagramme M, N et T	24
Figure 1.12 :	Inconnues hyperstatiques internes	24
Figure I.13 :	Diagramme des M et m	25
Figure 1.14 :	Poutres continues à âme pleine	25
Figure 1.15 :	Poutres continues a n través	26
Figure I.16 :	Poutres continues a deux través	28
Figure 1.17 :	Tronçon de poutre sous l'effet des contraintes d'effort normal	30
Figure 1.18 :	Tronçon de poutre sous l'effet des contraintes de flexion	31
Figure 1.19 :	Tronçon de poutre sous l'effet d'un moment de torsión	32
Figure 1.20 :	Energie potentielle de déformation	33
Figure 1.21 :	Travail virtual d'une particule	34
Figure 1.22 :	flèche d'une poutre bi-articulée	36
Figure 1.23 :	flèche d'une poutre console	37
Figure 1.24 :	calcul de rotation dans une poutre console	38
Figure 2.1:	Discrétisation d'une structure en nœuds et éléments	40
Figure 2.2 :	Principe d'analyse par la Méthode des Eléments Finis	41
Figure 2.3 :	Principales étapes pour une analyse par la Méthode des Eléments Finis	42
Figure 2.4 :	Deux maillages plans avec leurs nœuds	44
Figure 2.5 :	Quelques types d'éléments bidimensionnels courants	44
Figure 2.6 :	Forces nodales associées aux déplacements nodaux pour un élément de barre articulée	46

Figure 2.7 :	Les fonctions de forme pour un élément de barre à deux nœuds	47
Figure 2.8 :	Elément de poutre bidimensionnel	48
Figure 2.9 :	Elément de barre a deux nœuds avec joints rigides	5(
Figure 2.10 :	Assemblage de deux éléments	50
Figure 2.11 :	Organigramme du programme de calcul appliqué sur MAPLE	58
Figure 2.12 :	Influence des déplacements imposés sur les modes rigides d'un maillage	59
Figure 2.13 :	Une même déformée tracée avec trois facteurs d'amplification	
	différents	6
Figure 2.14 a :	Un champ de contraintes ''brut'' calculé par éléments finis (discontinu)	6
Figure 2.14 b :	le même champ ramené aux nœuds et interpolé (continu)	6
Figure 2.15 :	Un champ de contraintes de Von Mises tracé à l'aide d'une carte de	
	couleurs	0.
Figure 2.16 :	Modélisation 1D du problème, continue (à gauche) et discrétisée (à droite).	62
Figure 2.17 :	Modélisation 2D du problème, continue (à gauche) et discrétisée (à droite)	6
Figure 2.18 :	Modélisation 3D du problème, continue (à gauche) et discrétisée (à droite).	6
Figure 2.19 :	Exemples de mouvements d'une section droite obtenus	6
Figure 2.20 :	Récapitulatif de la méthode de calcul programmée dans les logiciels de simulation par éléments finis.	6
Figure 3.1 :	Element de poutre soumis a la flexion	6
Figure 3.2 :	Element de barre a deux noeudx	6
Figure 3.3 :	Géométries de référence de l'élément poutre	6
Figure 3.4 :	Discretisation de l'élément poutre	7
Figure 3.5 :	Géométrie et chargement de l'élément poutre	7
Figure 3.6 :	Systeme S0.	7
Figure 3.7 :	Systeme S1.	7
Figure 3.8 :	Diagramme des moments	7
Figure 3.9 :	Poutre continue a deux travées	8
Figure 3.10 :	Systeme equivalent	8
Figure 3.11 :	Reactions aux appuis	8
Figure 3.12 :	Diagramme M	8
Figure 3.13 :	Géométrie et chargement de l'élément poutre	8
Figure 3.14 ·	Differentes positions de chargement d'une poutre contine	8

Liste des tableaux

Tableau 2.1.7 :	Types d'éléments finis 43
Tableau 2.2.3 :	Les fonctions de forme associées par l'activation de l'un des quatre degrés de liberté
Tableau 3.6.2:	Comparaison des resultats des moments des exemples 1 et 2 et des deplacents de exemples 1 obtenus analytiquement et numeriquement
Tableau 3.7.2.1	: Comparaison des resultats des moments et deplacements suivant differentes positions

NOTATIONS

[ke]	Matrice de rigidité élémentaire
[<i>k</i>]	Matrice de rigidité globale
[<i>B</i>]	Matrice de déformation
[<i>k</i> 0]	Matrice de rigidité
[A]	Matrice des coefficients correspondant aux coordonnées de l'élément
d.d.l	Degrés de liberté
di	Vecteur de déplacement nodal
Ε	Module de Young
v	Coefficient de poisson
[<i>F</i>]	Vecteur de force
$u, v, w, \theta x, \theta y, \theta z$	Déplacement et rotation d'un point quelconque
x, y, z	Coordonnées du repère global
Ex , Ey , Ez	Déformation directes suivant x, y et z respectivement
Er , Ez , Eθ	Déformation directes suivant r, z et θ respectivement
ſ	Intégrale
[]	Matrice
[]r	Matrice transposé
[]–1	Matrice inverse
γxy , γyz , γxz	Déformation tangentielle
γrz, γrθ , γθz	Déformation tangentielle
СТ	Cisaillement transverse
M.E.F	Méthode des éléments finis

INTRODUCTION GÉNÉRALE

Le génie civil représente l'ensemble des techniques concernant les constructions civiles. Le maitre ingénieur en génie civil s'occupe de la réalisation, de l'exploitation et de la réhabilitation d'ouvrages d'art et d'infrastructure, dont ils assurent la gestión afin de rependre en besoin de la société, tout en assurant la sécurité du public.

Notre travail est consacré à la résolution de problemes de poutres hyperstatiques en utilisant les méthodes analytiques et numérique (application de la méthode des éléments finis) et d'en conclure avec une conparaison des resultats obtenus avec les deux methodes.

A cet effet, notre travail est compose de trois chapitres ;

Le premier chapitre expose une étude bibliographique en présentant un aperçu sur la discipline de la la mécanique des structures.

Dans le deusieme chapitre une synthese bibliographique sur la méthode des élements finis est presentée en ulistrant le principe ainsi que le domaine d'application de cette methode numerique.

Le dernier chapitre est consacre a la modelisation des cas des poutres hyperstatiques numeriquement eb effectuant une comparaison avec celle des methodes analytiques.

Par la suite, en executant le programme developpé du model numerique est appliqué au calcul des cas des poutres continues possedant un nombre de degré d'hyperstaticité important.

CHAPITRE I:

Introduction sur la mécanique des structures

1.1.1 Introduction

Le rôle primordial de l'étude d'analyse des structures vise a déterminer les actions internes et les réactions d'appui d'une structure sollicitée par un système de charges externes ou soumise a des déformations imposées et ou subisse a une dénivellation d'appui.

Une action interne peut designer indifféremment une force et ou un moment de flexion, de la même manière, une déformation peut designer une translation et ou une rotation.

Les structures sont en général classées en deux grandes catégories : structures isostatiques et structures hyperstatiques.

Les structures isostatiques sont celles ou les trois équations de la statique sont suffisantes a leur analyse.

Dans ce cas, les actions (les réactions aux appuis et ou les moments) peuvent être calculées en utilisant tout simplement les équations d'équilibre, par conséquent, les sollicitations internes, telles que : le moment de flexion, l'effort tranchant et l'effort normal peuvent être déduits en utilisant l'équilibre interne des sections.

Au contraire, les structures hyperstatiques sont aux quelles les équations de la statique ne suffisent pas a la détermination des réactions d'appui et les actions internes. Cela veut dire que le nombre des inconnues (les réactions d'appui) est strictement supérieur au nombre d'équations d'équilibre.

La différence entre le nombre des inconnues du problème et celui des équations d'équilibre est appelée le degré d'hyperstaticite du système ou de la structure.

1.1.2 Définition d'une structure

Le mot « structure » désigne dans le domaine de la scène mécanique, tout corps solide répondant aux conditions suivantes :

1-La structure est caractérisée par les **propriétés mécaniques** de la matière qui la constitue.

2-Le corps formant cette structure est défini par une géométrie quelconque.

3-La structure est liée au milieu extérieur par l'intermédiaire des appuis.

4-Elle est soumise à un chargement externe quelconque.

1.1.3 Analyse des structures

L'analyse des structures est l'étude et la détermination de leur réponse lorsqu'elles sont soumises à un ensemble de sollicitations ou de charges externes, en général, la réponse d'une structure est caractérisée par l'évaluation des actions internes et ou les déformations en tout point de la structure. Pour arriver à ce but, il est nécessaire d'utiliser une méthode mathématique, un essai expérimental ou un modèle analytique ou numérique.

Le rôle principal de l'analyse des structures est l'étude de la performance d'une structure soumise a l'effet du milieu extérieur, tels que : un ensemble d'actions externes, un mouvement d'appui ou de support, un changement de température,.... etc.

Les caractéristiques communes de la performance structurale ayant un intérêt principal dans la conception structurale, sont :

1-Les efforts internes, tels que : l'effort axial, l'effort tranchant, le moment de flexion et le moment de torsion.

2-Les réactions d'appui.

3-Les déformations qui se produisent lors de l'application des sollicitations externes.

Les méthodes classiques d'analyse des structures présentent des limitations de calcul, cette limitation dépend de la géométrie de la structure ou du chargement y applique (problèmes spéciaux), cependant, les développements des machines de calcul ont conduit à une énorme évolution de méthodes d'analyse et surtout de type matricielles.

La finalité des deux catégories de méthodes de calcul est d'arriver à une conception structurale répondant simultanément aux critères de résistance et d'économie.

1.1.4 Historique de l'analyse des structures

La conception et l'analyse des structures sont un art très ancien auquel plusieurs civilisations ont contribue a son développement.

La période noble qu'a connue l'analyse des structures, est celle de 1800-1900, pendant cette durée, les bases théoriques de la mécanique des matériaux et des structures ont été développées. On peut distinguer les développements suivants :

- 1- les principes de l'analyse des systemes reticules isostatiques, Whipple (1804-1888).
- 2- l'equation des trois moments, Clapeyron (1799-1864).
- 3- la theorie de la reciprocite des deplacements, Maxwell (1831-1879).
- 4- l'etude des lignes d'influence, Mohr (1835-1918)
- 5- Theoreme de Castigliano (1847-1884).
- 6- La methode des rotations, Maney (1888-1947).
- 7- Methode de distribution de moments, Cross (1885-1959).
- 8- Methode de relaxation, Southwell (1888-1970).

Plusieurs analystes ont participe par la suite au développement des méthodes d'analyse matricielles et modernes, en plus, le 19 siècle a connu le développement des nouveaux matériaux, des nouvelles techniques et des structures a formes complexes.

Enfin, les dernières décennies, de considérables développements dans le domaine de la mécanique numérique ont été entrepris après la révolution connue dans le domaine de l'informatique et des méthodes numériques.

1.2. Structures isostatiques et hyperstatiques

1.2.1 Indétermination statique:

Toute structure est soumise à : - Des charges (forces connues) qui peuvent être des charges permanentes ou des surcharges d'exploitation. Ces charges peuvent être réparties ou concentrées, fixes ou mobiles ;

- Des réactions (forces inconnues) qui sont les actions des appuis sur la structure, ces réactions peuvent être déterminées à partir des équations de l'équilibre statique.

Pour une structure plane, les conditions d'équilibre statique sont au nombre de trois :

$$\sum F_{ext/x} = 0 \quad ; \quad \sum F_{ext/y} = 0 \quad ; \quad \sum M_{F_{ext}/point} = 0$$

Lorsque la structure étudiée (supposée en équilibre) est composée de différentes membrures, les équations de la statique doivent, bien entendu, être satisfaites pour la structure considérée globalement. En outre, chaque barre, chaque nœud d'assemblage et toute portion de la structure doit, forcément, être en équilibre, cela signifie que les équations de la statique doivent également être satisfaites pour chaque composant, chaque nœud et chaque portion de la structure étudiée , or l'analyse d'une structure est généralement menée de façon à calculer les efforts de liaison (réactions) et les efforts internes. donc, si ceux-ci sont accessibles au départ des seules équations d'équilibre de la statique, la structure est dite statiquement déterminée, ou encore, isostatique. si, par contre, les efforts de liaison et/ou les efforts internes ne sont pas accessibles au départ des équations d'équilibre de la statique, la structure est dite statiquement indéterminée ou encore, hyperstatique

Figure 1.1 – structures isostatiques et hyperstatiques

Par rapport à une structure isostatique, une structure hyperstatique contient un nombre surabondant d'appuis (ou d'inconnues), en d'autres termes, il existe plusieurs façons différentes de réaliser l'équilibre des structures hyperstatiques alors qu'il n'en existe qu'une seule et unique pour les structures isostatiques, par conséquent, les structures hyperstatiques nécessitent des conditions supplémentaires pour leur résolution (Figure 1.1).

Le nombre d'inconnues est identique aux conditions d'équilibre pour les structures isostatiques (à gauche) alors qu'il est plus grand dans le cas des structures hyperstatiques (à droite).

L'hyperstaticité peut être imputable à différentes causes. On parlera d'hyperstaticité externe si le nombre d'efforts de liaison (réactions) excède le nombre d'équations d'équilibre. Quelques exemples d'hyperstaticité externe sont repris à la Figure 1.2.

Figure 1.2 – Exemple de systèmes hyperstatique

La poutre (a) est une fois hyperstatique et le portique (b) est deux fois hyperstatique (extérieurement).

La résolution complète d'une structure exige non seulement la détermination des réactions d'appuis, mais aussi la détermination des efforts internes en toute section de la structure.

Si la connaissance des réactions d'appui permet la détermination des efforts internes en toute section de la structure, on dit que la structure est **isostatique intérieurement**.

Par contre, si la connaissance des réactions d'appui ne permet pas la détermination des efforts internes en toute section de la structure, on dit que la structure est **hyperstatique intérieurement**.

1.2.2 Détermination du degré d'hyperstaticité:

Une structure peut être plus ou moins hyperstatique dans le sens où elle peut contenir plus ou moins de liaisons surabondantes.

Dans un souci de caractérisation, on définit le degré d'hyperstaticité comme étant le nombre de coupures nécessaire à rendre la structure isostatique.

Le degré d'hyperstaticité est une caractéristique centrale pour l'application de la méthode des forces car il correspond directement au nombre d'inconnues nécessaire à la résolution.

Figure 1.3 – Exemple de systèmes hyperstatique

Chaque coupure correspondra à la suppression d'un effort interne inconnu (moment de flexion, effort tranchant, effort normal, moment de torsion). Physiquement, cette suppression se matérialise par l'introduction d'une rotule (M = 0) ou d'une glissière (T = 0 ou N=0). Ces dispositifs peuvent être introduits simultanément au droit d'une même section. S'ils correspondent à l'annulation de tous les efforts internes dans cette section, on parlera alors de coupure totale ,le nombre de suppressions nécessaires pour rendre la structure isostatique représente, bien entendu, le degré d'hyperstaticité.

1.3. Les treillis

1.3.1 Introduction :

Un treillis ou système réticulé est un système composé de barres droites articulées à leurs extrémités ; On appelle *nœuds* les points d'articulation communes à plusieurs barres.

Un treillis étant une structure légère, il est généralement utilisé pour des portées relativement longues dans les bâtiments et les ponts

Figure 1.4 -Structure en treillis

On suppose que les forces extérieures sont appliquées aux nœuds, il en résulte que les barres d'une structure en treillis supportent uniquement des efforts normaux (compression ou traction).

La cellule de base d'un treillis plan est le **triangle** et les trois barres articulées à leurs extrémités (figure 1.4(a)) qui forment une structure stable pouvant supporter des charges. Le treillis de la (figure 1.4(b)) peut être obtenue par juxtaposition de triangles et on obtient ainsi un **système triangulé**.

1.3.2 Degré d'hyperstaticité d'un treillis plan :

Soit un treillis plan contenant « n » nœuds et « b » barres, pour chaque nœud on peut écrire deux équations d'équilibre. On a donc 2n équations d'équilibre, pour chaque barre, on a une inconnue (l'effort axial dans la barre). Donc, pour « b » barre, on a « b » inconnues, soit « e » le nombre de composantes des réactions d'appui inconnues (nombre de liaisons avec l'extérieur).

Pour que le treillis soit isostatique, on conclut de ce qui précède que la relation suivante doit être respectée : 2n = b + e

Si 2n < b + e le treillis est alors hyperstatique, et on définit le degré d'hyperstaticité **k** comme étant : k = (b + e) - 2nPar contre, si 2n > b + e le nombre d'équations est supérieur au nombre d'inconnues ; le treillis est alors **instable** et il s'agit d'un mécanisme.

1.4. Les poutres et portiques

1.4.1 Les poutres :

Une poutre simple ou une poutre dite simplement appuyée (figure 1.5(a)) est une poutre d'une seule travée qui s'appuie à ses extrémités sur un appuis simple (dit aussi rotule ou articulation) et sur un appui à rouleau (ou appui chariot), l'ensemble de ces deux appuis est souvent désigné par l'expression appuis simples, la portée L de la poutre est la distance entre les axes de ces deux appuis.

Figure 1.5 – Poutres : différentes configurations.

Une console ou poutre cantilever (figure 1.5(b)) est une poutre encastrée à une extrémité et libre à l'autre. le prolongement d'une poutre simplement appuyée au-delà d'un de ses appuis s'appelle un **porte-à-faux** ou un encorbellement (figure 1.5(c)).

On appelle **poutre continue** (figure 1.5(d)) une poutre d'un seul tenant appuyée sur une succession d'appuis simples (y compris une articulation pour bloquer la translation).

S'il y a (n+1) appuis, on peut distinguer (n) tronçons entre deux appuis successifs, que l'on nomme travées. Les poutres continues à n travées sont des systèmes hyperstatiques de degré (n-1).

1.4.2 Les portiques :

On définit un **portique plan** comme étant une structure plane constituée de poutres droites dont les extrémités sont appelées des nœuds, ceux-ci sont généralement rigides mais ils peuvent aussi être des articulations.

Figure 1.6 – Portiques : différentes configurations.

Soit une structure plane avec :

- *n* éléments (poutres ou barres);

- e liaisons rigides (appuis rigides: encastrements ou liaisons rigide entre deux éléments) ;

- r articulations (avec l'extérieur ou entre éléments du portique) ;
- a appuis chariot

Le degré d'hyperstaticité du portique est alors donné par :

k = (3e+2r+a) - 3n

1.5 Principes fondamentaux de la théorie des poutres

Deux des **dimensions** de la poutre sont petites par rapport à la troisième, en d'autres termes les dimensions de la section droite sont petites par rapport à la longueur de la poutre, ce principe permet d'approximer la poutre par une ligne (droite ou courbe) et des sections droites.

En général, une longueur ou une distance de l'ordre de deux à trois fois la plus grande dimension de la section droite est considérée suffisante pour appliquer le modèle RDM.

Le <u>principe de Saint-Venant</u> précise que le comportement en un point quelconque de la poutre, pourvu que ce point soit suffisamment éloigné des zones d'applications des forces et des liaisons, est indépendant de la façon dont sont appliquées les forces et de la façon dont sont physiquement réalisées les liaisons; le comportement dépend alors uniquement du <u>torseur</u> des forces internes en ce point.

La conséquence est que les contraintes produites par un système de forces dans une section éloignée du point d'application de ces forces ne dépendent que de la résultante générale et du moment résultat du système de forces appliquées à gauche de cette section.

Le modèle RDM n'est plus valide lorsque le principe de Saint Venant n'est pas satisfait, c'est-à-dire à proximité des liaisons, des appuis ou des points d'application des forces, dans ces cas particuliers, il faut appliquer les principes de la <u>Mécanique des milieux continus</u>.

Le <u>principe de Navier-Bernoulli</u>; précise que **les sections droites** le long de la fibre moyenne **restent** planes après déformation, les déformations dues à l'effort tranchant montrent que les sections droites ne peuvent pas rester planes mais subissent un gauchissement, pour tenir de ce fait l'énoncé de ce principe peut prendre la forme suivante: deux sections droites infiniment voisines deviennent après déformation deux sections gauches superposables par déplacement.

Comme ce déplacement est petit, on peut considérer que les allongements ou raccourcissements de tout tronçon de fibre sont des fonctions linéaires des coordonnées de la fibre dans le plan de la section.

La <u>loi de Hooke</u> précise que, dans le domaine élastique du matériau, les déformations sont proportionnelles aux contraintes.

Le <u>principe de superposition</u> permet de décomposer toute sollicitation complexe en une somme de sollicitations élémentaires dont les effets sont ensuite additionnés, ce principe est directement lié à l'hypothèse de linéarité de la loi de Hooke.

L'équilibre statique d'un système exige que :

• La somme des *forces* extérieures en tout point est égale au vecteur nul :

$$\sum \vec{F}_{\rm ext} = \vec{0}$$

• La somme des <u>moments</u> calculés en tout point est égale au vecteur nul :

$$\sum \vec{M}_{\rm ext} = \vec{0}$$

1.6. Methodes de calcul

1.6.1 Methode des forces

Avec cette méthode, on prend comme inconnues les forces dans les liaisons surabondantes. Les liaisons surabondantes sont supprimées et remplacées par des forces inconnues qu'il faut chercher en premier lieu, la structure initiale (hyperstatique) est transformée en une structure isostatique soumise aux charges extérieures de départ et aux forces introduites (les inconnues hyperstatiques).

Les équations supplémentaires qui permettent de déterminer les forces inconnues sont obtenues en exprimant la "continuité" de la structure déformée dans les liaisons supprimées (surabondantes).

Pour la simplification des calculs, il y a intérêt à considérer les liaisons surabondantes qui rendent les équations générales de continuité aussi simples que possible.

Cette méthode est essentiellement caractérisée par la création de coupures qui libèrent chacune une liaison surabondante, chaque liaison supprimée est ensuite remplacée par une force qui joue le même rôle qu'elle.

1.6.1.1 Système concordant

On dit qu'un système hyperstatique est concordant quant à ses appuis, ou encore que les appuis d'un système hyperstatique sont concordants, lorsque les composantes de réaction sont toutes nulles en l'absence de sollicitations extérieures (Figure I.7a).

Dans le cas contraire - Figure I.7(b) - les appuis sont dits non concordants (les composantes de réaction ne sont pas toutes nulles).

Le manque de concordance d'un appui est représenté par le déplacement linéaire ou angulaire qu'il subit depuis sa position concordante jusqu'à sa position réelle.

