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Abstract

Brain tumors are a serious health issue, especially when they're not detected early. Quick diagnosis is
really important to improve the chances of survival. MRI scans are very useful for spotting and tracking
these tumors, but analyzing the images manually takes a lot of time and can lead to mistakes, especially
when the tumors are small or hard to tell apart.

That's where deep learning comes in. It can analyze big amounts of data and find patterns that help
with tasks like identifying the type of tumor and showing exactly where it is in the brain. This doesn't just
make diagnosis faster and more reliable, it also helps doctors create better treatment plans for each
patient.

In this project, our goal is to build a deep learning system that can do two main things: classify brain
MRIs into tumor types like (glioma, meningioma, pituitary tumor, or no tumor), and accurately segment
the tumor area. By combining both steps in one smart tool, we hope to make the diagnosis process more
efficient and support the use of Al in medical care.

Keywords: Brain Tumor, Deep Learning, CNN, Transfer Learning, Classification, Segmentation, Glioma,
Meningioma, Pituitary Tumor, Medical Imaging, Web Application.



Résumé

Les tumeurs cérébrales constituent un probléme de santé grave, surtout lorsqu'elles ne sont pas
détectées tot. Un diagnostic rapide est essentiel pour améliorer les chances de survie. Les IRM sont trés
utiles pour repérer et suivre ces tumeurs, mais I'analyse manuelle des images prend beaucoup de temps
et peut entrainer des erreurs, surtout lorsque les tumeurs sont petites ou difficiles a distinguer.

C'est la qu'intervient I'apprentissage profond. Il permet d'analyser de grandes quantités de données
et de dégager des schémas qui facilitent des taches telles que l'identification du type de tumeur et sa
localisation précise dans le cerveau. Cela permet non seulement d'accélérer et de fiabiliser le diagnostic,
mais aussi d'aider les médecins a élaborer de meilleurs plans de traitement pour chaque patient.

Dans ce projet, notre objectif est de développer un systeme d’apprentissage profond capable de
réaliser deux taches principales : classer les IRM cérébrales par type de tumeur (gliome, méningiome,
tumeur hypophysaire ou absence de tumeur) et segmenter précisément la zone tumorale. En combinant
ces deux étapes dans un seul outil intelligent, nous espérons optimiser le processus de diagnostic et
favoriser I'utilisation de I'IA dans les soins médicaux.

Mots-clés : tumeur cérébrale, apprentissage profond, CNN, apprentissage par transfert, classification,
segmentation, gliome, méningiome, tumeur hypophysaire, imagerie médicale, application Web.
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General Introduction

The brain is one of the most complex and vital organs in the human body. It controls essential
functions such as movement, memory, emotions, and thinking. However, this complexity makes it
vulnerable to various disorders, among which brain tumors pose a particularly serious threat. These tumors
result from abnormal and uncontrolled cell growth, which can disrupt normal brain activity and lead to
serious health complications or even death if not detected and treated early.

Brain tumors are generally classified into two main types: benign and malignant. Among the most
common types of brain tumors are gliomas, meningiomas, and pituitary tumors, each of which varies in
location, behavior, and severity. Therefore, accurate and early diagnosis is crucial to improving treatment
outcomes and survival rates.

Medical imaging, particularly magnetic resonance imaging (MRI), plays a key role in detecting and
monitoring brain tumors. However, manually analyzing these images can be a challenging and time-
consuming task for radiologists. The increasing volume of medical data, coupled with subtle visual
differences between tumor types, often leads to delays or misdiagnoses.

In this context, deep learning has emerged as an effective tool to support the medical diagnostic
process. Deep learning models, particularly convolutional neural networks (CNNs), are capable of learning
from massive datasets and performing tasks such as image classification and segmentation with high
accuracy. These models not only automatically detect and classify tumors but also help extract important
morphological features, allowing for more accurate assessments.

To this end, we developed an intelligent system based on deep learning that performs three main
tasks. First, it classifies brain MRIs into four categories: glioma, meningioma, pituitary tumor, or no tumor.
Second, it segments the tumor area in the brain image to accurately locate the affected area. Third, it
extracts tumor morphological features, such as surface, perimeter, width, height, and circularity.

This work consists of three chapters:

A general introduction

Chapter 1: Brain Tumor

In this chapter, we provide an overview of brain tumors, their types, and their effects on the human body.

Chapter 2: Brain tumor detection techniques

In this chapter, we focus on the main technologies used to detect brain tumors, including the use of
artificial intelligence techniques.

Chapter 3: Conception and realization

In this final chapter, we present the design and implementation of our proposed system, which aims to
support clinicians in making faster and more reliable diagnoses.

This thesis ends with a general conclusion
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Chapter 1

Brain Tumor

Introduction

The brain is one of the most complex organs in the human body and the central organ of the human
nervous system. Itis responsible for processing sensory information, controlling movement, regulating vital
functions, and enabling thought, memory, emotions, and decision-making. It works with billions of cells,
sometimes these cells can be exposed to an uncontrolled division of cells and formed an abnormal group
of cells around or inside the brain that’s what we called brain tumors. It is a growth of cells in or near the
brain. It can develop within brain tissue or in surrounding areas, such as nerves, the pituitary gland, the
pineal gland, and the membranes covering the brain. It can begin in the brain. These are called primary
brain tumors. Sometimes, cancer spreads to the brain from other parts of the body. These tumors are
secondary brain tumors, also called metastatic brain tumors. Many different types of primary brain tumors
exist. Some brain tumors aren't cancerous. These are called noncancerous brain tumors or benign brain
tumors. Noncancerous brain tumors may grow over time and press on the brain tissue. Other brain tumors
are brain cancers, also called malignant brain tumors. Brain cancers may grow quickly. The cancer cells can
invade and destroy the brain tissue.

Brain tumors range in size from very small to very large. Some brain tumors are found when they are
very small because they cause symptoms that you notice right away. Other brain tumors grow very large
before they're found. Some parts of the brain are less active than others. If a brain tumor starts in a part
of the brain that's less active, it might not cause symptoms right away. The brain tumor size could become
quite large before the tumor is detected.

1.1 Tumor definition

A tumor, also known as a neoplasm, is an abnormal growth of tissue that occurs when cells begin to
grow uncontrollably and fail to die in time. Tumors can appear almost anywhere in the body, including
bones, skin, organs, glands, and tissues. While the majority of tumors are benign that is, noncancerous and
do not spread to other parts of the body some may be malignant, or cancerous, multiplying rapidly,
invading nearby tissue, or extending to distant organs. Benign tumors may or may not require treatment,
depending on their size, location, and symptoms, while malignant tumors often require prompt and
specific cancer treatments [1].

1.2 Brain tumor definition

A brain tumor is an abnormal mass of brain cells that develops in or near the brain. Brain tumors can
be either benign or malignant, and the way they influence brain function depends a lot on their size, growth
rate, and location within the brain. While some brain tumors develop slowly and do not have symptoms
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for several years, others develop rapidly and may interfere with essential neurological functions and result
in serious health issues [1][2].

Tumor

Cerebrum

Brainstem Cerebellum

Figure 1.1 — Brain tumor.

1.3 Types of brain tumors

e Benign: These tumors do not multiply or spread, and in some cases, they grow very slowly. They
are non-cancerous.

e Pre-malignant: Although these tumors are initially benign, they have the potential to become
cancerous over time.

e Malignant: Composed of cancerous cells, these tumors grow rapidly and can invade nearby
tissues. Cancer can develop in any part of the body.

1.3.1 Common Types of Brain Tumors

e Gliomas: Gliomas are a common type of malignant brain tumor that originate from glial cells the
supportive cells that surround and protect neurons. They account for approximately 33 percent
of all brain tumors and include subtypes such as astrocytes, oligodendrocytes and microglia cells
depending on the specific glial cells affected [3].
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Figure 1.2 — Glioma tumor 1.

e Meningiomas: Meningiomas are tumors that begin in the layers of tissue (meninges), the
protective membranes surrounding the brain and spinal cord. While most meningiomas are
benign and slow-growing, some can become aggressive, requiring medical intervention such as
surgery or radiation therapy [4].

Figure 1.3 — Meningioma tumor 1.

e Pituitary tumors: Almost all pituitary tumors are benign (not cancer) glandular tumors called
pituitary adenomas, these tumors don’t spread to other parts of the body, like cancers can. Still,
even benign pituitary tumors can cause major health problems [5].

Figure 1.4 — Pituitary tumor 1.
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1.4 Impact of brain tumors on health

Brain tumors significantly affect both physical and mental health, depending on their size, location,
and aggressiveness. Here are some key impacts [6]:

Neurological Symptoms: Various neurological symptoms can result from brain tumors, depending
on their location, size, and kind. Constant headaches, seizures, blurred vision, trouble speaking,
and weakness in the muscles are common side effects. Usually, the tumor's pressure on the
surrounding brain tissues or interference with the brain's regular processes causes these
symptoms.

Cognitive Decline: The areas responsible for thinking and memory can be affected by brain
tumors, leading to memory loss, shortened attention span, and difficulty with executive functions
such as planning, organizing, and decision-making. This disorder often impacts the patient's ability
to perform daily routine activities effectively.

Emotional and Psychological Effects: When parts of the brain that control emotions are involved,
patients tend to develop mood changes, despair, and anxiety. In addition to the biological effects
of the tumor, mental status and general well-being can also be affected considerably by the stress
of therapy and diagnosis.

Hormonal Imbalances: The tumor affects the pituitary gland and has the potential to disrupt the
normal secretion of growth hormone and other required hormones, leading to numerous physical
changes.

Reduced Quality of Life: Daily life can be significantly impacted by sleep disturbances, chronic
fatigue, and a loss of independence, making it harder for patients to maintain their usual routines
and well-being.

1.5 Causes and symptoms of brain tumors

1.5.1 Causes

Until now, the main reason for the growth of these brain tumors is still unknown, but there are some
factors that may increase the probability of developing them, which are:

e Genetic Mutations: When certain genes in a cell’'s chromosomes become damaged,
human brain tumor develops. These genes control cells growth, division and death
sequentially. When they change, they give brain cells unusual orders that make them
grow and divide without control [1].

e Inherited Genetic Factors: Some people may be born with altered DNA that raises their
chances of getting a brain tumor. Brain cells can be genetically prone to tumor growth as
they inherit genetic mutations that make them sensitive to change [1].
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e Environmental Triggers: If you get exposed to a very high dose of radiation for a long time
(from X-rays or for treatment of cancer), then it may damage the DNA of brain cells, which
may initiate or promote tumorigenic processes. Sometimes the environment itself causes
damage in a way that genes do not cause any [1][2].

1.5.2 Symptoms

Signs and symptoms of brain tumors are usually described as general or focal. Generally, a low-grade
tumor corresponds to focal signs that generalize with the increase in grade or dimension of the tumor.
General symptoms usually include [6]:

e Vomiting: The abrupt release of stomach contents, frequently brought on by elevated
intracranial pressure.

e Nausea: Often associated with brain pressure or irritation and may lead to vomiting.

e Headache: Constant discomfort in the head, usually brought on by swelling or pressure
from a tumor.

e Sensory deficit: A sensory deficit occurs when a tumor affects particular parts of the brain,
resulting in a loss or diminution of feeling (touch, sight, hearing, etc.).

e Impaired cognitive and emotional functions: When a tumor interferes with brain
function, it can lead to problems thinking, reasoning, or controlling emotions.

e Memory loss: A tumor that affects the brain's memory-related regions may cause
memory loss, which is the inability to recall information.
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Conclusion

In this chapter, we presented a general overview of what tumors are, then we specialized in brain
tumors, where we saw a comprehensive definition and that there are malignant and benign ones. Then we
touched on their famous types and saw their negative impact on human health. Finally, we took some of
the causes that may contribute to causing these tumors because we said that the main cause for them has
not been found, and we also listed some of the symptoms that occur in the person afflicted with them.

In the next chapter, we will talk about some modern methods in the field of deep learning to help
doctors quickly and easily identify the type and location of these tumors.
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Chapter 2

Brain tumor detection techniques

Introduction

Accurate detection of brain tumors is key in diagnosis and treatment. This field is dominated by
conventional technologies such as Magnetic Resonance Imaging (MRI), biopsy, Electroencephalography
(EEG), fluorescence imaging, etc. These methods offer useful information about the presence and type of
tumor, but they have major drawbacks. These requires careful interpretation and may take a long time for
novice doctors. Also, these methods may lack sufficient information, and precision. To help solve the issues
faced by doctors due to radiological techniques, the Al-based techniques, especially Deep Learning, was
used for detection of brain tumors. Al models can study large amounts of medical images and do this very
accurately. They help radiologists to identify and segment the tumor conveniently. These techniques
provide quicker processing times and enhanced consistency with lower reliance on human expertise.

In this chapter, we will discuss the traditional detection techniques about which we will present a
brief overview. We will, however, be providing a detailed and in-depth overview of Artificial Intelligence
techniques and their strength which is commonly used in modern medical diagnostics.

2.1 Traditional techniques

2.1.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique that uses a magnetic field and
computer-generated radio waves to create detailed images of organs and tissues in your body. Most of
these devices are large tube-shaped magnets. When you lie inside an MRI machine, the magnetic field
inside it works with radio waves and hydrogen atoms in your body to create cross-sectional images that
can also produce 3D images that can be viewed from different angles [7].

2.1.1.1 The different weightings

MRI provides several types of image contrast, known as weights, which highlight different tissue
features including [8][9]:

T1-weighted: Generated using short TE and TR values, In these images:
e Cerebrospinal Fluid (CSF) appears dark (black).
e Gray matter is outside.

e White matter is inside.

T2-weighted: Generated with longer TE and TR times, In this case:
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e CSF appears bright (white).
e  Gray matter is inside.
e White matter is outside.

FLAIR (Fluid-Attenuated Inversion Recovery): Similar to T2-weighted imaging, but with significantly
longer TE and TR times and dark CSF.

GRAY
MATTER

WHITE
MATTER

Figure 2.1 — Gray matter, White matter.

T1-weighted T2-weighted

Figure 2.2 — Comparaison of T1 vs T2 vs Flair.
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2.1.2 Biopsy

A biopsy is a procedure to remove cells, tissue or fluid for examination by a medical pathologist.
Healthcare providers do biopsies when they identify areas of concern or if you have symptoms or signs of
certain conditions. There are different types of biopsy procedures including [10]:

e Bone marrow biopsy: Healthcare providers take a small sample of bone marrow using a
specialized biopsy needle and syringe to detect blood malignancies, blood disorders and
cancers, and other diseases.

e Excisional biopsy or incisional biopsies: In order to remove tissue from inside your body,
medical professionals perform these operations by making cuts or incisions. Whole masses or
questionable regions are removed during excisional biopsies. Tissue samples are taken from
lumps or other questionable regions during incisional biopsies.

e Liquid biopsy: This blood test detects signs of cancerous cells or cancer cell DNA.

o Needle biopsy: Healthcare providers use needle biopsies to remove tissue, fluid, or cells. If a
bulge or abnormal growth is noticed in your body, or if imaging tests reveal potential
problems, a needle biopsy may be the solution.

2.1.3 Electroencephalogram (EEG)

An EEG is a technique used to detect abnormalities in the electrical impulses or brain waves.
Electrodes are applied to the scalp during this examination. The tiny electrical impulses generated by the
brain's neurons are picked up by these electrodes, which are tiny metal disks connected by thin cables.
They can be printed on paper or magnified and shown as a visual representation on a computer screen.
The EEG readings are then examined and interpreted by a medical expert [11].

EEG electrodes

Figure 2.3— EEG (Electroencephalogram).

10
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2.1.4 Fluorescence Imaging

Fluorescence imaging, which is frequently employed with fluorescent proteins or fluorochromes to
observe cell compartments or molecules, is a technique that detects light that is released after being
activated by particular wavelengths [12].

Figure 2.4 — Fluorescence Imaging.

