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Abstract

Fractional differential equations play an important role in describing many phe-
nomena and processes in various fields of science such as physics, chemistry, control
systems, population dynamics, aerodynamics and electrodynamics, etc. In this work,
we present existence of quasi-solutions for the firs-order dynamic equations involving
integral boundary conditions, and we present the existence of extremal solutions for
nonlinear conformable fractional differential equations involving integral boundary con-
ditions. Also, we present the existence of extremal solutions for a coupled system of
nonlinear conformable fractional differential equations on time scales with initial condi-
tions. Existence results for these problems are obtained by by applying the comparison
principle and the monotone iterative technique combined with the method of upper
and lower solutions.

Key words and phrases:Calculus on time scales, conformable fractional calculus
on time scales, systems of conformable fractional differential equations on time scales,
comparison principle, upper and lower solutions, monotone iterative technique.
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Résumé

Les équations différentielles fractionnaires jouent un rôle important dans la descrip-
tion de nombreux phénomènes et processus dans divers domaines scientifiques tels
que la physique, la chimie, les systèmes de contrôle, la dynamique des populations,
l’aérodynamique et l’électrodynamique, etc.

Nous présentons dans ce mémoire, l’existence de quasi-solutions pour des équations
dynamiques sur les échelles de temps non linéaires d’ordre un avec condition integral
aux limites, et l’existence de solutions extrêmes pour des équations différentielles frac-
tionnaires conformes non linéaires avec condition intégrale. Aussi, nous présentons
l’existence de solutions extrêmes pour un système couplé d’equations différentielles
fractionnaires conformes non linéaires sur les échelles de temps avec conditions ini-
tiales. Ces résultats sont obtenus grâce à la technique itérative monotone combinée à
la méthode des sous et sur solutions.

Mots Clés: Calcul sur les échelles de temps, calculs fractionnaire conforme sur les
échelles de temps, systèmes d’équations différentielles fractionnaires conformes sur les
échelles de temps, sous et sur solutions, technique des itérations monotones.
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Introduction

A time scale T is an arbitrary nonempty closed subset of real numbers R with the
subspace topology inherited from the standard topology of R. The theory of time scales
was introduced by Stefan Hilger in his PhD thesis [18] in 1988, in order to unify and
generalize continuous and discrete analysis.

Fractional calculus is a generalization of ordinary differentiation and integration to
arbitrary non-integer order. Fractional differential equations play an important role in
describing many phenomena and processes in various fields of science such as physics,
chemistry, control systems, population dynamics, aerodynamics and electrodynamics,
etc. For examples and details, the reader can see the references [23, 27, 29, 31, 33].

Recently, a new fractional derivative, called the conformable fractional derivative,
was introduced by Khalil et al. [22]. For recent results on conformable fractional
derivatives we refer the reader to [1, 2, 3, 4, 12, 17]. In particular, Benkhettou et al. [7]
introduced a conformable fractional calculus on an arbitrary time scale, which provided
a natural extension of the conformable fractional calculus.

In this work, we present existence of quasi-solutions for the firs-order dynamic equa-
tions involving integral boundary conditions, and we present the existence of extremal
solutions for nonlinear conformable fractional differential equations involving integral
boundary conditions. Also, we present the existence of extremal solutions for a coupled
system of nonlinear conformable fractional differential equations on time scales with
initial conditions. Existence results for these problems are obtained by using the mono-
tone iterative technique combined with the method of upper and lower solutions, as
presented respectively in the following articles [14, 21, 6]. The purpose of this method
is to constructing two monotone iterative sequences, by using γ, δ the lower and upper
solutions with γ ≤ δ, showing the convergence of the constructed sequences, and prov-
ing these two sequences approximate the extremal solutions of the given problem. We
point out that monotone iterative technique combined with the method of upper and
lower solutions has been applied by several authors, see [11, 21, 24, 25, 26, 28].

We have organized this work as follows:

In Chapter 1, we present some definitions and results which are used throughout
this work.