1.6.1.2 Théorème de Menabrea

THÉORÈME : La dérivée partielle de l'énergie potentielle interne (W) d'un système par rapport à une inconnue hyperstatique externe ou par rapport à la valeur commune de deux inconnues hyperstatiques internes Xi dégagées par une coupure, est égale au manque de concordance correspondant ci.

$$\frac{\partial W}{\partial X_i} = c_i \tag{1.1}$$

Dans le cas d'un système concordant cette dérivée est toujours nulle, soit :

$$\frac{\partial W}{\partial X_i} = 0 \tag{1.2}$$

Le théorème de Menabrea signifie que les forces hyperstatiques prennent des valeurs qui rendent minimale l'énergie potentielle interne exprimée en fonction des sollicitations, dont les forces hyperstatiques, appliquées au système considéré, Ainsi, pour chaque inconnue hyperstatique Xi le théorème de Menabrea fournit une équation

a) Système concordant

b) Système non concordant

Figure I.7- Système concordant et non concordant

(de continuité). la résolution du système d'équations ainsi obtenu permet de trouver les inconnues hyperstatiques et de résoudre le problème qui devient isostatique.

Dans le cas d'un système linéaire L plan dont les éléments de réduction sont désignés par M, N et T (Mt=0), l'expression générale de W est de la forme :

$$W = \frac{1}{2} \int_{L} \frac{M^2}{EI} ds + \frac{1}{2} \int_{L} \frac{N^2}{EA} ds + \frac{1}{2} \int_{L} \kappa \frac{T^2}{GA} ds$$

Si le système est constitué de plusieurs barres (poutres) Li l'intégrale est étendue à chacune d'elles :

$$W = \frac{1}{2} \sum_{i} \int_{L_{i}} \frac{M^{2}}{EI} ds + \frac{1}{2} \sum_{i} \int_{L_{i}} \frac{N^{2}}{EA} ds + \frac{1}{2} \sum_{i} \int_{L_{i}} \kappa \frac{T^{2}}{GA} ds$$

Si la flexion est prépondérante par rapport aux autres sollicitations, l'expression de l'énergie se réduit au premier terme :

$$W = \frac{1}{2} \sum_{i} \int_{L_i} \frac{M^2}{EI} ds$$

Pour des systèmes plans constitués de barres droites articulées (treillis) avec des charges appliquées aux nœuds (treillis chargés indirectement), l'énergie est donnée par :

$$W = \frac{1}{2} \sum_{i} \int_{L_{i}} \frac{N^{2}}{EA} dx = \frac{1}{2} \sum_{i} N_{i}^{2} \int_{L_{i}} \frac{dx}{EA}$$

Et si la rigidité extensionnelle EA est constante sur chaque barre, il vient :

$$W = \frac{1}{2} \sum_{i} \frac{N_i^2 L_i}{(EA)_i}$$

1.6.1.3 Principe de la méthode des forces

Pour calculer un système hyperstatique d'ordre n (H = n), on le transforme en un système isostatique en supprimant les n liaisons surabondantes, cela revient à pratiquer n coupures, une par inconnue hyperstatique.

Figure I.8 - Exemple de Portiques

Pour que le système isostatique soit équivalent au système initial, il faut remplacer chaque liaison supprimée par la force qui lui correspondant (Figure I.8).

Les inconnues hyperstatiques X1 et X2 de l'exemple considéré sont obtenues en utilisant l'équation (1.2) ci-dessus, le système d'équations s'écrit :

 $\begin{cases} \frac{\partial W}{\partial X_1} = 0 \\ \frac{\partial W}{\partial X_2} = 0 \end{cases}$ (1.2)

Le système isostatique obtenu par suppression des liaisons surabondantes (Figure I.8(b)) est désigné par système de base, système fondamental ou encore système principal.

Une fois l'hyperstaticité levée, c'est-à-dire lorsqu'on a déterminé les inconnues hyperstatiques, la construction des diagrammes M, N, T revient à tracer les diagrammes d'un système isostatique (en l'occurrence le système de base) soumis - simultanément - aux charges données (la sollicitation globale F) et aux forces calculées (X1, X2, ... Xn).

1.6.1.4 Equations de continuité

Pour un système concordant d'ordre n, on aura un système de n équations :

$$\frac{\partial W}{\partial X_1} = 0, \quad \frac{\partial W}{\partial X_2} = 0, \ \dots, \frac{\partial W}{\partial X_j} = 0, \ \dots, \frac{\partial W}{\partial X_n} = 0$$

Chacune de ces équations peut se mettre sous la forme ci-après, connue sous le nom de formule de Müller - Breslau (ou de Bertrand De Fonviolant),

$$\frac{\partial W}{\partial X_j} = 0, \quad \Leftrightarrow \quad \sum_{i=1}^n X_i \delta^u_{ji} + \delta_{jF} = 0 \qquad j = 1, 2, \dots, n \tag{1.3}$$

et le système des n équations de continuité peut se mettre sous la forme explicite suivante :

Ou sous la forme matricielle :

$$\left[\delta^{u}\right]\left\{X\right\} = \left\{-\delta_{F}\right\} \tag{1.5}$$

Les équations du système (1.4) [ou (1.5)] sont appelées équations canoniques de la méthode des forces.

1.6.1.5 Exemples d'application

1.6.1.5.1 Exemple 1 : inconnues hyperstatiques externes.

Soit à résoudre le portique de la figure II.2. Pour les calculs, on considère h=l=a.

Les équations canoniques du système s'écrivent :

$$\begin{split} \delta^{u}_{11} X_{1} + \ \delta^{u}_{12} X_{2} + \delta_{1F} &= 0 \\ \delta^{u}_{21} X_{1} + \ \delta^{u}_{22} X_{2} + \delta_{2F} &= 0 \end{split}$$

Les coefficients δ_{11}^{u} et δ_{21}^{u} sont obtenus en appliquant au système de base la sollicitation unitaire X1=1 tandis que δ_{12}^{u} et δ_{22}^{u} s'obtiennent sous l'effet de la seule sollicitation X₂=1. Quant aux déplacements $\delta_{1}F$ et $\delta_{2}F$, ils se calculent sous l'effet des charges extérieures (ici la force P) appliquées au système isostatique de base.

Les diagrammes permettant le calcul de ces coefficients (cas où l'influence de M est prépondérante) sont

montrés à la figure I.9.

On trouve, avec h=l=a :

Figure I.9 - Diagramme des moments M et m

$$\delta_{11}^{u} = \frac{a^{3}}{3EI} \qquad \delta_{12}^{u} = \delta_{21}^{u} = \frac{a^{3}}{2EI} \qquad \delta_{22}^{u} = \frac{4a^{3}}{3EI} \qquad \delta_{1F} = -\frac{Pa^{3}}{4EI} \qquad \delta_{2F} = -\frac{29Pa^{3}}{48EI}$$

La figure I.10 montre la signification de ces coefficients, et à partir des équations du système on tire :

$$X_1 = \frac{9}{56} P$$
 et $X_2 = \frac{22}{56} P$

Les diagrammes M, N, T peuvent être construits maintenant (Figure I.11).

Figure I.11 : Diagrammes M, N, T

1.6.1.5.2 Exemple 2 : inconnues hyperstatiques internes (Figure I.12).

Figure 1.12 inconnues hyperstatiques internes

Les équations canoniques du système s'écrivent:

$$\begin{split} \delta^{u}_{11}X_{1} + \delta^{u}_{12}X_{2} + \delta^{u}_{13}X_{3} + \delta_{1F} &= 0\\ \delta^{u}_{21}X_{1} + \delta^{u}_{22}X_{2} + \delta^{u}_{23}X_{3} + \delta_{2F} &= 0\\ \delta^{u}_{31}X_{1} + \delta^{u}_{32}X_{2} + \delta^{u}_{33}X_{3} + \delta_{3F} &= 0 \end{split}$$

A partir des diagrammes de la figure I.13, on calcule les coefficients du système obtenu.

$$\delta_{11}^{u} = \frac{2h^{3}}{3EI}; \quad \delta_{12}^{u} = \delta_{21}^{u} = 0; \\ \delta_{22}^{u} = \frac{l^{2}(12h+l)}{24EI}; \quad \delta_{13}^{u} = \delta_{31}^{u} = -\frac{h^{2}}{EI}; \quad \delta_{23}^{u} = \delta_{32}^{u} = 0;$$

$$\delta_{33}^{u} = \frac{(4h+1)}{2EI}; \quad \delta_{1F} = -\frac{qh^{4}}{8EI}; \quad \delta_{2F} = \frac{qh^{3}l}{12EI}; \quad \delta_{3F} = \frac{qh^{3}}{6EI}$$

Figure I.13 – Diagramme des moments M et m

$$\begin{split} \delta_{11}^{u} &= \frac{2h^{3}}{3EI}; \\ \delta_{12}^{u} &= \delta_{21}^{u} = \delta_{23}^{u} = \delta_{32}^{u} = 0; \\ \delta_{22}^{u} &= \frac{13h^{3}}{24EI}; \\ \delta_{13}^{u} &= \delta_{31}^{u} = -\frac{h^{2}}{EI}; \\ \delta_{33}^{u} &= \frac{5h}{2EI}; \\ \delta_{1F}^{u} &= -\frac{qh^{4}}{8EI}; \\ \delta_{2F}^{u} &= \frac{qh^{4}}{12EI}; \\ \delta_{3F}^{u} &= \frac{qh^{3}}{6EI}; \\ \end{split}$$

La résolution du système d'équations donne :

$$X_{1} = \frac{91}{416} qh = 0.22 qh; X_{2} = \frac{2}{13} qh = 0.15 qh; X_{3} = -\frac{1}{48} qh^{2} = -0.02 qh^{2}$$

Le signe moins (-) devant X_3 , signifie que le sens réel de ce moment est contraire au sens choisi arbitrairement.

1.6.2 – Méthode des trois moments

I.6.2.1 - Formules de Clapeyron (Poutres continues à âme pleine)

Soit la travée (hyperstatique)d'une poutre continue soumise à une charge quelconque :

Figure 1.14 Poutres continues à âme pleine

 $M(x) = m(x) + M_1(1-x/L) + M_2 x/L$

Tel que : M1 et M2 sont les moments fléchissant appliqués aux nœuds 1 et 2.

Appuis de niveaux:

M1 et M2 sont des moments extérieur.

$$\begin{cases} \omega 1 = \omega' 1 - a M1 - b M2 \\ \omega 2 = \omega' 2 + b M1 + c M2 \end{cases}$$
$$On \ rappelle \ que : \begin{cases} a = \int_{0}^{L} \frac{1}{EI} \left(1 - \frac{x}{L}\right)^{2} dx = \frac{L}{3EI} \\ b = \int_{0}^{L} \frac{1}{EI} \left(1 - \frac{x}{L}\right) \frac{x}{L} dx = \frac{L}{6EI} \\ c = \int_{0}^{L} \frac{1}{EI} \left(\frac{x}{L}\right)^{2} dx = \frac{L}{3EI} \end{cases}$$

Si on étudie la flexion de la poutre continue a n travées de longueurs Li et de moments d'inerties Ii (avec i allant de 1 à n).

Figure 1.15 Poutres continues a n travées

La condition géométrique de continuité de l'angle de rotation à l'appui "i "commun aux deux travées de longueurs L_i et L_{i+1} sous l'effet d'un chargement quelconque sur les travées conduit à écrire :

 $\omega_{i,i-1} = \omega_{i,i+1}$. Si on écrit les deux dernières équations pour les travées (i-1, i) et (i, i+1).

$$\begin{cases} \omega_{i,i+1} = \omega'_{i,i+1} - a_{i+1} M_i - b_{i+1} M_{i+1} \\ \\ \omega_{i,i-1} = \omega'_{i,i-1} + b_i M_{i-1} + c_i M_i \end{cases}$$

On écrit la condition géométrique de continuité (wi,i-1 = wi,i+1), *on aura :*

 $\mathbf{b}_{i} \mathbf{M}_{i-1} + (\mathbf{c}_{i} + \mathbf{a}_{i+1}) \mathbf{M}_{i} + \mathbf{b}_{i+1} \mathbf{M}_{i+1} = \omega'_{i,i+1} - \omega'_{i,i-1}$

Dans le cas où l'inertie serait constant pour toutes les travées de la poutre, on remplace les paramètres a, b et c par leurs valeurs, on aura l'équation suivante, dite équation des trois moments ou de Clapeyron :

$$L_i M_{i-1} + 2(L_i + L_{i+1}) M_i + L_{i+1} M_{i+1} = 6EI(\omega'_{i,i+1} - \omega'_{i,i-1}).$$

Appuis dénivelés : M1 et M2 sont des moments extérieurs

$$\Omega = \omega_2 - \omega'_2 - b M_1 - c M_2$$

$$\Omega = \omega_1 - \omega'_1 + a M_1 + b M_2$$

$$\omega_2 = \omega'_2 + b M_1 + c M_2 + \Omega$$

$$\omega_1 = \omega'_1 - a M_1 - b M_2 + \Omega$$

Si on étudie la flexion de la poutre continue a n travées de longueurs Li et de moments d'inerties Ii (avec i allant de 1 à n), on écrit les deux dernières équations pour les travées (i-1,i) et (i, i+1).

$$\begin{cases} \Omega_{i} = \frac{V_{i} - V_{i-1}}{L_{i}} \\ \\ \Omega_{i+1} = \frac{V_{i+1} - V_{i}}{L_{i+1}} \end{cases}$$

On pose :

On fait le même enchaînement, on obtient :

$$\mathbf{b}_{i} \mathbf{M}_{i-1} + (\mathbf{c}_{i} + \mathbf{a}_{i+1}) \mathbf{M}_{i} + \mathbf{b}_{i+1} \mathbf{M}_{i+1} = \omega'_{i,i+1} - \omega'_{i,i-1} + \Omega_{i+1} - \Omega_{i+1}$$

Dans le cas où l'inertie serait constante pour toutes les travées de la poutre, on remplace les paramètres a, b et c par leurs valeurs, on aura l'équation suivante, dite équation des trois moments ou de Clapeyron

$$L_{i} M_{i-1} + 2(L_{i} + L_{i+1}) M_{i} + L_{i+1} M_{i+1} = 6EI(\omega'_{i,i+1} - \omega'_{i,i-1} + \Omega_{i+1} - \Omega_{i}).$$

I.6.2.2 - Méthode de résolution

- 1 On écrit cette équation de Clapeyron pour toute la poutre.
- 2 On obtient un système d'équations dont les inconnus sont les moments fléchissant sur appuis.
- 3 On résout ce système

4 - On déduit enfin les équations et les valeurs des moments fléchissant et des efforts tranchants ; ainsi que les réactions d'appuis.

Remarque :

Dans le cas d'une poutre continue, dont les appuis aux extrémités sont encastrés, on ajoute une travée fictive non chargée, puis on procède de la même façon, le théorème de Clapeyron, en prenant soin évidemment d'annuler la portée fictive dans l'expression finale.

I.6.2.3 Exemple :

Soit une poutre à deux travées identiques, soumise à une charge uniformément répartie q, d'inertie constante, schématisée ci-dessous.

Figure 1.16 Poutres continues a deux travées

Déterminer les moments sur appuis.

Travée 1 et 2 :

 $L_1M_0 + 2(L_1 + L_2) M_1 + L_2M_2 = 6EI (-qL2^3/24 EI)$

Travée 2 et 3:

 $L_2M_1 + 2(L_2 + L_3) M_2 + L_3 M_3 = 6EI ((-qL3^3/24 EI)-(-qL2^3/24 EI))$

Comme: $M_1 = M_3$; $L_2 = L_3 = L$ et $L_1 = 0$, *On trouve un système de deux équations a deux inconnus :*

$$\begin{cases} 2M_1 + M_2 = -qL^2/4 \\ M_1 + 2M_2 = -qL^2/4 \end{cases}$$

Finalement : $M_1 = M_2 = M_3 = - \frac{qL^2}{12}$

1.6.3 Théorème de Castigliano

1.6.3.1 Introduction

Dans ce chapitre seront examinées les relations qui existent entre les sollicitations agissant sur un système et les déplacements qu'elles produisent.

Les systèmes considérés sont généralement plans (géométrie et chargement) mais les développements théoriques s'appliquent à tous les systèmes.

Nous désignerons une sollicitation par F (sollicitation généralisée), que ce soit une force P, un couple C ou une sollicitation globale F (F1, F2, ..., Fn) et un déplacement par δ (déplacement généralisé), que ce soit une translation λ (déplacement linéaire) ou une rotation γ (déplacement angulaire).

1.6.3.2 Principe de la conservation de l'énergie

De manière générale, quand un corps est soumis à des charges extérieures, ces charges effectuent un travail extérieur qui se transforme en énergie potentielle interne (qui déforme le corps), en énergie cinétique et en chaleur qui se dissipe lors des frottements.

Supposons maintenant que:

a) les charges extérieures sont appliquées statiquement (pas d'énergie cinétique),

b) les frottements dans le corps sont nuls (pas de dissipation d'énergie sous forme de chaleur) c'est-à-dire que le corps considéré est parfaitement élastique,

c) les frottements dans les appuis sont nuls (pas de dissipation d'énergie),

alors tout le travail extérieur se transforme en énergie potentielle de déformation, c'est-à-dire qu'on a :

$$\tau_e = W \tag{1.1}$$

Dans ce cas, on dit que le système (corps + appuis + charges) est conservatif et le travail, ou l'énergie de déformation, puisque $\tau_e = W$, ne dépend pas de l'ordre dans lequel les forces sont appliquées mais uniquement de leur intensité finale.

Dans le cas contraire, c'est-à-dire si le travail dépendait de l'ordre d'application des forces, on pourrait le charger d'une certaine manière et le décharger d'une autre manière de façon à réaliser un gain, après plusieurs cycles, l'énergie ainsi gagnée ferait exploser le corps, ce qui est absurde.

Si les charges cessent d'agir, l'énergie emmagasinée dans le corps lors du chargement sera restituée sous forme de travail qui va ramener le corps à son état initial.

En plus des hypothèses a), b) et c) ci-dessus nous admettrons dans ce qui suit que: d) le matériau vérifie la loi de Hooke (matériau élastique linéaire), e) les déplacements sont suffisamment petits et n'affectent pas l'action des charges (pas d'effets du second ordre).

Il arrive quelquefois que le système, dans son état initial, c'est-à-dire avant toute application de charges, soit déjà assujetti à des efforts internes et des déformations élastiques, c'est le cas notamment des systèmes hyperstatiques dont les appuis subissent des déplacements (appuis non concordants), des systèmes hyperstatiques soumis à des effets thermiques, au phénomène de retrait dans les structures en béton, des effets des défauts de montage, etc.

Dans un cas pareil, le système possède déjà à l'état initial une énergie élastique (Wi) emprisonnée dans le corps et qui ne peut se libérer que dans des conditions particulières, les efforts et les déformations qui seront produits par les forces extérieures vont s'ajouter aux efforts et aux déformations existant, dans ce cas, l'énergie de déformation est égale au travail des forces extérieures qui se transforme en énergie élastique interne plus l'énergie élastique initiale, d'où :

$$\tau_e + W_i = W \tag{1.2}$$

Les résultats (1.1) sont parfois désignés par théorème de Clapeyron.

1.6.3.3 Travail de déformation des sollicitations simples dans le cas des poutres

Nous allons calculer séparément le travail de déformation (énergie de déformation) en fonction des efforts N, M, T et Mt dans une poutre (droite ou courbe) de longueur l.

Considérons un tronçon de poutre dx (ds) suffisamment petit pour pouvoir admettre que les efforts ne varient pas sur dx.

1.6.3.3.1 Effort normal

Sous l'effet des contraintes d'effort normal, le tronçon dx subit une variation de longueur Δdx définie par

Figure 1.17 Tronçon de poutre sous l'effet des contraintes d'effort normal

$$\frac{\Delta dx}{dx} = \varepsilon_x \Longrightarrow \Delta dx = \varepsilon_x dx = \frac{\sigma_x}{E} dx$$

Comme dans le cas de l'effort normal on a $\sigma_x = N/A$, *il vient :*

 $\Delta dx = (N/EA)dx$

L'énergie emmagasinée dans le couche (dA.dx) se calcule comme le travail effectué par la force (σ_x .dA) au cours du déplacement Δdx , d'où :

$$d^{2}W = \frac{1}{2}(\sigma_{x}dA)\Delta dx = \frac{1}{2}(\frac{N}{A}dA)\frac{N}{EA}dx = \frac{1}{2}\frac{N^{2}}{EA^{2}}dAdx$$

<u>Remarque</u>: La notation d^2W est utilisée pour désigner une quantité plus petite que l'énergie élémentaire. l'énergie élémentaire emmagasinée dans le tronçon dx s'obtient par intégration sur l'aire A de la section

$$dW = \frac{dx}{2} \int_{A} \frac{N^{2}}{EA^{2}} dA = \frac{1}{2} \frac{N^{2} dx}{EA^{2}} \int_{A} dA = \frac{N^{2}}{2EA} dx$$

Et pour la totalité de la poutre :

$$W = \frac{1}{2} \int_{l} \frac{N^2}{EA} dx \tag{1.3}$$

1.6.3.3.2 Moment fléchissant

Considérons la couche dAdx. Sous l'effet des contraintes de flexion, la couche subit une variation de longueur : $\Delta dx = \varepsilon_x dx = (\sigma_x/E)dx$.

Figure 1.18 Tronçon de poutre sous l'effet des contraintes de flexion

Compte tenu de la relation de Navier, il vient :

$$\sigma_x = \frac{M_z y}{I_z} \Longrightarrow \Delta dx = \frac{M_z y}{EI_z} dx$$

L'énergie emmagasinée dans la couche dAdx vaut :

$$d^{2}W = \frac{1}{2}(\sigma_{x}dA)\Delta dx = \frac{1}{2}(\frac{M_{z}y}{I_{z}}dA)\frac{M_{z}y}{EI_{z}}dx = \frac{1}{2}\frac{M_{z}^{2}y^{2}}{EI_{z}^{2}}dAdx$$

En intégrant sur la surface on obtient l'énergie emmagasinée dans le tronçon dx :

$$dW = \frac{dx}{2} \int_{A} \frac{M_{z}^{2} y^{2}}{EI_{z}^{2}} dA = \frac{1}{2} \frac{M_{z}^{2} dx}{EI_{z}^{2}} \int_{A} y^{2} dA = \frac{M_{z}^{2}}{2EI_{z}} dx$$

D'où l'énergie de déformation de la poutre, qui se calcule par intégration sur l :

$$W = \frac{1}{2} \int_{l} \frac{M_z^2}{EI_z} dx \tag{1.4}$$

Dans le cas d'une flexion gauche, on a une relation similaire à (1.4) pour chaque moment fléchissant et pour les deux moments on aura:

$$W = \frac{1}{2} \int_{l} \left(\frac{M_{z}^{2}}{EI_{z}} + \frac{M_{y}^{2}}{EI_{y}} \right) dx$$
(1.5)

1.6.3.3.3 Effort tranchant

L'énergie emmagasinée dans un tronçon dx soumis à un effort tranchant T_y vaut :

$$dW = \frac{\kappa_y T_y^2}{2GA} dx$$

Et pour toute la poutre:

$$W = \frac{1}{2} \int_{l} \frac{\kappa_{y} T_{y}^{2}}{GA} dx$$

Si la poutre est soumise à T_y et T_z on aura :

$$W = \frac{1}{2} \int_{l} \left(\frac{\kappa_{y} T_{y}^{2}}{GA} + \frac{\kappa_{z} T_{z}^{2}}{GA} \right) dx$$

1.6.3.3.4 Moment de torsion

L'angle dont tourne l'une par rapport à l'autre les sections extrêmes du tronçon dx soumis à un moment de torsion M_t est donné par (Figure 1.19)

Figure 1.19 Tronçon de poutre sous l'effet d'un moment de torsion

$$d\varphi_t = \frac{qM_t}{GI_P}dx$$

où :

• q est une constante dépendant de la forme et des dimensions de la section, appelée coefficient de torsion

 $(q \approx 40I_p^2/A^4)$. Ce facteur vaut 1 pour la section circulaire et est supérieur à 1 pour les autres cas.