2.2 Artificial Intelligence Techniques
2.2.1 Deep Learning

Deep learning is an artificial intelligence (Al) technology and an emerging field of machine learning
that uses artificial neural networks, which mimic the human brain, to analyze and interpret knowledge. It
can automate processes that typically require human intelligence, such as describing images and
converting audio to text, using deep learning techniques.

There are two basic techniques or types in deep learning:

2.2.1.1 Artificial Neural Network (ANN)

Architecture: Artificial neural networks consist of layers of interconnected neurons: an input layer, one
or more hidden layers, and an output layer.

Neurons: All neurons are fully connected to all neurons in the previous layer and the next layer.

Examples of use cases: simple or binary classification, regression problems, and also prediction of
numerical results [13].

11
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2.2.1.2 Convolutional Neural Networks (CNN)
2.2.1.2.1 Principle of CNNs

Convolutional neural networks (CNNs) are a class of deep neural networks used primarily in the field
of image processing. Their functionality is based on extracting local features like edges, textures, and
patterns by applying convolutional filters to the model's input data. They are very effective at discovering
complex patterns in visual information. They are also a mathematical construct that typically consist of
three types of layers: convolutional layers, pooling layers, and fully connected layers. We will see these

types in detail [14][15].
£
2

| [

Figure 2.5 — Convolutional Neural Networks architecture.

E

Convolution + RelLU

2.2.1.2.2 Layers of a CNNs

e Convolution layer (Conv + RELU):

Convolution is a linear operation used to extract features, by applying a small set of numbers called a
filter to the input, which is a set of numbers called a tensor, where the product of each element of the
kernel and the input tensor at each location of the tensor is calculated and summed to get the output value
at the corresponding location of the output tensor, which is called a feature map. This procedure is
repeated by applying multiple kernels to form a random number of feature maps, which represent
different properties of the input tensor. Thus, different kernels can be considered different feature
extractors. There are two main parameters that define the convolution operation, the size and the number
of kernels. The former is 3 x 3, but sometimes 5 x 5 or 7 x 7. The latter is random, and determines the
depth of the output feature maps [15].

12
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Figure 2.6 — Convolution layer architecture.

e Activation Function:

An activation function, usually "ReLU", is used after convolution to provide nonlinearity, ensure
that the model can learn more complex associations, and convert negative results to zeros [14].

f(x) = max(0, x)

-
w N
o |
ke || sk
- | &
w N
NN -E
e S —

Figure 2.7 — RELU Layer.

e Pooling layer:

Pooling operations are used to down sample the feature maps and reduce the dimensions while
retaining important features, it can be of different types:

1. Max Pooling: The maximum element from the area of the feature map that the filter

covers is chosen by max pooling. Therefore, a feature map with the most noticeable
features from the prior feature map would be the output following the max-pooling

13
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layer. In most situations, the max pooling layer offers superior performance while
maintaining the most crucial elements (textures, edges, etc.) [16].

Max Pool

—_—

Filter - (2 x 2)
Stride - (2, 2)

Figure 2.8 — Max pooling.

2. Average Pooling: The average of the elements found in the feature map area that the
filter covers is calculated using average pooling. Therefore, average pooling provides the
average of the features in a patch, whereas max pooling provides the most noticeable
feature in a specific patch of the feature map [16].

Average Pool

>

Filter - 2 x 2)
Stride - (2, 2)

Figure 2.9 — Average pooling.

e Fully connected layer:

After applying convolution and pooling, the output is a multidimensional matrix where the data
must be flattened into a one-dimensional vector to be the input to fully connected layers, so named
because every neuron in one layer is connected to every neuron in the previous layer, creating a highly
interconnected network [14][17].

14
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Input Fully Connected Layer Output

Figure 2.10 — Fully connected layer.

e Output layer:

The final fully-connected layer obtains the output probabilities using an activation function like
sigmoid or SoftMax.

2.2.1.2.3 The importance of CNNs in image classification

Convolutional neural networks have become essential in the field of image classification because
they provide a powerful way to analyze and recognize visual patterns. Convolutional neural networks
automatically learn features from images through multiple layers of processing. They efficiently
capture spatial hierarchies by detecting edges, textures, and complex shapes, enabling them to
recognize objects with high accuracy and making them widely used in areas such as medical imaging,
facial recognition, and autonomous vehicles. Their ability to reduce computational complexity while
improving performance has made them the preferred choice for modern image classification tasks.

2.2.1.3 Training and Optimizing Deep Learning Models

Deep learning models are trained by feeding large datasets through neural networks to optimize
weights and reduce errors, in order to avoid large discrepancies between the predicted outputs and
the truth output. This is usually done using the following steps [18]:

e Forward propagation: the process where the input moves forward through the network layer by
layer to generate an output, his goal compute the predicted output and measure the error.

15
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e Backward propagation: the process of updating weights using the error computed in forward
propagation, his goal minimizing the loss function by updating model parameters.

2.2.1.3.1 Optimization Algorithms

The optimization algorithm used determines how well deep learning models are trained, some
popular algorithms include:

e Stochastic Gradient Descent (SGD):

is a deep learning model training optimization algorithm that adjusts model weights to minimize
the loss function, it is a Gradient Descent variant, but instead of using the entire dataset to compute

gradients, SGD updates weights based on one randomly chosen data point or a small batch at a time
[18].

Whew = Wola — 1 - VL(W, xi)

o W ., isthe new values of the model's weights after an update.
e W,y isthe current set of weights before applying the update.

e 7 (Learning Rate) is a small positive number that controls how much the weights change
in each update.

VL(W,x;) measures how much the loss function changes with respect to the weights.
e Adam (Adaptive Moment Estimation):

An advanced technique that effectively trains complex models by combining the benefits of both
SGD and adjustable learning rates [18].

2.2.1.3.2 Regularization techniques

Regularization techniques in deep learning are techniques used to prevent overfitting by adding
constraints or modifications to the model while training. They ensure that the model generalizes well
to new, unseen data instead of memorizing the training data.

e Dropout: some neurons are randomly dropped or "dropped out" temporarily for each

iteration. It avoids overfitting by allowing more powerful learning and less reliance on
individual neurons [21][22].

16
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Figure 2.11 — Dropout regularization technique.

This image illustrates the dropout regularization technique in a neural network, where some
neurons (shown in black) are randomly "dropped out" or deactivated during training.

e Batch normalization: uses normalization of inputs on every layer in a mini-batch by subtraction
of the mean and division by standard deviation. Normalization enables fixing issues such as
internal covariate shift so that the input to every layer gets centered as well as keeps a similar
magnitude while being trained [22].

2.2.1.4 Applications of Deep Learning in medical imaging

Medical imaging has the ability to provide doctors with a lot of information to come up with the
most precise diagnosis possible. However, current medical imaging diagnosis is primarily reliant on
manual interpretation, which increases the workload of physicians and leads to wrong decisions.
Computer-aided diagnosis has been shown to be a reliable method to reduce the workload of
physicians and reduce the time required to evaluate medical images, especially deep learning [23].

One of the most popular applications of deep learning in medical imaging is classification. Al
models can automatically classify medical images into different groups, for example, distinguishing
between abnormal and normal tissue in MRI scans or classifying tumor types, such as in our case,
brain tumor classification, with large datasets where models pick up patterns that are not easily visible
to the naked eye. In addition to classification, deep learning is also pivotal in image segmentation,
where techniques such as U-Net and Mask R-CNN allow for accurate recognition and identification of
structures in medical images. For example, in our topic of brain tumor detection, segmentation
models can identify the tumor area in MRI scans so that doctors can assess its size, shape, and growth.
The application of deep learning technology in medical imaging continues to enhance diagnostic

17
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accuracy, automate doctors’ clinical work, and accelerate medical research, thus emerging as a key
device in modern medicine.

2.2.1.5 Some famous convolutional networks

Convolutional neural networks have revolutionized the field of computer vision, enabling

machines to achieve human-like performance in image classification, object detection, and
segmentation tasks. Various convolutional neural network architectures have been developed over
the years, becoming standards in the field of deep learning. We will briefly review some of them.

2.2.2

LeNet: developed in 1998, is the 'Hello World' in the field of convolutional neural networks. One
of the first CNN architectures, composed of convolutional and pooling layers, mainly used for
handwritten digit recognition [24].

AlexNet: Is a classic convolutional neural network architecture. It consists of convolutions, max
pooling, and dense layers as its basic building blocks. It was the first architecture that used a
graphics processing unit (GPU) to boost performance [25].

VGG-NET: Created by the Visual Engineering Group (VGG) at Oxford University in 2014. It is a
simple yet powerful architecture that applies small 3x3 convolutional filters and very deep
networks (VGG-16, VGG-19) and has gained widespread popularity in image classification and
transfer learning, due to its outstanding performance on large-scale image datasets such as
ImageNet [26].

DenseNet: It consists of dense connections between layers, with each layer directly connected
to the next. To maintain feedforward functionality, each layer takes additional inputs from all of
its previous layers and then passes its feature maps to all of its subsequent layers [27].

EfficientNet: derived from a method called "compound scaling" that is an approach to solving
the age-old trade-off between model size, accuracy, and computational cost. The idea behind

compound scaling is to scale three basic dimensions of a neural network: width, depth, and
resolution [28].

Image classification and segmentation

Image segmentation and classification are two essential components of computer vision and

artificial intelligence for interpreting visual information. We use these methods in many applications,
including brain tumors, as in our project. It is the process of classifying an entire image into a
predefined class, enabling models to distinguish between different objects or patterns. This is
accomplished using deep learning models, such as convolutional neural networks, which have
significantly improved classification accuracy. On the other hand, image segmentation is an advanced
stage of classification, dividing the image into objects or regions of interest. This is particularly useful
in medical imaging, where accurate identification of abnormalities, such as tumors in MRI images, is

18
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critical for diagnosis and treatment planning. Many segmentation networks enable accurate pixel-
level analysis, making them essential for applications requiring high spatial resolution.

2.2.2.1 Classification

Among computer vision tasks is image classification, the main goal of which is to accurately
assign input images to predefined classes. This requires image analysis, where convolutional neural
networks automatically assign raw image pixels to class labels. Classification is used in tasks such as
face recognition to identify individuals from facial images, and disease diagnosis in medical imaging
[29].

2.2.2.1.1 Types of image classification

There are different types of image classification methodologies to be employed including [30]:

e Binary classification: In order to categorize unknown data points into two groups, binary
classification uses an "either-or" logic. Binary classification provides yes-or-no solutions for a wide
range of situations, including identifying benign and malignant cancers and evaluating product
quality to identify faults.

o Multiclass classification: While binary classification is used to distinguish between two classes of
objects, multiclass classification, as the name suggests, classifies objects into three or more
classes. It is very useful in many fields, such as in this project, where we will use it to classify
tumors into multiple classes.

o Multilabel classification: Unlike multiclass classification, where each image is assigned to exactly
one class, multilabel classification allows the item to be assigned to multiple labels.

e Hierarchical classification: Is the task of organizing classes into a hierarchical structure based on
their similarities, where a higher-level class represents broader categories and a lower-level class
is more concrete and specific.

2.2.2.2 Classification models for brain tumors

Brain tumor classification uses deep learning techniques, specifically convolutional neural
networks, to distinguish between tumor types from MRI images. Some of the most common
architectures include ResNet, VGG-19, Xception, and InceptionV3, which are often used in ensemble
learning to improve accuracy. They classify tumors into types such as glioma, meningioma, pituitary
tumor, or no tumor.

2.2.2.2.1 Networks used for classification

o ResNet: When neural networks become deeper, they are plagued by the vanishing gradient
problem, in which gradients are too small while backpropagating, so it becomes difficult to train.

19



Chapter 2 Brain Tumor detection techniques

The traditional deep networks do not learn well when layers are increased, leading to accuracy
degradation. ResNet which is one of the common architectures of CNN solves this issue [ 31].

1. Definition: Residual networks, or "ResNets," resemble networks with convolution, pooling,
activation, and fully-connected layers almost exactly. Convolutional and identity blocks, which
link the output of one layer with the input of a previous layer (skip connection), are the
fundamental building blocks of ResNets [31].

X

A
weight layer

y

relu
A\ 4

weight layer

X

identity

Figure 2.12 — Residual block.

2. Residual block: A key element of ResNet, which is intended to address the vanishing gradient
issue in deep neural networks, is a residual block. It presents skip connections, which enable
alayer's input to be added straight to the output without passing through one or more layers.
aresidual block compute: Y = F(X) + X

X: represents the input feature map to the residual block.

F(X): represents the series of operations applied to inside the residual block, typically
includes convolution layers, batch normalization, and activation functions (ReLU).

Y: The final output after summing X and F(X).

The Res-Net architecture, have different variations despite originating from the same source.
The only difference between these architectures is the number of layers: ResNet-50, Resnet-101,
Resnet-110... [31].

3. ResNet-50: composed of 50 layers, structured into five stages. Each ResNet design uses 7x7
and 3x3 kernel sizes for initial convolution and max-pooling, respectively. There are three
convolution layers in each convolution block and three convolution layers in each identity
block. A fully connected layer with 1000 neurons (ImageNet class output) follows an Average
Pooling layer [32].
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e VGG-NET: Is a Convolutional Neural Network based on AlexNet, developed by the Visual
Geometry Group at Oxford University. It processes RGB images of size 224x224 pixels and
employs small 3x3 convolutional filters with a stride of 1, along with 2x2 max-pooling layers. The
network includes three fully connected layers and comes in two main variants: VGG-16 and VGG-
19 [33].

1. VGG-19: As we can see in the picture below it contains: 19 layers (16 convolutional layers +
3 Fully connected layers), the architecture is easier to comprehend and apply since it adheres
to a simple, repeating pattern [34].
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Figure 2.13 - VGG-19 architecture.

The key components of the VGG-19 architecture are:

Convolutional Layers: 3x3 filters with a stride of 1.

Activation Function: RelLU applied after each convolutional layer to introduce non-linearity.
Pooling Layers: max pooling with a 2x2 filter and a stride of 2 to reduce the spatial dimensions.

Fully Connected Layers: 3 layers + SoftMax.

e Inception: Is a convolutional neural network introduced by GoogleNet to improve computational
efficiency and accuracy by using parallel convolutional filters of different sizes within the same
layer, and also solves the overfitting problem [35].

The most famous versions of this architecture are: Inception v1, inception v2, inception v3,
inception v4.

1. Inception module: The Inception module is the fundamental building block in the Inception
network. It employs multiple filters (1x1, 3x3, and 5x5) in parallel to enable the network to
capture spatial features at various scales. It also includes an additional 1x1 convolution to
compress the feature map, lowering the efficiency cost of the model [36].

21



Chapter 2

Brain Tumor detection techniques

2.

Filter
concatenation

ﬂ\

3X3 5%5 1X1
convolutions convolutions convolutions
1 ) ; )
convolutions
1%1 1X1 3X3.
kwions convolutions max pooling
e e

Pervious layer

Figure 2.14 — Inception module with dimension reduction.

Inception v3: The architecture of an Inception v3 network is progressively built, step-by-step,
as explained below:

Factorized Convolutions: reduce the computational efficiency as it reduces the number of
parameters involved in a network. It also keeps a check on the network efficiency.

Smaller convolutions: replacing big convolutions with little convolutions makes training
faster. 5 x 5 filter has 25 parameters but 3 x 3 filters replacing a 5 x 5 convolution has just 18
parameters [36].

Asymmetric convolutions: in this one, a 3x3 convolution is replaced with a 3x1 followed by a
1x3 convolution to improve efficiency.

Auxiliary classifier: an auxiliary classifier is a small CNN inserted in the middle of layers during
training, and the loss incurred is added to the main network loss. it applied as regularizer.

Grid size reduction: for smoother down sampling, it uses convolutions and pooling layers in
addition to max-pooling.

e Xception: It is an extension of the Inception architecture based entirely on depthwise separable
convolution layers, and it use residual connections to help gradient flow and stabilize deep
networks.