In Chapter 2, we prove the existence of quasi-solutions for the following first-order
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dynamic equation with nonlocal initial condition (integral boundary condition):
u∆(t) = f(t, u(t)), t ∈ I = [a, b]T,

u(a) =

∫ σ(b)

a

g(s)u(s)∆s,

where a, b ∈ T, a < b, J = [a, σ(b)]T, f : I × R → R and g : J → R are continuous
functions.

In Chapter 3, we present the existence of extremal solutions for the following non-
linear conformable fractional differential equations with integral boundary conditions:

x(α)(t) = f(t, x(t)), t ∈]0, 1[,

x(0) = −rx(1) + λ

∫ 1

0

x(s)ds,

where 0 < α ≤ 1, r > 0, λ > 0, f : [0, 1]× R→ R is a continuous function and x(α)(t)
denotes the conformable fractional derivative of x at t ∈]0, 1[ of order α.

In Chapter 4, we investigate the existence of extremal solutions for a coupled
system of nonlinear conformable fractional dynamic equations on time scales, by ap-
plying the comparison principle and the monotone iterative technique combined with
the method of upper and lower solutions:

x
(α)
∆ (t) = f(t, xσ(t), yσ(t)), t ∈ I = [a, b]T,

y
(α)
∆ (t) = g(t, yσ(t), xσ(t)), t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0.

Here, T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 < a < b,

λ0, β0 ∈ R, λ0 ≤ β0, f, g : I × R× R→ R are continuous functions and x
(α)
∆ , y

(α)
∆ are

the conformable fractional derivatives (on time scales) with α ∈ (0, 1].



Chapter 1

Preliminaries

In this chapter, we present some definitions and results which we will use in this work.

1.1 Time scales calculus

Let T be a time scale, which is a closed subset of R. For t ∈ T, we define the forward
and backward jump operators σ, ρ : T→ T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}, respectively.

A point t ∈ T with σ (t) > t, ρ (t) < t, t = σ (t), t = ρ (t), ρ (t) < t < σ (t) and
ρ (t) = t = σ (t) is called right-scattered, left scattered, right dense, left dense, isolated
and dense, respectively.

The graininess function µ : T→ [0,∞) is defined by µ(t) := σ(t)− t.
If T has a left-scattered maximum M , then Tκ = T\{M}, otherwise, Tκ = T.

For a, b ∈ T we define the closed interval [a, b]T := {t ∈ T : a ≤ t ≤ b}.

If f : T→ R, is a function, then we define the function fσ by

fσ(t) = (foσ)(t) = f(σ(t))) for all t ∈ T.

Definition 1.1.1 [8]. The function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T, write f ∈ Crd (T,R) .

Definition 1.1.2 [8](Delta derivative) Assume f : T→ R is a function and let t ∈ Tκ.
Then we define f∆(t) to be the number (provided it exists) with the property that given
any ε > 0, there exists a neighborhood U of t such that∣∣f(σ(t))− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s| , for all s ∈ U.
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We call f∆(t) the delta derivative (∆-derivative) of f at t and we say that f is delta
differentiable on Tκ provided f∆(t) exists for all t ∈ Tκ.
The set of functions f : T → R which are ∆-differentiable and whose ∆-derivative is
rd-continuous is denoted by C1

rd (T,R) .

Definition 1.1.3 [8]. The function p : T→ R is µ-regressive if

1 + µ(t)p(t) 6= 0, for all t ∈ Tκ.

The set of all µ-regressive and rd-continuous functions p : T → R will be denoted by
Rµ. We define the set R+

µ = {p ∈ Rµ : 1 + µ(t)p(t) > 0} for all t ∈ T.

Definition 1.1.4 [8]. If p ∈ Rµ, then we define the delta exponential function ep by:

ep(t, s) = exp
(∫ t

s

ξµ(τ)(p(τ))∆τ
)
,

for t, s ∈ T, where the µ-cylinder transformation is as in :

ξh(z) =


1

h
log(1 + zh); if h > 0;

z; if h = 0.

where log is the principal logarithm function.

Lemma 1.1.5 [8].

(1) If p ∈ Rµ and s, t, t0 ∈ T, then

ep(t, t) ≡ 1, e0(t, s) ≡ 1, ep(t, s) =
1

ep(s, t)
, and ep(t, t0)ep(t0, s) = ep(t, s).