• la quantité $C = GI_p/q$ est désignée par rigidité à la torsion (ou rigidité torsionnelle).

L'énergie emmagasinée dans le tronçon dx se calcule comme le travail effectué par M_t lors du déplacement $d\varphi_t$:
$$dW = \frac{1}{2} M_t d\varphi_t = \frac{q M_t^2}{2G I_P} dx$$

Et pour l'ensemble de la poutre :

$$W = \frac{1}{2} \int_{l} \frac{qM_{t}^{2}}{GI_{P}} dx \tag{1.6}$$

1.6.3.4 Expression générale de l'énergie potentielle de déformation

Isolons à l'intérieur d'un corps élastique un élément dv = dx dy dz suffisamment petit pour pouvoir admettre que les contraintes ne varient pas sur les facettes de l'élément.

Calculons l'énergie emmagasinée dans l'élément **dv** lorsqu'il est soumis à l'ensemble des contraintes (Figure 1.20(a)).

Figure 1.20 Energie potentielle de déformation

Le travail de déformation de la force $\sigma_x dy dz$ *au cours du déplacement* $\Delta dx = \varepsilon_x dx$ (*Figure 1.20(b)*) *vaut :*

 $dW = \frac{1}{2} (\sigma_x dy dz) \varepsilon_x dx = \frac{1}{2} \sigma_x \varepsilon_x dx dy dz$

Pour l'ensemble des trois contraintes normales, on applique le résultat (1.4), d'où:

$$dW = \frac{1}{2}(\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z) dx dy dz$$

 $O\hat{u}$; ε_x , ε_y et ε_z sont les déformations longitudinales et peuvent être exprimées en fonction des contraintes normales à partir de la loi de Hooke généralisée.

Les déformations provoquées par les contraintes normales et tangentielles étant indépendantes, si outre les contraintes normales il y a des contraintes tangentielles, il suffit d'ajouter leur effet.

Le travail de la force $\tau_{xy}dydz$ *lors du déplacement* $\gamma_{xy}dx$ (*Figure 1.20(c*)) *vaut:*

$$dW = \frac{1}{2} (\tau_{xy} dy dz) \gamma_{xy} dx = \frac{1}{2} \tau_{xy} \gamma_{xy} dx dy dz$$

En présence de toutes les contraintes, il vient:

$$dW = \frac{1}{2} (\sigma_x \varepsilon_x + \sigma_y \varepsilon_y + \sigma_z \varepsilon_z + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx}) dx dy dz$$
(1.7)

L'énergie potentielle de déformation de tout le corps s'obtient par sommation sur le volume entier:

$$W = \frac{1}{2} \int_{v} (\sigma_{x} \varepsilon_{x} + \sigma_{y} \varepsilon_{y} + \sigma_{z} \varepsilon_{z} + \tau_{xy} \gamma_{xy} + \tau_{yz} \gamma_{yz} + \tau_{zx} \gamma_{zx}) dv$$
(1.8)

L'expression de W peut être exprimée en fonction des contraintes seulement ou des déformations uniquement en utilisant les expressions des contraintes en fonction des déformations données par la loi de Hooke généralisée.

Dans le cas d'une poutre soumise aux sollicitations N, M, T et M_b l'expression de W s'obtient en ajoutant les expressions (1.2), (1.4), (1.5) et (1.6) :

$$W = \frac{1}{2} \int_{l} \frac{M^{2}}{EI} dx + \frac{1}{2} \int_{l} \frac{N^{2}}{EA} dx + \frac{1}{2} \int_{l} \frac{\kappa T^{2}}{GA} dx + \frac{1}{2} \int_{l} \frac{q M_{t}^{2}}{GI_{P}} dx$$
(1.9)

Notons que cette dernière expression ne découle pas de l'application du principe de superposition, qui n'est pas applicable puisque l'énergie n'est pas reliée linéairement aux sollicitations. La relation (1.9) s'obtient par sommation des contributions de chaque sollicitation du fait que le déplacement provoqué par une des sollicitations ne provoque pas de travail de la part des autres sollicitations (déplacements indépendants).

Remarque : Si le système comporte "n" barres, la relation (1.9) s'applique à chacune d'elles.

1.6.3.5 Travail virtuel

Considérons une particule *m* soumise à une force *F* (Figure 1.21).

Figure 1.21 Travail virtual d'une particule

Donnons à m un déplacement δ suivant la direction Δ .

Au cours du déplacement de la particule m, la force F effectue un travail égal, en valeur absolue, au produit de la composante de F agissant dans la direction Δ par le déplacement δ .

$$\tau_{v} = F \cos \alpha. \delta \tag{1.10.a}$$

Ce travail, d'où le 1/2 a naturellement disparu car la force F avait déjà atteint sa valeur finale au moment de l'application du déplacement δ , est appelé travail virtuel de F dans le déplacement virtuel δ . Si les sens du déplacement δ et de la composante de F suivant la direction de δ sont concordants, le signe du travail est positif, dans le cas contraire il est négatif.

Considérons maintenant le système élastique simple de la (figure 1.21(b)) et imposons lui une déformation représentée par la courbe c. Au cours de la déformation, la force P, dont le point d'application se déplace de δ , effectue un travail virtuel de la forme (10.a), avec $\alpha = 0$ dans le cas présent.

$$\tau_v = P.\delta \tag{1.10.b}$$

De manière plus générale, si un système supportant la sollicitation F (F_1 , F_2 ,..., F_n), subit un déplacement virtuel qui impose à chaque force (F_i) un déplacement (δ_i) suivant sa direction, le travail virtuel total effectué au cours du déplacement virtuel s'écrit :

$$\tau_{v} = \sum_{i=1}^{n} F_{i} \delta_{i}$$
(1.10.c)

1.6.3.6 Première forme du théorème

Considérons un système élastique soumis à une sollicitation $F(F_1, F_2,..., F_n)$. Au cours de la mise en charge, le système se déforme et les points d'application des forces subissent les déplacements δ_1 , δ_2 ,..., δ_n (δ_i mesuré suivant la direction de F_i).

L'énergie W emmagasinée dans le système au cours du chargement peut s'exprimer en fonction des forces ou des déplacements de leur point d'application.

$$W = W(F_1, F_2, ..., F_n) = W(\delta_1, \delta_2, ..., \delta_n)$$
(1.11.a)

Donnons à la force F_i un accroissement dF_i . Il s'ensuit une variation de l'énergie définie par la quantité $(\partial W/\partial F_i)dF_i$ et l'énergie totale, sous $F(F_1, F_2, ..., F_n)$ et dF_i , s'écrit :

$$W + \frac{\partial W}{\partial F_i} dF_i \tag{1.11.b}$$

Etant donné que le travail des forces ne dépend pas de l'ordre dans lequel elles sont appliquées, appliquons d'abord dF_i ensuite la sollicitation globale $F(F_1, F_2, ..., F_n)$.

La force infinitésimale dF_i produit un déplacement $d\delta_i$ infinitésimal aussi, si bien que le travail accompli peut être considéré comme un infiniment petit d'ordre 2 qu'il est légitime de négliger : (1/2) $dF_i d\delta_i \approx 0$.

Appliquons maintenant la sollicitation globale F (F_1 , F_2 , ..., F_n). Le travail τ_e accompli est égal à W: $\tau_e = W$. en outre, la force dF_i , dont le point d'application a subi un déplacement δ_i , produit un travail qui vaut $dF_i\delta_i$.

D'où le travail total:

$$\tau_e + dF_i \delta_i = W + dF_i \delta_i \tag{1.11.c}$$

En vertu du résultat (1.3), les expressions (1.11.b) et (1.11.c) sont égales, d'où :

$$\frac{\partial W}{\partial F_i} = \delta_i \tag{12}$$

C'est la première forme du théorème de Castigliano, qui s'énonce comme suit :

Théorème : Dans un système élastique à appuis indéformables, la dérivée de l'énergie de déformation par rapport à l'une des forces agissant sur le système est égale à la projection sur la direction de cette force du déplacement élastique de son point d'application.

1.6.3.7 Exemples d'application

1.6.3.7.1 Exemple 1

Considérons une poutre bi-articulée de section constante chargée en son milieu par une force concentrée P.

Figure 1.22 flèche d'une poutre bi-articulée

La flèche à mi-portée (f) s'obtient par application directe du résultat (12) :

 $f = \partial W / \partial P$

Avec :

$$W = \frac{1}{2} \int_{l} \frac{M_{z}^{2}}{EI_{z}} dx + \frac{1}{2} \int_{l} \frac{\kappa T_{y}^{2}}{GA} dx$$
$$W = \frac{1}{2EI_{z}} \left[\int_{0}^{1/2} (\frac{P}{2}x)^{2} dx + \int_{1/2}^{l} (\frac{P}{2}(l-x))^{2} dx \right] + \frac{\kappa}{2GA} \left[\int_{0}^{1/2} (\frac{P}{2})^{2} dx + \int_{1/2}^{l} (-\frac{P}{2})^{2} dx \right]$$

$$W = \frac{P^2 l^3}{96 E I_z} + \frac{\kappa P^2 l}{8 G A}$$

D'où: $f = \frac{Pl^3}{48EI_z} + \frac{\kappa Pl}{4GA}$

1.6.3.7.2 Exemple 2

Soit à calculer le déplacement du point d'application de la charge P (on suppose que la rigidité flexionnelle est constante).

Figure 1.23 flèche d'une poutre console

$$W = \frac{l}{2EI_z} \int_0^l (-Px)^2 dx + \frac{\kappa}{2GA} \int_0^l (-P)^2 dx = \frac{P^2 l^3}{6EI_z} + \frac{\kappa P^2 l}{2GA}$$
$$D'o\dot{u}: \qquad f = \frac{Pl^3}{3EI_z} + \frac{\kappa Pl}{GA}$$

1.6.3.8 Utilisation d'une sollicitation auxiliaire

Le théorème de Castigliano permet de calculer le déplacement du point de la structure confondu avec le point d'application d'une force concentrée (P ou C).

Pour calculer le déplacement d'un point quelconque du système projeté sur une direction quelconque, on applique au point considéré, dans la direction considérée, une force auxiliaire (fictive) qu'on annule à la fin des calculs.

1.6.3.9 Exemple d'application

Soit à calculer le déplacement angulaire de l'extrémité libre d'une poutre console de section constante soumise à une charge répartie uniforme (Figure 1.24),

Figure 1.24 calcul de rotation dans une poutre console

L'influence de T étant négligeable, on ne tient compte que de M.

Pour calculer la rotation demandée, on applique un couple auxiliaire C en A afin de pouvoir utiliser le théorème de Castigliano.

$$\gamma_A = \frac{\partial W}{\partial C} \big|_{C=0}$$

$$W = \frac{1}{2EI} \int_0^l M^2 dx = \frac{1}{2EI} \int_0^l \left(-(C + \frac{qx^2}{2}) \right)^2 dx = \frac{1}{2EI} \left(C^2 l + \frac{Cql^3}{3} + \frac{q^2 l^5}{20} \right)$$

$$\frac{\partial W}{\partial C} = \frac{1}{2EI} \left(2Cl + \frac{ql^3}{3} \right) \quad \text{d'où} : \quad \gamma_A = \frac{\partial W}{\partial C} \bigg|_{C=0} = \frac{ql^3}{6EI}$$

1.7 Coclusion:

Dans ce chapitre, on a fait un apercu sur la discipline de la mecanique des structures et ses applications dans le domaine du genie, et qui necessite bien de connaitre les diferentes methodes de calcula fin de predire le comportement des systemes sous diverses sollicitations.

CHAPITRE 2:

Generalité sur la méthode des élements finis

2.1.1 Introduction

La méthode des éléments finis est une méthode de calcul numérique qui, ayant un profond caractère plus physique qu'abstrait, a été inventée plutôt par les ingénieurs que par les mathématiciens.

Cette méthode a été appliquée pour la première fois dans des problèmes liés à l'analyse des contraintes et depuis, elle a été étendue dans d'autres problèmes liés au milieu continu.

Dans toutes les applications l'analyste recherche à calculer une quantité de champ, comme par exemple:

	Applications	Quantité de champ
•	Analyse des contraintes	Champ des contraintes ou champ des déplacements
•	Analyse thermique	Champ de température ou flux de chaleur
•	Ecoulement des fluides	Fonction de courant ou fonction du potentiel de vitesse

La méthode des éléments finis représente une modalité d'obtenir une solution numérique correspondant à un problème spécifique.

2.1.2 Noeuds et éléments

Dans une simulation par éléments finis, le produit est modélisé par un maillage, dont la définition s'appuie sur deux objets géométriques, le premier est un découpage du domaine géométrique occupé par le produit en sous-domaines de formes simples.

Ces sous-domaines sont tridimensionnels (volumes), bidimensionnels (surfaces) ou unidimensionnels (lignes), selon la théorie dans laquelle on se place (par exemple, en mécanique des milieux continus 3D, ce sont des volumes, mais en théorie des poutres, il s'agit de lignes).

Fig.2.1 Discrétisation d'une structure en nœuds et éléments (Découpage en éléments finis)

Le deuxième objet est une liste de points particuliers, situés aux sommets des sous-domaines ainsi que, quelquefois, aux milieux de leurs arêtes : les nœuds,les sous-domaines et les nœuds servent à définir les fonctions de base (utilisées pour représenter le champ de déplacement), ces fonctions sont en effet définies par morceaux, dans chaque sous- domaine, et chacune d'entre elles est associée à un nœud, elles sont construites de sorte à réaliser une interpolation du champ de déplacement à partir de valeurs discrètes définies aux nœuds ; La nature de l'interpolation dépend des sous-domaines, qui sont choisis par l'utilisateur ; la construction des fonctions réalisant cette interpolation est, quant à elle, réalisée automatiquement par les logiciels. Un sous-domaine muni de ses nœuds et de leurs fonctions de base s'appelle un élément fini, ou simplement élément.

Le comportement de chaque élément est décrit par l'équations algébriques.

$$\{F\} = [K] \cdot \{\delta\}$$
(2.1)

où :

 $\{\delta\}$ = vecteur d'inconnues (vecteur des déplacements);

[K] = matrice des constates (matrice de rigidité) ;

 $\{F\}$ = vecteur des chargements (matrice des forces nodales).

2.1.3 Etapes d'analyse par la MEF

Fig.2.2 Principe d'analyse par la Méthode des Eléments Finis

2.1.4 Classification des problèmes d'analyse des contraintes

Au cas où la variation du déplacement ou de la contrainte sont négligeables au long de l'axe z (la direction normale au plan d'analyse) on considère un problème plan.

Si par contre les déplacements et les contraintes peuvent varier dans toutes les directions x, y ou z la structure en cause peut être appelée « Solide 3D ».

Un cas spécial de solide ayant symétrie axiale (ex : une cloche) s'appelle de façon usuelle « Solide de révolution ». Les chargements à leur tour peuvent ou non être distribués de façon axiale symétrique. Une plaque plane qui supporte des chargements dans son plan est un problème plan, par contre, si la plaque est chargée par des forces qui n'agissent pas dans son plan, cela représente un problème de flexion de plaque ou, plus simplement un problème de plaque (Plate problem), si la plaque est courbe elle devient une coque (SHELL), les réservoirs, par exemple, peuvent être considérés dans l'analyse par la MEF, des coques.

En conclusion les éléments finis peuvent être divisés en plusieurs catégories en fonction de la structure : éléments plans, éléments solides 3D, éléments solides à symétrie axiale, éléments de plaque, éléments de coque, on trouve de même des éléments de barre articulée (Truss), éléments de poutre (Beam), éléments de fondation élastique etc.

2.1.5 Etapes d'analyse par la MEF

Pour une analyse par MEF le processus de modélisation nécessite que l'action physique du problème a être résolu doit être bien comprise afin de choisir des types d'éléments finis appropriés, convenables, qui puissent représenter de façon adéquate l'action physique réelle.

2.1.6 Connaissances nécessaires à un utilisateur MEF

La modélisation est une activité de simplification de la structure en l'encadrant ses différentes portions dans une des catégories suivantes: barres, plaques, blocs massifs, en tenant compte des chargemets, appuis etc, la modélisation correcte (la plus proche de la réalité) est un problème d'expérience, d'inspiration et moins de la connaissance des fondements théoriques de la méthode.

2.1.7 Discrétisation

La méthode des eléments finis a développé une série de types d'éléments finis qui, pour le début, peuvent être classifiés en :

- éléments finis unidimensionnels (généralement des barres) ;
- éléments finis bidimensionnels (plaques et mêmes volumes) ;
- éléments finis tridimensionnels (blocs massifs).

		51	
Eléments	linéaires	paraboliques (quadratiques)	cubiques
Unidimensionnels	•	• • •	••••
Bidimensionnels		DA	DA
Tridimensionnels			
			6-0-0-600°
	Masse	Ressort	Contact
Autres types	•	•/////-•	⊷┤┝∙

Tableau 2.1.7 :Types d'éléments finis

Les éléments finis sont générés par des points qui ne sont que des nœuds de la structure. Il existe des éléments ayant un degré supérieur à ceux cubiques (qui sont les plus performants) mais le plus couramment sont utilisés les éléments linéaires et paraboliques.

Dans une simulation par éléments finis, le produit est modélisé par un maillage, dont la définition s'appuie sur deux objets géométriques. Le premier est un découpage du domaine géométrique occupé par le produit en sous-domaines de formes simples. Ces sous-domaines sont tridimensionnels (volumes), bidimensionnels (surfaces) ou unidimensionnels (lignes), selon la théorie dans laquelle on se place (par exemple, en mécanique des milieux continus 3D, ce sont des volumes, mais en théorie des poutres, il s'agit de lignes). Quelques exemples de découpages 2D et 3D sont représentés sur la (figure 2.3)

Figure 2.4 : Deux maillages plans avec leurs nœuds.

Les sous-domaines et les nœuds servent à définir les fonctions de base (utilisées pour représenter le champ de déplacement). ces fonctions sont en effet définies par morceaux, dans chaque sous-domaine, et chacune d'entre elles est associée à un nœud, elles sont construites de sorte à réaliser une interpolation du champ de déplacement à partir de valeurs discrètes définies aux nœuds

Figure 2.5 : Quelques types d'éléments bidimensionnels courants.

Le maillage est ainsi constitué d'un nuage de nœuds, ainsi que d'éléments s'appuyant sur ces nœuds ;

Schématiquement, le maillage joue deux rôles essentiels dans la simulation. Premièrement, il détermine le modèle géométrique du produit, obtenu en réunissant les différents sous-domaines. Deuxièmement, il détermine également l'allure du champ de déplacement, et donc de déformation et de contrainte, par l'intermédiaire des fonctions de base, ainsi, le maillage influe fortement sur la pertinence des résultats et doit donc être réalisé avec soin. Les quatre ressources « Le modèle en éléments finis d'un produit dans son environnement » présente les différentes étapes de sa réalisation.

2.2 ANALYSE LINEAIRE STATIQUE DES BARRES ARTICULEES ET DES POUTRES

2.2.1 Introduction

Après avoir fait une analyse préliminaire approximative, les principales étapes qu'il faut prendre en compte au cours d'une analyse par MEF sont les suivantes:

1. Préparation du modèle:

- a) la discrétisation de la structure ou du milieu continu divisé en éléments finis ;
- b) l'application du chargement ;
- c) la prescription des supports.

2. Accomplissement des calculs; le logiciel doit :

- *a) générer la matrice de rigidité [k_i] de chaque élément « i » ;*
- b) relier les éléments ensemble, ce qui veut dire rassembler les matrices [k_i] de chaque élément « i » pour obtenir la matrice globale [K] ;
- c) rassembler les chargements dans un vecteur global de chargements {F};
- d) imposer les conditions dans les supports ;
- e) résoudre les équations $\{F\} = [K] \cdot \{\delta\}$ pour le vecteur des inconnues $\{\delta\}$ (déplacements nodaux).
- 3. Postprocession de l'information contenue dans le vecteur $\{\delta\}$, cela est équivalent au calcul des contraintes et des déformations.

Le choix du type d'éléments finis qui doit être utilisés dans l'analyse et combien de grossière ou raffinnée doit être la discrétisation dans différentes régions du modèle

2.2.2 Déduction de la matrice de rigidité pour l'élément de barre articulée

a) <u>Méthode directe</u>:

On considère un élément de barre uniforme, prismatique et élastique, de longueur L, de module élastique E et d'aire de la section transversale A (fig. 2.6).

Un noeud est localisé à chacune des extrémités de la barre, les seuls déplacements qui sont permis sont ceux axiaux.

On déplace d'abord le premier nœud, ensuite le deuxième et, dans chaque cas, on calcule les forces qui doivent être appliquées dans les noeuds pour maintenir le même état de déplacement. Ces forces sont faciles à déterminer à partir de la formule élémentaire de la résistance des matériaux,

$$\delta = \frac{\mathsf{FL}}{\mathsf{EA}}, \ d'o\dot{u} \ la \ force \ qui \ résultera \ sera : \ \mathsf{F} = \frac{\mathsf{EA}}{\mathsf{L}} \cdot \delta$$

On note avec F_{ij} la force au noeud « i » (i =1,2) associée au déplacement du noeud « j » (j = 1,2). Pour les deux cas, on aura :

Fig 2.6 Forces nodales associées aux déplacements nodaux pour un élément de barre articulée

Si on écrit les relations (2.1) sous forme matricielle, on aura:

$$\begin{bmatrix} F_{11} & -F_{12} \\ -F_{21} & F_{22} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$
(2.2)

Conformément à la convention de signes, on considère que les forces ainsi que les déplacements sont positifs dans la même direction (dans notre cas de gauche à droite). Si on remplace les forces par les expressions (2.1) on aura :

$$\begin{bmatrix} \frac{EA}{L}u_1 & -\frac{EA}{L}u_2\\ -\frac{EA}{L}u_1 & \frac{EA}{L}u_2 \end{bmatrix} = \begin{cases} F_1\\ F_2 \end{cases} \Rightarrow \frac{EA}{L} \cdot \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix} \cdot \begin{cases} u_1\\ u_2 \end{cases} = \begin{cases} F_1\\ F_2 \end{cases}$$
(2.3)

b) Procédure formelle

La méthode directe présentée ci-dessus ne peut fournir une expression de la matrice de rigidité que pour les cas très simples, là où les formules dérivées de la RDM fournissent des relations de calcul entre les déplacements nodaux et les forces nodales.