Since this architecture is more powerful than Inception, we call it Xception, which stands for
"Extreme Inception" [37].
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1. Original Depthwise Separable Convolution: The original depthwise separable convolution is
the depthwise convolution followed by a pointwise convolution.

2. Depthwise Convolution: Deep convolution is an nxn spatial convolution for each channel.
Let's assume in the figure-14 that we have 5 channels, so we will have 5 nxn spatial
convolutions.

3. Pointwise convolution: After the depthwise convolution, a pointwise convolution is applied.
This is a 1x1 filter that combines the output of the depthwise convolution into a single feature
map.

Depthwise Convolution

i
\

Pointwise Convolution

nxn conv
| M > = 1x1 conv

B s

-
\ \

Figure 2.15 — Original Depthwise Separable Convolution.

The Xception model consists of three main parts:

o Entry flow: responsible for extracting low-level features from the input image, composed of a
sequence of convolutional layers followed by depthwise separable convolutions.

e Middle flow: the core of the Xception architecture is where most of the computations are
performed, and consists of eight repeated depthwise separable convolution blocks.

e Exit flow: is responsible for toggling between feature extraction and classification. It also
compresses the spatial dimensions and deepens the feature maps.
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Figure 2.16 — Xception architecture.

2.2.2.2.2 Comparison of architectures

Feature ResNet-50 VGG-19 InceptionV3 Xception
Year 2015 2014 2016 2017
Introduced
Developed By Microsoft Visual Google Brain Google Brain

Research Geometry

Group (VGG)

Number of 50 19 48 71
Layers
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convolutions

convs

Feature ResNet-50 VGG-19 InceptionV3 Xception

Number of ~25.6M ~143.7M ~23.8M ~22.9M

Parameters

Input Image 224 x 224 224 x 224 299 x 299 299 x 299

Size

Architecture Deep Residual Traditional CNN | Inception Depthwise

Type Network Module Separable CNN

Key Innovation | Skip (Residual) Deep stack of Factorized Depthwise
Connections 3x3 convolutions, 1x1 | Separable

Convolutions

optimization

Training Speed | Faster due to Slow due to Faster than VGG- | Faster than

residual learning | large number of | 19 but complex InceptionV3
parameters

Regularization | Batch Dropout Label Smoothing, | Batch

Techniques Normalization, Batch Normalization
Dropout Normalization

Inference Time | Fast Slow Fast Faster than

InceptionV3

Disadvantages | More complex Very large Complex Higher
than traditional model, slow architecture, computational
CNNs inference requires cost than ResNet

Table 2.1 — Comparison of architectures

2.2.2.3 Segmentation

Image segmentation is a fundamental component of many visual perception systems. It involves
dividing images (or video frames) into multiple parts or objects and labeling each part. This occurs at
the pixel level to define the precise outlines of the object within its frame and class. These outlines,
also known as outputs, are characterized by one or more colors, depending on the type of
segmentation. They play a pivotal role in a wide range of applications, including medical image
analysis (like extracting tumor boundaries and measuring tissue volume), autonomous vehicles (e.g.,
detecting surfaces and pedestrians), and video surveillance. Deep learning (DL) networks have
produced a new generation of image segmentation models, with significant performance
improvements—often achieving the highest accuracy rates on common performance benchmarks,
leading to what many consider a paradigm shift in the field. Segmentation is divided into three main
types, which we will discuss in the next section [38][39].
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2.2.2.3.1 Types of Segmentation

e Semantic segmentation: In a task of semantic segmentation, segmentation masks are actually
fully labeled images. It is an indication that each pixel of the image should belong to some
category, whether or not they belong to the same instance. however, each pixel of the same
category will be one segment. If two pixels are labeled as "people" then pixel values in the
segmentation mask for both of them will be the same [39].

As we can see in the image below, all teeth are the same green color, and the upper and lower
jaw bones are the same yellow color.

Figure 2.17 — Semantic segmentation.

e Instance segmentation: Instance segmentation is one of the most important and challenging
tasks. It aims to predict class labels and instance masks for each pixel to locate varying numbers
of instances in images, where each new object is classified as a different instance, even within the
same class [40].

As we can see in the image below, each tooth and bone are marked with a different color, even if
they belong to the same category.
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Figure 2.18 — Instance segmentation.

e Panoptic segmentation: Is a computer vision task that combines semantic segmentation and
instance segmentation to provide an end-to-end comprehension of the scene. Panoptic
segmentation seeks to segment the image into semantically meaningful parts or regions and
detect and classify individual instances of objects in the regions [41].

2.2.2.4 Segmentation models for brain tumors

Medical imaging can provide a wealth of information to help doctors make the best possible
diagnosis. However, current medical imaging diagnostics rely primarily on manual interpretation,
which increases the workload of physicians and leads to incorrect assessments. Computer-aided
diagnosis has proven to be a reliable tool for reducing the burden on physicians and shortening the
time it takes to evaluate medical images. Among these areas, automatic segmentation of medical
images is an important element of our time and can be used in many areas of medicine, such as brain
tumors, where it helps pinpoint the exact location of a tumor, even when it is not clearly visible. This
helps doctors identify and diagnose quickly [42].

2.2.2.4.1 Some semantic segmentation architecture

1. U-NET architecture:

The U-Net is one of the most popular segmentation architectures, primarily designed for image
segmentation tasks. It is widely used in medical image segmentation using convolutional neural
networks (CNNs). It features an encoder-decoder architecture with skip connections that allow
combining low-level details from the encoder with high-level semantic features from the decoder. The
shrinkage encoder pipeline consists of recurrent convolution layers, batch normalization layers, and
max-pooling layers to extract abstract representations. The expanded decoder pipeline consists of
shifted convolution layers and upsampling layers to restore the original resolution. Skip connections
connect the encoder and decoder features at each level, preventing the loss of spatial information
and enabling accurate boundary identification. The network starts with 64 filters in the first layer, and
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the number gradually increases in deeper layers to enhance hierarchical learning. After four decoder
layers, the output passes through a final fully connected convolution layer, where the kernel size is
adjusted based on the number of classes in the mask to meet the needs of a specific task. The output
is then validated using a function that varies with the number of tags, ensuring customized results for
each task [43].

Below is the architecture of U-Net:

64 64
128 64 64 2
input
i output
image || » _
t?le N > " segmentation
3 1 5 map

3 fl‘l = conv 3x3, RelLU

¥ 512 s12 N , = = copy and crop
- - 1024 512
L I § max pool 2x2
ol — _’ oo 4 up-conv 2x2
:-. ‘: = conv 1x1

Figure 2.19—The architecture for U-NET.

e Encoder: intends to capture important information about the image while simultaneously
reducing the image's spatial size [44].

- Consists of multiple convolutional blocks.

- Each block has two convolutional layers.

- Uses RelLU activation after each convolution.

- Followed by MaxPooling (2x2) to reduce spatial dimensions by half.

o Decoder: aims to upsample the feature map and produce a relevant segmentation map using the
patterns learnt in the contracting path [44].

- Each upsampling step consists of Up-convolution.

28



Chapter 2 Brain Tumor detection techniques

- Followed by two convolutional layers (3x3, ReLU).
- Skip connections concatenate encoder features of the same resolution.

e Skip connections: A key feature of U-Net is the skip connections, which link encoder layers directly
to decoder layers of the same resolution [44].

- Helps recover spatial details lost during max pooling.
- Prevents the vanishing gradient problem in deep networks.

- Enables better localization of segmented objects.

2. Res-Unet:

It is a semantic segmentation neural network that combines the strengths of both U-Net and
residual neural networks. This combination achieves two benefits: first, the residual unit makes
training the network easier, and second, the skip connections within the residual unit and between
the low and high levels of the network facilitate information propagation without degradation. This
enables a neural network to be designed with much fewer parameters, potentially achieving
significantly better performance in semantic segmentation. The Res-Unet architecture uses seven
levels to extract the path space and consists of three parts: the encoder, the concatenation, and the
decoder. The first part encodes the input image into compact representations, while the last part
reconfigures the representations into a pixel-wise classification, i.e., semantic segmentation. The
middle part acts as a bridge between the encoder and decoder paths. All three parts are built with
residual units consisting of two 3x3 convolution blocks and an identity mapping layer. Each
convolution block includes a BN layer, a ReLU activation layer, and a convolution layer. The identity
mapping connects the unit's inputs and outputs [45].

The encoder path contains three residual units. In each block, instead of using pooling to reduce
the feature map size, a two-step process is applied to the first convolution block to reduce the feature
map by half. In contrast, the decoding path also consists of three remaining blocks. Before each block,
the feature maps from the lower level are up sampled and concatenated with the feature maps from
the corresponding encoding path. After the last level of the decoding path, a 1x1 convolution layer
and a sigmoid activation layer are used to project the multi-channel feature maps into the desired
segmentation [45].
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3. Attention U-Net:

Attention, in image segmentation, is a technique used to highlight only the relevant activations
during training. This reduces wasted computation on irrelevant activations, allowing the network
greater generalization capacity. Essentially, the network is capable of applying "attention" to certain
regions of the image [46].

Attention comes in two forms:

e Hard attention: Hard attention works on the basis of highlighting relevant regions
by cropping the image or proposing a repeating region. Because fine-tuning can only
select one region of an image at a time, it has two consequences: it is non-
differentiable and requires reinforcement learning for training. Because it is non-
differentiable, it means that for a given region of the image, the network can either
"pay attention" or "pay no attention," without any intermediate steps. As a result,
standard backpropagation cannot be performed. Because accuracy depends on how
well the samples are taken, other techniques such as reinforcement learning are
necessary to make the model effective [46].

e Soft attention: works by weighting different parts of the image. Areas of high
relevance is multiplied with a larger weight and areas of low relevance is tagged
with smaller weights. As the model is trained, more focus is given to the regions
with higher weights. Unlike hard attention, these weights can be applied to many
patches in the image.

Due to the deterministic nature of soft attention, it remains differentiable and can
be trained with standard backpropagation. As the model is trained, the weighting is
also trained such that the model gets better at deciding which parts to pay attention
[46].

4. U-net++:

Named also Nested U-Net, is a deep learning architecture introduced in 2019 with in U-Net++. In
U-Net, the encoder captures high-level features from the input image through a series of convolution
and pooling layers, while the decoder refines these features to create a dense segmentation map.
However, a semantic gap may exist between the encoder and decoder features, meaning the decoder
may struggle to reconstruct fine details and produce an accurate segmentation [47].

U-Net++ (Nested U-Net) is an enhanced version of U-Net designed to improve segmentation
accuracy by providing dense skip connections and deep supervision to bridge this semantic gap. It
adds additional skip connections between the encoder and decoder blocks at multiple resolutions.
These connections allow the decoder to access and combine low- and high-level features from the
encoder, providing a more detailed and comprehensive understanding of the image.
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Figure 2.21—U-net++ architecture.

The figure 2.21 illustrates the design of the U-Net++ architecture. We see the nested encoder-
decoder architecture of the U-Net++ architecture. Instead of a traditional skip connection, the lower-
level feature map is concatenated with the higher-level feature, and the new merged feature data is
passed through.

The black dotted skip connection indicates the original skip connection in the U-Net architecture,
while the blue dotted skip connection indicates the new nested skip connection. Before concatenating
the lower-level feature map, its precision is increased to match the number of channels at that level.
The figure also shows how deep supervision is applied to the outputs of nodes X0,1, X0,2, X0,3, and
X0,4 to improve model learning during training. The model is optimized on the outputs of nodes X0, 1,
X0,2, X0,3, and X0,4 by calculating the total loss on the predicted outputs based on the outputs of
each of these nodes [47].

2.2.2.4.2 Segmentation evaluation methods

1. Dice coefficient: The Dice Coefficient is a measure of similarity of two sets and is often
applied on segmentation problems to compare the predicted with the ground truth
masks. It can be mathematically expressed as:

21ANB |
|A|+|B|

Dice coef f =
- A : Predicted segmentation mask.
- B : Ground truth segmentation mask.
- | A N B |: Number of overlapping pixels between prediction and ground truth.

-l A | +| B | : Total number of pixels in both masks.
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Where 1 means perfect and 0 means no.

2. Dice Loss: The Dice loss is derived from the Dice coefficient and is used as a loss function
in segmentation models to maximize overlap between predicted and actual regions.

It is defined as:
B 2%ipijgijt €
(Zijpf) + (Zij95) +e

Lpice(P,G) =1

e P are our predictions.
e (5 is the ground truth.
* In practice each g, will either be 0 or 1.

¢ € is a small number that is added to avoid division by zero.
The Dice loss ranges between:

e 0: perfectly matching the ground truth distribution g.

¢ 1: complete mismatch with the ground truth.

3. Intersection over Union (loU): measures the overlap between predicted and ground truth
masks relative to their union.

|ANB|

Jou = 2127
Y =TAUB]

| A N B |: Intersection (common pixels between prediction and truth).

| AU B |: Union (total pixels in both prediction and truth).
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Conclusion

In this chapter, we discussed some key points, took a comprehensive look at what MRl is, and
discussed various modern techniques that enable us to detect and segment brain tumors.

Now that we have an understanding of the above, we can move on to the practical side of our
project, which we will cover in the next chapter.
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Chapter 3

Conception and realization

Introduction

Developing an effective brain tumor detection system requires a well-designed architectural
framework that integrates data preprocessing, model selection, and implementation strategies. This
chapter summarizes the composition and layout of our proposed method and describes the key
components involved in the classification and segmentation processes.

We begin with the general structure of our model, followed by the preprocessing techniques
applied to MRI images, including normalization, rescaling, and data augmentation. We continue by
discussing the reasons for choosing specific deep learning architectures for classification and
segmentation, and their advantages in medical image analysis. We then discuss the dataset structure,
its origin, and how to partition the data into training, validation, and testing datasets.

This chapter also discusses the tools and development environment, including the libraries and
hardware configurations used. Finally, we demonstrate how to implement the classification and
segmentation models, comparing and analyzing their performance metrics. We conclude our chapter
with a discussion of the front-end of our website. This is done to facilitate and illustrate the results
and how the system performs in real-world scenarios.

3.1 Presentation of the overall architecture of the model

The first step in our project was to download the dataset from Kaggle, which contained MRI
images classified into four categories: glioma, meningioma, pituitary tumor, and no tumor. The first
step was to preprocess the dataset, which involved images pre-processing. We started by cropping
and resizing all images to ensure consistent input dimensions. We normalized the images using scaling
to approximate pixel values to a standard range, which improved the efficiency of model training.
Since the number of images in each category was unbalanced, we applied data augmentation
techniques to balance the dataset and improve model generalization. Next, we split the dataset into
three subsets: training, validation, and testing, to properly train the model and evaluate its
performance.

The model consists of three main components: classification, segmentation, and feature
extraction.

1. Classification: When an MRI image enters the model, it is first processed by the
classification module, which utilizes an ensemble learning approach combining Xception,
InceptionV3, ResNet-50, and VGG-19. If the classifier determines that there is no tumor,
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the process stops immediately, as no further analysis is needed. However, if a tumor is
detected, the model classifies it into the correct category (glioma, meningioma, or
pituitary tumor).

2. Segmentation: If a tumor is detected, the image moves to the segmentation module,
where a ResUNet model is used to segment the exact region of the tumor. This module
generates two output images:

The first image is the original MRI scan overlaid with a colored segmentation mask
(green), highlighting the tumor region.

The second image is a binary mask (black and white), where the tumor appears in white,
and the background remains black.