(2) If p ∈ R+
µ and t0 ∈ T, then

ep(t, t0) > 0, for all t ∈ T.

1.2 Conformable Fractional Calculus

In this section, we introduce some necessary definitions and properties of the con-
formable fractional calculus which are used in this report and can be found in [1, 19, 22].

Definition 1.2.1 [22] Given a function f : [0,∞)→ R and a real constant α ∈ (0, 1].
The conformable fractional derivative of f of order α is defined by,

f (α)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(1.1)
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for all t > 0. If f (α)(t) exists and is finite, we say that f is α-differentiable at t.
If f is α-differentiable in some interval (0, a), a > 0, and lim

t→0+
f (α)(t) exists, then

the conformable fractional derivative of f of order α at t = 0 is defined as

f (α)(0) = lim
t→0+

f (α)(t).

Theorem 1.2.2 [22] Let α ∈ (0, 1] and f : [0,∞) → R a α-differentiable function at
t0 > 0, then f is continuous at t0.

Theorem 1.2.3 [22] Let α ∈ (0, 1] and assume f, g to be α-differentiable at a point
t > 0. Then,

(i) (af + bg)(α) = af (α) + bg(α), for all a, b ∈ R;

(ii) (fg)(α) = fg(α) + gf (α);

(iii) (f/g)(α) =
gf (α) − fg(α)

g2
.

(iv) If, in addition, f is differentiable at a point t > 0, then

f (α)(t) = t1−αf ′(t).

Additionaly, conformable fractional derivatives of certain functions as follow:

1. (tp)(α) = p tp−α, for all p ∈ R.

2. (λ)(α) = 0, for all λ ∈ R.

3. (ect)(α) = c t1−αect, for all c ∈ R.

Definition 1.2.4 (Conformable fractional integral [22]). Let α ∈ (0, 1] and f : [a,∞)→
R. The conformable fractional integral of f of order α from a to t, denoted by Iaα(f)(t),
is defined by

Iaα(f)(t) :=

∫ t

a

f(s)dαs :=

∫ t

a

f(s)sα−1ds.

The considered integral is the usual improper Riemann one.
For a = 0 we put I0

α(f)(t) = Iα(f)(t).

Theorem 1.2.5 [22] If f is a continuous function in the domain of Iaα then, for all
t ≥ a we have

(Iaα(f))(α) (t) = f(t).

Lemma 1.2.6 [22] Let f : (a, b) → R be differentiable and 0 < α ≤ 1. Then, for all
t > a we have

Iaα(f (α))(t) = f(t)− f(a). (1.2)

Proposition 1.2.7 [19] Let 0 < a < b, f : [a, b] → R be continuous function and
0 < α < 1. Then for all t ∈ [a, b] we have,

|Iaα(f)(t)| ≤ Iaα|f |(t).
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1.3 Conformable fractional calculus on time scales

We begin by introducing the notion of conformable fractional derivative of order α ∈
]0, 1] for function defined on arbitrary time scale T.

Definition 1.3.1 [7](Conformable fractional derivative on time scale) Let f : T→ R,

t ∈ Tκ, and α ∈]0, 1]. For t > 0, we define f
(α)
∆ (t) to be the number (provided it

exists) with the property that, given any ε > 0, there is a δ-neighborhood Vt ⊂ T
(i.e.,Vt := ]t− δ, t+ δ[ ∩ T) of t, δ > 0, such that∣∣∣[f(σ(t))− f(s)] t1−α − f (α)

∆ (t) [σ(t)− s]
∣∣∣ ≤ ε |σ(t)− s| for all s ∈ Vt.

We call f
(α)
∆ (t) the conformable fractional derivative of f of order α at t, and we define

the conformable fractional derivative at 0 as f
(α)
∆ (0) = lim

t→0+
f

(α)
∆ (t).

.

Example 1.3.2 Let α ∈ (0, 1]. Functions f, g, h : T→ R : f(t) = t, p ∈ R, g(t) ≡ λ,
λ ∈ R, and h(t) = ep(t, a), p ∈ Rµ, are conformable fractional derivatives of order α
with

f
(α)
∆ (t) = t1−α; g

(α)
∆ (t) = 0; h

(α)
∆ (t) = t1−αp ep(t, a).