En généralisant, on doit trouver une formule de la matrice de rigidité [K] valable pour n'importe quel type d'élément, cette formule générale est :

$$[K] = \int_{V} [B]^{T} \cdot [E] \cdot [B] dV$$
 (2.4)

où :

[B] = matrice déformation-déplacement

[E] = matrice des propriétés du matériau (matrice constitutive).

dV = incrément de l'élément de volume V.

L'équation (2.4) peut être déduite du point de vue énergétique, en affirmant que le travail L_{ext} réalisé par les forces nodales qui sont appliquées pour créer des déplacements nodaux est emmagasiné dans l'élément comme énergie de déformation élastique ($L_{ext} = U_{def}$).

Pour obtenir la matrice [B] pour l'élément de barre articulée, on commence par écrire l'expression du déplacement axial « u » à un point arbitraire de la barre.

Comme on peut constater de la (figure 2.7), suite à une interpolation du déplacement « u » entre les deux valeurs nodales connues, u_1 et u_2 , nous conduit à :

$$\mathbf{u} = \begin{bmatrix} \mathbf{L} - \mathbf{x} & \mathbf{x} \\ \mathbf{L} & \mathbf{L} \end{bmatrix} \cdot \begin{cases} \mathbf{u}_1 \\ \mathbf{u}_2 \end{cases}, \qquad (2.5)$$

Ou bien :
$$\{u\} = [N] \cdot \{d\}$$
 (2.6)

[N] = matrice des fonctions de forme.

 $\{d\}$ = vecteur des déplacements nodaux

Chaque fonction de forme décrit comment varie « u » avec la distance x lorsque le degré de liberté correspondant u_i est égal à 1 tandis que l'autre est égal à 0, c'est-à-dire :

- pour x = 0, $\frac{L-x}{L} = 1$ et $\frac{x}{L} = 0$;

- pour x = L,
$$\frac{L-x}{L} = 0$$
 et $\frac{x}{L} = 1$.

Fig.2.7 Les fonctions de forme pour un élément de barre à deux nœuds

La déformation axiale $\varepsilon_x = \frac{du}{dx} = \left[\frac{d}{dx}N\right] \cdot \{d\} = [B] \cdot \{d\} = \left[-\frac{1}{L} \quad \frac{1}{L}\right] \cdot \{d\}$ (2.7)

Donc, en appliquant la relation (2.4) on obtient:

$$\begin{bmatrix} \mathsf{K} \end{bmatrix} = \int_{\mathsf{V}} \begin{bmatrix} \mathsf{B} \end{bmatrix}^{\mathsf{T}} \cdot \begin{bmatrix} \mathsf{E} \end{bmatrix} \cdot \begin{bmatrix} \mathsf{B} \end{bmatrix} \mathsf{d}\mathsf{V} = \int_{\mathsf{0}}^{\mathsf{L}} \begin{bmatrix} -\frac{1}{\mathsf{L}} \\ \frac{1}{\mathsf{L}} \end{bmatrix} \cdot \mathsf{E} \cdot \begin{bmatrix} -\frac{1}{\mathsf{L}} & \frac{1}{\mathsf{L}} \end{bmatrix} \cdot \mathsf{A} \, \mathsf{d}\mathsf{x} = \frac{\mathsf{E}\mathsf{A}}{\mathsf{L}} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
(2.8)

2.2.3 Déduction de la matrice de rigidité pour l'élément de poutre

La (figure 2.8) montre un élément prismatique de poutre dans le plan, ayant un module d'élasticité longitudinal E, de moment d'inertie I pour la section axiale, l'axe qui passe par les centres de chaque section a un déplacement latéral v = v(x). Conformément à la théorie des poutres la fonction v = v(x) est un polynôme cubique en x pour une poutre uniforme prismatique chargée à ses extrémités.

Figure 2.8: Elément de poutre bidimensionnel a) Elément de poutre et ses degrés de liberté b) Chargements nodaux associés aux degrés de liberté c) Formes déviées associées par l'activation de chaque degré de liberté

Activation du degré de liberté	Fonction de forme correspondante
Déplacement du nœud 1	$N_1 = 1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}$
Rotation du nœud 1	$N_2 = x - \frac{2x^2}{L} + \frac{x^3}{L^2}$
Déplacement du nœud 2	$N_3 = \frac{3x^2}{L^2} - \frac{2x^3}{L^3}$
Rotation du nœud 2	$N_4 = -\frac{x^2}{L^2} + \frac{x^3}{L^2}$

Les sens des déplacements sont considérés positifs de bas vers le haut tandis que les sens positifs des rotations correspondent au sens anti-horaire.

Pour trouver les composantes de la première colonne de la matrice de rigidité [K] correspondant à l'élément de pourre, respectivement $\begin{bmatrix} k_{11} & k_{21} & k_{31} & k_{41} \end{bmatrix}^T$ on a utilisé les conditions suivantes :

- $W_1 = 1$ dans le nœud 1, ce qui conduit à : $\frac{k_{11}L^3}{3EI} \frac{k_{21}L^2}{2EI} = 1$ (2.9)
- $\theta_{z1} = 0$ dans le nœud 1, ce qui conduit à : $-\frac{k_{11}L^2}{2EI} + \frac{k_{21}L}{EI} = 0$ (2.10)

A part ces deux équations, les équations d'équilibre de la statique seront ajoutées pour déterminer les deux autres composantes, respectivement k_{31} et k_{41} :

$$\sum F = 0 \implies k_{11} + k_{31} = 0$$

$$\sum M_{(2)} = 0 \implies k_{21} + k_{41} - k_{11} \cdot L = 0$$
(2.11)

De façon similaire, on aura pour chacun des trois états de déformation restés un set de quatre équations. en ce cas, chacun de ces trois états complètera les trois colonnes restées inachevées de la matrice de rigidité.

La matrice de rigidité [K] opère sur le vecteur des degrés de liberté associés à chaque nœud, $[\delta] = \begin{bmatrix} w_1 & \theta_{y1} & w_2 & \theta_{y2} \end{bmatrix}^T$.

Le résultat de ce processus sera donc :

$$[K] = \begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \\ k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{bmatrix} = \begin{bmatrix} \frac{12EI}{L^3} & \frac{6EI}{L^2} & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ \frac{6EI}{L^2} & \frac{4EI}{L} & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ \frac{6EI}{L^2} & \frac{2EI}{L} & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$
(2.12)

Pour l'élément de poutre 2D (bidimensionnel), celui ci est la combinaison entre un élément de barre et un élément de poutre, dans ce cas, la matrice de rigidité [K] sera :

$$[K] = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} & 0 & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & 0 & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ 0 & \frac{6EI}{L^2} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$
(2.13)

2.2.4 Systèmes de coordonnées globals et locals

L'utilisateur définit la géométrie d'un modèle avec éléments finis dans un système de coordonnées global XYZ. Le logiciel génère typiquement une matrice de rigidité pour un élément quelconque dans un système local de coordonnées xyz et le convertit dans le système global pour réaliser l'assemblage des éléments,

Le système global et local peuvent être parallèles ou coïncidents, cas dans lesquels les composantes des déplacements nodaux sont identiques dans les deux systèmes.

2.2.5 Propriétés de la matrice de rigidité

Les matrices de rigidité [k] (dans le système local) et[K] (dans le système global) sont symétriques. Cela reste toujours vrai pour tout élément de structure où il existe une relation linéaire entre les charges appliquées et les déformations résultantes.

Chaque coefficient de la diagonale des matrices [k], respectivement [K] sont positifs.

Imaginons qu'un certain degré de liberté δ_i serait le seul degré de liberté non nul ; le chargement associé à ce degré est $f_i = k_{11}\delta_i$. Du fait que d_i et r_i sont positifs dans la même direction, une diagonale négative des coefficients k_2 voudrait dire qu'un chargement et son déplacement correspondant seraient orientés de façon opposée, fait qui en réalité est déraisonnable.

Une structure qui est soit sans supports soit avec des supports inadéquats a une matrice de rigidité [K] singulière et dans ce cas le logiciel d'éléments finis ne peut pas être capable de résoudre l'équation $\{F\} = [K] \cdot \{\delta\}$, Pour prévenir la singularité, les supports doivent être suffisamment nombreux pour prévenir tous les mouvements de corps rigide possibles.

2.3. Exposition de la méthode aux problèmes unidimensionnels:

Dans notre étude on est intéressé d'utiliser le type d'élément de barre à deux nœuds

2.3.1. Elément de barre à deux nœuds avec joints rigides:

Ce type d'élément est traité pour l'analyse des structures formées de poutres ou barres dans un plan (portiques) les nœuds de l'élément peuvent être des extrémités de la barre et les inconnus (les degrés de liberté) sont : la translation suivant les directions (X, Y) du plan et la rotation dans ce plan autour de l'axe (Z)).

Figure 2-9 : Elément de barre a deux nœuds avec joints rigides

Nous allons traité le cas d'un élément d'une poutre du plan (X, Y) à savoir les caractéristiques géométriques suivantes:

L : la longueur de la barre.

E : module d'élasticité longitudinal.

A : la section transversale.

(U, V) sont les déplacements suivant les directions (X, Y) respectivement, ces déplacements sont affectés en chaque nœud de cette barre (6 degrés de liberté).

2.3.2 Interpolation nodale sur les déplacements:

Pour ce problème, on se propose le model de déplacements sous forme d'un polynôme d'approximation suivant:

$$\begin{cases} U(x) = \alpha_1 + \alpha_2 x \\ V(x) = \alpha_3 + \alpha_4 x + \alpha_5 x^2 + \alpha_6 x^3 \end{cases}$$
 (2.1)

La rotation (θ) étant la dérivée de déplacement (V) par rapport à (x)

$$\theta(x) = \frac{V_x}{dx} = \alpha_4 + 2\alpha_5 x + 3\alpha_6 x^2$$
 (2.2)

Le vecteur de déplacement: α_1

$$\{q\}^e = \langle U_1 V_1 \theta_1, U_2 V_2 \theta_2 \rangle^T$$

Sous une forme matricielle:

$$\begin{cases} U(x) \\ V(x) \\ \theta(x) \end{cases} = \begin{bmatrix} 1 & x & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & x & x^2 & x^3 \\ 0 & 0 & 0 & 1 & 2x & 3x^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix}$$
(2.3)

$$\begin{cases} U(x) \\ V(x) \\ \theta(x) \end{cases} = \varphi(x).\{\alpha_i\}$$
(2.4)

= Conditions de déplacements aux nœuds 1et 2 :

Nœud (1) : Nœud (2) :

$$X = 0 \begin{cases} U_1(0) = \alpha_1 = U_1 \\ V_1(0) = \alpha_3 = V_1 \\ \theta_1(0) = \alpha_4 = \theta_1 \end{cases} \qquad X = L \begin{cases} U_2(L) = \alpha_1 + \alpha_2 L = U_2 \\ V_2(L) = \alpha_3 + \alpha_4 L + \alpha_5 L^2 + \alpha_6 L^3 = V_2 \\ \theta_2(L) = \alpha_4 + 2\alpha_5 L + 3\alpha_6 L^2 = \theta_2 \end{cases}$$
(2.5)

Que nous pouvant réécrire sous forme matricielle comme suit:

$$\begin{bmatrix} U_1 \\ V_1 \\ \theta_1 \\ U_2 \\ V_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & L & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & L^2 & L^3 \\ 0 & 0 & 0 & 1 & 2L & 3L^2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix}$$

 $\operatorname{Ou} \ \{q\}^e = [A]^*\{\alpha\}$

Pour déterminer les paramètres d'approximations $\{\alpha\}$, il suffit d'inverser la matrice [A] ceci peut se faire comme suit:

(2.6)

$$\begin{cases} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{6} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{L} & 0 & 0 & \frac{1}{L} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{3}{L^{2}} & -\frac{2}{L} & 0 & \frac{3}{L^{2}} & -\frac{1}{L} \\ 0 & \frac{2}{L^{3}} & \frac{1}{L^{2}} & 0 & -\frac{2}{L^{3}} & \frac{1}{L^{2}} \end{bmatrix} \begin{bmatrix} U_{1} \\ V_{1} \\ \theta_{1} \\ U_{2} \\ V_{2} \\ \theta_{2} \end{bmatrix}$$

de (2.2): $\{\alpha\} = \{q\}^{e} * [A]^{-1}$ (2.7)

En substituant (2.6) dans la relation (2.4)

$$\begin{cases} U(x) \\ V(x) \\ \theta(x) \end{cases} = [\varphi(x)]^* [A]^{-1} * \{q\}^e = [N]^* \{q\}^e$$
(2.8)

Où [N] : la matrice d'interpolation

$$N = \begin{bmatrix} (1 - \frac{x}{L}) & 0 & 0 & \frac{1}{L} & 0 & 0 \\ 0 & (1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}) & (x - \frac{2x^2}{L} + \frac{x^3}{L^3}) & 0 & (\frac{3x^2}{L^2} - \frac{2x^3}{L^3}) & (-\frac{x^2}{L} + \frac{x^3}{L^2}) \\ 0 & (-\frac{6x}{L^2} + \frac{6x^2}{L^3}) & (1 - \frac{4x}{L} + \frac{3x^2}{L^3}) & 0 & (\frac{6x}{L^2} - \frac{6x^2}{L^3}) & (-\frac{2x}{L} + \frac{3x^2}{L^2}) \end{bmatrix}$$
(2.9)

2.3.3 Relation déplacement -- déformation:

Les contraintes et les déformations sont des grandeurs généralisées et dans notre cas on a deux types de déformations :

1-Une déformation longitudinale sous l'effet de la traction ou de compression $\varepsilon(x)$

2-Une déformation sous l'effet de la flexion ξ

Soit:
$$\varepsilon_x = \frac{du}{dx} = \alpha_2$$

 $\xi = -\frac{d^2v}{dx^2} = -2\alpha_5 - 6\alpha_6 x$

Le tenseur de déformation prend la forme:

$$\{\varepsilon\} = \begin{cases} \varepsilon_x \\ \xi \end{cases} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & -6x \end{bmatrix} \{\alpha_i\}$$

$$= G(x)_{y} \cdot \{q\}^{e} \cdot [A]^{-1} = -[B] \{q\}^{e}$$

Avec :
$$[B] = G(x)_{y} \cdot [A]^{-1}$$

La matrice [B] peut être écrite explicitement sous la forme:

$$[B] = \begin{bmatrix} -\frac{1}{L} & 0 & 0 & -\frac{1}{L} & 0 & 0 \\ 0 & \left(\frac{6}{L^2} - \frac{12x}{L^3}\right)y & \left(\frac{4}{L} - \frac{6x}{L^2}\right)y & 0 & \left(\frac{6}{L^2} - \frac{12x}{L^3}\right)y & \left(\frac{2}{L} - \frac{6x}{L^2}\right)y \end{bmatrix}$$
(2.10)

2.3.4 Relation déformation – contrainte:

La loi de comportement relie le tenseur des déformations au tenseur des contraintes par la formule suivante : $\sigma(x) = E.\varepsilon(x)$ Où E : représente le module d'Young. A parti des relations précédentes on déduit : $\{\alpha(x)\} = E.[B(x)]\{q\}^e$

2.3.5 Calcul des efforts internes (moment de flexion et effort normal) :

-D'après la loi de la ligne élastique on a :

$$M(x) = -EI \frac{d^2 v}{dx^2}$$
(2.11)
-D'autre part on a : $\xi = -\frac{d^2 v}{dx^2} = \begin{bmatrix} 0 & 0 & 0 & 0 & -2 & -6x \end{bmatrix} \begin{cases} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{bmatrix}$ (2.12)

-En remplaçant (2.2) dans l'expression (2.1)

On aura:
$$M(x) = -EI[0 \quad 0 \quad 0 \quad 0 \quad -2 \quad -6x] \begin{cases} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \end{cases}$$
(2.13)

$$M(x) = -EI\xi \tag{2.14}$$

()

-D'après la loi de Hooke : $N = EA\varepsilon_x$

Sous forme matricielle on obtient:

$$\begin{cases} N \\ M(x) \end{cases} = \begin{bmatrix} EA & 0 \\ 0 & EI \end{bmatrix} \begin{cases} \varepsilon_x \\ \xi \end{cases} = \begin{bmatrix} D \end{bmatrix} \{\varepsilon\} = \begin{bmatrix} B \end{bmatrix} \{q\}^e$$

De la relation précédente (2.14) l'expression du moment s'exprime alors comme suit:

1.....

$$M(x) = EI[B]\{q\}^{e}$$
Avec: $\langle B \rangle = \left\langle \left(\frac{6}{L^{2}} - \frac{12x}{L^{3}}\right) \left(\frac{4}{L} - \frac{6x}{L^{2}}\right) \left(\frac{-6}{L^{2}} + \frac{12x}{L^{3}}\right) \right\rangle \left(\frac{2}{L} - \frac{6x}{L^{2}}\right)$

$$\{q\}^{e} = \left\langle V_{1}\theta_{1}V_{2}\theta_{2} \right\rangle^{T}$$

$$\{V_{1}\}$$

Donc:
$$\{M(x)\}^e = EI \cdot \left(\left(\frac{6}{L^2} - \frac{12x}{L^2} \right) \left(\frac{4}{L} - \frac{6x}{L^2} \right) \left(-\frac{6}{L^2} + \frac{12x}{L^2} \right) \left(\frac{2}{L} - \frac{6x}{L^2} \right) \right) \left\{ \begin{array}{c} \theta_1 \\ \theta_1 \\ V_2 \\ \theta_2 \\ \theta_2 \end{array} \right\}$$

Et encore:

$$\left\{M(x)\right\}^{e} = EI \cdot \left\langle \left(\frac{6}{L^{2}} - \frac{12x}{L^{2}}\right) V_{1}\left(\frac{4}{L} - \frac{6x}{L^{2}}\right) \theta_{1}\left(-\frac{6}{L^{2}} + \frac{12x}{L^{2}}\right) V_{2}\left(\frac{2}{L} - \frac{6x}{L^{2}}\right) \theta_{2} \right\rangle$$
(2.15)

L'expression de l'effort normal s'exprime comme suit:

$$\begin{cases}
N = EA[B]\{q\}^{e} \\
N = \frac{EA}{L}(U_{2} - U_{1})
\end{cases}$$
(2.16)

2.3.6 Calcul de la matrice de rigidité élémentaire:

rigidité $[K]^e$ est Pour un matériau élastique, la matrice de donnée par: $\left[K\right]^{e} = \int \left[B\right]^{T} \cdot \left[D\right] \left[B\right] \cdot dv^{e}$

Avec: [D]=E (module de Young), dv=A dx

La matrice de rigidité élémentaire sous l'effet de la flexion composée (la traction ou compression plus la flexion simple) devient:

$$\left[K\right]^{e} = EA \int \left[B\right]^{e} \cdot \left[B\right] dx$$

$$\begin{bmatrix} \frac{-1}{L} & 0\\ 0 & (\frac{6}{L^2} - \frac{12x}{L^3})\\ 0 & (\frac{4}{L} - \frac{6x}{L^2})\\ \frac{1}{L} & 0\\ 0 & (\frac{-6}{L^2} + \frac{12x}{L^3})\\ 0 & (\frac{2}{L} - \frac{6x}{L^2}) \end{bmatrix} \begin{bmatrix} \frac{-1}{L} & 0 & 0 & \frac{1}{L} & 0 & 0\\ 0 & (\frac{6}{L^2} - \frac{12x}{L^3}) & (\frac{4}{L} - \frac{6x}{L^2}) & 0 & (\frac{6}{L^2} - \frac{12x}{L^3}) & (\frac{2}{L} - \frac{6x}{L^2}) \end{bmatrix} dx$$

On arrive à:

_

$$\begin{bmatrix} K \end{bmatrix}^{e} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 \\ 0 & \frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} & 0 & -\frac{12EI}{L^{3}} & \frac{6EI}{L^{2}} \\ 0 & \frac{6EI}{L^{2}} & \frac{4EI}{L} & 0 & -\frac{6EI}{L^{2}} & \frac{2EI}{L} \\ -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 \\ 0 & -\frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}} & 0 & \frac{12EI}{L^{3}} & -\frac{6EI}{L^{2}} \\ 0 & \frac{6EI}{L^{2}} & \frac{2EI}{L} & 0 & -\frac{6EI}{L^{2}} & \frac{4EI}{L} \end{bmatrix}$$
(2.17)

Si "I" et "A" sont constants: la matrice de rigidité élémentaire d'un élément de barre à deux nœuds soumis à la sollicitation de flexion composée s'écrit comme suit:

$$[K]^{e} = \frac{E}{L} \begin{bmatrix} A & 0 & 0 & -A & 0 & 0 \\ 0 & \frac{12I}{L^{2}} & \frac{6I}{L} & 0 & -\frac{12I}{L^{2}} & \frac{6I}{L} \\ 0 & \frac{6I}{L} & 4I & 0 & -\frac{6I}{L} & 2I \\ -A & 0 & 0 & A & 0 & 0 \\ 0 & -\frac{12I}{L^{2}} & -\frac{6I}{L} & 0 & \frac{12I}{L^{2}} & -\frac{6I}{L} \\ 0 & \frac{6I}{L} & 2I & 0 & -\frac{6I}{L} & 4I \end{bmatrix}$$
(2.18)

2.3.7 Formulation globale:

A fin d'établir cette formulation, on doit déterminer la matrice de rigidité globale et le vecteur des forces nodales globales, pour une structure composée des plusieurs éléments. On appelle une matrice globale est la matrice correspondante à la somme des matrices élémentaire aussi de rigidité et des forces appliquées.

$$[K]^G = \sum_{e=1}^{ne} [k]^e$$
 : $\{F\}^G = \sum_{e=1}^{ne} \{F\}^e$

D'où: (n: nombre d'élément constituant une structure)

2.4 Assemblage pour plusieurs éléments:

Prenons un exemple simple d'une structure composée de deux éléments de barre unidimensionnelle, ayant deux degrés de liberté en chaque nœud.