3. Feature Extraction: After segmentation, the model proceeds to the final step: feature
extraction. In this stage, important morphological characteristics of the tumor are
calculated, including:

- Surface area (size of the tumor region)
- Perimeter (boundary length of the tumor)
- Width and height (dimensions of the tumor)

- Circularity (shape analysis to determine if the tumor is more elongated or rounded)

The image below shows the project architecture:
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Figure 3.1— Architecture of the proposed model.
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3.2 Image preprocessing

Image preprocessing is a fundamental step in image processing for deep learning. It transforms
raw image data into a format that is easier to analyze before feeding it into a neural network. It
addresses various distortions and improves key image properties, such as contrast, resolution, and
noise levels, making it more suitable for training and improving model performance. Preprocessing
ensures consistent image format, size, and quality, helping neural networks learn more effectively.
Some of the most common image preprocessing operations we implemented in my project include
[48]:

3.2.1 Image cropping

Is a preprocessing technique that involves the removal of unnecessary outer areas of an image
leaving the most significant area. In deep learning, image cropping is typically used to focus on the
region of interest (ROI), remove unnecessary background noise. Cropping aims to improve
computational efficiency by reducing the data load that must be processed by a model and also can
further increase the accuracy of models by limiting analysis to only the important elements of an
image [49].

As in our project, we cropped all the images in the dataset because they contain excess,
inconsequential black areas surrounded by the brain. The images are shown below:

Figure 3.2—Original image. Figure 3.3—Cropped image.

3.2.2 Image Resizing

Resizing images refers to changing its size but retaining its basic characteristics. Resizing comes
into play for image classification when applying deep learning, as the models use different sizes as
their input. For example, in our project we used ensemble learning in classification, where several
architectures such as Xception, InceptionV3, VGG-19, and ResNet-50 are averaged out. Every model
uses a specific input size.
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Model Input size
Xception 299 x 299
InceptionV3 299 x 299
VGG-19 224 x 224
ResNet-50 224 x 224

Table 3.2 - The different input size for Xception, Inception, ResNet50, VGG-19.

Since these models anticipate different image sizes, resizing ensures that all images are in the
necessary format, enabling consistent feature extraction and classifier performance. This step helps
maintain the spatial relationships in the image without causing distortions that can affect model
accuracy.

3.2.2 Image Normalization

In deep learning, image normalization is a preprocessing method that improves neural network
performance and stability by scaling pixel values to a standard range. Normalization makes ensuring
that raw pixel values are mapped to a smaller range, like [0,1] or [-1,1], as they usually vary from 0 to
255. This helps models converge more quickly during training by lowering numerical instability
[50][51].

This Figure shows the stages of image preprocessing:

Image Image Image
Cropping Resizing Normalization
Input Output
(MRI image) Preprocessed img

Figure 3.4—Image preprocessing.
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3.2.3 Data augmentation

The simplest way to reduce overfitting, generalize the model, and enhance robustness is to
expose the model to various variations of the same data, known as data augmentation. This is widely
used in training deep CNNs. Data augmentation aims to artificially expand the training dataset from
existing data using various transformations, such as shifting, rotating, flipping, clipping, adding noise,
etc. [52].

Care must be taken. In the medical application, especially in the identification of brain tumors,
data augmentation must be done carefully since MRI scans carry critical anatomical details, and
excessive transformation results in distortion of the shape of the tumor and lead to incorrect
classifications. Therefore, we have selected some appropriate transformations to apply to the image
set within the database with positive effects including:

e Rotation: Helps with slight orientation variations (10°).

o Width & Height shift: are transformations that move an image horizontally or vertically within a
given range, this helps simulate variations in object positioning and makes the model more robust
to slight changes in object location (0.1).

e Zoom: refers to scaling an image in or out to simulate different levels of magnification (0.1).

e Brightness adjustment: modifies the intensity of pixel values to make the image brighter or darker
([0.8,1.2]).

e Horizontal flip: reverses the image left to right, creating a mirrored version.

As we said before, some transformations and their values should be chosen carefully. What
should be avoided for example is:

e Large rotation: for example, £90° or more, cause tumors are not randomly oriented; extreme
rotations could make the tumor appear in unrealistic locations

e Strongzooming: (> 15%), might crop out parts of the tumor, affecting classification and
segmentation.

e Excessive brightness adjustments: (> +30%), can alter tumor visibility, making it too bright or too
dark, which may confuse the model.
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Figure 3.5—Some glioma tumor using data augmentation.

3.3 Choice of models for classification
There are multiple deep learning models for brain tumor classification, but instead of relying on
a single model, we used ensemble learning.

3.3.1 Ensemble learning

Ensemble learning is a widely used machine learning technique that combines multiple base
learners to form an ensemble learning model to construct a robust and accurate prediction model. A
base learner is a single model that can easily suffer from noise, bias, and variance in the data when
making predictions. Therefore, ensemble learning is applied to reduce generalization errors and
improve classifier performance. The basic idea behind the ensemble learning framework is to
assemble base learner classifiers (c1, c2, ...) to predict a single output using a dataset of size n and
feature dimension m. The output prediction is calculated based on the ensemble method using
weighted mean, maximum weight, or majority voting. Figure 3.6 illustrates the general framework of
ensemble learning techniques, which can be visualized and realized through four properties: data
sampling, clustering rules, heterogeneity, and voting. First, data sampling refers to the process of
dividing a training dataset into subsets to achieve better accuracy and diversity through independent
and dependent strategies. The independent sampling strategy involves subsets that are not
interdependent and are not affected by the performance of the previous subset. The dependent
sampling strategy involves subsets that are dependent on the performance of the previous subset.
Therefore, to avoid the difficulty of achieving diversity through data sampling techniques, the optimal
size of each subset and the maximum number of samples must be determined. Second, ensemble
rules refer to the method of combining two base classifiers using parallel ensemble and sequential
ensemble techniques. Parallel ensemble techniques are used to train base classifiers simultaneously
without interclassifier dependency or data sampling to increase diversity between base classifiers. A
common parallel ensemble algorithm is the bagging algorithm. Alternatively, sequential ensemble
techniques are used to train base classifiers sequentially due to the resampling of data. Sequential
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methods are used to correct errors made by the previous base classifier in each iteration. A common
sequential ensemble algorithm is the boosting algorithm. Third, the heterogeneity characteristics
depend on the type of algorithms used for each base classifier in the ensemble process, which can be
further classified as homogeneous or heterogeneous. A homogeneous ensemble method consists of
a number of base classifiers that use the same algorithms to build the model, while a heterogeneous
ensemble method consists of a number of base classifiers that use different algorithms. Finally, voting
methods are applied in the final stage of both classification and regression tasks to improve ensemble
prediction. The voting methods used in clustering and boosting can be classified into majority voting,
average voting, and weighted average voting. First, majority voting, also known as max voting, is the
most common ensemble prediction method and is based on the largest number of votes for each
labeled class. The average vote is then calculated by dividing the average of the sum of predictions by
the total number of predictions. Finally, weighted average voting is based on assigning different
weights to each base classifier [53].

Decision

T

Combine

Classifier 1 Classifier 2 se Classifier N-1 Classifier N

Input

Figure 3.6—General ensemble learning method.

3.3.1.1 Ensemble learning techniques

The three most common techniques for ensemble learning are: bagging, boosting, and stacking.

e Bagging: involves training multiple models on different subsets of the training data and combining
their predictions to improve performance. In classification tasks, it uses majority voting, where
each model votes for a class, and the most frequent class is chosen as the final prediction. In
regression tasks, it applies average voting, where the predictions from all models are averaged to
obtain the final result. A well-known example of bagging is the Random Forest algorithm [54].

e Boosting: Sequentially trains models, where each new model focuses on the errors made by the

previous ones. This method aims to correct mistakes and improve overall accuracy, as seen in
algorithms like AdaBoost and Gradient Boosting [54].
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o Stacking: An effective ensemble learning strategy that trains multiple models and then uses
another model (meta-model) to combine their outputs. This leverages the strengths of different
algorithms to improve performance [54].

3.3.1.1 Reason for use

In our project, we selected four classification models: Xception, InceptionV3, VGG-19, and
ResNet-50, based on two main criteria. First, their architectural diversity, each of these models has a
unique structure and feature extraction strategy: Xception (Depthwise Separable Convolutions),
InceptionV3 (Multi-Scale Convolutions), VGG-19 (Deep Sequential Layers), and ResNet-50 (Residual
Connections), allowing them to capture different aspects of the input images. By combining them
using ensemble learning, we create a comprehensive and robust classification system, as each model
contributes its own strengths and analysis techniques. Second, their proven performance in image
classification, as these models are among the most powerful CNN architectures, consistently ranking
highly on ImageNet benchmarks.

After selecting these models, we needed to choose the most suitable ensemble learning
approach. Boosting prioritizes high accuracy by focusing on difficult samples, but it tends to overfit,
which is problematic for medical imaging, where misclassification could have serious consequences.
Bagging works best with high-variance models, such as decision trees, by reducing their overfitting
through averaging multiple predictions. However, in our case, we are using pre-trained deep learning
models, which are already optimized and do not suffer from high variance in the same way. Instead
of reducing variance, our goal is to leverage the complementary strengths of different architectures,
making stacking a more suitable choice for improving classification performance. By using a meta-
learner, stacking ensures that the final prediction is based on the most relevant patterns extracted
from each model, making it the ideal approach for brain tumor classification, where it also yielded
excellent results.

3.4 Choice of model for segmentation

3.4.1 Reason for use

We used Res-Unet for the segmentation task in our project for two reasons. The first is its
superior feature modeling capability, which is essential for accurate brain tumor segmentation. The
U-Net model, with its encoder-decoder architecture, is popular in medical image segmentation due
to its ability to assimilate spatial information with high accuracy. However, traditional U-Net models
are unable to extract deeper features, especially in complex medical images such as MRI scans.

To improve segmentation accuracy, Res-Unet adds residual connections from ResNet to help
solve the gradient vanishing problem and enable deeper networks to learn more efficiently. These
residual connections enable gradients to flow more easily during training, improving feature
propagation and enabling the model to assimilate both low and high-level features. Brain tumor
segmentation is a highly sensitive process, requiring precise localization to avoid misclassification.
Res-Unet's ability to preserve fine tumor details, as well as capture contextual information, makes it
an ideal choice. It has also been used in a number of medical image segmentation tasks,
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demonstrating excellent performance when dealing with complex structures, such as tumors with
irregular shapes and densities. The second reason is that we trained the database on several
segmentation models, including U-Net, Res-Unet, Attention U-Net. However, of these, only Res-Unet
gave me good results in terms of accuracy and DiceCoef. Therefore, Res-Unet was the ideal choice for
our project, combining U-Net's advantages in localization accuracy with Res-Net's ability to extract
deep features, providing effective brain tumor segmentation.

3.5 Dataset structuring

3.5.1 Classification dataset

In this work, we used a brain tumor MRI dataset downloaded from the Kaggle [55] platform. The
dataset contains two folders, one for training and one for testing. Each folder contains four categories:
glioma, meningioma, pituitary gland, and no tumor. The images are shown below.

Figure 3.9—No tumor.

Figure 3.10—Pituitary tumor 2.

The database consists of 7028 images, divided into 1307 test images and 5721 training images.
Each category has a specific number of images: glioma (1330), meningioma (1339), pituitary gland
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(1457), and no tumor (1595). However, this is called an imbalanced dataset, which reduces the
efficiency of the classification model. To solve this problem, we applied a process called data
augmentation, where we increased the number of images in each category to 2000, bringing the total
number of training images to 8000. This method resulted in a balanced dataset.

3.5.1.1 Data splitting
For model training, we need to split the data into:

e Training data: refers to the data set that is used to train and evaluate a ML model. Training data
consists of a large number of input examples, which include the features as well as the
corresponding output or target values [56].

e Testing data: is used to evaluate the final performance of a machine learning model. Unlike
training and validation data, testing data is only used once the model has been fully trained and
optimized. This data helps determine how well the model generalizes to new, unseen examples
and provides an unbiased assessment of its accuracy, precision, and overall reliability [57].

e Validation data: is a critical part of the machine learning process, used to fine-tune and optimize
the model after it has learned from the training data. Unlike training data, validation data is not
used to teach the model but to evaluate its performance during the development phase. This
helps in adjusting parameters, known as hyperparameters, such as learning rates, to improve
model accuracy and prevent overfitting [57].

In the dataset there are two folders, one for training which contains 8000 images, this is data
intended for training the model. The other folder is for testing and contains 1307 images. we divided
it into two parts: one for testing which contains 654 images, and the other for validation which
contains 653 images. In this way, we divided our data into training, testing and validation data.

3.5.2 Segmentation dataset

For the segmentation tasks, we used the "Brain Tumor Segmentation" dataset on Kaggle [58],
which contains two folders. The first folder contains 3064 brain tumor images. The second one also
contains the same number of images, but contains tumor mask images. This means that each brain
tumor image in the first folder corresponds to its mask image in the second folder, respectively.
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Figure 3.11—Tumor 1. Figure 3.12—Mask of Tumor 1.

Figure 3.13—Tumor 2. Figure 3.14—Mask of Tumor 2.

e Data augmentation

We selected images with small tumors and applied a data augmentation process on them to train
the model more robustly for segmenting small tumor images. The process provided 780 images, each
having a mask, which amounts to 780 masks. This brings the images now to 3844.

aug_2 aug_3 aug_4

Figure 3.15—Some augmented images with small tumors.
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mask_aug_1 mask_aug_2 mask_aug_3 mask_aug_4

Figure 3.16— Masks of these images augmented with small tumors.

3.6 Project pipeline

Pretreatment H Classification H Segmentation H Results

Figure 3.17—Project pipeline.

3.7 Development tools and environment

3.7.1 The programming language used

e Python

python

is an interpreted, object-oriented, high-level programming language designed for simplicity and
readability. It provides advanced data structures, dynamic typing, and dynamic binding, making it
ideal for rapid application development and scripting. Its freely and open-source availability across
major platforms.it used in artificial intelligence, where its extensive libraries like TensorFlow and Keras
facilitate machine learning and deep learning applications.

We used Python 3.12.4 for this work. It is the most recent major version of Python, with
numerous optimizations and new features [59].

3.7.2 Kaggle

Kaggle is a data science and machine learning environment in which users compete with each
other to create the most accurate model for a given problem or data set. Kaggle also has a community
feature in which users can collaborate on projects, exchange data sets and code, and learn from other
users' projects [60].
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3.7.3 Libraries used
° TensorFIow’L TensorFlow

is an open-source machine learning system developed by Google for building and deploying Al
models in broad and diverse environments. It provides a comprehensive ecosystem of tools, libraries,
and community resources for developing deep learning models, and supports both CPU and GPU
acceleration for scalable computation [61].

e Keras Keras

Keras is a deep learning APl written in python that provides an easy-to-use interface for building
and training neural networks. Designed to be modular, flexible, and easy to use, it focuses on
debugging speed, code elegance, and brevity, making it ideal for rapidly prototyping deep learning
models. Keras runs on many machines learning frameworks, including TensorFlow [62].

e
e OpenCV ©pencv

OpenCV is an open-source library for machine learning and computer vision, used for real-time
video and image processing. OpenCV supports multiple programming languages, including C++ and
Python. It provides a wide range of tools and algorithms for tasks such as object detection and face
recognition [63].

e NumPy aNumPY

The foundational package for scientific computing in Python is called NumPy (Numerical
Python). It offers a collection of mathematical functions for working with these data structures in
addition to support for arrays and big multidimensional arrays. Because of its effectiveness and
compatibility with other libraries, it is frequently utilized in data analysis, machine learning, and deep
learning [64].

e Matplotlib matpl:tlib

Matplotlib is a Python 2D plotting library that can produce high-quality figures. It supports both
interactive and non-interactive usage and can save images in a variety of output formats (PNG, PS,
etc.). It also offers many types of graphs (lines, columns, pie charts, histograms, etc.). It is also highly
customizable, flexible, and easy to use [65].

|:=| pandas
e Pandas

A python library that includes rich data structures and tools for working with structured datasets
common in statistics, finance, and the social sciences, and is widely used in artificial intelligence,
particularly machine learning. The library provides integrated and intuitive routines for performing
common data processing and analysis operations. It aims to be the foundation for the future of
statistical computing in Python [66].
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. Ay
e Streamlit Streamlit

is an open-source python framework for creating dynamic web apps for data science and
machine learning. It is a popular option for quick prototyping and machine learning model
visualization since it enables users to develop and implement data-driven apps with little coding
knowledge [67].