Remark 1.3.3 (i) If α = 1, we have f
(α)
∆ (t) = f∆(t).

(ii) If T = R, then f
(α)
∆ = f (α) is the conformable fractional derivative of f of order

α.

We introduce the following spaces::

Cα
rd([a, b]T,R) = {f is conformal fractional differentiable of order α on [a, b]T

and f
(α)
∆ ∈ Crd([a, b]T,R)}.

Theorem 1.3.4 [34] Let α ∈]0, 1]. Assume f : T → R and let t ∈ Tκ. The following
properties hold.

(i) If f is conformal fractional differentiable of order α at t > 0, then f is continuous
at t.

(ii) If f is continuous at t and t is right-scattered, then f is conformable fractional
differentiable of order α at t with

f
(α)
∆ (t) =

f(σ(t))− f(t)

µ(t)
t1−α = t1−αf∆(t).



1.3. Conformable fractional calculus on time scales 8

(iii) If t is right-dense, then f is conformable fractional differentiable of order α at

t if and only if the limit lim
s→t

f(t)− f(s)

(t− s)
t1−α exists as a finite number. In this

case,
f

(α)
∆ (t) = t1−αf ′(t).

(iv) If f is conformable fractional differentiable of order α at t, then

f(σ(t)) = f(t) + (µ(t))tα−1f
(α)
∆ (t).

Theorem 1.3.5 [34] Assume f, g : T→ R are conformable fractional differentiable of
order α. Then,

(i) the sum f+g is conformable fractional differentiable with (f+g)
(α)
∆ = f

(α)
∆ +g

(α)
∆ ;

(ii) for any λ ∈ R, λf is conformable fractional differentiable with (λf)
(α)
∆ = λf

(α)
∆ ;

(iii) if f and g are continuous, then the product fg is conformable fractional differ-

entiable with (fg)
(α)
∆ = f

(α)
∆ g + (f ◦ σ) g

(α)
∆ = f

(α)
∆ (g ◦ σ) + f g

(α)
∆ ;

Now we introduce the α-conformable fractional integral (or α-fractional integral)
on time scales.

Definition 1.3.6 [7] Let f : T → R be a regulated function. Then the α-fractional
integral of f , 0 < α ≤ 1, is defined by

∫
f(t)∆αt :=

∫
f(t)tα−1∆t.

Definition 1.3.7 [7] Suppose f : T→ R is a regulated function. Denote the indefinite
α-fractional integral of f of order α, α ∈ (0, 1], as follows: F (t) =

∫
f(t)∆αt. Then,

for all a, b ∈ T, we define the Cauchy α-fractional integral by
∫ b
a
f(t)∆αt = F (b)−F (a).

Theorem 1.3.8 [7] Let α ∈ (0, 1]. Then, for any rd-continuous function f : T→ R,

there exist a function F : T → R such that F
(α)
∆ (t) = f(t) for all t ∈ Tκ. Function F

is said to be an α-antiderivative of f .

Theorem 1.3.9 [7] If f : Tκ → R is a rd-continuous function and t ∈ Tκ, then∫ σ(t)

t

f(s)∆αs = f(t)µ(t)tα−1.

Theorem 1.3.10 [34] Let α ∈ (0, 1], a, b, c ∈ T, λ, γ ∈ R, and f, g : T → R be two
rd-continuous functions. Then,

(i)

∫ b

a

[λf(t) + γg(t)]∆αt = λ

∫ b

a

f(t)∆αt+ γ

∫ b

a

g(t)∆αt;
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(ii)

∫ b

a

f(t)∆αt = −
∫ a

b

f(t)∆αt;

(iii)

∫ b

a

f(t)∆αt =

∫ c

a

f(t)∆αt+

∫ b

c

f(t)∆αt;

(iv)

∫ a

a

f(t)∆αt = 0;

(v) if there exist g : T→ R with ‖f(t)‖ ≤ |g(t)| for all t ∈ [a, b], then∥∥∥∫ b

a

f(t)∆αt
∥∥∥ ≤ ∫ b

a

∣∣∣g(t)
∣∣∣∆αt.