2.4.1 Formulation élémentaire:

Figure 2-10 : Assemblage de deux éléments

$$K^{e} = \begin{bmatrix} K_{ii}^{e} & K_{ij}^{e} \\ K_{ij}^{e} & K_{jj}^{e} \end{bmatrix} K^{e+1} = \begin{bmatrix} K_{jj}^{e+1} & K_{jk}^{e+1} \\ K_{jk}^{e+1} & K_{kk}^{e+1} \end{bmatrix}$$
(2.19)

$$F^{e} = \begin{cases} Fy_{i}^{e} \\ M_{I}^{e} \\ Fy_{j}^{e} \\ M_{j}^{e} \end{cases} F^{e+1} = \begin{cases} Fy_{i}^{e+1} \\ M_{I}^{e+1} \\ Fy_{j}^{e+1} \\ M_{j}^{e+1} \end{cases}$$
(2.20)

 F_i^e : Force élastique intérieure au nœud i

La condition d'équilibre statique aux différents nœuds:

Nœud "i": $F_{yi} - F_i^e = 0$

Nocud "j": $F_{yj} - F_i^e - F_j^{e+1} = 0$

Noeud "k":
$$F_{vk} - F_k^{e+1} = 0$$

Ou encore:

$$\begin{split} F_i^e &= F_{yi} \Leftrightarrow K_{ii}^e.q_i + K_{ij}^e.q_j = F_{yi} \\ F_j^e + F_j^{e+1} &= F_{yj}.q_k = K_{ij}^e.q_i + K_{jj}^e.q_i + K_{jj}^{e+1}.q_j + K_{jk}^{e+1}.q_j = F_{yj} \\ F_k^{e+1} &= F_{yk} \Leftrightarrow K_{jk}^{e+1}.q_j + K_{jj}^{e+1}.q_k = F_{yk} \end{split}$$

2.4.2 Matrice de rigidité globale (par assemblage):

La matrice de rigidité globale est la somme des matrices de rigidités élémentaires:

$$K = \sum K^2 = K^e + K^{e+1}$$

Sous forme matricielle:

$$\begin{bmatrix} K_{ii}^{e} & K_{ij}^{e} & 0\\ K_{ij}^{e} & K_{jj}^{e} + K_{jj}^{e+1} & K_{jk}^{e+1}\\ 0 & K_{jk}^{e+1} & K_{kk}^{e+1} \end{bmatrix} \begin{bmatrix} q_{i}\\ q_{j}\\ q_{k} \end{bmatrix} = \begin{cases} F_{i}\\ F_{j}\\ F_{k} \end{bmatrix}$$
(2.21)

 $[K] \{q\} = \{F\}$

Où;

[K] : Matrice de rigidité globale

{q} : vecteur des déplacements nodaux

{F} : vecteur des forces nodales globales

D'après l'expression matricielle ci-dessus on peut constater que la règle d'assemblage des matrices de rigidités élémentaires consiste pour un nœud donné à additionner les sous matrices de rigidité affectées aux nœuds des éléments ayant ce nœud en commun.

2.5 Logiciel Maple :

Maple est un logiciel de calcul qui permet de faire des calculs mathématiques avancés, plusieurs librairies de fonctions et opérations mathématiques populaire sont déjà implémentées.

Le logiciel offre un environnement de travail facile à utiliser et permet une grande rapidité de développement, et permet aux utilisateurs de faire différent calculs numériques.

2.5.1 Entrée des données :

L'introduction des données doit spécifier :

- la géométrie de la structure,

- la propriété des matériaux,
- la façon dont elle est chargée et fixée dans l'espace.

Les données peuvent aussi inclure des nombres de contrôle qui facilitent la généralité et l'efficacité du programme, le nombre total des noeuds et des éléments doive être fournis.

Il est nécessaire de numéroter chaque noeud, de façon à obtenir des cordonnées (x, y)

On doit aussi numéroter les éléments finis (des seguements de poutre de longueure determinée dans notre cas), et on doit indiquer les charges appliquées

2.5.2 Organigramme du programme de calcul :

Figure 2.11: Organigramme du programme de cacul appliqué sur MAPLE

2.6 La résolution d'un modèle éléments finis :2.6.1 Résolution et analyse des résultats

La démarche classique de la résolution d'un problème par éléments finis consiste, une fois la modélisation du problème réalisée, à construire les équations mathématiques qui devront être résolues, à les résoudre numériquement puis à analyser les résultats obtenus au regard de leur signification physique.

La discrétisation, influe sur les résultats.

La méthode de calcul programmée au sein des logiciels repose en effet sur un certain nombre d'hypothèses supplémentaires qui se traduisent par des exigences concrètes sur les différents modèles. Le non-respect de ces exigences peut conduire à des résultats non pertinents ou à un calcul impossible, et il est donc important de les connaître afin d'interpréter les résultats ou messages d'erreurs éventuels.

2.6.2. La résolution du système d'équations

La deuxième grande étape est la résolution du système d'équations, sous les hypothèses de cette ressource, ce système est linéaire, et il existe de nombreux algorithmes éprouvés permettant de le résoudre sans aucune intervention de l'utilisateur; programmés correctement, ces algorithmes ne commettent « pas d'erreur » (autres que les erreurs d'arrondi) et n'ont donc pas d'influence notable sur le résultat.

En revanche, **ces algorithmes ne fonctionnent qu'à condition que la matrice soit inversible**. Or, il existe une situation très courante menant à une matrice non inversible : c'est la présence de modes rigides ,on dit que le modèle possède des modes rigides lorsque les conditions aux limites en déplacement lui permettent de se déplacer sans se déformer (figure 2.12) ; il peut alors y avoir un champ de déplacement non nul associé à des efforts intérieurs nuls et cela montre bien que la matrice du système, qui relie ces deux quantités, n'est pas inversible .

Le logiciel ne peut alors résoudre le système et affiche un message d'erreur plus ou moins clair.

Figure2. 12 : Influence des déplacements imposés sur les modes rigides d'un maillage : (a) le maillage peut se translater horizontalement, (b) le maillage peut se translater verticalement, (c) le maillage peut tourner autour de son point d'attache, (d) le maillage ne peut pas se déplacer sans se déformer et le calcul est donc possible.

Par conséquent, en pratique, le modèle de l'environnement ne peut être quelconque: il faut s'assurer qu'il possède suffisamment de conditions aux limites en déplacement pour bloquer les mouvements de corps rigide du maillage (ce qui est, par ailleurs,cohérent vis-à-vis du domaine de validité de la statique). Sous les hypothèses de cette ressource, si cette condition est vérifiée, alors la matrice est toujours inversible.

2.6.3 Le calcul des résultats demandés par l'utilisateur : le post-traitement

Enfin, une fois le système résolu et les déplacements nodaux déterminés, le logiciel en déduit les résultats demandés par l'utilisateur, l'allure de ces résultats découle des hypothèses de la discrétisation; se traduisent par quatre types de résultats: déplacements, déformations, contraintes et efforts de liaison.

2.6.4 Déplacements et déformées

Les déplacements des nœuds étant connus, le logiciel peut interpoler le déplacement de n'importe quel autre point du maillage grâce à l'hypothèse cinématique.

Une façon commode de visualiser le champ des déplacements est de tracer la géométrie déformée, ou simplement déformée, du maillage. Si les déformations sont faibles (et mieux vaut qu'elles le soient, vu que nous avons fait l'hypothèse des petites perturbations...), cette géométrie déformée est généralement très proche de la géométrie initiale ; pour faciliter la visualisation, **les logiciels multiplient donc le champ de déplacement par un facteur d'amplification (ou facteur d'échelle).** un facteur trop faible ne permet pas de voir les déformations; un facteur trop élevé donne une allure étrange à la déformée, voir(figure 2.13)

Figure 2.13 : Une même déformée tracée avec trois facteurs d'amplification différents.

Lorsque l'on travaille en petites perturbations, il faut donc garder à l'esprit que les déformations affichées à l'écran sont généralement exagérées.

2.6.5 Déformations, contraintes et efforts de liaison

Contrairement aux déplacements, les champs de déformation et de contrainte prévus par la théorie sont généralement discontinus d'un élément à l'autre.

La plupart des logiciels les calculent aux points d'intégration ou points de Gauss des éléments (c'està-dire les points utilisés pour calculer numériquement les intégrales) car ce choix présente deux avantages:

- Il évite les discontinuités car les points d'intégration sont situés à l'intérieur des éléments ;
- Il permet d'intégrer facilement les contraintes et les déformations dans les éléments pour calculer des moyennes, des énergies...

A partir de là, schématiquement, il existe deux façons de visualiser le champ de contraintes, la première est de tracer directement le champ prévu par la théorie, qui est discontinu (figure 2.14(a)) ; certains logiciels, pour simplifier le tracé, se contentent d'afficher la valeur moyenne de ce champ sur chaque élément. la seconde méthode est de reconstruire un champ continu s'appuyant sur les nœuds du maillage. Pour cela, le logiciel calcule d'abord des contraintes nodales définies comme des moyennes pondérées des contraintes issues des éléments adjacents, puis construit un champ passant par ces valeurs à l'aide des fonctions de base (figure2.14(b)). Cette procédure s'appelle le lissage des contraintes.

Figure2.14 : (a) Un champ de contraintes "brut" calculé par éléments finis (discontinu) ; (b) le même champ ramené aux nœuds et interpolé (continu).

L'utilisateur peut généralement choisir entre lisser le champ et le laisser discontinu. a première vue, le champ lissé semble plus pertinent, mais il faut garder à l'esprit que la présence de discontinuités significatives n'est qu'un symptôme d'une discrétisation peu adaptée à la simulation, c'est-à-dire d'une hypothèse cinématique non pertinente, le fait de « gommer » ces discontinuités a posteriori rend certes les résultats plus présentables, mais ne résout pas pour autant le problème: hormis dans certains cas très particuliers (ce que l'on appelle la « super-convergence »), cela ne réduit que légèrement l'écart.

Une difficulté potentielle provient du mode de tracé des contraintes et déformations lorsque l'on souhaite les visualiser directement sur le maillage, le tracé fait généralement appel à une carte de couleurs: il s'agit de diviser l'intervalle dans lequel varie la grandeur en un certain nombre de plages, et d'affecter une couleur à chaque plage, un tel tracé (figure 2.15) peut être lu très rapidement, mais ne permet pas de distinguer facilement un champ lissé d'un champ « brut ».

Figure 2.15 : Un champ de contraintes de Von Mises tracé à l'aide d'une carte de couleurs

Ceci montre qu'il est très facile de mal interpréter une carte de contraintes ou de déformations, et qu'il est donc capital de bien lire les légendes sur la (figure2.15), la disposition des nombres sur la légende montre que chaque couleur est associée à une **plage**, et non à une **valeur**: le champ n'est donc pas

forcément discontinu... d'ailleurs, s'il l'était, ce serait forcément au niveau des frontières entre les éléments). En cas de doute, il ne faut pas hésiter à se renseigner sur la nature du post-traitement ayant précédé le tracé et, si l'information n'est pas disponible, à faire preuve d'esprit critique.

Signalons enfin que dans le cas particulier où l'on cherche à obtenir des efforts de liaison correspondant à des conditions aux limites en déplacement (nulles ou non), il est peu judicieux de les déterminer par intégration des contraintes sur le bord du maillage, cela conduit à des résultats qui ne vérifient pas exactement le principe fondamental de la statique, mieux vaut, si le logiciel le permet, récupérer directement les efforts nodaux de liaison ; on peut ensuite calculer leur résultante et leur moment en les assimilant à des glisseurs appliqués aux nœuds considérés.

2.6.6 Choix raisonné du degré de complexité du modèle

Lorsqu'un concepteur doit modéliser une pièce pour en simuler le comportement par éléments finis, il est fréquent que les données du problème lui laissent le choix entre plusieurs types de modèles: à une dimension (poutre), à deux dimensions (plaque ou coque) ou à trois dimensions, cette ressource compare, sur un exemple simple, les résultats obtenus à l'aide de ces trois approches, et dégage quelques critères permettant d'effectuer un choix judicieux.

Figure 2.16 : Modélisation 1D du problème, continue (à gauche) et discrétisée (à droite).

Figure 2.17 : Modélisation 2D du problème, continue (à gauche) et discrétisée (à droite).

Figure 2.18 : Modélisation 3D du problème, continue (à gauche) et discrétisée (à droite).

Pour analyser ces écarts, il est utile de rappeler quelles sont ces hypothèses cinématiques:

- 1. La théorie des poutres (figure 2.19 (a)) suppose que chaque section droite suit un mouvement de solide rigide. Les sections ne peuvent donc pas se déformer, elles peuvent uniquement se translater et tourner dans l'espace (sans forcément rester perpendiculaires à la ligne moyenne, puisque l'on considère une théorie avec cisaillement transverse);
- 2. La théorie des plaques (figure 2.19 (b)), moins restrictive, suppose que chaque segment perpendiculaire au plan moyen de la plaque suit un mouvement de solide rigide (là encore, sans forcément rester perpendiculaire au plan moyen). Elle permet donc de modéliser certaines formes de déformations des sections, planes (flexion et cisaillement dans le plan de la section, traction dans le sens de la largeur) ou hors plan (certains types de gauchissement), cependant, les segments ne pouvant pas changer de longueur, elle ne permet pas de modéliser l'écrasement de l'épaisseur ;
- 3. Enfin, la théorie 3D (figure 2.19(c)) ne comporte aucune de ces restrictions et peut modéliser n'importe quelle forme de gauchissement ou d'écrasement (à condition que le maillage employé soit suffisamment fin).

On retiendra donc que si l'objectif est de calculer une déformée par éléments finis, le choix d'une théorie 3D, 2D ou 1D doit tenir compte avant toute chose des hypothèses cinématiques de ces théories

Figure 2.19 : Exemples de mouvements d'une section droite obtenus : (a) par la théorie des poutres, (b) par la théorie des plaques ou coques, (c) par la théorie volumique.

(pas d'écrasement, pas de gauchissement...). Si ces hypothèses sont pertinentes, les éléments poutres ou coques sont généralement bien plus efficaces que les éléments volumiques, c'est-à-dire qu'ils conduisent à des coûts bien plus faibles pour des résultats de qualité équivalente.

Une première remarque essentielle est que toutes les théories ne permettent pas d'accéder à toutes les composantes du champ des contraintes: de manière générale, seuls les efforts qui travaillent dans les déplacements permis par la théorie sont accessibles (les théories sont ainsi faites afin de pouvoir respecter le premier principe de la thermodynamique). Ainsi:

- La théorie 3D permet de calculer les six composantes du tenseur des contraintes ;
- La théorie 2D ne permet pas de calculer la contrainte normale au plan de la plaque σ_{zz} , du fait de l'indéformabilité des segments perpendiculaires à ce plan ;
- La théorie 1D ne permet pas de calculer les contraintes dans le plan transversal (σ_{yy} , σ_{zz} et σ_{yz}) du fait de l'indéformabilité des sections droites.

A ces limitations théoriques peuvent s'ajouter des limitations techniques propres à chaque logiciel, susceptibles de rendre d'autres grandeurs physiques inaccessibles. Avant d'effectuer une modélisation par éléments finis, il est donc indispensable de s'assurer que le logiciel utilisé et son cadre théorique permettent bien d'accéder au résultat voulu (en plus d'être pertinents vis-à-vis de la géométrie du produit, de son environnement et du comportement attendu).

2.7 Conclusion

La méthode de calcul programmée dans les logiciels de simulation par éléments finis est synthétisée sur la (figure 2.20).

Figure 2.20 : Récapitulatif de la méthode de calcul programmée dans les logiciels de simulation par éléments finis.

Nous avons vu que cette méthode ne fonctionne qu'à certaines conditions sur les modèles, et notamment le fait que:

- Les éléments ne doivent pas être dégénérés (aplatis, croisés, munis d'angles rentrants...);
- Les éléments ne doivent pas être trop distordus par rapport à leur géométrie de référence, sous peine de mener à des allures étranges du champ de déplacements ; cela dépend toutefois du type exact de l'élément ;

• Les conditions aux limites en déplacement doivent bloquer tous les mouvements de corps rigide du modèle.

Il est donc nécessaire de tenir compte de ces particularités lorsque l'on modélise un produit (par un maillage) ou son environnement (par des chargements et des conditions aux limites).

CHAPITRE 3:

Etude du comportement des poutres hyperstatiques par les méthodes analytiques et numériques.

3.1 Introduction :

Ce chapitre est consacre en premier lieu d'effectuer une analyse comparative du comportement de certains problèmes des poutres hyperstatiques en utilisant les méthodes connues de la mécanique des structures, et les résultats obtenus par ces méthodes analytiques sont comparés avec ceux obtenus numériquement par la méthode des éléments finis.

Ensuite en second lieu, on a présenter un exemple d'une poutre continue (hyperstatique) et après avoir développer un code de calcul numérique (programme éléments finis) on veut déterminer les déplacements ainsi que les moments pour cette poutre considéré comme uniformément chargée en plus est soumise a des charges concentrées en exécutant le programme de calcul par logiciel « MAPLE » on veut examiner l'influence de la position des charges concentrées sur la réponse statique de cette poutre.

3.2 Representation de la théorie des poutres en éléments finis :

Application de la méthode au problème de flexion des poutres unidimensionnelle :

3.2.1 Rappel sur la théorie des poutres :

Une poutre est caractérisée par sa fibre moyenne et une section transversale et elle travaille à la flexion simple si elle est soumise a des forces (concentrées ou reparties) perpendiculaire a la fibre moyenne.

Figure 3.1: élément de poutre soumise a la flexion

En tout point de la poutre, on considère deux composantes de déplacements soit « u » suivant l'axe des \vec{X} et « v » suivant l'axe des \vec{y} , pour cela on défini le champ de déplacement selon :

 $u = -y \frac{dv}{dx}$ Avec u et v dépendent de la coordonnée

-la composante « x » de la déformation se dérive du déplacement « u » selon :

$$\varepsilon_x = \frac{du}{dx} = -y \frac{d^2 v(x)}{dx^2}$$
(3.1)

-l'expression du moment fléchissant M(x) se déduit de la relation suivante :

$$M(x) = + \int_{(A)} \sigma_x y dA$$
avec
$$\sigma_x = E\varepsilon_x = -Ey \frac{d^2 v(x)}{dx^2} \int_{(A)} y^2 dA = -EI_z \frac{d^2 v(x)}{dx^2}$$
(3.2)

Ou I_z est le moment d'inertie de la section A.

L'équation (3. 2) est l'équation de la ligne élastique

$$y'' = \frac{d^2 v(x)}{dx^2} = -\frac{M(x)}{EI_z}$$
 (3.3)

3.2.2 Formulation en élément finis :

Dans cette section on veut reformuler les équations de base de la théorie des poutres en utilisant le type d'élément barre à deux nœuds qui est rapporté au repère (x,y) et de longueur L(e) caractérisé par « E » et « Iz » constants.

On défini les vecteurs suivants :

Vecteur de déplacement

F_{v1}

Vecteur des forces nodales

$$\left\{ F_{-} \right\}^{e} = \begin{bmatrix} F_{y1} \\ M_{1} \\ F_{y2} \\ M_{2} \end{bmatrix}$$

M1 et M2 sont les moments extérieurs appliqués aux nœuds 1 et 2 respectivement et Fy1, Fy2 sont des forces verticales.

Dans cette formulation, on se propose le champ de déplacement suivant sous forme d'un polynôme

$$v(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2 + \alpha_4 x^3$$
 (3.4)

Avec αl , $\alpha 2$, $\alpha 3$ et $\alpha 4$ sont les paramètres de l'approximation, ce nombre de paramètres (4) est égal au nombre de degré de liberté total dans l'élément (e).
Par conséquent la rotation « θ » se dérive du déplacement v(x)

Selon:
$$\theta(x) = \frac{dv(x)}{dx} = \alpha_2 + 2\alpha_3 x + 3\alpha_4 x^2$$
(3.5)

Par la suite, on peut réécrire les équations (3.4) et (3.5) sous forme matricielle :

$$\begin{cases} v(x) \\ \theta(x) \end{cases} = \begin{bmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 2x & 3x^2 \end{bmatrix} \begin{cases} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{cases} = \begin{bmatrix} P(x) \end{bmatrix} \{ \alpha \}$$
(3.6)

On détermine les paramètres $\alpha 1$, $\alpha 2$, $\alpha 3$ et $\alpha 4$ inconnus a partir des conditions initiales des déplacements aux nœuds 1 et 2 :

Au nœud (1) pour x=0 $V(x=0) = \alpha 1 = v1$ (e) (e) $V_2 \uparrow^2 = \theta_2$ x=0 x=L

 $\theta(x=0) = \alpha 2 = \theta 1$

Figure 3.3 : Géométries de référence de l'éléments poutre.

Au nœud (2) pour $x=L^{(e)}$ on remplace dans (3.4) et (3.5) :

$$v(x = L^{e}) = \alpha_{1} + \alpha_{2}L^{(e)} + \alpha_{3}L^{(e)^{2}} + \alpha_{4}L^{(e)^{3}} = v_{2}$$
$$\theta(x = L^{e}) = \alpha_{2} + 2\alpha_{3}L^{(e)} + 3\alpha_{4}L^{(e)^{2}} = \theta_{2}$$

c

Sous forme matricielle :

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & L^{(e)} & L^{2^{(e)}} & L^{3^{(e)}} \\ 0 & 2L^{(e)} & 3L^{2^{(e)}} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} v_1 \\ \theta_1 \\ v_2 \\ \theta_2 \end{bmatrix} \Leftrightarrow [A] \{\alpha\} = \{u\}^e$$
(3.7)

 $De (3.7) \quad on \ tire \ \left\{\alpha\right\} = \left[A\right]^{-1} \left\{u\right\}^{e} \quad et \ on \ remplace \ cette \ dernière \ équation \ dans \ (3.6) \ on \ aura :$ $<math display="block">\begin{cases} v(x) \\ \theta(x) \end{cases} = \left[P(x)\right] \left[A\right]^{-1} \left\{u\right\}^{e} = \left[N(x)\right] \left\{u\right\}^{e}$

Avec [N(x)] est la matrice d'interpolation ou de forme.