3.7.4 Google Colaboratory

Geogle Colaboratory

Colab is a cloud-based platform that allows users to write and execute Python code in a Jupiter
notebook environment. It provides free access to computing resources, including GPUs and TPUs,
making it a popular tool for machine learning, data science, and deep learning projects. Colab
facilitates collaboration by enabling users to share and edit notebooks in real time via Google Drive
[68].

3.7.5 Hardware configuration
Deep learning is a term that refers to all machine learning techniques, in other words a form of
learning based on mathematical approaches used to model data, with intense computational
requirements and resource availability especially GPU 'graphical processing unit', is more powerful
and can perform specific tasks very quickly, offers massive parallelism ideal for repetitive and highly
parallel tasks.
My work is carried out on:
e A PC with the following configuration:
- Laptop: HP EliteBook 830 G5, (RAM): 16.00 GB.
- Microprocessor: Intel(R) Core (TM) i7-8650U CPU @ 1.90GHz 2.11GHz.
- Hard drive: 512 GB.
- System type: 64-bits operating system.

- Google Compute Engine backend (GPU): Intel(R) UHD Graphics 620.

- Windows: 11 pro.
3.8 Implementation of the classification model
3.8.1 Training, optimization and evaluation metrics

In this part, we implemented a brain tumor classification model using ensemble learning,
combining four deep learning architectures: Xception, InceptionV3, VGG-19, and ResNet-50. These
models are widely used in medical image analysis due to their powerful feature extraction capabilities.
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3.8.1.1

Dataset Preparation

e Image preprocessing

& Ensemble Learning.ipynb  ¥¢ &) saving...
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[ 1 test_datagen = ImageDataGenerator(rescale=1./255) # Normalization

#
#

Resizing
pour Xception et Inceptionv3 (299x299)

test_generator_299 = test_datagen.flow_from_directory(

)

#

test_dir,

target size=(299, 299),
batch_size=batch_size,
class_mode="categorical”,
shuffle=False

pour VGG-129 et ResMetse (224x224)

test_generator_224 = test_datagen.flow_ from_directory(

test dir,
target_size=(224, 224),
batch_size=batch_size,
class mode="categorical”,
shuffle=False

Figure 3.18 —Image resizing and normalization for classification task.

We resized the images because each model accepts a specific input size, such as Xception and
Inception which accept 299x299 while Res-Net and VGG-19 which accept 224x224. We also
performed normalization by dividing the pixels by 255.
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Data splitting

& Ensemble Learning.ipynb 3¢ &

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text

<>

{x}

© def train df(tr_path):
classes, class_paths = zip(*[(label, os.path.join(tr_path, label, image))
for label in os.listdir(tr_path) if os.path.isdir(os.path.join(tr_path, label))
for image in os.listdir(os.path.join(tr _path, label))])

tr_df = pd.DataFrame({'Class Path': class paths, 'Class': classes})
return tr_df

[ 1 def test df(ts_path):
classes, class paths = zip(*[(label, os.path.join(ts_path, label, image))
for label in os.listdir(ts_path) if os.path.isdir(os.path.join(ts_path, label))
for image in os.listdir(os.path.join(ts_path, label))])

ts_df = pd.DataFrame({'Class Path': class paths, 'Class': classes})
return ts_df

[ 1 tr_df = train_df("/content/drive/MyDrive/dataset5 balanced/Training")
ts_df = test_df('/content/drive/MyDrive/dataset5 balanced/Testing")
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[]

tr_gen = _gen.flow_from_dataframe(tr_df, x_col="Class Path’,y_col="Class', batch_size=batch_size,target_size=img_size)

valid_gen = _gen.flow_from dataframe(valid_df, x_col="Class Path', y_col="Class’, batch_size=batch_size, target_size=img_size)
< ts_gen = ts_gen.flow_from dataframe(ts_df, x_col="Class Path', y col="Class’, batch_size=16,target_size=img_size, shuffle=False)
Figure 3.19—Splitting data into training, testing and validation data.

Here, we divide the dataset into three parts: a training set used to train the model, a validation
set used to fine-tune the model and evaluate its performance during training, and a test set dedicated
to evaluating the final performance of the model on unseen data.

3.8.1.2 Hyperparameters

Optimizer (adamax): Adamax is a variant of the Adam optimizer, based on the infinity norm, it’s
used to adjust the weights during training to minimize the loss function.

Learning rate: controls how big each step the optimizer takes and we used 0.001 because it is a
commonly used default value.

Loss: we utilized "categorical_crossentropy" as our labels are one hot encoding for a multi-class
classification.
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o Number of epochs: In the model training process, we adopted a two-step strategy. First, we
completely froze the base model and trained only the upper layers for 10 epochs. This step
allowed the model to learn high-level, task-specific features while preserving the knowledge
previously trained from ImageNet. Next, we improved the model by unfreezing the upper layers
and resuming training for an additional 10 epochs, bringing the total number of epochs to 20. This
step helped our model fine-tune its deep layers to better recognize patterns in the dataset,
improving its accuracy and performance on new data.
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o [ ]
— model path ="/content/drive/MyDrive/dataset5 balanced/file/Xception.h5"

csv_path = "/content/drive/MyDrive/dataset5 balanced/file/log Xception.csv”

<>
model. compile(
Adamax(learning rate= 0.001),
{x} , o~ :
loss= 'categorical crossentropy’,
metrics= [ 'accuracy’,
o Precision(),

Recall()])

Figure 3.20—Optimizer, learning rate, loss.
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callbacks=callbacks,

< shuffle= False)

Figure 3.21—First 10 epochs.
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- ° base_model.trainable = True
Ea for layer in base model.layers[:50]:
layer.trainable = False
<> model.compile(Adamax(learning_rate= ©.001),
loss= ‘categorical crossentropy’,
{x} metrics= [ "accuracy’,
Precision(),
ez Recall()])
[:] callbacks = [
ModelCheckpoint(model path, verbose=1, save_best only=True),
ReducelLROnPlateau(monitor="val loss", factor=e.5, patience=3, min_lr=1e-6, verbose=1),
CSVLogger(csv_path),
EarlyStopping(monitor="val_ loss™, patience=5, restore_best weights=True, wverbose=1),
1
history_fine = model.fit(tr_gen,
epochs=1@,
validation_data=valid_gen,
callbacks=callbacks,
shuffle= False)
Figure 3.22—Last 10 epochs.
3.8.1.3 Techniques for optimization

e Learning rate scheduling: To improve the learning process, we used a learning rate scheduling
technique with the ReduceLROnPlateau callback function. This automatically reduces the learning
rate when the validation loss optimization stops, helping the model converge better and avoid
getting stuck during training.

e Early stopping: we used the Early Stopping technique to prevent overfitting and reduce training
time, it monitors the validation loss and stops the training process if no improvement is observed
for 5 epochs and the model restores the best weights achieved during training, ensuring optimal
performance.
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o callbacks = [
ModelCheckpoint(model_path, verbose=1l, save_best_only=True),
ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=3, min_lr=1le-6, verbose=l),
CSVLogger(csv_path),
EarlyStopping(monitor="val_loss", patience=5, restore_best_weights=True, verbose=1l),

Figure 3.23—Callbacks (ReduceLRonPlateau, EarlyStopping).
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e Dropout
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= ®x = Flatten() (x)

= Dropout(rate= 8.3)(x)

= Dense(128, actiwvation= ‘relu’)(x)
= Dropout(rate= ©.25)(x)

= Dense(4, activation= "softmax’) (x)

<>

XX X X

Figure 3.24—Dropout.

We used dropout in the fully connected layer twice to avoid overfitting.

e Data augmentation
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= " input_dir = "/content/drive/MyDrive/dataset5/Training/notumor" # Répertoire de la classe minoritaire
output_dir = "/content/drive/MyDrive/dataset5 aug/notumor” # hna win rani ndir 1i augmentithm

<>

{x}

datagen = ImageDataGenerator(
rotation_range=16,
width_shift_range=6.1,
height_shift_range=e.1,
zoom_range=0.1,
horizontal flip=True,
brightness_range=[0.8, 1.2]

images = []

for file in os.listdir(input_dir):
img = Image.open(os.path.join(input_dir, file))
img = img.resize((15@, 15@)) # Redimensionner
images.append(np.array(img))

images = np.array(images)

num_augmented = 465 # Nombre d'exemples nécessaires

i=o

for batch in datagen.flow(images, batch_size=1, save_to_dir=output_dir, save_format="jpg'):
i+=1
if i >= num_augmented:

break

print('augmented")

Figure 3.25—Dataset augmentation.
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In this image we have created some transformations that we will apply to the dataset to

make it balanced.

[ ]

M

[]

]

glioma_path=os.path.join('/content/drive/MyDrive/dataset5/Training", ‘glioma’)
meningioma_path=o0s.path.join("'/content/drive/MyDrive/dataset5/Training"’, 'meningioma")
pituitary path=os.path.join('/content/drive/MyDrive/dataset5/Training"’, 'pituitary’)
no_tumor path=os.path.join('/content/drive/MyDrive/dataset5/Training", "notumor")

glioma =os.listdir(glioma path)
meningioma =os.listdir(meningioma path)
pituitary =os.listdir(pituitary path)
no_tumor =os.listdir(no_tumor path)

print("Glioma :'+str(len(glioma)))
print('meningioma :'+str(len(meningioma)))
print("pituitary :'+str(len(pituitary)))
print("no_tumor :'+str(len(no_tumor)))

Glioma :133@
meningioma :1339
pituitary :1457
no tumor :1595

Figure 3.26—Dataset before data augmentation (imbalanced).

glioma_path=o0s.path.join("/content/drive/MyDrive/datasets balanced/Training', 'glioma")
meningioma_path=os.path.join('/content/drive/MyDrive/dataset5 balanced/Training', 'meningioma’)
pituitary path=os.path.join('/content/drive/MyDrive/dataset5 balanced/Training','pituitary’)
no_tumor path=os.path.join("'/content/drive/MyDrive/dataset5 balanced/Training', 'notumor")

glioma =o0s.listdir(glioma_path)
meningioma =os.listdir(meningioma path)
pituitary =os.listdir(pituitary path)
no_tumor =os.listdir(no_tumor path)

print('Glioma :'+str(len(glioma)))
print('meningioma :'+str(len(meningioma)))
print('pituitary :'+str(len(pituitary)))
print('no_tumor :'+str(len(no_tumor)))
Glioma :2000

meningioma :2000

pituitary :2000

no_tumor :2000

Figure 3.27—Dataset after data augmentation (balanced).
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In both images 3.26 and 3.27 we can see the difference between the number of images before

and after applying data augmentation.
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Figure 3.28—Data visualization of the classification dataset before balancing (imbalanced).
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Figure 3.29—Data visualization of the classification dataset after balancing (balanced).

80

Figures 3.28 and 3.29 illustrate the t-SNE (t-distributed Stochastic Neighbor Embedding)
visualization of the training dataset before and after class balancing for brain tumor classification.
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3.8.1.4 Fully connected layer

Since these architectures are built on transfer learning, we profited their pre-trained weights on
ImageNet while modifying the final layers to suit the classification task. We removed the original fully
connected layers and replaced them with ones more suitable for my task and we applied these
changes to all models.

The modifications included:
e Flattening the extracted features from the base model (converts into 1D vector).
e Adding dropout layers to prevent overfitting.

e We added a dense layer for feature refinement and we used 128 neurons to compress
the data instead of passing all features to the final classification layer.

e We used a final dense layer for multi-class classification and 4 neurons because we have
4 classes (glioma, meningioma, pituitary, no tumor).
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= o base model = tf.keras.applications.Xception(include top= False, weights= "imagenet”, input shape= img shape, pooling= 'max')
@ base_model.trainable = False
'S X = base_model(inputs)
[JC} X = Flatten()(x)
X = Dropout(rate= 0.3)(x)
o X = Dense(128, activation= 'relu')(x)
X = Dropout(rate= 0.25)(x)

] X = Dense(4, activation= 'softmax')(x)
model = Model(inputs, x)

Figure 3.30—Implementation of the fully connected layer.

3.8.1.5 Activation function

We used the Relu function in the hidden dense layer to Helps learn complex patterns, avoids
vanishing gradient, speeds up training and adds non-linearity, in the other side we have used SoftMax
function in the output layer to Converts outputs into probabilities for multi-class classification and
make class predictions. Figure 3.28.
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3.8.1.6 Ensemble Learning Approach

£ Ensemble Learning.ipynb ¥ &

L
File Edit View Insert Runtime Tools Help
Q Commands + Code + Text
P ° from tensorflow.keras.models import Sequential
= from tensorflow.keras.layers import Dense
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
@ import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
<>
X_train = np.hstack([xception preds, inception_preds, resnet_preds, vgg preds]) # hna shape : (1307, 16)
{JC} y_train = test generator_224.classes # w hna Shape : (1307,)
(o]
# Definir un petit reseau de neurone
[} stacking model = sequential([
Dense(64, activation='relu', input_shape=(16,)),
Dense(32, activation='relu'),
Dense(4, activation='softmax') # psq 3ndi 4 classes
D
stacking_model.compile(optimizer="adam', loss='sparse_categorical_crossentropy”, metrics=['accuracy"])
model path = "/content/drive/MyDrive/datasets balanced/file/Ensemble learning.hs”
csv_path = "/content/drive/mMybrive/datasets balanced/file/log Ensemble learning.csv™
callbacks = [
ModelCheckpoint(model path, verbose=1, save_best_only=True),
csvLogger(csv_path, append=True),
ReduceLROnPlateau(monitor="1oss", factor=e.5, patience=3, min_lr=le-6, verbose=1),
EarlyStopping(monitor="loss", patience=3, restore_best_weights=True, verbose=1),

Figure 3.31—Implementation of the stacking model.

We implemented a stacking ensemble model by combining the predictions of multiple base
classifiers. On top of this ensemble, we added a lightweight neural network as a meta-learner, which
was trained to make the final predictions based on the outputs of the base models.

3.8.1.6 Evaluation metrics

e Confusion matrix: In statistical classification, we create models or algorithms to classify or
predict data into a limited number of classes. Since the models are not perfect, there will be some
misclassified data points. A confusion matrix is basically a tabular representation of how well a
model performs and can be used in both binary classification and multi-class classification

problems [19].
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Actual Value
(as confirmed by experiment)

positives negatives
(«}] ey v
S 3 TP FP
© o e True False
= < o .. .
- > a Positive Positive

=

S 8 )
S FN TN
Q S B False True
a s [ Negative Negative

Figure 3.32 - Confusion matrix.

True Positive (TP): The model correctly predicts a positive case.
True Negative (TN): The model correctly predicts a negative case.
False Positive (FP): The model incorrectly predicts a positive case.
False Negative (FN): The model incorrectly predicts a negative case.
There are several metrics that can be calculated from the matrix, including:
1. Accuracy: This measure may be the simplest, most effective and most straightforward
for classification tasks as it measures the number of correct predictions to the total

number of predictions [20].

it can be misleading if your classes are imbalanced.

TP+ TN
TP+TN+ FP+FN

Accuracy =

2. Precision: precision measures how many of the predicted positive cases are actually
correct, it’s the ratio of true positives to all positives [20].

TP

p . . —
recision —TP T FP

3. Recall: measures how many of the actual positive cases were correctly predicted [20].

59



Chapter 3 Conception and realization

TP

R LI
ecall = 75— 7N

1. F1-Score: F1 scoreis harmonic mean of precision and recall, it tries to achieve a trade-off
between precision and recall for a classification task [20].

Is more useful when you have class imbalance because it tries to achieve a trade-off
between precision and recall.