1.4 Elements of Functional Analysis

Let C(J,R) be the Banach space of continuous functions from J = [a, b] into R with
the norm

‖u‖ = sup{|u(t)| : t ∈ J}.

Definition 1.4.1 [32]. Let E, F be Banach spaces and T : E → F .

(i) The operator T is said to be bounded if it maps any bounded subset of E into a
bounded subset of F .

(ii) The operator T is called compact if T (E) is relatively compact (i.e., T (E) is
compact).

(iii) The operator T is said to be completely continuous if it is continuous and maps
any bounded subset of E into a relatively compact subset of F .

Theorem 1.4.2 (Arzela-Ascoli theorem [30]). A subset F of C([a, b],R) is relatively
compact (i.e. F is compact) if and only if the following conditions hold:

1. F is uniformly bounded i.e, there exists M > 0 such that

‖f(t)‖ < M for each t ∈ [a, b] and each f ∈ F .

2. F is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
t1, t2 ∈ [a, b], |t2 − t1| 6 δ implies ‖f(t2)− f(t1)‖ 6 ε, for every f ∈ F .

Theorem 1.4.3 (Arzela-Ascoli Theorem [10](Sequential Version)). If {fn(t)} is a
uniformly bounded and equicontinuous sequence of real functions on an interval [a, b],
then there is a subsequence which converges uniformly on [a, b] to a continuous function.
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Theorem 1.4.4 (Banach’s fixed point theorem [16]) Let C be a non-empty closed sub-
set of a Banach space X, then any contraction mapping T of C into itself has a unique
fixed point.

Theorem 1.4.5 (Lebesgue dominated convergence theorem [15]). Suppose fn : R →
[−∞,+∞] are (Lebesgue) measurable functions such that

1. lim
n→+∞

fn(x) = f(x).

2. There is an integrable g : R→ [0,+∞] with |fn(x)| ≤ g(x), for each x ∈ R.

Then f is integrable as is fn for each n, and

lim
n→+∞

∫
R
fndµ =

∫
R
lim
n→+∞

fndµ =

∫
R
fdµ.



Chapter 2

Existence results for a first-order
dynamic equations with nonlocal
initial conditions on time scales

In this chapter, we prove the existence of quasi-solutions for the following first-order
dynamic equation with nonlocal initial condition (integral boundary condition):

u∆(t) = f(t, u(t)), t ∈ I = [a, b]T,

u(a) =

∫ σ(b)

a

g(s)u(s)∆s,
(2.1)

where a, b ∈ T, a < b, J = [a, σ(b)]T, f : I × R → R and g : J → R are continuous
functions. The existence result of (2.1) is obtained by means of the method of upper and
lower solutions and its associated monotone iterative technique. The original results
of this chapter are found in [14].

In [13], M. Derhab et al. studied the existence of quasi-solutions for the following
problem: 

u
′
(t) = f(t, u(t)), t ∈ [0, T ],

u(0) =

∫ T

0

g(s)u(s)ds,
(2.2)

where T > 0, f : [0, T ]× R→ R and g : [0, T ]× R→ R are continuous functions.
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2.1 Linear problems and comparison principles

In this section, we study the expression of the solutions of a linear first-order dynamic
equation on time scales, with initial condition:x

∆(t) + p(t) x(t) = h(t), t ∈ I = [a, b]T,

x(a) = x0,
(2.3)

with −p ∈ Rµ, x0 ∈ R and h ∈ C(I,R).