Par multiplication des deux matrices $[P(x)]et[A]^{-1}$ on a aboutit a la matrice d'interpolation suivante :

$$[v] = \begin{bmatrix} \left(1 - \frac{3x^2}{L^2} + \frac{2x^3}{L^3}\right) & \left(x - \frac{2x^2}{L} + \frac{x^3}{L^2}\right) & \left(\frac{3x^2}{L^2} - \frac{2x^3}{L^3}\right) & \left(-\frac{x^2}{L} + \frac{x^3}{L^2}\right) \\ \left(\frac{-6x}{L^2} + \frac{6x^2}{L^3}\right) & \left(1 - \frac{4x}{L} + \frac{3x^3}{L^2}\right) & \left(\frac{6x}{L^2} - \frac{6x^2}{L^3}\right) & \left(-\frac{2x}{L} + \frac{3x^2}{L^2}\right) \end{bmatrix}$$
(3.8)

3.2.3 Matrice de rigidité élémentaire de flexion $[K]^{e}$:

Cette matrice se détermine en appliquant le principe des travaux virtuels selon :

$$\int_{v^{e}} \delta \mathscr{E}_{x}^{T} \mathscr{I}_{x} \mathscr{I}_{x} dv^{e} - \delta \{u\}^{e} \mathscr{I}_{x}^{T} \{F\}^{e} = 0 \quad (Equation \ d'équilibre)$$
(3.9)

Avec: $\varepsilon_x = -y \frac{d^2 v(x)}{dx^2}$ $\sigma_x = E \varepsilon_x$

$$Et \quad v(x) = \langle N11 \ N12 \ N13 \ N14 \rangle \cdot \left\{ u \right\}^{e}$$

N11, N12, N13 et N14 sont les termes de la première ligne de la matrice (3.8)

$$\delta \varepsilon_{x}^{T} = -y \cdot \frac{d^{2} (\delta v(x)^{T}}{dx^{2}} = -y \left\langle \frac{d^{2} N_{11}}{dx^{2}} \frac{d^{2} N_{12}}{dx^{2}} \frac{d^{2} N_{13}}{dx^{2}} \frac{d^{2} N_{14}}{dx^{2}} \right\rangle^{T} \cdot \delta \{u\}^{e^{T}}$$

$$\delta \varepsilon_{x}^{T} = -y \left\langle (\frac{-6}{L^{2}} + \frac{12x}{L^{3}})(\frac{-4}{L} + \frac{6x}{L^{2}})(\frac{6}{L^{2}} - \frac{12x}{L^{3}})(\frac{-2}{L} + \frac{6x}{L^{2}}) \right\rangle^{T} \cdot \delta \{u\}^{e^{T}}$$

$$\delta \varepsilon_{x}^{T} = -y \left\langle B(x) \right\rangle^{T} \cdot \delta \{u\}^{e^{T}} \quad et \ \varepsilon_{x}^{T} = -y \left\langle B(x) \right\rangle^{T} \cdot \{u\}^{e^{T}}$$
(3.10)

En substituant ces dernières équations dans l'équation (3.8)

$$On \ aura \quad \int -y \langle B(x) \rangle^{T} \cdot E \cdot (-y) \cdot \langle B(x) \rangle \{u\}^{e} \ dv^{e} \delta\{u\}^{e}$$

$$\int_{v^{e}} -y \langle B(x) \rangle^{T} \cdot E \cdot (-y) \cdot \langle B(x) \rangle \{u\}^{e} \ dv^{e} \delta\{u\}^{e^{T}} - \delta\{u\}^{e^{T}} \cdot \{F\}^{e} = 0$$

$$Ou \ bien \quad (\int_{v^{e}} \langle B(x) \rangle^{T} \cdot E \cdot \langle B(x) \rangle y^{2} \ dv^{e} \delta\{u\}^{e} - \{F\}^{e}) \cdot \delta\{u\}^{e^{T}} = 0$$

$$\left[EI \int_{x=0}^{x=L} \langle B(x) \rangle^{T} \cdot \langle B(x) \rangle \ dx \cdot \left[\cdot \{u\}^{e} = \{F\}^{e} \right] \right]$$

$$(3.11)$$

$$I = \int_{A} y^2 dA$$

L'équation (3.11) représente l'équation fondamentale

$$[K]^e \cdot \{u\}^e = \{F\}^e$$

De cela on tire la matrice de rigidité est exprimée par :

$$\left[K\right]^{e} = EI \int_{0}^{L} \left\langle B(x) \right\rangle^{T} \cdot \left\langle B(x) \right\rangle dx$$
(3.12)

Ou encore les termes de rigidité s'expriment :

$$K_{ij} = EI \int_0^L B_i(x) \cdot B_j(x) \cdot dx \quad (i,j = 1,2,3,4)$$

Avec $B_1(x) = \frac{-6}{L^2} + \frac{12x}{L^3}$; $B_2(x) = \frac{-4}{L} + \frac{6x}{L^2}$; $B_3(x) = \frac{6}{L^2} - \frac{12x}{L^3}$; $B_4(x) = \frac{-2}{L} + \frac{6x}{L^2}$

Par exemple calculous le premier terme K11 pour i=j=1 => $K_{11} = EI \int_0^L B_1(x)^2 dx$

$$K_{11} = \frac{12EI}{L^3}$$
 de même pour les autres termes :

$$K_{12} = \frac{6EI}{L^2}$$
; $K_{13} = \frac{-12EI}{L^3}$; $K_{14} = \frac{6EI}{L^2}$; $K_{22} = \frac{4EI}{L}$; $K_{23} = \frac{-6EI}{L^2}$;

$$K_{24} = \frac{2EI}{L}$$
; $K_{33} = \frac{12EI}{L^3}$; $K_{34} = \frac{-6EI}{L^2}$ et $K_{44} = \frac{4EI}{L}$

Kji = Kij (symétrique).

Donc la matrice de rigidité élémentaire de flexion est donnée par :

$$(4 \times 4) \qquad [K]^{(e)} = \frac{EI}{L} \begin{bmatrix} \frac{12}{L^2} & \frac{6}{L} & -\frac{12}{L^2} & \frac{6}{L} \\ \frac{6}{L} & 4 & -\frac{6}{L} & 2 \\ -\frac{12}{L^2} & -\frac{6}{L} & \frac{12}{L^2} & -\frac{6}{L} \\ \frac{6}{L} & 2 & -\frac{6}{L} & 4 \end{bmatrix}$$
(3.13)

3.2.4 l'expression du moment de flexion $M^{e}(x)$:

D'après l'équation (3.3) on aura

$$M^{e}(x) = EI\left[(\frac{6}{L^{2}} - \frac{12x}{L^{3}}).(\frac{4}{L} - \frac{6x}{L^{2}}).(\frac{-6}{L^{2}} + \frac{12x}{L^{3}}).(\frac{2}{L} - \frac{6x}{L^{2}})\right].\{u\}^{e}$$
(3.14)

Prenons un élément (e) de connectivité (i - j),

l'expression du moment fléchissant est :

Figure 3.4 : discretisation de l'éléments poutre.

$$M^{e}(x) = EI\left\{ \left(\frac{6}{L^{2}} - \frac{12x}{L^{3}}\right) \cdot v_{i} + \left(\frac{4}{L} - \frac{6x}{L^{2}}\right) \cdot \theta_{i} + \left(\frac{-6}{L^{2}} + \frac{12x}{L^{3}}\right) \cdot v_{j} + \left(\frac{2}{L} - \frac{6x}{L^{2}}\right) \cdot \theta_{j} \right\}$$

3.3 Code de calcul par éléments finis :

Pour exécuter un programme d'éléments finis on doit suivre les étapes suivantes :

Entrée des données :

- Caractéristiques géométriques et physico-mécaniques : Longueur (a) , section (A), module de Young (E) , Inertie (I)

- Maillage :
- Numérotation des nœuds et des éléments à apparaitre dans la poutre
- Evaluation des matrices de rigidité élémentaires [K]^e.
- Stockage des matrices [K]^e dans les matrices globales [K] par la technique d'assemblage.
- Introduction des conditions d'appuis.
- Résolution du système d'equations : $[K]{q} = {F}$
- Impression des résultats

A l'aide de ce code nous allons traiter des exemples d'applications de problème des poutres afin de montrer la qualité et la validité des résultats obtenus numériquement par la méthode des éléments finis et les comparer avec les résultats analytiques.

3.4 Étude comparative :

Dans cette section on propose deux exemples de cas des poutres possédant un seul degré d'hyperstaticité, afin d'effectuer une analyse comparative concernant la détermination des déplacements, les réactions et les moments de flexion par les solutions analytiques et numériques.

3.5 Exemple 01 :

3.5.1 Solution éléments finis :

On veut déterminer les déplacements inconnus aux nœuds et le diagramme du moment M dans la poutre hyperstatique montrée en figure ci-dessous.(en utilisant la méthode des éléments finis).

Discretisation

Poutre a etudier

Figure 3.5 : Géométrie et chargement de l'élément poutre.

Solution

3.5.1.1 Matrice de rigidité élémentaire

$$\begin{bmatrix} K \end{bmatrix}^{(1)} = \begin{bmatrix} K \end{bmatrix}^{(2)} = \begin{bmatrix} k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \\ k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{bmatrix} = \begin{bmatrix} \frac{12EI}{L^3} & \frac{6EI}{L^2} & -\frac{12EI}{L^3} & \frac{6EI}{L^2} \\ \frac{6EI}{L^2} & \frac{4EI}{L} & -\frac{6EI}{L^2} & \frac{2EI}{L} \\ -\frac{12EI}{L^3} & -\frac{6EI}{L^2} & \frac{12EI}{L^3} & -\frac{6EI}{L^2} \\ \frac{6EI}{L^2} & \frac{2EI}{L} & -\frac{6EI}{L^2} & \frac{4EI}{L} \end{bmatrix}$$
(3.15)

 $L^{(1)} = L^{(2)} = 1m$

$$[K]^{(1)} = [K]^{(2)} = EI\begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix}$$

3.5.1.2 Matrice de rigidité globale :

$$\left[K\right] = \left[K\right]^{(1)} + \left[K\right]^{(2)}$$

$$[K]^{(1)}i = 1, j = 2$$
 $[K]^{(2)}i = 2, j = 3$

D'où

$$= EI \begin{bmatrix} 12 & 6 & -12 & 6 & 0 & 0 \\ 6 & 4 & -6 & 2 & 0 & 0 \\ -12 & -6 & 24 & 0 & -12 & 6 \\ 6 & 2 & 0 & 8 & -6 & 2 \\ 0 & 0 & -12 & -6 & 12 & -6 \\ 0 & 0 & 6 & 2 & -6 & 4 \end{bmatrix}$$

3.5.1.3 -vecteur des forces nodales {F}

Au nœud 1 une réaction suivant \vec{y} et un moment de réaction P_{MI} Au nœud 2 : Fy2= - F et M2 =0. Au nœud 3 : Fy3 et M3 =0 $\begin{pmatrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & &$

3

⊼ ‴‴ ↑

3.5.1.4 - Résolution du système

$$[K] \cdot \{U\} = \{F\}$$

Avant de faire la résolution, on doit introduire les conditions d'appuis :

Au nœud 1 encastré ($v_1 = 0$, $\theta_1 = 0$)

et au nœud 3 (appuis simple) ($v_3 = 0$ avec $v_2 = 0$, $\theta_2 \neq 0$, $\theta_3 \neq 0$).

Développant le système d'équation

$$[K] \cdot \{U\} = \{F\}$$

$$\int 12 v_1 + 6 \theta_1 - 12 v_2 + 6 \theta_2 = \frac{R_{y_1}}{EI}$$
(1)

$$6 v_1 + 4 \theta_1 - 6 v_2 + 2 \theta_2 = \frac{R_{y_1}}{EI}$$
(2)

$$\begin{cases} -12 v_1 - 6 \theta_1 + 24 v_2 - 12 v_3 + 6 \theta_3 = \frac{-F}{EI} \end{cases}$$
(3)

$$6 v_1 + 2 \theta_1 + 8 \theta_2 - 6 v_3 + 2 \theta_3 = 0 \tag{4}$$

$$-12 v_2 - 6 \theta_2 + 12 v_3 - 6 \theta_3 = \frac{R_{y3}}{EI}$$
(5)

$$\int 6 v_2 + 2 \theta_2 - 6 v_3 + 4 \theta_3 = 0 \tag{6}$$

On décompose ce système global en deux systèmes :

3.5.1.5 - Système de détermination déplacements inconnus v_2 , θ_2 et θ_3 a partir des équations : (3), (4) et (6)

$$24 v_2 + 6 \theta_3 = \frac{-F}{EI}$$

$$8 \theta_2 + 2 \theta_3 = 0 \implies \theta_3 = -4 \theta_2$$

$$6 v_2 + 2 \theta_2 + 4 \theta_3 = 0$$

$$\begin{cases} 24 v_2 - 24 \theta_2 = \frac{-F}{EI} \implies (24 - \frac{72}{7}) v_2 = \frac{-F}{EI} \\ 6 v_2 - 14 \theta_2 = 0 \implies \theta_2 = \frac{3}{7} v_2 \end{cases}$$

Donc (24-)
$$v_2 = -\frac{7}{96} \frac{F}{EI}$$
; $\theta_2 = -\frac{1}{32} \frac{F}{EI}$; $\theta_3 = \frac{1}{8} \frac{F}{EI}$

3.5.1.6 Système de détermination des réactions d'appuis : R_{y1} , $R_{M1}etR_{y3}$ a partir des équations : (1), (2) et (5);

$$\begin{cases} R_{y1} = -12(\frac{-7}{96}F) + 6(\frac{-1}{32}F) = \frac{11}{16}F \\ R_{M1} = -6(\frac{-7}{96}F) + 2(\frac{-1}{32}F) = \frac{3}{8}F \\ R_{y3} = -12(\frac{-7}{96}F) - 6(\frac{-1}{32}F) - 6(\frac{-1}{8}F) = \frac{5}{16}F \\ \sum F_{y} = \frac{11}{16}F + 5\frac{F}{16} - F = 0 \quad \text{vérifier} \\ \sum M_{/A} = -F.1 + \frac{10}{16}F + \frac{3}{8}F = 0 \quad \text{vérifier} \end{cases}$$

3.5.1.7 Diagramme des moments :

On utilise la relation pour chaque élément suivant

$$M(x) = EI\left\{ \left(\frac{6}{L^2} - \frac{12x}{L^3}\right) v_i + \left(\frac{4}{L} - \frac{6x}{L^2}\right) \theta_i + \left(\frac{-6}{L^2} + \frac{12x}{L^3}\right) v_i + \left(\frac{2}{L} - \frac{6x}{L^2}\right) \theta_i \right\}$$

Element (1) (e=1); i=1, j=2 ($v_{I}=\theta_{I}=0$)

$$En \quad x = 0 \ (encastrement)$$

$$En \quad x = 1 \ (au \ niveau \ de \ F)$$

$$x = 0 \quad M^{(1)}(x = 0) = \operatorname{EI}\left\{ \left(-\frac{6}{L^2}\right) v_2 + \left(\frac{2}{L}\right) \theta_2 \right\}$$

$$M^{(1)}(x = 0) = \left(-6\left(\frac{-7}{96}F\right) - 2\left(\frac{-1}{32}\right)F\right) = \frac{3}{8}F$$

$$x = L = 1 \quad M^{(1)}(x = 1) = EI(6 v_2 - 4 \theta_2)$$

$$M^{(1)}(x = 1) = \left(-6\left(\frac{-7}{96}F\right) + 4\left(\frac{1}{32}\right)F\right) = \frac{-5}{16}F$$

$$Element(2) \quad (e = 2); \quad i = 2, \quad j = 3 \quad (v_3 = 0) \quad L = 1m.$$

$$M^{(2)}(x = 0) = EI \quad (-6v_2 + 4\theta_2 + 2\theta_3)$$

$$M^{(2)}(x = 0) = \left(\frac{-5}{16}F\right) = M^{(1)}(x = 1)$$

$$M^{(2)}(x = 1) = EI \quad (-6v_2 - 2\theta_2 - 4\theta_3)$$

$$M^{(2)}(x=1) = -6(\frac{-7}{96}F) + 2(\frac{1}{32}F) - 4(\frac{1}{8}F) = 0$$

Le programme de calcul en elements finis pour cet exemple est representé en annexe.

3.5.2 Solution analytique:

Cette poutre possède un seul degré d'hyperstaticité pour cette raison on applique la méthode des forces.

Soit les deux systèmes.

Figure 3.6 : Systeme S0.

On élimine l'appui, la poutre devienne alors isostatique

 $\sum F_{y} = 0$ $R_{A} - F = 0 \Rightarrow R_{A} = F$ $M_{/A} = 0 \Rightarrow R_{M_{A}} - F.1 = 0 \Rightarrow R_{A} = F$ $R_{M_{A}} = F.1$ $M_{0}(x) = -F.1 + F.x$ $M_{0}(x) = -F.1 + F.x$ $M_{0}(x) = -F.(x-1) \text{ pour } 0 \le x \le 1$ (Système S1) $M_{1}(x) = 2 - .(x.1) \text{ pour } 0 \le x \le 2$ A savoir l'équation $\delta_{10} + X.\delta_{11} = 0$

Figure 3.7: Systéme S1

$$\begin{split} \delta_{ij} &= \frac{1}{EI} \int_{(s)}^{M} M_{i}(x) M_{j}(x) dx \quad (i, j = 0, 1) \\ La \ réaction \ X &= \frac{\delta_{11}}{\delta_{10}} \\ \delta_{10} &= \frac{1}{EI} \int_{(s)}^{M} M_{0}(x) M_{1}(x) dx \\ &= \frac{1}{EI} \int_{0}^{1} M_{0}(x) M_{1}(x) dx + \frac{1}{EI} \int_{1}^{2} 0 M_{1}(x) dx \quad avec \quad M_{1}(x) dx = 0 \\ &= \frac{F}{EI} \int_{0}^{1} (x-1) (2-x) dx = \frac{F}{EI} \int_{01}^{1} (-x^{2}+3x-2) dx \\ &= \frac{1}{EI} \left[\frac{-x^{3}}{3} + \frac{3x^{2}}{2} - 2x \right]_{0}^{1} = \frac{F}{EI} \left[\frac{-1}{3} + \frac{3}{2} - 2 \right] \\ \delta_{10} &= \frac{-5F}{6EI} \\ \delta_{11} &= \frac{1}{EI} \int_{(s)}^{M} M_{1}^{2}(x) dx = \frac{1}{EI} \int_{0}^{2} (2-x)^{2} dx \\ &= \frac{1}{EI} \left[\frac{-(2-x)^{3}}{3} \right]_{0}^{2} = \frac{1}{EI} \left(\frac{8}{3} \right) \\ \delta_{11} &= \frac{8}{3EI} \\ X &= \frac{+5F}{6EI} \cdot \frac{+3EI}{8} \quad \Rightarrow X = \frac{15}{48} \cdot F = \frac{5F}{16} \\ \sum F_{y} &= 0 \\ R_{A} + \frac{5}{16} F = F \Rightarrow R_{A} = F - \frac{5}{16} F = \frac{11}{16} F \end{split}$$

$$\sum M_{IA} = 0 \Longrightarrow R_{M_A} - F.1 + \frac{5F}{16}.2 = 0 \Longrightarrow R_{M_A} = F - \frac{10F}{16} = \frac{3F}{8}$$

Diagramme des moments :

pour
$$0 \le x \le 1$$
 $M(x) = -\frac{3F}{8} + \frac{11F}{16} x$

$$x = 0 \Longrightarrow M(0) = -\frac{3F}{8}$$
$$x = 1 \Longrightarrow M(1) = -\frac{3F}{8} + \frac{11F}{16} = \frac{5F}{8}$$

$$x = 1 \Longrightarrow M(1) = \frac{5F}{16}$$

$$x = 2 \Longrightarrow M(2) = -\frac{3F}{8} + \frac{11F}{8} - F = 0$$

Méthode de Castigliano :

On veut calculer le déplacement vertical au point B (V_B)?

$$V_{B} = \frac{1}{EI} \int_{(s)}^{M} M_{F}(x) \cdot \frac{\partial M(x)}{\partial F} dx$$

$$M_{F}^{(1)}(x) = -\frac{3F}{8} + \frac{11F}{16} \cdot x \qquad 0 \le x \le 1$$

$$M_{F}^{(2)}(x) = -\frac{3F}{8} + \frac{11F}{16} \cdot x - (x-1) \cdot F \qquad 1 \le x \le 2$$

$$\frac{\partial M^{(1)}}{\partial F} = -\frac{3F}{8} + \frac{11}{16} \cdot x ; \qquad \frac{\partial M^{(2)}}{\partial F} = -\frac{3F}{8} + \frac{11}{16} \cdot x - x + 1$$

$$V_{B} = \frac{1}{EI} \left\{ \int_{0}^{1} (-\frac{3}{8} + \frac{11}{16} \cdot x) \cdot (-\frac{3}{8} + \frac{11}{16} \cdot x) dx + \int_{1}^{2} (\frac{5}{8} - \frac{5}{16} \cdot x)^{2} dx \right\} = \frac{7}{96} F$$

Figure 3.8: Diagramme des moments

3.6 Exemple 02 :

On considère une poutre continue a deux travées dont le moment d'inértie est constant tout au long, elle est soumise en plus de la charge repartie « q » a une charge concentrée « P ».

Pour la solution analytique on applique la méthode des trois moments.

Pour la poutre continue, indiquée dans la "figure 3.9", on va traçer les diagrammes" T" et "M";

Figure 3.9: Poutre continue a deux travées

3.6.1 Solution analytique:

Le système de base, indiqué dans la (figure 3.10), met en évidence les diagrammes "Mxc " pour chaque portée considérée comme indépendante.

En sachant que: $M_{\max,1-2}^{0} = F_{1-2} = \frac{Q.l^2}{8} = \frac{1x8^2}{8} = 8tfm$

$$M_{\max,2-3}^{0} = \frac{P.l}{4} = \frac{4x8}{4} = 8tfm$$

On peut calculer les valeurs: $\omega_{1-2} = \frac{2}{3}x8x8 = \frac{128}{3}$; $\omega_{2-3} = 2x\frac{1}{2}x8x4 = 32$

 ω_{1-2} et ω_{2-3} representent les aires des diagrammes Mxc pour les portées (1-2) et (2-3) successivement, en utilisant le théorème des trois moments:

$$l_{ij} \cdot M_i + 2(l_{ij} + l_{jk}) \cdot M_j + l_{jk} \cdot M_k + 6 \left(\frac{\omega_{ij}}{l_{ij}} x_{ij} \cdot + \frac{\omega_{jk}}{l_{jk}} \cdot x_{jk}'\right)$$

Oubien: $l_{1-2} \cdot M_1 + 2(l_{1-2} + l_{2-3}) \cdot M_2 + l_{2-3} \cdot M_3 + 6 \left(\frac{\omega_{1-2}}{l_{1-2}} x_{1-2} \cdot + \frac{\omega_{2-3}}{l_{2-3}} \cdot x_{2-3}'\right) = 0$

 $O\dot{u}$ $M_1 = M_3 = 0$; $X_{1-2} = X'_{2-3} = 4,00 \text{ m}$

L'équation sera: $0x2(8+8)M_2 + 0 + 6\left(\frac{128}{3}x\frac{4}{8} + \frac{32x4}{8}\right) = 0$

D'où on obtient: $32 \cdot M_2 + 224 = 0$; $M_2 = -7.00$ tfm

Avec cette valeur on peut commencer a tracer le diagramme des moments M,

Pour trouver les valeurs des sections caractéristiques, on prendra en considération chaque portée séparément (figure 3.10); sur chaque poutre agiront donc: les charges extérieures, les réactions et le moment trouvé.