Precision X Recall
Fl1=2xX

Precision + Recall

3.8.2 Performance evaluation and analysis (discussion of results)

We will talk about the statistics and results provided by each model and we will start with:

3.8.2.1 Xception
Model: Xception
Training vs Validation Accuracy Training vs Validation Loss
1.00 —— Train Accuracy —— Train Loss
— Validation Accuracy 0s — Validation Loss
0.95
0.4 4
>
@ 0.90 w 0.3
o 2
3 K|
ks
0.2 A
0.85
0.1 A
0.80
0.0 A
2 4 6 8 0 12 14 16 18 2 3 6 8 0 12 1 16 18
Epochs Epochs

Figure 3.33— The loss curve and the accuracy curve Xception.

No Overfitting Yet: Since the validation loss doesn't start increasing significantly while the
training loss continues to drop, there's no clear sign of overfitting in this case.

Good Generalization: Both the training and validation losses are decreasing, which suggests the
model is learning and generalizing well to new data.
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epoch accuracy leaming_rate loss precisdon recall val_accuracy val_loss val_precison val_recall
1 0.6865000129  0.001000000047 0.7967743874 0.7429305911 06141250134 0.817764163 0.510060966 0.8583617806 0.7702909708
2 07836250067 0.001000000047  0.5576293204 0821695745 07413750291 08376722832 04542316198 0.6783333302  0.8070443669
3 0.8106250167  0.001000000047 0.4921119511 0.8456924558 0.7754999995 0.8499234319 0.4156242311 0.8727858067 0.8300153017
4 0.8233749866  0.001000000047 0.4523415864 0.8512008786 0.7929999828 0.8422664404 0.4077157378 0.8721311688 08147013783
5 0.8403750062  0.001000000047 0.4222299457 0.8644562364 0.8147500157 0.860643208 0.3692053258 0.8700475693 0.8407350779
6 0.8441249728  0.001000000047 0.4062346518 0.8624539971 0.8206250072 0.8621745706 0.3422723413 0.8767772317 0.8499234319
7 0.851000011  0.001000000047 0.3863767684 0.8735178113 0.8287500143 0.8744257092 0.3457946479 0.8874801993 0.8575804234
8 0.85512501  0.001000000047 0.3663553894 0.8733150363 0.8341249824 0.8667687774 0.3399190307 0.882825017 0.8422664404
9 08616250157 0001000000047 03500121835  0.8803077966  0.8410000205 08805512786 03152655050  0.8947366264 0.8501117859
10 0.8696249723  0.001000000047 0.3424623311 0.8881164789 0.8463749886 0.8836140833 0.3162717223 0905844152 0.8545176387
1 0.8315000176  0.001000000047 0.2020722777 0.9431236982 0.9223750234 0.97549877226 0.05719103282 0.9799692035 0.9739663005
12 0.9917500019  0.001000000047 0.02934352495 0.9923626184 0.9907500148 0.9831546545 0.05906296521 0.9831546545 0.9831546545
13 0.9955000281  0.001000000047 0.01479046792 0.9957484007 0.9953749776 0.990811846 0.02650929801 0.990811646 0.990811646
14 0.9952499866  0.001000000047 0.01349552441 0.9958719015 0.9951249957 0.9862174392 0.06163296476 0.9862174392 0.9862174392
15 0.9955000281  0.001000000047 0.01402648073 0.9961225986 0.9955000281 0.961623282 0.07913708687 0.981623292 0.981623292
16 0.8975000024  0.001000000047  0.009812013246 0.9976243973 0.9973750114 0.9846860766 0.04768224806 0.9846860766 0.9846860766
17 0.9986249804 0.0005000000237  0.003882636316 0.9986249804 0.9986249804 0.990811646 0.04056061804 0.990811646 0.990811646
18 0.9993749857 0.0005000000237  0.002489642007 0.999499917 0.9993749857 0.9892602238 0.05096396431 0.9692802238 0.9692802238
Figure 3.34— CSV Export of Training Logs for Xception.

In the Xception model, we observe that EarlyStopping stopped the training process because the
val_loss did not improve for 5 consecutive epochs. It selected the 13th epoch as the best one, with an
accuracy of 0.995, a loss of 0.014, a validation accuracy of 0.990, and a validation loss of 0.026.

3.8.2.2 InceptionV3
Model: InceptionV3
Training vs Validation Accuracy Training vs Validation Loss
1.00 1 — Train Accuracy 0.7 4 —— Train Loss
— Validation Accuracy —— Validation Loss
0.95 1 081
0.5 A
0.90 4
E " 0.4
E 0.85 - 9 03]
0.80 0.2 1
0.751 017
0.0

g 10 12
Epochs

14 16

18 20

0 12 14
Epochs

Figure 3.35— The loss curve and the accuracy curve for InceptionV3.
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epoch accuracy leaming_rate loss precison recall val_accuracy val_loss val_precision val_recall
1 0.5914999843  0.001000000047 1.044712901 0.6703083515 0.4754999876 0.7825421095 0.6048266292 0.8458646536 0.6891270876
2 0.7201250196  0.001000000047 0.7032022476 0.7796403766 0.6395000219 0.8009188175 0.537972331 0.8324872851 0.7534456253
3 0.7555000186  0.001000000047 0.6184465885 0.8052790761 0.6978750229 0.8116385937 0.5167790651 0.8439597487 0.7702909708
4 0.7776250243  0.001000000047 0.5678141713 0.8237885237 0.7246249914 0.7963246703 0.5112496018 0.8313856721 0.7626339793
5 0.7906249762  0.001000000047 0.5457733274 0.8286154866 0.7391250134 0.836140871 0.4531199634 0.8486312628 0.8070443869
6 0.7993749976  0.001000000047 0.518360734 0.8395403624 0.7580000162 0.8208269477 0.4723235071 0.862244904 0.7764165401
7 0.8105000257  0.001000000047 0.4944218695 0.8449793458 0.7678750157 0.8346095085 0.4479523301 0.8552845716 0.8055130243
8 0.8177499771  0.001000000047 0.4676565826 0.8497830629 0.7835000157 0.8376722932 0.431417048 0.8613376617 0.808575809
9 0.8224999905  0.001000000047 0.4619686007 0.8551098108 0.7886250019 0.8376722932 0.4317254126 0.860655725 0.8039816022
10 0.8298749924  0.001000000047 0.4427320361 0.8593243361 0.7948750257 0.8437978625 0.4152666628 0.86721313 0.8101071715
1" 0.8945000172  0.001000000047 0.3104938567 0.9235787392 0.8671249747 0.9525268078 0.1241055056 0.9670846462 0.9448698163
12 0.9677500129  0.001000000047 0.1008610617 0.9727134705 0.9624999762 0.972434938 0.1044195592 0.9723926187 0.9709035158
13 0.981374979  0.001000000047  0.05578585342 0.9833103418 0.9794999957 09555895925 0.1293546706 0.964341104 0.9525268078
14 0.9903749824  0.001000000047 0.03269348666 0.9914829731 0.9894999862 0.9877488613 0.03881817684 0.9892638326 0.9877488613
15 0.9906250238  0.001000000047 0.03490126505 0.9916113615 0.9900000095 0.9464012384 0.2546699643 0.9491525292 0.9433384538
16 0.9896249771  0.001000000047  0.03163143992 0.9908567071 0.9888749719 0.9785605073  0.08422095329 0.9800613523 0.9785605073
17 0.9908750057  0.001000000047  0.03143722564 0.991735518 0.9900000095 0.9846860766  0.06046072766 0.9846153855 0.9800918698
18 0.9962499738  0.0005000000237  0.01404568739 0.9964982271 0.9959999919 0.9954057932  0.03153498471 0.9954057932 0.9954057932
19 0.9986249804  0.0005000000237  0.005901292898 0.9986248016 0.9984999895 0.9923430085  0.04176981747 0.9938650131 0.9923430085
20 0.9993749857  0.0005000000237  0.00236038235 0.999499917 0.9993749857 0.9923430085  0.04991571605 0.9923430085 0.9923430085
Figure 3.36— CSV Export of Training Logs for InceptionV3.
Now in this model as we see he chose the 18th epoch with 0.9962 of accuracy, 0.0140 of loss,
0.9954 of validation accuracy and 0.0315 of validation loss.
3.8.2.3 ResNet50
Model: ResNet50
Training vs Validation Accuracy . Training vs Validation Loss
—— Train Accuracy —— Train Loss
0sd — Validation Accuracy —— Validation Loss
1.0
0.8 1
0.8 1
z
§ 0.7 g ool
0.6 -
0.4
0.5
0.2 1
2 4 6 g 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Epochs Epochs

Figure 3.37— The loss curve and the accuracy curve for ResNet50.
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epoch accuracy leaming_rate loss precison recall val_accuracy val_loss val_precison val_recall
1 0.3841249943  0.001000000047 1.427197695 0.5021398067 0.175999999 0.4701378345 1.158992767 0.8508771658 0.1485451758
2 0.4476250112  0.001000000047 1.1502949 0.7607601881 0.1701248927 0.4666064422 1.12101531 0.8644067645 0.1562021375
3 0.4668749869  0.001000000047 1.10555017 0.7769308686 0.1911250055 0.51301682 1.061478257 0.8476821184 0.1960183829
4 0.4841249883  0.001000000047 1.076740742 0.7369520068 0.2206249982 0.5635528564 1.015638351 0.8019801874 0.2480857521
5 0.5148749948  0.001000000047 1.048853517 0.7430124283 0.2392500043 05574272871 1.005553603 0.718978107 0.3016845286
6 0.5254999995  0.001000000047 1.027889609 0.7281752825 0.2658750117 0.5758039951 0.9635557532 0.7896825671 0.3047473133
7 0.535374999  0.001000000047 1.010488153 0.7164964676 0.2893750072 0.57688667798 0.9842656255 0.7147766352 0.3185298741
8 0.5465000272  0.001000000047 0.9941601753 0.7188872695 0.3068749905 0.5819295645 0.9327847958 0.7241379023 0.3859111667
9 0.5478749871 0.001000000047 0.9868047237 0.7242069244 0.31674999 0.583460927 0.9231871367 0.6919192076 0.4196018279
10 0.5567499995  0.001000000047 0.9779644608 0.7223922014 0.3246249855 0.6049004793 0.9177509046 0.7684887648 0.3660030663
11 0.5686249733  0.001000000047 1.503089547 0.7065482736 0.397875011 0.2817764282 0.9065353775 0.340816319 0.2557427287
12 0.7438750267  0.001000000047 0.6795935035 0.8245558143 0.6497499943 0.6600306034 0.8690680861 0.7330895662 0.6140888333
13 0.8121250272 0.001000000047 0.5270063877 0.8631167412 0.7456250191 0.7779479623 06866332293 0.8231173158 0.7197549939
14 0.8633750081  0.001000000047 0.3971581757 0.9017795324 0.8171250224 0.8024502397 0.5876773596 0.8341625333 0.7702909708
15 0.8907499808  0.,001000000047 0.3248457909 0.9168216586 0.8625000119 0.8545176387 0.5394589305 0.8634222746 0.8422664404
16 0.9192500114  0.001000000047 0.2477966696 0.9383651018 0.8982499838 0.8116385937 0.4392292106 0.8238993883 0.8024502397
17 0.9298750162  0.001000000047 0.2110958397 0.943785429 0.9150000215 0.7595711946 0.4386358953 0.8228980303 0.7044410706
18 0.9368749857  0.001000000047 0.1991960406 0.9523132443 0.9211249948 0.75650841 0.4186266851 0.7940199375 0.7320061326
19 0.9506250024  0.001000000047 0.151694566 0.9585347176 0.9419899719 0.9402756691 0.390067504 0.9559054971 0.9295558929
20 0.9476249814  0.001000000047 0.1529649943 0.9584929943 0.9381250143 0.8009188175 0.35522861 0.8119122386 0.7932618856

Figure 3.38— CSV Export of Training Logs for ResNet50.

The ResNet model gave us these results as it chose the last epochs: accuracy 0.9476, loss 0.1529,
validation accuracy 0.8009 and validation loss 0.3552.

Model: VGG19
Training vs Validation Accuracy Training vs Validation Loss
0.80 4 —— Train Loss
0.90 —— Validation Loss
0.85 -
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0.65 -
0.65 -
0.60 A
—— Train Accuracy 0.55 4
0.60 1 —— validation Accuracy
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Epochs Epochs

Figure 3.39— The loss curve and the accuracy curve for VGG19.
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0.4742499888
0.5931249857
0.6458749771
0.6691250205
06848750114
0.7022500038
0.7016249895
0.7161250114
0.7251250148
0.7252500057
0.7189999819

0.73012501
0.7335000038
0.7342500091
0.7392500043
07400000095
0.7433750033
0.7342500091
0.7473750114
0.7471250296

leaming_rate loss
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047
0.001000000047

1.16253233
0.9226165414
0.8332029581
0.7810131311
07581948042
0.7270371914
0.7123214006
0.7002208233
0.6789327264

0.676261127
0.6827843189
0.6650435328
0.6604516506
0.6485632062
0.6478963494
0.6452735066
0.6375150681
0.6415902376
0.6203888655

0.624907732

precision_3

0.5974806547
0.7258937955
0.7353755236
0.7431684732
0.7625578046
0.7639634013
0.7680453062
0.7739966512
0.7807494998
0.7791429162
0.7719771862
0.7786619663
0.7838680744
0.7878832221
0.7846243978
0.7847715616
0.7902523875

0.783157289
0.7921574116
0.7923900485

recall_3

0.2608749866
0.4187499881
0.4981249869
0.554125011
0.5768749714
0.605250001
0.6104999781
0.6340000033
0.6458749771
0.6499999762
0.6432499886
0.66049999
0.6596249938
0.6713749766
0.6685000062
0.6763749719
0.6809999943
06672499776
0.6893749833
0.6846250296

val_accuracy val_loss

0.6891270876
0.7350689173
0.7059724331
0.7075038552

0.765696764
0.7641654015
0.7488514781
0.7794793248
0.78713683163

0.781010747
0.7534456253
0.7825421005
0.7886676788
0.7963246703
0.7963246703
0.7978560328

0.781010747
0.7932618856
0.7871363163
0.7963246703

0.8217537999
0.7138989568
0.7114751339
0.6794682145
0.6109752059
0.5948117375
0.6079118848
0.574070394
0.5562054515
0.5601370335
0.5850449204
0.5701300502
0.553587079
0.5393920541
0.5388951302
0.5309044123
0.5349113941
0.5268341303
0.54758811
0.5277609229

val_precision_3

0.8087854123
0.8256658316

0.767123282
0.7835820913
0.8159851432
0.8327067494
0.7897526622
0.8245614171
0.8410714269
0.8263888955
0.8059440851
0.8209219575
0.8368794322
0.8440207839
0.8385416865
0.8304794431
0.8336282969
0.8397212625
0.8237287998
0.8373287916

val_recall_3

0.3399693668
0.5222052336
0.6003062725
0.6431853175
0.6722818017

0.678407371
0.6845329404
0.7197549939
0.7212863564
0.7289433479
0.7059724331
0.7090352178
0.7228177786
0.7457886934
0.7396630645
0.7427259088
0.7212863564
0.7381317019
0.7442572713
0.7488514781

3.8.2.5

Figure 3.40— CSV Export of Training Logs for VGG19.

These results were presented by the VGG19 model with low accuracy 0.7342, loss 0.6415,
validation accuracy 0.7932 and validation loss 0.5268.
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Figure 3.41— The confusion matrices for the four models.
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Confusion matrices indicate that the Xception and InceptionV3 models have excellent
classification performance, correctly classifying 148 glioma, 150 meningioma, 203 no-tumor, and 149
pituitary tumor cases, with a small misclassification of 1 to 3 cases. ResNet50 correctly classified most
cases, but incorrectly classified 9 no-tumor cases and 15 pituitary tumor cases as glioma, and 9
meningioma cases as glioma, showing some overlap in the learned features. On the other hand, the
VGG19 model suffers from severe confusion, especially between glioma and meningioma, classifying
37 glioma cases as meningioma and 19 meningioma cases as glioma, and some cases between
pituitary and other categories, reflecting weak feature extraction capabilities.