Theorem 2.1.1 Let p ∈ Rµ. For every h ∈ C(I,R), the problem (2.3) has a unique
solution x ∈ C(J,R) given by:

x(t) = x0e−p(t, a) +

∫ t

a

e−p(t, σ(s))h(s)∆s, t ∈ J = [a, σ(b)]T. (2.4)

Proof. Let x be a solution to (2.3). By Theorem 1.3.5, with α = 1 consider[
x (t)

e−p(t, a)

]∆

=
x∆ (t) e−p(t, a)− x (t) e∆

−p(t, a)

e−p (t, a) eσ−p (t, t0)

=
x∆ (t) e−p(t, a) + p (t)x (t) e−p(t, a)

e−p(t, a)e−p (σ(t), a)

=
x∆ (t) + p (t)x (t)

e−p (σ(t), a)

=
h (t)

e−p (σ(t), a)

= h (t) e−p (a, σ(t)) .

and hence integrating the above on [a, t]T obtain

x (t)

e−p(t, a)
− x (a)

e−p(a, a)
=

∫ t

a

h (s) e−p (a, σ(s)) ∆s.

So,

x(t) = x0e−p(t, a) +

∫ t

a

e−p(t, σ(s))h(s)∆s. (2.5)

�

As a direct consequence of the previous result with p(t) = M > 0, for all t ∈ I =
[a, b]T, we deduce the following expression of the initial problem.
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Corollary 2.1.2 The initial problemx
∆(t) +M x(t) = h(t), t ∈ I = [a, b]T,

x(a) = x0,
(2.6)

with M > 0 and h ∈ C(I,R), has a unique solution x ∈ C(J,R) given by:

x(t) = x0e−M(t, a) +

∫ t

a

e−M(t, σ(s))h(s)∆s, t ∈ J. (2.7)

In the next Lemmas, we discuss comparison results for the linear problem (2.6).

Lemma 2.1.3 Let M > 0, −M ∈ R+
µ and x ∈ C1(J = [a, σ(b)]T,R), such that:x

∆(t) +M x(t) ≤ 0, t ∈ [a, b]T,

x(a) ≤ 0.
(2.8)

Then x(t) ≤ 0, for every t ∈ J .

Proof. we put x∆(t)+M x(t) = h(t) and x(a) = x0 ≤ 0. We are know that h(t) ≤ 0,
for every t ∈ [a, b]T andx

∆(t) +M x(t) = h(t), t ∈ [a, b]T,

x(a) = x0 ≤ 0.
(2.9)

By Corollary 2.1.2, the expression of x(t) is given by (2.7):

x(t) = x0e−M(t, a) +

∫ t

a

e−M(t, σ(s))h(s)∆s,

we can conclude that, x(t) ≤ 0 for every t ∈ J . �

Lemma 2.1.4 Let M > 0, −M ∈ R+
µ and x ∈ C1(J = [a, σ(b)]T,R), such that:{

x∆(t) +M x(t) ≥ 0, t ∈ [a, b]T,

x(a) ≥ 0.
(2.10)

Then x(t) ≥ 0, for every t ∈ J .
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Proof. we put x∆(t)+M x(t) = h(t) and x(a) = x0 ≥ 0. We are know that h(t) ≥ 0,
for every t ∈ [a, b]T andx

∆(t) +M x(t) = h(t), t ∈ [a, b]T,

x(a) = x0 ≥ 0.
(2.11)

By Corollary 2.1.2, the expression of x(t) is given by (2.7):

x(t) = x0e−M(t, a) +

∫ t

a

e−M(t, σ(s))h(s)∆s,

we can conclude that, x(t) ≥ 0 for every t ∈ J . �

Now we consider the following linear first-order initial Value problem:
x∆(t) +M x(t) = h(t), t ∈ I = [a, b]T,

x(a) =

∫ c

a

ϕ(s)x(s)∆s+

∫ σ(b)

c

ϕ(s)x(s)∆s,
(2.12)

where ϕ : [a, σ(b)]T → R is continuous such that

ϕ(t) ≤ 0, t ∈ [a, c]T and ϕ(t) ≥ 0, t ∈ [c, σ(b)]T with a < c < σ(b) and c ∈ [a, σ(b)]T.

We have the following result:

Lemma 2.1.5 Let M > 0, −M ∈ R+
µ and x ∈ C1([a, σ(b)]T,R), such that:

x∆(t) +M x(t) ≤ 0, t ∈ [a, b]T,

x(a) ≤
∫ c

a

ϕ(s)x(s)∆s+

∫ σ(b)

c

ϕ(s)x(s)∆s,
(2.13)

and

−
∫ c

a

ϕ(s)e−M(s, a)∆s+

∫ σ(b)

c

ϕ(s)e−M(s, a)∆s < 1. (2.14)

Then x(t) ≤ 0, for all t ∈ [a, σ(b)]T.