Figure 3.10 Systeme equivalent

Calcul des réactions:

Portée 1-2:

$\Sigma M_{2i} = V_1 \cdot 8 - 1 \cdot 8 \cdot 4 + 7 = 0;$	$V_1 = 3,125 tf;$
$\Sigma M_{1i} = -V'_{2} \cdot 8 + 7 + 1 \cdot 8 \cdot 4 = 0;$	$V'_2 = 4,875 tf;$

Portée 2 - 3:

$\Sigma M_{2i} = -7 + 4 \cdot 4 - V_3 \cdot 8 = 0;$	$V_3 = 1,125 tf;$
$\Sigma M_{3i} = V''_2 \cdot 8 - 4 \cdot 4 - 7 = 0;$	$V''_2 = 2,875 tf.$

Les valeurs extrêmes des moments seront donc:

$$M_{1-2}^{\text{max}} = \mathbf{0} + 3,125 \cdot \frac{3,125}{2} = 4,883 \text{ tfm};$$

 $M_{2-3}^{\text{max}} = 7 + 2,875 \cdot 4 = +4,500 \text{ tfm}.$

Pour la portée 1-2:

$$V_{1} = V_{1}^{\circ} + \left(\frac{M_{2} - M_{1}}{l_{1-2}}\right) = 4 + \frac{(-7 - 0)}{8} = 4 - 0,875 = +3,125 \text{ tf};$$

$$V_{2}^{\circ} = V_{2}^{\circ} - \left(\frac{M_{2} - M_{1}}{l_{1-2}}\right) = 4 + 0,875 = +4,875 \text{ tf};$$

Pour la portée 2 - 3:

$$V'_{2} = V''_{2} + \left(\frac{M_{3} - M_{2}}{l_{2-3}}\right) = 2 + \frac{(0+7)}{8} = 2 + 0,875 = +2,875 \text{ tf};$$

$$V_{3} = V'_{3} - \left(\frac{M_{3} - M_{2}}{l_{2-3}}\right) = 2 + \frac{(0+7)}{8} = 2 - 0,875 = +1,125 \text{ tf};.$$

Afin d'obtenir le diagramme Mx (figure 3.12. c) on dessine d'abord le diagramme $M^{\circ}x$ (Figure. 3.12.a) et puis le diagramme ΔMx (figure. 3.12.b) en faisant la superposition:

Figure 3.12 Diagramme M

On obtient le diagramme Mx (figure .3.12.c).

3.6.2 Solution éléments finis :

Les resultats du programme de calcul en elements finis pour cet exemple sont representé en annexe.

Tableau 3.6.2	Comparaison des resultats des moments des exemples 1 et 2 et des deplacements de l'exemple 1
	obtenus analytiquement et numeriquement

	Exemple 1		Exemple 2
Solutions	Deplacements Moments		Moments
Analytique	$\frac{7F}{1000000000000000000000000000000000000$	$M_{encastre} \frac{3F}{8} = 0,375F$	$M_{appui} = 7,00$
Апшунцие	96	$M_{travée} \frac{5F}{16} = 0,3125F$	$M_{trav\acute{e}e} = 4,883$
Eléments finis	0,0729F	$M_{encastre} = 0,375F$	$M_{appui} = 6,990$
		$M_{trav\acute{e}} = 0,312F$	$M_{trav\acute{e}} = 4,873$
Comparaison	Resultats identique		<i>Resultats identique</i> (0,10% d'ecarts)

D'apres le tableau 3.6.2 les resultats obtenus analytiquement et numeriquement des exemples 1 et 2 sont comparables ce qui implique que notre modele numerique developpé est validé.

3.7 Exemple traitement

3.7.1 Influence de la position de la charge sur le comportement de la poutre continue :

Une poutre continue [ABCDE], de module de flexion EI constant, est simplement appuyée en A, B, C, D et articulée en E (pas de mouvement horizontal permis).elle peut être chargée par deux charges concentrés de meme valeure, distante de 0.50m s'exerçant soit sur une seule travée, soit sur appui. L'objet de cet exemple est la determination des moments fléchissants et deplacement ensuite la comparaison de ces resultats obtenues suite aux sollicitations selon differentes positions.

d) Chargement de la poutre - Position 04

Figure 3.14 Differentes positions de chargement d'une poutre contine

Les resultats du programme de calcul en elements finis pour les quatre (04) differentes positions de chargement sont representés en annexe.

3.7.2 Présentation et interprétation des résultats

3.7.2.1 Présentation des résultats

Tableau 3.7.2.1Comparaison des resultats des moments et deplacements suivant differentes positions
de chargement d'une poutre contine obtenus par la M.E.F.

Position de chargement de la poutre	Deplacements v _{Max}	Distance	Moments M _{Max}	Distance
Position 01	-1.207031250 P noeud(8)	1,75m	-1.204810524 P elément(7)	1,75m
Position 02	-0.02045263255 P noeud(9)	2,25m	0.2220754381 P elément(15)	3.75m
Position 03	-0.9257812500 P noeud(22)	5.50m	-0.975218661 P elément(21)	5,25m
Position 04	-0.01667762131 P noeud(24)	5,75m	0.2202988348 P elément(29)	7,00m

3.7.2.2 Commentaires

Les deplacements et moment maximals correspondent aux cas ou les charges sont appliquées en travée, et d'une facon remarquable, ils sont moindres dans les cas où les charges sont appliquées en appuis.

Le deplacement et moment maximal obtenus correspondent au cas de chargement (Position 01)

Le deplacement et moment minimal obtenus correspondent au cas de chargement (Position 04) ;

En conclusion, le comportement des poutres continues vis-à-vis des sollicitations externes illustre une plus de rigidité quand aux charges appliquées au niveau des appuis.

3.8 Conclusion

Dans ce chapitre on a fait un apercu sur le principe de la methode numerique, en utilisant le programme de calcul numerique appliqué sur « Maple » pour le calcul des exemples de poutres hyperstatiques.

On a exploité les resultats obtenus par la methode numerique, et on a egalement comparer les resultats obtenus par les deus methodes analytique et numerique pour les deux exemples de poutres hyperstatiques.

CONCLUSION GENERALE

La méthode des éléments finis est une technique numérique très efficace pour l'analyse des structures discrètes tridimensionnelle dans la mesure où elle permet de déterminer les déplacements, les forces et les contraintes à n'importe quel élément ou nœud de la structure en un temps de calcul très court.

De plus l'utilisation de l'outil de discrétisation qu'offre cette méthode, permet d'utiliser des méthodes numériques avancées pour la résolution des problèmes d'analyse des structures complexes spatiales.

En fait, l'objectif assigné à notre travail a été réalisé. Il consiste en une analyse des systèmes de Poutre hyperstatiques avec différentes conditions aux limites.

La mise en équations des contraintes-déformations ainsi que la rigidité d'un élément de la structure.

Les matrices de rigidité pour toute la structure seront obtenues par assemblage de tous les éléments des systèmes.

L'utilisation du programme MAPLE de calcul par éléments finis nous a facilité la tâche de calcul du comportant un nombre important d'éléments comme il est montré en exemple (développement) qui consiste à dimensionner une Poutre hyperstatiques sons l'effet du positionnement de la charge verticale.

Les tests numériques effectués sur notre programme de calcul; ont montré que la position de la charge influe sur la les résultats obtenus effectivement; ces derniers sont presque identiques a ceux obtenus en analysant les même systèmes de poutres hyperstatique avec les méthodes analytiques.

En perspective nous nous recommandons les futurs masters de traiter les systèmes portiques et treillis par l'approche des éléments finis.

Références Bibliographique

[1]: Jean-Claude_Doubrère. Résistance des_matériaux,cours et exercices corriges , 11^e edition Eyrolles 2010.

[2]: Goullet Jean – Jean Pierre Boutin et Frederic Lerouge. Aide memoire – Résistance des matériaux, (Edition le moniteur) 10^e edition - Dunod 2014.

[3] : Jean-Pierre Basset / Patrice Cartraud / Christian Jacquot / Antoine Leroy / Bernard Peseux et Pierre Vaussy, Introduction à la résistance des matériaux - École Centrale de Nantes - version 1 - 22 May 2011.

[4] : F. SABOURIN et E. SALLE . Calculs des Structures par Eléments Finis INSA Lyon (2000)

[5] : Groupe scientifique de l'association El maarifa- Departement de GC – ecole nationale polytechnique El Harrach – Alger cours RDM. 2012

[6] : Najet BENAMARA et Ali MOUSSAOUI. Cours de résistance des_matériaux -2-

Institut supérieur des études technologiques de Gafsa - Tunisie Departement de GC - 2010.

[7] : Jean-Christophe CUILLIÈRE Introduction à la méthode des éléments finis 2e édition - Dunod 2011-2016.

[8]: BOURAHLA Nouredine. RDM de base. GECOTEC -2011.

ANNEXE

Exemple de comparaison 1:

Programme de calcul en éléments finis de l'exemple 1.

> restart;

Entrée des données :

> f(3) := -F;

Stockage des matrices de rigidité élémentaires dans la matrice globale:

> for i to disc[1,1] do ke(i):=Matrix(disc[1,3],disc[1,3]) end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 1]-1, 2*con[i, 1]-1] := 12*carac[1, 4]/L[1, i]^3 end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 1]-1, 2*con[i, 1]] := 6*carac[1, 4]/L[1, i]^2 end do;

- > for i to disc[1, 1] do ke(i)[2*con[i, 1]-1, 2*con[i, 2]-1] := $(-12*carac[1, 4])*(1/L[1, i]^3)$ end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 1]-1, 2*con[i, 2]] := 6*carac[1, 4]/L[1, i]^2 end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 1], 2*con[i, 1]-1] := 6*carac[1, 4]/L[1, i]^2 end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 1], 2*con[i, 1]] := 4*carac[1, 4]/L[1, i] end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 1], 2*con[i, 2]-1] := $(-6*carac[1, 4])*(1/L[1, i]^2)$ end do;

```
> for i to disc[1, 1] do ke(i)[2*con[i, 1], 2*con[i, 2]] := 2*carac[1, 4]/L[1, i] end do;
```

- > for i to disc[1, 1] do ke(i)[2*con[i, 2]-1, 2*con[i, 1]-1] := $(-12*carac[1, 4])*(1/L[1, i]^3)$ end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 2]-1, 2*con[i, 1]] := (-6*carac[1, 4])*(1/L[1, i]^2) end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 2]-1, 2*con[i, 2]-1] := 12*carac[1, 4]/L[1, i]^3 end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 2]-1, 2*con[i, 2]] := $(-6*carac[1, 4])*(1/L[1, i]^2)$ end do;

> for i to disc[1, 1] do ke(i)[2*con[i, 2], 2*con[i, 1]-1] := 6*carac[1, 4]/L[1, i]^2 end do;

- > for i to disc[1, 1] do ke(i)[2*con[i, 2], 2*con[i, 1]] := 2*carac[1, 4]/L[1, i] end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 2], 2*con[i, 2]-1] := $(-6*carac[1, 4])*(1/L[1, i]^2)$ end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 2], 2*con[i, 2]] := 4*carac[1, 4]/L[1, i] end do;
- > for i to disc[1, 1] do ke(i)[2*con[i, 2], 2*con[i, 1]-1] := 6*carac[1, 4]/L[1, i]^2 end do;
- > for i to disc[1, 1] do print(ke(i)) end do;

Assemblage des matrices élémentaires:

```
> kg := evalf(evalm(sum(ke(m), m = 1 .. disc[1, 1])));
```

> ki := evalm(1/kg);

Résolution du systeme [kg].{q}={f}

> q := evalm(`&*`(ki, f)); > for i to nfix do q[mfix[1, i]] := 0 end do; 0 0 0 0 > for i to disc[1,2] do v(i):=q[2*i-1] end do; 0 0.07291666743 F 0 > for i to disc[1,2] do teta(i):=q[2*i] end do; 0 0.03124999968 F 0.125000007 F Affichage des déplacements aux nœuds:

> for i to disc[1, 2] do print(noeud(i), v(i), teta(i)) end do;

noeud(1) 0 , 0 noeud(2) 0.07291666743 F , 0.03124999968 F noeud(3) 0 , 0.1250000007 F

Calcul des moments dans les éléments:

> for i to disc[1,1] do Mg(i):=carac[1,4]*((6*v(con[i,1]))/(L[1,i]**2)+(4*teta(con[i,1]))/(L[1,i])-(6*v(con[i,2]))/(L[1,i])) end do;

Mg(1)= 0.3750000052 F Mg(2)= -0.3125000019 F

Md(1)= -0.3125000059 F Md(2)= 1.16 10^{.9} F

Affichage des moments dans les éléments:

> for i to disc[1, 1] do print(i, Mg(i), Md(i)) end do;

Elément(1), 0.3750000052 F , -0.3125000059 F Elément (2) -0.3125000019 F , 1.16 10⁻⁹ F

Affichage des réactions aux appuis:

> for i to nfix do R(mfix[1, i]) := sum(kg[mfix[1, i], j]*q[j], j = 1 .. disc[1, 3]) end do;

0.6875000111 F

0.3750000052 F

0.3125000031 F

> for i to nfix do print(Reac(mfix[1, i]) = R(mfix[1, i])) end do;

Reac(1) = 0.6875000111 F

Reac(2) = 0.3750000052 F

Reac(5) = 0.3125000031 F

Exemple de comparaison 2:

Affichage des déplacements (v) - rotation ($\boldsymbol{\theta}$) aux nœuds:

	v(i)	teta(i)	
noeud(1),		0, -11.96	07499999315
noeud(2), -2.	388181697922	91, -11.90	12254686826
noeud(3), -4.	752753583326	21, -11.72	56518749338
noeud(4), -7.0	071172510396	43, -11.44	10292186851
noeud(5), -9.	322428666633	59, -11.05	53574999366
noeud(6), -11	.48711223953	77, -10.57	66367186883
noeud(7), -13	.54741341660	89, -10.01	28668749401
noeud(8), -15	.48712238534	72, -9.372	04796869235
noeud(9), -17	.29162933325	25, -8.662	17999994478
noeud(10), -1	8.94792444782	251, -7.891	26296869753
noeud(11), -20	0.44459791650	549, -7.067	29687495056
noeud(12), -2	1.77183992693	720, -6.198	28171870392
noeud(13), -2.	2.92144066654	465, -5.292	21749995763
noeud(14), -2	3.8867903227	884, -4.35	710421871156
noeud(15), -2	4.6628790831	978, -3.400	94187496569
noeud(16), -2	5.2462971352	747, -2.431	73046872003
noeud(17), -2	5.6352346665	192, -1.45	746999997461
noeud(18), -25	5.82948186443	12, -0.486	160468729541
noeud(19), -2	5.8304289165	110, 0.4741	98125015268
noeud(20), -:	25.6410660102	2585, 1.415	60578125974
noeud(21), -	25.2659833331	738, 2.330	06250000401
noeud(22), -:	24.7113710723	7569, 3.209	56828124796
noeud(23), -	23.9850194165	5080, 4.046	12312499163
noeud(24), -:	23.0963185519	269, 4.831	72703123512
noeud(25), -:	22.0562586665	5139, 5.558	37999997872
noeud(26), -:	20.877429947	7688, 6.218	08203122237

v(i) teta(i)

noeud(27), -19.5740225831916, 6.80283312496615 noeud(28), -18.1618267602823, 7.30463328121003 noeud(29), -16.6582326665409, 7.71548249995406 noeud(30), -15.0822304894673, 8.02738078119835 noeud(31), -13.4544104165616, 8.23232812494284 noeud(32), -11.7969626353235, 8.32232453118760 noeud(33), -10.1336773332532, 8.28936999993272 noeud(34), -8.48994469785040, 8.12546453117831 noeud(35), -6.89275491661514, 7.82260812492428 noeud(36), -5.37069817704733, 7.37280078117065 noeud(37), -3.953964666664686, 6.76804249991743 noeud(38), -2.67434457291366, 6.00033328116460 noeud(39), -1.56522808334766, 5.06167312491216 noeud(40), -0.661605385448767, 3.94406203116012 noeud(41). 0. 2.64049999990846 noeud(42), -0.375631510561965, -2.91280078134841 noeud(43), -4.86767708358009, -5.59232812510436 noeud(44), -10.6023632816037, -5.39808203135939 noeud(45), -14.7059166671319, -2.33006250011350 noeud(46), -14.9712304693304, 1.61173046863333 noeud(47), -11.8578645840316, 4.42729687488108 noeud(48), -6.49204557373462, 6.11663671862973 noeud(49). 6.67974999987928 0.

Affichage des moments:

RESULTATS METHODE ANALYTIQUE:

AFFICHAGE DES REACTIONS

AFFICHAGE DES MOMENTS

RESULTAT METHODE ELEMENTS FINIS - LOGICIEL « MAPLE »:

AFFICHAGE DES REACTIONS

$$Reac(1) = 3.12273659225954$$

 $Reac(41) = 7.73754695096741$
 $Reac(49) = 1.12622657376139$

AFFICHAGE DES MOMENTS

EXEMPLE TRAITEMENT

Chargement d'une poutre contines -Position 1:

-1.098214286 P noeud(1), 0, noeud(2), -0.2724618866 P, -1.073114067 P noeud(3), -0.5323736638 P, -0.9978134111 P noeud(4), -0.7671852223 P, -0.8723123177 P noeud(5), -0.9643464529 P, -0.6966107872 P noeud(6), -1.111307246 P, -0.4707088192 P noeud(7), -1.195517493 P, -0.1946064140 P noeud(8), -1.207031250 P, 0.1004464285 P noeud(9), -1.146319242 P, 0.3831997084 P noeud(10), -1.019060526 P, 0.6224034257 P noeud(11), -0.8413508260 P, 0.7868075802 P noeud(12), -0.6318900328 P, 0.8764121720 P noeud(13), -0.4093780369 P, 0.8912172012 P noeud(14), -0.1925147291 P, 0.8312226677 P noeud(15), 0, 0.6964285715 P noeud(16), 0.1532320517 P, 0.5320244169 P noeud(17), 0.2673104956 P, 0.3831997084 P noeud(18), 0.3461301931 P, 0.2499544461 P noeud(19), 0.3935860058 P, 0.1322886297 P noeud(20), 0.4135727952 P, 0.03020225948 P

noeud(21), 0.409985422	8 P, -0.05630466471 P
noeud(22), 0.386718750)0 P, -0.1272321428 P
noeud(23), 0.347667638	35 P, -0.1825801749 P
noeud(24), 0.296726949	97 P, -0.2223487609 P
noeud(25), 0.237791545	52 P, -0.2465379009 P
noeud(26), 0.174756286	64 P, -0.2551475947 P
noeud(27), 0.111516035	50 P, -0.2481778425 P
noeud(28), 0.051965652	33 P, -0.2256286443 P
noeud(29), 0,	-0.1875000000 P
noeud(30), -0.041306031	34 P, -0.1436315598 P
noeud(31), -0.072157434	440 P, -0.1038629738 P
noeud(32), -0.093579172	74 P, -0.06819424198 P
noeud(33), -0.106596209	99 P, -0.03662536443 P
noeud(34), -0.112233509	5 P, -0.009156341109 P
noeud(35), -0.11151603	50 P, 0.01421282799 P
noeud(36), -0.10546875	00 P, 0.03348214286 P
noeud(37), -0.095116618	07 P, 0.04865160350 P
noeud(38), -0.081484602	76 P, 0.05972120991 P
noeud(39), -0.065597667	64 P, 0.06669096210 P
noeud(40), -0.048480776	24 P, 0.06956086005 P
noeud(41), -0.031158892	13 P, 0.06833090379 P
noeud(42), -0.014656978	86 P, 0.06300109330 P
noeud(43), 0,	0.05357142857 P
noeud(44), 0.011992073	61 P, 0.04250182215 P
noeud(45), 0.021319241	98 P, 0.03225218659 P
noeud(46), 0.028186497	82 P, 0.02282252187 P
noeud(47), 0.032798833	81 P, 0.01421282799 P

noeud(48), 0.035361242	71 P, 0.006423104957 P
noeud(49), 0.0360787172	0 P, -0.0005466472301 P
noeud(50), 0.0351562500	00 P, -0.006696428571 P
noeud(51), 0.032798833	81 P, -0.01202623907 P
noeud(52), 0.029211461	37 P, -0.01653607872 P
noeud(53), 0.024599125	36 P, -0.02022594752 P
noeud(54), 0.019166818	52 P, -0.02309584548 P
noeud(55), 0.013119533	53 P, -0.02514577260 P
noeud(56), 0.0066622631	119 P, -0.02637572887 P
noeud(57), 0,	-0.02678571428 P

Moments:		Mg	Md
	elément(1), 0.,		-0.20080176 P
	elément(2), -0.200)80175 P, -().401603494 P
	elément(3), -0.401	160349 P, -0).602405262 P
	elément(4), -0.602	240524 P, -0).803206998 P
	elément(5), -0.803	320705 P, -1	1.004008702 P
	elément(6), -1.004	008708 P, -	1.204810546 P
	elément(7), -1.204	810524 P, -	1.155612288 P
	elément(8), -1.155	612244 P, -	1.106413928 P
	elément(9), -1.106	413944 P, -	0.807215788 P
	elément(10), -0.807	7215748 P,	-0.508017486 P
	elément(11), -0.50	801754 P, -	0.208819192 P
	elément(12), -0.20	881922 P,	0.090378984 P
	elément(13), 0.09	037902 P, ().389577250 P
	elément(14), 0.38	957725 P, ().688775518 P
	elément(15), 0.68	8877552 P,	0.62645772 P

elément(16), 0.626457722 P, 0.564139944 P
elément(17), 0.564139946 P, 0.501822152 P
elément(18), 0.501822158 P, 0.439504371 P
elément(19), 0.439504375 P, 0.377186592 P
elément(20), 0.3771865816 P, 0.3148688142 P
elément(21), 0.3148688148 P, 0.2525510176 P
elément(22), 0.252551015 P, 0.190233242 P
elément(23), 0.190233242 P, 0.127915439 P
elément(24), 0.127915446 P, 0.065597667 P
elément(25), 0.065597676 P, 0.003279877 P
elément(26), 0.003279874 P, -0.059037892 P
elément(27), -0.059037898 P, -0.121355687 P
elément(28), -0.121355685 P, -0.183673470 P
elément(29), -0.183673470 P, -0.167274051 P
elément(30), -0.167274055 P, -0.150874633 P
elément(31), -0.150874633 P, -0.1344752216 P
elément(32), -0.134475221 P, -0.1180757992 P
elément(33), -0.1180758008 P, -0.1016763846 P
elément(34), -0.1016763878 P, -0.08527697112 P
elément(35), -0.0852769722 P, -0.0688775539 P
elément(36), -0.0688775524 P, -0.0524781328 P
elément(37), -0.0524781350 P, -0.0360787160 P
elément(38), -0.0360787166 P, -0.0196793012 P
elément(39), -0.019679299 P, -0.0032798848 P
elément(40), -0.003279883 P, 0.0131195326 P
elément(41), 0.013119533 P, 0.0295189506 P
elément(42), 0.0295189506 P, 0.0459183674 P

elément(43), 0.045918367 P, 0.042638484 P
elément(44), 0.0426384844 P, 0.0393585998 P
elément(45), 0.0393585996 P, 0.0360787182 P
elément(46), 0.0360787189 P, 0.0327988320 P
elément(47), 0.0327988338 P, 0.0295189511 P
elément(48), 0.0295189503 P, 0.02623906734 P
elément(49), 0.02623906632 P, 0.02295918384 P
elément(50), 0.0229591839 P, 0.01967929956 P
elément(51), 0.0196792999 P, 0.01639941756 P
elément(52), 0.0163994165 P, 0.0131195338 P
elément(53), 0.0131195327 P, 0.0098396512 P
elément(54), 0.0098396503 P, 0.0065597668 P
elément(55), 0.0065597670 P, 0.0032798832 P
elément(56), 0.0032798832 P, 0.