3.8.2.6 Roc-Auc Curve

ROC curves for each class
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Figure 3.42— Roc/Auc curve for Xception.
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Figure 3.44— Roc/Auc curve for ResNet-50.
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Figure 3.43— Roc/Auc curve for InceptionV3.
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Figure 3.45— Roc/Auc curve for VGG-19.

Receiver operating characteristic (ROC) curves show how well a model can separate classes, a
higher AUC (close to 1) means better prediction performance.

The images above demonstrate the classification performance of the four baseline models:
Xception, InceptionV3, ResNet-50, and VGG-19 across four tumor classes (glioma, meningioma,

pituitary, and no tumor).

Xception and InceptionV3 performed almost perfectly, with AUC scores close to 1.00 for all classes.
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ResNet-50 performed very well, with AUC values ranging between 0.99 and 1.00.

VGG-19 shows low AUC values, especially for categories such as meningioma and no tumor (AUC

=0.89-0.97).

These results indicate that the three models: Xception, InceptionV3, and ResNet-50 are able to
discriminate and classify tumors with high accuracy, while the VGG-19 model faces some difficulties.

3.8.2.7 Stacking model
Stacking Model
200
glioma 0 0 175
150
meningioma 125
T
s
. 100
2
£
no tumor 4 0 75
50
pituitary 4 0 25

T T
meningioma no tumor pituitary
Predicted label

T
glioma

Figure 3.46— The confusion matrix for the stacking model.
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Figure 3.48— The Training loss and accuracy curve for the stacking model.
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Figure 3.47— The ROC/Auc curve for the stacking model.

epoch accuracy
1 0.877582252
2 0.9946442246
3 0.9954093099
4 0.9961744547
5 0.9961744547

— glioma [AUC = 1.00)
—— meningioma (AUC = 1.00)
= no tumor (AUC = 1.00)
pituitary (AUC = 1.00)
.

08 10

loss
0.9844990373
0.2860683203
0.06272928417
0.03007725999
0.02269619144

Figure 3.49— CSV Export for stacking model.

The figure 3.46 shows the confusion matrix for the stacking model, which achieved almost
perfect classification, such as 148/148 for glioma and 203/203 for no tumor, and very few

misclassifications, totaling 3 images.

Figure 3.47 shows the ROC/AUC curve. It shows that the model reached an AUC value of 1.00 for
all categories (glioma, meningioma, no tumor, pituitary), indicating perfect classification.
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The training curves shown in the figure 3.48 show that the loss dropped to nearly 0 and the
accuracy reached 100% after only 5 epochs, which proves the excellent performance. Since the
stacking model is trained on predictions of pre-trained base models rather than directly on raw
images, using a separate validation set was not essential, as the base models had already been
validated individually.

Figure 3.49 shows the CSV export of the stacking model where we see that in only 5 epochs it
gave us excellent results and the best values were taken and they are: 0.996 of accuracy and 0.022 of

loss.

3.9 Implementation of the segmentation model

3.9.1 Training and optimization

3.9.1.1

Dataset Preparation

e Image preprocessing

O

@, Commands

@

<>

{x}

& Resunet_aug.ipynb ¥ &

File

©

Edit

= I
non

View Insert Runtime Tools Help

+ Code + Text

2
2

56
56

] A {petdng) s
path = path.decode()

x

cv2.imread(path,
cv2.resize(x, (W,
x / 255.8

x.astype(np.float32)

return x

read mask(path):
path = path.decode()

x

XXX X

=

etu

cv2.imread(path,
cv2.resize(x, (W,
x [ 255.@

cv2. IMREAD_COLOR)
H)) # Resizing
# Normalization

# hna ghi bah n evitou les problemes t3 hsabat w sy

cw2. IMREAD_GRAYSCALE)
H))

x.astype(np.float32)

np.expand_dims (x,

rn x

=il

Figure 3.50—Image resizing and normalization for segmentation task.

Here in the segmentation task, we also resized the images to 256x256 because the Res-Unet
model accepts this size. In addition, we did normalization as well.
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o Data splitting

¢ & Resunet_aug.ipynb ¥ &

File Edit View Insert Runtime Tools Help

Q_ Commands + Code + Text

= ¥ [23] def load_dataset(path, split=e.2):

@ image_paths = sorted(glob(os.path.join(path, "images”, "*.png")))
mask_paths = sorted(glob(os.path.join(path, "masks™, "*.png")))
<>
image names = set(os.path.basename(img) for img in image_ paths)
{x} mask_names = set(os.path.basename(mask) for mask in mask_paths)
for] common_files = list(image names.intersection(mask_names))
print(f" Images trouvées : {len(image names)}")
) print(f" Masques trouvés : [len(mask_names)}")

print(f" Fichiers correspondants : {len(common_files)}")
image_paths = sorted([os.path.join(path, "images", f) for f in common_files])
mask_paths = sorted([os.path.join(path, "masks"™, f) for f in common_files])

# vérifier aprés filtrage
assert len(image_paths) == len(mask_paths), "Le nombre d'images et de masques ne correspond pas aprés filtrage."

split_size = int(len(image_paths) * split)

train x, valid_x = train_test split(image_paths, test size=split size, random state=42)
train_y, valid y = train_test_split(mask_paths, test size=split_size, random_state=42)

train_x, test_x = train_test_split(train_x, test_size=split_size, random_state=42)
train_ y, test y = train_test split(train_y, test size=split size, random_state=42)

return (train_x, train_y), (valid x, valid y), (test_x, test_y)

CO & Resunet_aug.ipynb s &

File Edit View Insert Runtime Tools Help

Q, Commands + Code + Text
= [ 1 print(f"Train: {len(train x)} - {len(train_y)}")
print(f”"wvalid: {len(valid x)} - {len({wvalid y)}")
@ print(f"Test : {len(test x)} - {len(test y)}")
S~ Train: 23e8 - 2308

<> valid: 768 - 768
Test : 768 - 768

Figure 3.51—Splitting data into training, testing and validation data.

We split the data into 60% for training, 20% for testing, and 20% for validation.
3.9.1.2 Hyperparameters

e Optimizer: | used Adam optimizer.

e Learning rate: | used the popular value which is 0.001.
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e Loss: in loss function | utilized dice_loss because it optimizes the model for better segmentation.

e Number of epochs: 30 epochs.

CO & Resunet_aug.ipynb ¥ &

File Edit View Insert Runtime Tools Help

Q, Commands + Code <+ Text

= o batch_size = 16
1r = 1e-3
@ num_epochs = 39
<> model resunet = build resunet(input_shape=(256, 256, 3), num_classes=1)
model_resunet.compile(loss=dice_loss, optimizer=Adam(lr), metrics=[dice_coef, "accuracy"])
Ixl
Figure 3.52—Hyperparameters used on segmentation task.
3.9.1.3 Techniques for optimization
e Learning rate scheduling: if there is no improvement in the val _dice_coef for 5 consecutive
epochs, the learning rate is reduced by a factor of 0.1, this helps model to learn more precisely.
e Early stopping: the val_dice_coef metric is monitored. If no improvement is observed after 10
epochs, training is stopped and only best weights are retained.
{X} callbacks = [
ModelCheckpoint(model path, verbose=1, save_best_only=True),
ReducelROnPlateau( monitor="val dice coef", verbose=1, save best only=True, factor=0.1, patience=5, min_lr=le-7),
& (SVLogger(csv_path),
EarlyStopping(monitor='val dice coef', patience=16, mode="max"),
0 ]

Figure 3.53—Callbacks for segmentation task.

e Batch Normalization: We also used this method as an optimization technique to normalizes the
inputs of each layer to have a consistent distribution of values during training.
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( & Resunet_aug.ipynb ¥ () Saving..
File Edit View Insert Runtime Tools Help

Q,_ Commands + Code + Text

= o import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, MaxPooling2D, UpSampling2D, Add, Concatenate

@ from tensorflow.keras.models import Model
') def residual_block(x, filters):
{x} shortcut = x

# Convolution 1
o) X = Conv2D(filters, (3, 3), padding="same")(x)

x = BatchnNormalization()(x)
(] x = Activation("relu")(x)

Convolution 2
x = Conv2D(filters, (3, 3), padding="same")(x)
X = BatchNormalization()(x)

#*

Figure 3.54— Add batch normalization to our Res-Unet model.

e Data augmentation

CcO & Resunet_aug.ipynb ¥ &
File Edit View Insert Runtime Tools Help

Q_ Commands + Code + Text

= ° images=os.path.join('/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped)/aug','imagesaug')
masks=o0s.path.join("/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped)/aug', 'masksaug’)

image =os.listdir(images)

<« mask =os.listdir(masks)

{x}
print(‘images augmented :'+str(len(image)))
[o=r) print( ‘masks augmented:'+str(len(mask)))

)

images augmented :780
O masks augmented:780

Figure 3.55— Number of images and masks augmented.

Here we have added 780 images using data augmentation method and as we said before we
have selected only the images that contain small tumors and applied this method to them.
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CO & Resunet_aug.ipynb w &

File Edit View Insert Runtime Tools Help

Q, Commands + Code 4 Text

= [ 1 images=os.path.join(’/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped)’, 'images’)
masks=os.path.join("'/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped)’, 'masks')

image =os.listdir(images)

< mask =os.listdir(masks)
{x}

print('images :'+str(len(image)))
(=] print('masks :'+str(len(mask)))
(]

images :3064
masks :3064

)

Figure 3.56— Dataset before augmentation.

CO & Resunet_aug.ipynb ¥ &

File Edit View Insert Runtime Tools Help

Q  Commands + Code + Text

= [ ] images=os.path.join('/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped) aug','images')
masks=os.path.join("/content/drive/MyDrive/Brain MRI Tumor/Dataset (no cropped) aug','masks')

image =os.listdir(images)
<> mask =os.listdir(masks)

{x}

print(’'images after augmentation:'+str(len(image)))
print('masks after augmentation:'+str(len(mask)))

images after augmentation:3844
(| masks after augmentation:3844

)

Figure 3.57— Dataset after augmentation.

We notice in these two images (3.45, 3.46) the difference between the number of images in the
dataset before and after the data augmentation process.

3.9.1.4 Res-Unet architecture

This is the creation of our Res-Unet model.
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coO

Q  Commands

&

<>

{=}

cO

Q_ Commands

<>

{x}

& Resunet_aug.ipynb & &

File Edit View Insert Runtime Tools Help
+ Code + Text
Layer (type) output sShape Param # Connected to
5>
_ input_layer (InputLayer) (None, 256, 256, 3) =] -
conv2d (Conwv2D) (Mone, 256, 256, 64) 1,792 input_layer[e][e]
batch_normalization (None, 256, 256, 64) 256 conv2d[e][e]
(BatchNormalization)
activation (Activation) (MNone, 256, 256, 64) =] batch_normalization[e..
conv2d_1 (Conv2D) (Mone, 256, 256, 64) 36,928 activation[e][e]
batch_normalization_1 (None, 256, 256, 64) 256 conv2d_1[e][e]
(BatchNormalization)
conv2d_2 (Conv2D) (Mone, 256, 256, 64) 256 input_layer[©][e]
add (add) (None, 256, 256, 64) =] batch_normalization_1..
conv2d_2[e][e]
activation_1 (Activation) (MNone, 256, 256, 64) =] add[e][e]
max_pooling2d (Mone, 128, 128, 64) =] activation_1[e][e]
(MaxPooling2D)
conv2d_3 (Conv2D) (Mone, 128, 128, 128) 73,856 max_pooling2d[e][e]
batch_normalization_2 (Mone, 128, 128, 128) 512 conv2d_3[e][e]
(BatchNormalization)
activation_2 (Activation) (Mone, 128, 128, 128) =] batch_normalization_2..
conv2d_4 (Conv2D) (None, 128, 128, 128) 147,584 activation_2[e][e]
batch_normalization_3 (Mone, 128, 128, 128) 512 conv2d_4a[e][e]
(BatchNormalization)
& Resunet_aug.ipynb ¥ &
File Edit View Insert Runtime Tools Help
+ Code + Text
add_7 (Add) (None, 128, 128, 128) ® | batch_normalization_1..
conv2d_23[e][e]
a4 activation_15 (None, 128, 128, 128) @ | add_7[@][0]
(Activation)
up_samplingad_3 (None, 256, 256, 128) @ | activation_is5[e][e]
(UpSampling2D)
concatenate_3 (None, 256, 256, 192) @ | up_samplingad_3[e][e],
(Concatenate) activation_1[e][e]
convad_24 (Conv2D) (None, 256, 256, 64) 110,656 | concatenate_3[@][@]
batch_normalization_16 (None, 256, 256, 64) 256 | conv2d_24[e][e]
(BatchNormalization)
activation_16 (None, 256, 256, 64) 2] batch_normalization_1..
(Activation)
conv2d_25 (Conv2D) (None, 256, 256, 64) 36,928 | activation_ie6[@][e]
batch_normalization_17 (None, 256, 256, 64) 256 | conv2d_2s5[e][e]
(BatchNormalization)
conv2d_26 (Conv2D) (None, 256, 256, 64) 12,352 | concatenate_3[@][e@]
add_s (Add) (None, 256, 256, 64) ® | batch_normalization_1..
conv2d_26[e][e]
activation_17 (None, 256, 256, 64) @ | add_s[e][e]
(Activation)
conv2d_27 (Conv2D) (None, 256, 256, 1) 65 | activation_17[e][e]

Total params: 33,146,433 (126.44 MB)
Trainable params: 33,134,657 (126.4@ MB)
Non-trainable params: 11,776 (46.0@ KB)

Figure 3.58— The creation of the model.
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3.9.2 Performance evaluation and analysis (discussion of results)

Although we used one model, Res-Unet, we will see the results of some of the models we tried
before choosing Res-Unet.

3.9.2.1 Res-Unet

Accuracy

Model: Res-Unet

Training vs Validation Accuracy

Training vs Validation Dice Coefficient

099 | /
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Figure 3.59— The dice_coef curve and the accuracy curve for Res-Unet.

epoch accuracy

1 0.9803817868

2 0.9881899357
3 0.989364624
4 0.9907278419
5 0.99167245863
6 0.9924497008
7 0.9930924773
8 0.9939797521
9 0.9946555495
10 0.9949541688
11 0.995200634
12 0.9954252243
13 0.9956419468
14 0.9956774116

15 0.9957040548
16 0.9957306981

17 0.9957573414
18 0.995785594
19 0.9957892299

20 0.9957920909
21 0.9957957864

22 0.9957989454

23 0.9958019257
24 0.9958055019
25 0.9958082438

dice_coef leaming_rate

0.4159392715 1.00E-04
0.5369921327 1.00E-04
0.5984022021 1.00E-04
0.6573613286 1.00E-04
0.6969386935 1.00E-04
0.7284687757 1.00E-04
0.7537019849 1.00E-04
0.7924262285 1.00E-05

0.816845417 1.00E-05
0.8283029795 1.00E-05
0.8378320277 1.00E-05
0.8465353847 1.00E-05
0.8549273014 1.00E-06
0.8562839627 1.00E-06
0.8573205471 1.00E-06
0.8583304882 1.00E-06

0.859347105 1.00E-086
0.8604825138 1.00E-07
0.8605974317 1.00E-07
0.8607133627 1.00E-07

0.860830605 1.00E-07
0.8609494567 1.00E-07
0.8610707521 1.00E-07
0.8611941338 1.00E-07
0.8613194823 1.00E-07

loss

0.582484901
04609683454
0.4007888734
0.3420932293

0.302205354
0.2708572745
0.2453817725
0.2072347254
0.1830002517
01715873629
0.1620656103
0.1533658057
01449421048
01435866654
0.1425529569
0.1415448180
0.1405301094
0.1393800067
0.1392749101
0.1391593516
0.1390423477
0.1389233619
0.1388023198
0.1386791021
0.1385539919

val_accuracy

0.9855237007
0.9854490757
0.9483338787
0.9896895885

0.990008831
0.9905836582

0.989980042
0.9931152463
0.9932975769
0.9933587909
0.9934301972
0.9935030341
0.9935606122
0.9935700893
0.8935756326
0.9935829639
0.9935891628
0.9935907722
0.9935914874
0.9935924411
0.9935930371
0.9935936928
0.9935941696
0.9935953021

0.9935966134

val_dice_coef val_loss
0.00126303907 0.9987368584
0.0003369442129 0.9996630549
0.160428822 0.8395712376
0.6028084755 0.3971914351
0.6466234326 0.353376627
0.5495477319 0.4504523277
0.5445572734 0.455442667
0.7314459682 0.2685538828
0.7426063418 0.2573936284
0.7480530739 0.2519468963
0.7507312298 0.2492686957
0.7530965805 0.2469034344
0.7580091357 0.2419908792
0.7588572502 0.2411425114
0.7582098117 0.2407902479
0.7595002055 0.2404998392
0.7597899437 0.2402100414
0.7602718472 0.2397280782
0.7603671551 0.2396326661
0.7603853345 0.2396147996
0.760391295 0.2396087199
0.7603986263 0.2396013886
0.7604115605 0.2395885587
0.7604268193 0.2395731807

0.760446012 0.2395540825

Figure 3.60— CSV Export of Training Logs for Res-Unet.
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These are the results of the Res-Unet model, which gave an 0.9958 of accuracy, 0.1385 of loss,
training dice_coef 0.8613, and validation dice_coef 0.7604.