Proof. we put x∆(t)+M x(t) = h(t). We are know that h(t) ≤ 0, for every t ∈ [a, b]T.
By Corollary 2.1.2, we have

x(t) = x(a)e−M(t, a) +

∫ t

a

e−M(t, σ(s))h(s)∆s,

we can conclude that,

x(t) ≤ x(a)e−M(t, a) for every t ∈ J. (2.15)
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Then by the second inequality in (2.13), one has

x(a) ≤ −x(a)

∫ c

a

ϕ(s)e−M(s, a)∆s+ x(a)

∫ σ(b)

c

ϕ(s)e−M(s, a)∆s.

That

x(a)

(
1 +

∫ c

a

ϕ(s)e−M(s, a)∆s−
∫ σ(b)

c

ϕ(s)e−M(s, a)∆s

)
≤ 0.

Then by this last inequality and (2.14), we obtain:

x(a) ≤ 0,

and consequently by (2.15), it follows that

x(t) ≤ 0, for all t ∈ [a, σ(b)]T.

�

2.2 Main Results

In this section, we prove the existence of quasi-solutions for the first-order dynamic
equation involving integral boundary condition (2.1). Let us define what we mean by
a solution of this problem.

Definition 2.2.1 A solution of problem (2.1) will be a function x ∈ C1([a, σ(b)]T,R)
for which (2.1) is satisfied.

We introduce the notion of quasi-solutions of this problem.

Definition 2.2.2 The pair of functions (x∗, x
∗) ∈ (C1 ([a, σ(b)]T,R))

2
are called quasi-

solutions of the problem (2.1), if the following inequalities hold:
x∆
∗ (t) = f (t, x∗(t)) , t ∈ I = [a, b]T, x∗(a) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s,

x∗∆(t) = f (t, x∗(t)) , t ∈ I = [a, b]T, x
∗(a) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s.

(2.16)

Next, we introduce the concept of coupled lower and upper solutions of this problem
as follows.
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Definition 2.2.3 We say that (x, x) ∈ (C1 ([a, σ(b)]T,R))
2

is a pair of coupled lower
and upper solutions of the problem (2.1), if x ≤ x in J = [a, σ(b)]T and the following
inequalities hold:

x∆(t) ≤ f(t, x(t)), t ∈ I = [a, b]T, x(a) ≤
∫ c

a

g(s)x(s)∆s+

∫ σ(b)

c

g(s)x(s)∆s,

x∆(t) ≥ f(t, x(t)), t ∈ I = [a, b]T, x(a) ≥
∫ c

a

g(s)x(s)∆s+

∫ σ(b)

c

g(s)x(s)∆s.

(2.17)

We assume the following hypothesis:

(H1) : f : I = [a, b]T×R→ R and g : J = [a, σ(b)]T → R are continuous functions, with
g(t) ≤ 0, t ∈ [a, c]T and g(t) ≥ 0, t ∈ [c, σ(b)]T with a < c < σ(b) and c ∈ J .

(H2) : There exists (x, x) ∈ (C1 (J,R))
2
, a pair of coupled lower and upper solutions of

the problem (2.1) such that x ≤ x in J .

(H3) : There exists a real constant M > 0 such that x 7−→ f(t, x) +Mx is increasing in
x on [x, x]. i.e.,

f(t, x2)− f(t, x1) ≥ −M(x2 − x1), where x ≤ x1 ≤ x2 ≤ x, for all t ∈ t ∈ J.

We define the sector [x, x] = {x ∈ C1 (J,R) : x(t) ≤ x(t) ≤ x(t), t ∈ J}.

We have the following result.

Theorem 2.2.4 Assume that (H1), (H2) and (H3) hold. Then the problem (2.1) ad-
mits a pair of quasi-solutions (x∗, x

∗) such that

x ≤ x∗ ≤ x∗ ≤ x in J.