Réactions d'appuis:

Reac(1) = 0.8032070 PReac(15) = 1.44606412 PReac(29) = -0.31486881 PReac(43) = 0.078717197 PReac(57) = -0.013119532 P

Chargement d'une poutre contines -Position 2 :

Déplacements aux noeuds:

v.EI	teta. EI
noeud(1), 0,	-0.01554528062 P
noeud(2), -0.00386554295 P	, -0.01529595416 P
noeud(3), -0.00760642268 P	, -0.01454797481 P
noeud(4), -0.01109797595 P	, -0.01330134254 P
noeud(5), -0.01421553953 P	, -0.01155605737 P
noeud(6), -0.01683445022 P	, -0.00931211931 P
noeud(7), -0.01883004478 P	, -0.00656952833 P
noeud(8), -0.02007765998 P	, -0.00332828445 P
noeud(9), -0.02045263255 P,	0.0004116123454 P
noeud(10), -0.01983029940 1	P, 0.00465016204 P
noeud(11), -0.01808599717 l	P, 0.00938736463 P
noeud(12), -0.01509506267 l	P, 0.01462322014 P
noeud(13), -0.01073283269 1	P, 0.02035772855 P
noeud(14), -0.004874643991	P, 0.02659088985 P
noeud(15), 0,	0.0020727041 P
noeud(16), -0.00384357945 F	P, -0.02250893184 P
noeud(17), -0.00870242869 F	P, -0.01646612089 P
noeud(18), -0.01212876933 F	P, -0.01104886310 P
noeud(19), -0.01427898967 F	P, -0.00625715847 P
noeud(20), -0.01530947799 P,	
	-0.002091006998 P
noeud(21), -0.01537662260 P	-0.002091006998 P , 0.001449591318 P
noeud(21), -0.01537662260 P noeud(22), -0.01463681176 I	-0.002091006998 P e, 0.001449591318 P P, 0.00436463648 P
noeud(21), -0.01537662260 P noeud(22), -0.01463681176 P noeud(23), -0.01324643378 P	-0.002091006998 P P, 0.001449591318 P P, 0.00436463648 P P, 0.00665412849 P
noeud(21), -0.01537662260 P noeud(22), -0.01463681176 P noeud(23), -0.01324643378 P noeud(24), -0.01136187695 P	-0.002091006998 P e, 0.001449591318 P P, 0.00436463648 P P, 0.00665412849 P P, 0.00831806735 P
noeud(21), -0.01537662260 P noeud(22), -0.01463681176 P noeud(23), -0.01324643378 P noeud(24), -0.01136187695 P noeud(25), -0.00913952954 P	-0.002091006998 P e, 0.001449591318 P P, 0.00436463648 P P, 0.00665412849 P P, 0.00831806735 P P, 0.00935645305 P
noeud(27), -0.00430701618 P, 0.00955656497 P noeud(28), -0.002009626796 P, 0.00871829121 P noeud(29), 0, 0.00725446429 P noeud(30), 0.001598150023 P, 0.00555717345 P noeud(31), 0.00279180550 P, 0.00401850791 P noeud(32), 0.00362062275 P, 0.00263846770 P noeud(33), 0.00412425812 P, 0.001417052791 P noeud(34), 0.00434236792 P, 0.000354263198 P noeud(35), 0.00431460850 P, -0.000549901083 P noeud(36), 0.00408063616 P, -0.001295440052 P noeud(37), 0.00368010725 P, -0.001882353710 P noeud(38), 0.00315267809 P, -0.00231064205 P noeud(39), 0.00253800500 P, -0.00258030509 P noeud(40), 0.001875744316 P, -0.00269134280 P noeud(41), 0.001205552374 P, -0.00264375520 P noeud(42), 0.000567085492 P, -0.00243754230 P -0.002072704083 P noeud(43), 0, noeud(44), -0.000463979039 P, -0.001644415739 P noeud(45), -0.000824851625 P, -0.001247852457 P noeud(46), -0.001090549023 P, -0.000883014239 P noeud(47), -0.001269002499 P, -0.000549901083 P noeud(48), -0.001368143320 P, -0.000248512990 P noeud(49), -0.001395902750 P, 0.00002115004162 P noeud(50), -0.001360212054 P, 0.000259088010 P noeud(51), -0.001269002499 P, 0.000465300917 P noeud(52), -0.001130205351 P, 0.000639788760 P noeud(53), -0.000951751874 P, 0.000782551542 P

Moments:

```
noeud(54), -0.000741573335 P, 0.000893589260 P
noeud(55), -0.000507601000 P, 0.000972901916 P
noeud(56), -0.000257766132 P, 0.001020489510 P
 noeud(57), 0,
                              0.001036352042 P
                  Mg
                                    Md
  elément(1), 0.,
                             -0.0019946116 P
  elément(2), -0.0019946109 P, -0.0039892239 P
  elément(3), -0.0039892237 P, -0.0059838345 P
  elément(4), -0.0059838356 P, -0.0079784457 P
 elément(5), -0.0079784459 P, -0.00997305804 P
 elément(6), -0.0099730580 P, -0.01196767052 P
 elément(7), -0.0119676703 P, -0.01396228136 P
elément(8), -0.01396228520 P, -0.01595688940 P
elément(9), -0.01595688947 P, -0.01795150876 P
elément(10), -0.01795150436 P, -0.01994611632 P
elément(11), -0.0199461169 P, -0.02194072704 P
 elément(12), -0.0219407278 P, -0.0239353401 P
 elément(13), -0.0239353394 P, -0.0259299510 P
 elément(14), -0.0259299526 P, 0.2220754386 P
 elément(15), 0.2220754381 P, -0.0254223506 P
 elément(16), -0.0254223497 P, -0.0229201379 P
 elément(17), -0.0229201370 P, -0.0204179249 P
elément(18), -0.0204179256 P, -0.01791571120 P
elément(19), -0.0179157125 P, -0.01541349924 P
elément(20), -0.01541349797 P, -0.01291128802 P
elément(21), -0.01291128791 P, -0.01040907354 P
```

elément(23), -0.0079068612 P, -0.00540464992 P elément(24), -0.0054046498 P, -0.00290243620 P elément(25), -0.0029024365 P, -0.00040022380 P elément(26), -0.0004002231 P, 0.00210198808 P elément(27), 0.0021019883 P, 0.00460420174 P elément(28), 0.0046042013 P, 0.00710641412 P elément(29), 0.0071064140 P, 0.0064719127 P elément(30), 0.00647191270 P, 0.00583741160 P elément(31), 0.00583741216 P, 0.00520290952 P elément(32), 0.00520291000 P, 0.00456840920 P elément(33), 0.00456840946 P, 0.00393390727 P elément(34), 0.003933906768 P, 0.003299407416 P elément(35), 0.003299406872 P, 0.002664904864 P elément(36), 0.00266490487 P, 0.00203040442 P elément(37), 0.00203040364 P, 0.00139590308 P elément(38), 0.00139590310 P, 0.00076140120 P elément(39), 0.00076140176 P, 0.00012689992 P elément(40), 0.00012690010 P, -0.00050760090 P elément(41), -0.00050760093 P, -0.00114210227 P elément(42), -0.00114210223 P, -0.00177660350 P elément(43), -0.00177660350 P, -0.00164970326 P elément(44), -0.00164970322 P, -0.00152280304 P elément(45), -0.00152280302 P, -0.001395902724 P elément(46), -0.00139590282 P, -0.001269002488 P elément(47), -0.001269002428 P, -0.001142102336 P elément(48), -0.001142102240 P, -0.001015202080 P elément(49), -0.001015202034 P, -0.0008883017330 P

Réactions d'appuis:

Reac(1) = 0.007978447 PReac(15) = 1.982012719 PReac(29) = 0.0125468560 PReac(43) = -0.0030456060 PReac(57) = 0.00050760041 P

Chargement d'une poutre contines -Position 3 :

lloeuu(1), 0,	0.27404203711
noeud(2), 0.073284894	31 P, 0.2901330175 P
noeud(3), 0.144314868	88 P, 0.2766034985 P
noeud(4), 0.210835003	86 P, 0.2540543003 P
noeud(5), 0.270590379	00 P, 0.2224854228 P
noeud(6), 0.321326075	51 P, 0.1818968659 P

noeud(7), 0.3607871720 P ,0.	1322886297 P
noeud(8), 0.3867187500 P, 0.0)7366071429 P
noeud(9), 0.3968658893 P, 0.0	006013119531 P
noeud(10), 0.3889736699 P, -().07065415452 P
noeud(11), 0.3607871720 P, -	0.1563411079 P
noeud(12), 0.3100514759 P, -	0.2510477405 P
noeud(13), 0.2345116618 P, -	0.3547740525 P
noeud(14), 0.1319128098 P, -	0.4675200438 P
noeud(15), 0,	-0.5892857143 P
noeud(16), -0.1605358661 P, -	-0.6847212099 P
noeud(17), -0.3372206025 P, -	0.7184766764 P
noeud(18), -0.5146342019 P, -	0.6905521137 P
noeud(19), -0.6773566569 P, -	0.6009475219 P
noeud(20), -0.8099679604 P, -	-0.4496629009 P
noeud(21), -0.8970481050 P, -	0.2366982507 P
noeud(22), -0.9257812500 P, ().00669642857 P
noeud(23), -0.8937682216 P,	0.2492711371 P
noeud(24), -0.8038181791 P,	0.4597758746 P
noeud(25), -0.6691569485 P,	0.6069606414 P
noeud(26), -0.5056145226 P,	0.6908254373 P
noeud(27), -0.3290208940 P,	0.7113702623 P
noeud(28), -0.1552060556 P,	0.6685951166 P
noeud(29), 0,	0.5625000000 P
noeud(30), 0.1239180940 P,	0.4308946793 P
noeud(31), 0.2164723032 P,	0.3115889213 P
noeud(32), 0.2807375182 P,	0.2045827259 P
noeud(33), 0.3197886298 P,	0.1098760933 P

noeud(34), 0.3367005284 P, 0.02746902333 P
noeud(35), 0.3345481049 P, -0.04263848396 P
noeud(36), 0.3164062500 P, -0.1004464286 P
noeud(37), 0.2853498542 P, -0.1459548105 P
noeud(38), 0.2444538083 P, -0.1791636297 P
noeud(39), 0.1967930029 P, -0.2000728863 P
noeud(40), 0.1454423287 P, -0.2086825802 P
noeud(41), 0.09347667638 P, -0.2049927114 P
noeud(42), 0.04397093659 P, -0.1890032799 P
noeud(43), 0, -0.1607142857 P
noeud(44), -0.03597622084 P, -0.1275054665 P
noeud(45), -0.06395772594 P, -0.09675655977 P
noeud(46), -0.08455949344 P, -0.06846756560 P
noeud(47), -0.09839650145 P, -0.04263848396 P
noeud(48), -0.1060837281 P, -0.01926931487 P
noeud(49), -0.1082361516 P, 0.001639941690 P
noeud(50), -0.1054687500 P, 0.02008928571 P
noeud(51), -0.09839650145 P, 0.03607871720 P
noeud(52), -0.08763438411 P, 0.04960823615 P
noeud(53), -0.07379737609 P, 0.06067784257 P
noeud(54), -0.05750045554 P, 0.06928753645 P
noeud(55), -0.03935860058 P, 0.07543731778 P
noeud(56), -0.01998678936 P, 0.07912718659 P
noeud(57), 0, 0.08035714286 P
Mg Md
elément(1), -2 10 P , 0.036078718 P
elément(2), 0.036078712 P , 0.072157440 P

Moments:

elément(3), 0.072157436 P, 0.108236152 P
elément(4), 0.108236154 P, 0.144314858 P
elément(5), 0.144314865 P, 0.180393598 P
elément(6), 0.180393594 P, 0.216472303 P
elément(7), 0.216472295 P, 0.252551022 P
elément(8), 0.252551019 P, 0.2886297456 P
elément(9), 0.2886297325 P, 0.3247084538 P
elément(10), 0.324708468 P, 0.3607871662 P
elément(11), 0.360787184 P, 0.396865883 P
elément(12), 0.396865882 P, 0.432944614 P
elément(13), 0.432944600 P, 0.469023330 P
elément(14), 0.469023326 P, 0.505102038 P
elément(15), 0.50510204 P, 0.25838192 P
elément(16), 0.25838192 P, 0.011661810 P
elément(17), 0.01166181 P, -0.235058308 P
elément(18), -0.23505832 P, -0.481778420 P
elément(19), -0.481778402 P, -0.728498564 P
elément(20), -0.728498566 P, -0.975218642 P
elément(21), -0.975218661 P, -0.971938774 P
elément(22), -0.9719387429 P, -0.9686589186 P
elément(23), -0.968658886 P, -0.715379007 P
elément(24), -0.715379018 P, -0.462099116 P
elément(25), -0.462099146 P, -0.208819222 P
elément(26), -0.20881925 P, 0.044460652 P
elément(27), 0.04446065 P, 0.297740522 P
elément(28), 0.29774052 P, 0.551020408 P
elément(29), 0.55102041 P, 0.50182215 P

elément(30), 0.501822148 P, 0.452623916 P
elément(31), 0.452623910 P, 0.403425660 P
elément(32), 0.403425654 P, 0.354227413 P
elément(33), 0.354227423 P, 0.3050291436 P
elément(34), 0.3050291532 P, 0.2558309034 P
elément(35), 0.2558308968 P, 0.2066326616 P
elément(36), 0.206632662 P, 0.1574343988 P
elément(37), 0.157434392 P, 0.108236164 P
elément(38), 0.108236155 P, 0.059037898 P
elément(39), 0.059037909 P, 0.009839640 P
elément(40), 0.009839645 P, -0.039358596 P
elément(41), -0.039358601 P, -0.088556851 P
elément(42), -0.088556852 P, -0.137755102 P
elément(43), -0.137755103 P, -0.127915450 P
elément(44), -0.127915452 P, -0.118075802 P
elément(45), -0.118075801 P, -0.1082361518 P
elément(46), -0.108236154 P, -0.0983965002 P
elément(47), -0.0983965002 P, -0.0885568524 P
elément(48), -0.0885568479 P, -0.0787172110 P
elément(49), -0.07871720296 P, -0.06887754352 P
elément(50), -0.0688775526 P, -0.0590378987 P
elément(51), -0.0590378978 P, -0.0491982536 P
elément(52), -0.0491982546 P, -0.0393585962 P
elément(53), -0.0393585968 P, -0.0295189536 P
elément(54), -0.029518951 P, -0.0196792996 P
elément(55), -0.019679300 P, -0.0098396512 P
elément(56), -0.009839650 P, 2 10 ⁻¹⁰ P

Réactions d'appuis:

Reac(1) = -0.14431487	P
Reac(15) = 1.13119535	P
Reac(29) = 1.20991253	P
Reac(43) = -0.23615160	P
Reac(57) = 0.039358602	P

Chargement d'une poutre contines -Position 4:

Déplacements	aux noeuds:		v.EI	teta. EI
		noeud(1),	0,	0.00414540817 P
		noeud(2), ().001031064531 P,	0.00408195804 P
		noeud(3), ().002030403999 P,	0.00389160766 P
		noeud(4),	0.00296629334 P,	0.00357435704 P
		noeud(5),	0.00380700750 P,	0.00313020616 P
		noeud(6), ().00452082141 P, (0.002559155042 P
		noeud(7), ().00507601000 P, (0.001861203666 P
		noeud(8), ().00544084822 P, (0.001036352041 P
		noeud(9), 0.	.00558361099 P, 0.	0000846001666 P
		noeud(10), ().00547257327 P, -	0.000994051958 P
		noeud(11), ().00507601000 P, -	0.002199604336 P
		noeud(12),	0.00436219609 P,	-0.00353205696 P

noeud(13), 0.00329940649 P, -0.00499140983 P noeud(14), 0.001855916155 P, -0.00657766296 P -0.00829081633 P noeud(15), 0, noeud(16), -0.002267392928 P, -0.00973878072 P noeud(17), -0.00481461717 P, -0.01052946690 P noeud(18), -0.00747735319 P, -0.01066287484 P noeud(19), -0.01009128141 P, -0.01013900458 P noeud(20), -0.01249208230 P, -0.00895785610 P noeud(21), -0.01451543628 P, -0.00711942941 P noeud(22), -0.01599702381 P, -0.00462372449 P noeud(23), -0.01677252535 P, -0.001470741363 P noeud(24), -0.01667762131 P, 0.002339519988 P noeud(25), -0.01554799217 P, 0.00680705956 P noeud(26), -0.01321931836 P, 0.01193187734 P noeud(27), -0.00952728031 P, 0.01771397334 P noeud(28), -0.00430755849 P, 0.02415334753 P 0. noeud(29), 0, noeud(30), -0.00430755849 P, -0.02415334753 P noeud(31), -0.00952728031 P, -0.01771397334 P

noeud(32), -0.01321931836 P, -0.01193187734 P noeud(33), -0.01554799217 P, -0.00680705956 P noeud(34), -0.01667762131 P, -0.002339519988 P noeud(35), -0.01677252535 P, 0.001470741363 P noeud(36), -0.01599702381 P, 0.00462372449 P noeud(37), -0.01451543628 P, 0.00711942941 P noeud(38), -0.01249208230 P, 0.00895785610 P noeud(39), -0.01009128141 P, 0.01013900458 P

114

noeud(40), -0.007	47735319 1	P, 0.01066287484 P	
noeud(41), -0.004	81461717 I	P, 0.01052946690 P	
noeud(42), -0.0022	267392928	P, 0.00973878072 P	
noeud(43), 0,		0.00829081633 P	•
noeud(44), 0.0018	55916155	P, 0.00657766296 P	
noeud(45), 0.003	29940649 I	P, 0.00499140983 P	
noeud(46), 0.004	36219609 I	P, 0.00353205696 P	
noeud(47), 0.0050	7601000 P	, 0.002199604336 P	
noeud(48), 0.0054	7257327 P	, 0.000994051958 P	
noeud(49), 0.00558	361099 P,	-0.0000846001666 P	
noeud(50), 0.0054	4084822 P,	-0.001036352041 P	
noeud(51), 0.0050'	7601000 P,	-0.001861203666 P	
noeud(52), 0.00452	2082141 P,	-0.002559155042 P	
noeud(53), 0.0038	60700750 P	e, -0.00313020616 P	
noeud(54), 0.0029	6629334 P	e, -0.00357435704 P	
noeud(55), 0.0020.	30403999 H	P, -0.00389160766 P	
noeud(56), 0.0010.	31064531 H	P, -0.00408195804 P	
noeud(57), 0,		-0.00414540817 F)
Ν	⁄Ig	Md	

Moments:

elément(1), 4 10 P, 0.00050760100 P elément(2), 0.00050760104 P, 0.00101520198 P elément(3), 0.00101520216 P, 0.00152280282 P elément(4), 0.00152280254 P, 0.00203040448 P elément(5), 0.00203040346 P, 0.00253800542 P elément(6), 0.00253800538 P, 0.00304560556 P elément(7), 0.00304560586 P, 0.00355320707 P

elément(9), 0.004060808066 P, 0.004568408867 P elément(10), 0.00456840787 P, 0.005076011164 P elément(11), 0.00507601032 P, 0.00558361069 P elément(12), 0.00558361164 P, 0.00609121138 P elément(13), 0.00609121112 P, 0.00659881394 P elément(14), 0.0065988129 P, 0.00710641408 P elément(15), 0.0071064140 P, 0.0044773010 P elément(16), 0.0044773005 P, 0.00184818896 P elément(17), 0.0018481886 P, -0.00078092510 P elément(18), -0.0007809244 P, -0.00341003758 P elément(19), -0.0034100363 P, -0.00603915136 P elément(20), -0.0060391506 P, -0.00866826220 P elément(21), -0.0086682636 P, -0.01129737572 P elément(22), -0.01129737484 P, -0.01392649008 P elément(23), -0.01392648981 P, -0.01655560110 P elément(24), -0.01655560219 P, -0.01918471490 P elément(25), -0.0191847130 P, -0.02181382848 P elément(26), -0.0218138286 P, -0.02444293912 P elément(27), -0.0244429414 P, -0.0270720522 P elément(28), -0.0270720545 P, 0.2202988348 P elément(29), 0.2202988348 P, -0.0270720545 P elément(30), -0.0270720522 P, -0.0244429414 P elément(31), -0.0244429394 P, -0.0218138293 P elément(32), -0.0218138284 P, -0.01918471328 P elément(33), -0.0191847150 P, -0.01655560152 P elément(34), -0.01655560081 P, -0.01392649010 P elément(35), -0.01392649019 P, -0.01129737490 P

elément(36), -0.01129737616 P, -0.00866826392 P
elément(37), -0.0086682624 P, -0.00603915128 P
elément(38), -0.0060391508 P, -0.00341003640 P
elément(39), -0.0034100376 P, -0.00078092444 P
elément(40), -0.0007809251 P, 0.00184818858 P
elément(41), 0.0018481890 P, 0.00447730050 P
elément(42), 0.0044773010 P, 0.00710641404 P
elément(43), 0.0071064141 P, 0.0065988129 P
elément(44), 0.0065988139 P, 0.00609121112 P
elément(45), 0.00609121138 P, 0.00558361156 P
elément(46), 0.00558361066 P, 0.00507601032 P
elément(47), 0.00507601118 P, 0.00456840791 P
elément(48), 0.00456840893 P, 0.004060808136 P
elément(49), 0.004060806934 P, 0.003553208133 P
elément(50), 0.00355320714 P, 0.003045605928 P
elément(51), 0.00304560564 P, 0.00253800543 P
elément(52), 0.00253800542 P, 0.00203040354 P
elément(53), 0.00203040454 P, 0.00152280248 P
elément(54), 0.00152280276 P, 0.00101520222 P
elément(55), 0.00101520204 P, 0.00050760098 P
elément(56), 0.00050760100 P, 4 10 ⁻¹¹ P

Réactions d'appuis:

Reac(1) = -0.0020304037 P Reac(15) = 0.0125468571 P Reac(29) = 1.978967114 P Reac(43) = 0.0125468571 P Reac(57) = -0.0020304037 P