3.9.2.2 Attention U-Net
Model: Attention U-Net
Training vs Validation Accuracy Training vs Validation Dice Coefficient
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Figure 3.61— The dice_coef curve and the accuracy curve for Attention U-NET.

epoch accuracy dice_coef leaming_rate loss val_accuracy val_dice_coef val_loss
1 0.8450098634 0.1461230069 1.00E-04 0.8538768888 0.9822565317 0.0113776084 0.988612175
2 0.9228816032 0.2260159254 1.00E-04 0.7739840746 0.9822412729 0,0006222074153 0.9993770719
3 0.9464949965 0.2847048938 1.00E-04 0.715295136 09822107553  0.0002038845414 0.9997957349
4 0.9601147175 0.3449630439 1.00E-04 0.6550364494 0.9304416776 0.08670932055 0.9123817682
5 0.969694972 0.4007241428 1.00E-04 0.5992760658 0.8841253519 0.1758239418 0.8224113584
6 0.9782437682 0.4773896933 1.00E-04 0.5226103067 0.986004591 0.6070013046 0.3909461498
7 09836688638 05466272831 1.00E-04 0.4533727467 0.9854739308 05917394161 0.4053502679
8 0.986575067 0.6018304825 1.00E-04 0.3981696963 0.9829621911 0.6078193784 0.3947688937
9 0.9898670316 0.6635155678 1.00E-05 0.3364844024 0.9903169274 0.754291594 0.2479742914
10 0.9912266135 0.6875550747 1.00E-05 0.3124449253 0.9903558493 0.7274800539 0.2727259099
1" 0.9919146299 0.7003290653 1.00E05 0.2896711135 0.9916796684 0.7320810556 0.267924279
12 0.992369175 0.7121605873 1.00E-05 0.2878392041 0.9917556643 0.7236577868 0.2760605514
13 0.9929248095 0.722294271 1.00E-05 0.2777053714 0.9916632175 0.724550724 0.2755188644
14 0.9932439327 0.7303920984 1.00E-06 0.2696079016 0.9916355014 0.7073665261 0.2926014066
15 0.9933639765 0.7330074906 1.00E-06 0.2669925392 0.9917860031 0.70228827 0.2974368632
16 0.993478775 0.7346146703 1.00E-06 0.2653851211 0.9918431044 0.7007926702 0.2988384962
17 0.9935302734 0.7358373404 1.00E-06 0.2641626 0.9918052554 0.7001417875 0.2995234132
18 0.9935480952 0.7369724512 1.00E-06 0.2630276382 0.9918882847 0.7012093663 0.2984319925
19 0.9936259389 0.737953166 1.00E-07 0.2620467246 0.9918646812 0.698536396 0.3011035919

Figure 3.62— CSV Export of Training Logs for Attention U-NET.
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When training this model, the number of epochs was not completed because the early stopping
process stopped the training because of the absence of progress in the validation dice coefficient after
5 epochs. The best result was in epoch 11 where the accuracy was 0.9919, the loss was 0.2996, the
training dice_coef was 0.7003, and the validation dice_coef was 0.7320.

3.9.2.3 U-Net
Model: U-Net
Training vs Validation Accuracy Training vs Validation Dice Coefficient
1.00
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Figure 3.63— The dice_coef curve and the accuracy curve for U-NET.

epoch accuracy dice_coef leaming_rate loss val_accuracy val_dice_coef val_loss
1 0.8755033612 0.1268693805 1.00E-04 0.8737280965 0.666917026 0.0101078162 0.9898920655
2 0.9735860825 0.2358973771 1.00E-04 0.7641083598 04701127112 0.01231832802 0.9876815677
3 0.9821898937 0.3287226856 1.00E-04 0.6712055206 0.8782060742 0.04496941343 0.9550305009
4 0.9875227809 0.4348286986 1.00E-04 0.5652271509 0,9857260585 0.3037154377 0.6962844729
5 0.9892819524 0.515104413 1.00E-04 0.4848868847 0.9895787239 0.4073216915 0.5926782489
6 0.9906331897 0.5828794837 1.00E-04 0.4168939292 0.9896375537 0.4658126533 0.5341873765
7 0.9924548268 0.646556437 1.00E-05 0.3531814516 0.9925859571 0.6253197193 0.3746802509
8 0.893191123 0.6752011776 1.00E-05 0.324431777 0.9928584099 0.6384974718 0.3615025282
9 0.9935232997 0.6881361604 1.00E-05 0.3114761412 0.992950201 0.6459271908 0.3540728986
10 0.9938025475 0.7000811696 1.00E-05 0.2995295227 0.9929558635 0.654538393 0.34548615176
1 0.8940174818 0.710392952 1.00E-05 0.2891717851 0,9930544496 0.6507397294 0.3492602408
12 0.9942512512 0.7180898786 1.00E-06 0.2814793289 0.9930226207 0.6676859856 0.3323140144
13 0.9942882657 0.7203966975 1.00E-06 0.2791729271 0.9930126071 0.6695123315 0.3304876983
14 0.9943166375 0.7217175364 1.00E-06 0.2778517604 0.9930288196 0.6700818539 0.3299181163
15 0.8943423271 0.7228963375 1.00E-06 0.2766736746 0.9930410981 0.6706821918 0.3293178976
16 0.9943660498 0.7239501476 1.00E-06 0.2756189406 0.9930565953 0.6710495353 0.3289504945
17 0.9943892956 0.7251230478 1.00E-07 0.2744401991 0.9930527806 0.6713522077 0.3286477625
18 0.9943955541 0.7252514958 1.00E-07 0.2743109763 0.9930543303 0.6714098454 0.3285900652
19 0.9943995476 0.7253727317 1.00E-07 0.2741890252 0.9930558801 0.6714277864 0.3285724223
20 0.9944042563 0.725490272 1.00E-07 0.2740711272 0.993057251 0.671444416 0.3285555542
21 0.9944077134 0.7256054282 1.00E-07 0.2739554048 0.9930593371 0.671467483 0.3285326958
22 0.9944109917 0.7257195711 1.00E-07 0.2738411427 0.9930599332 0.6714954376 0.328504473
23 0.9944140911 0.7258334756 1.00E-07 0.273727566 0.9930601716 0.6715285778 0.3284713924
24 0.9944169521 0.7259465456 1.00E-07 0.2736143768 0.9930618405 0.6715640426 0.3284359276
25 0.9944197536 0.7260594964 1.00E-07 0.2735013366 0.993062973 0.6716036201 0.3283964097

Figure 3.64— CSV Export of Training Logs for U-NET.
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These are the outcomes of the U-Net model, which provided training dice_coef 0.7260,
validation dice_coef 0.6716, accuracy 0.9944, and loss 0.2735.

3.10 Comparison of the proposed model

We will compare our proposed classification model with the latest models and modern studies.
This comparison includes seeing the results of the performance metrics in two cases: the first for
classes only.

Classes/Papers->

Meningioma
Glioma
Pituitary
No tumor

accuracy
0.9954
1.0000
1.0000
0.9954

Proposed model

Precision Recall F1-Score accuracy Precision Recall F1-Score
0.9870 0.9935 0.9902 0.9623 0.93 0.92 0.92
1.0000 1.0000 1.0000 0.9689 0.97 0.96 0.97
1.0000 1.0000 1.0000 0.9869 0.97 0.98 0.98
0.9933 0.9867 0.9900 1.0000 1.0000 1.0000 1.0000

Model 1 [69] (2024)

Model 2 [70] (2025)

accuracy Precision Recall F1-Score

0.9923 0.9803 0.9852 0.9828
0.9934 0.9905 0.9952 0.9929
0.9945 0.9965 0.9863

0.9914

Table 3.3 — Comparison of the Proposed Model with State-of-the-Art Models for Multi-Class Brain Tumor Classification.

In the table 3.3, our proposed model outperformed the other two in classifying glioma and
pituitary tumors, while the second model performed better in classifying no_tumor. The performance
of the third model was relatively close to that of both our model and the second model.

Ref. Model Dataset Accuracy
[71]2021 Transfer learning with MobileNetV2, VGG19, 4600 brain images (Kaggle dataset) MobileNetV2:
InceptionV3 92.00%
VGG19: 88.22%
InceptionV3: 91.00%
[72]2020 Customized ResNet50 model 253 MRIs 97.01%
(Kaggle dataset)
[73]2020 AlexNet, VGG16, AlexNet+VGG16 with hyper- 253 MRIs from Kaggle AlexNet: 92.47%
column techniques and SVM VGG16: 90.32%
AlexNet+VGG16:
96.77%
[74]2021 Multi-scale CNN Figshare 97.3%
[75]2022 InceptionV3 with Quantum classification Kaggle data, 99.44%, 90.91%,
2020-BRATS, local collected images 93.33%
[76]2022 Ensemble of vision transformers Fighshare 98.7%
[77]2022 Inception-ResnetV2 with ADSCFGWO algorithm BRaTS 2021 99.98%
[78]2023 ResNet with hyper-parameter optimization Figshare 98.6%
[79]2021 Improved ResNet50 Model 551 healthy and diseased images 98.59%
Kaggle and http://radiopaedia.org/
[80]2021 Feature level ensemble of 3 CNNs with PCA Figshare 98.37%
feature reduction
[81]2022 Custom deep neural network model with less Figshare 99.18%
hyper-parameters
[82]2022 3D U-Net and 16-layer CNN BRATS2020 for segmentation model  99.06%
Kaggle dataset 3264 images for 90%
classification model
2025  Proposed model Kaggle Brain tumor MRI dataset 99.61%

Table 3.4 — Accuracy Comparison of Existing Brain Tumor Classification Models and the Proposed Model.

And in this table 3.4, we see the accuracy compared to some models and their
techniques and different datasets used with our proposed model.

different

76



Chapter 3 Conception and realization

3.10 Application interface

We wanted to present our models, which consist of convolutional neural networks, with a
graphical interface so we could visualize their performance. We used the streamlit library for this
purpose.

Brain tumor detection

This application detects and segments brain tumors from MRl images.

Upload an MRl image :

D ddropfileh
rag anddrop file here Browse files

Limit 200MB per file « PNG, JPG, JPEG

Brain tumor detection

This application detects and segments brain tumors from MRI images.

Upload an MRl image :

D d drop file t
rag@ 1opILENeIe Browse files

p (170).png 117.4KE X
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Prodict
rredict ‘

Prediction in progress...

Classification and segmentation results :

"Image_combine" : "<_jo.BytesIO object at Ox000001F9512E2840>"

Combined images

Segmentation result

Figure 3.65— Application interface.
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In these images we see the interface of our application, where we deliberately placed this image
because it contains a small tumor in the pituitary gland, to see how powerful our model is in classifying
and segmenting small tumors.

Classification and segmentation results :

v
"predicted_class" : "glioma"
Y "features" : {
"Surface (cm?)" :
"Perimeter (cm)" : 3.29232272581176
"Width (cm)" : 1.00548
"Height (cm)" : 0.9261

]

'Cir‘CU-_ﬂx"W‘t)"' : 0.84090028473492

"Image_combine" : "<_j

Combined images

Figure 3.66— An example for glioma tumor.

Here we take an example of a medium-sized glioma.
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1287.png B x

g
"predicted_class" : "pituitary"
Y "features" : {
"Surface (cm?)" : 0.058110922800000006

"Perimeter (cm)" : 0.834980999464313

=

"Width (cm)" : 0.2910¢

"Height (cm)" : 0.2646

"Circularity" : 1.047404535¢
}

"Image_combine" : "<_jo.BytesIO object at Ox00000246F7361080>"

Combined images

Figure 3.67— An example for an ambiguous image.

We notice the precise segmentation of our model in this ambiguous image, as it contains a
tumor, but in the bottom, there is a white substance that is not a tumor, which the model correctly
ignored and only highlighted the tumor area.
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Prediction in progress..

Classification and segmentation results :

Figure 3.68— An example for no tumor.
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We have included this image, which does not contain a tumor, but contains small white dots that
some might think are a tumor, butin fact they are chronic, minute lesions in the blood vessels resulting

from poor brain perfusion, and they often appear on T2 or FLAIR MRl images, and they are not tumors,
and this indicates the strength of our model in classifying tumors.

Predict

Prediction in progress...
Classification and segmentation results :

" : "No tumor detected"

"Com

Figure 3.69— An example for no tumor 2.
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Predict ‘

Prediction in progress...

Classification and segmentation results :

“{
"message" : "No tumor detected"
"features" : nuLL
"Combined images" : wnuLL

}

Figure 3.70— An example for no tumor 3.
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Finally, as we can see, we extracted the following features to better analyze the detected tumor:

Surface area: The number of segmented pixels translated into square centimeters, indicates the size of
the tumor. This helps assess the extent of the tumor and monitor its progression over time.

Perimeter: Determines how long the tumor's contour is. This characteristic is helpful in spotting
asymmetrical boundaries, which are frequently linked to cancerous growths.

Width: refers to the tumor's greatest horizontal distance. It provides information on the tumor's
horizontal axis spread, which is crucial for designing focused treatments.

Height: It is the maximum vertical distance of the tumor. It provides accurate measurements of the tumor,
which is important for surgical planning and treatment decisions.

Circularity: Describes the shape of the tumor based on the ratio between its surface area and its

perimeter. A perfectly round tumor has a circularity close to 1. Irregular shapes (low circularity) can
indicate potential abnormalities that require further investigation.
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Conclusion

In this chapter, we presented the implementation and application of our system. Our model
shows better accuracy in both training and validation for both classification and segmentation, with
these values tending to 1 at a given time. The Dice coefficient in segmentation was good. We used
and developed various optimization and regularization techniques such as batch normalization,
dropout, and data augmentation to optimize and robust our model. The proposed CNN model can
successfully recognize and accurately segment brain images containing tumors and normal brain
images, adding some important tumor features that are helpful to the doctor. It has no variability and
is fast to learn.
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General conclusion

This project has highlighted the effectiveness of artificial intelligence in the detection and
segmentation of brain tumors, by offering an automated, fast and accurate solution that can be a
valuable tool to help doctors in diagnosis and decision-making. It has also provided me with a rich and
motivating personal experience, strengthening my theoretical knowledge, developing my design and
programming skills, and allowing me to work on a concrete project with meaning and clear objectives.

Perspectives

The project is currently still under development. We plan to add 3D segmentation to handle all
types of MRI scans, improve segmentation accuracy, and integrate other features into the web

application, such as tumor stage or progression estimation, to better support physicians in their
decision-making.
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