Proof. We take x0 = x, x1 = x, and define the sequence (xn)n≥0 in the following
way: 

x∆
n+2(t) +Mxn+2(t) = yn(t), t ∈ [a, b]T,

xn+2(a) =

∫ c

a

g(s)xn+1(s)∆s+

∫ σ(b)

c

g(s)xn(s)∆s,
(2.18)

where
yn(t) = f (t, xn(t)) +Mxn(t). (2.19)
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Claim 1: For all n ∈ N, we have

x2n ≤ x2n+2 ≤ x2n+3 ≤ x2n+1 in [a, σ(b)]T.

Let
w0(t) := x2(t)− x0(t), t ∈ [a, σ(b)]T.

By (2.18) and using the Definition 2.2.3, we havew
∆
0 (t) +Mw0(t) ≥ 0, t ∈ [a, b]T,

w0(a) ≥ 0.

Then by Lemma 2.1.4, we have

w0(t) ≥ 0 for all t ∈ [a, σ(b)]T.

That is
x0 ≤ x2 in [a, σ(b)]T. (2.20)

Similarly, we can prove that
x3 ≤ x1 in [a, σ(b)]T. (2.21)

Now, we put by definition

w1(t) = x2(t)− x1(t), t ∈ [a, σ(b)]T,

and
z1(t) = x1(t)− x0(t), t ∈ [a, σ(b)]T.

By (2.18), we have
w∆

1 (t) +Mw1(t) ≤ y0(t)− y1(t), t ∈ [a, b]T,

w1(a) ≤
∫ c

a

g(s)z1(s)∆s−
∫ σ(b)

c

g(s)z1(s)∆s.

Since x0 = x ≤ x = x1 in [a, σ(b)]T and using the hypothesis (H3), we obtainw
∆
1 (t)−Mw1(t) ≤ 0, t ∈ [a, b]T,

w1(a) ≤ 0.

Then by Lemma 2.1.3, we have

w1(t) ≤ 0, for all t ∈ [a, σ(b)]T.

That is
x2 ≤ x1 in [a, σ(b)]T. (2.22)
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Now we are going to prove that

x2 ≤ x3 in [a, σ(b)]T.

For this we put by definition

w3(t) = x2(t)− x3(t), t ∈ [a, σ(b)]T.

By (2.18), we have
w∆

3 (t) +Mw3(t) = y0(t)− y1(t), t ∈ [a, b]T,

w3(a) = −
∫ c

a

g(s)w1(s)∆s−
∫ σ(b)

c

g(s)z1(s)∆s.

Since x0 ≤ x2 ≤ x1 in [a, σ(b)]T and using the hypothesis (H3), we obtainw
∆
3 (t) +Mw3(t) ≤ 0, t ∈ [a, b]T,

w3(a) ≤ 0.

Then by Lemma 2.1.3, we have

w3(t) ≤ 0, for all t ∈ [a, σ(b)]T.

That is
x2 ≤ x3 in [a, σ(b)]T. (2.23)

Then by (2.20)− (2.23), we have

x0 ≤ x2 ≤ x3 ≤ x1 in [a, σ(b)]T.

Assume for fixed n ≥ 1, we have

x2n ≤ x2n+2 ≤ x2n+3 ≤ x2n+1 in [a, σ(b)]T,

and we show that

x2n+2 ≤ x2n+4 ≤ x2n+5 ≤ x2n+3 in [a, σ(b)]T.

We put by definition

wn+1(t) := x2n+4(t)− x2n+2(t), t ∈ [a, σ(b)]T,

and
zn+1(t) := x2n+3(t)− x2n+1(t), t ∈ [a, σ(b)]T.
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By (2.18), we have
w∆
n+1(t) +Mwn+1(t) = y2n+2(t)− y2n(t), t ∈ [a, b]T,

wn+1(a) =

∫ c

a

g(s)zn+1(s)∆s+

∫ σ(b)

c

g(s)wn(s)∆s.

Since by the hypothesis of recurrence, we have x2n ≤ x2n+2 ≤ x2n+3 ≤ x2n+1 in [a, σ(b)]T
and by using the hypothesis (H3), we obtainw

∆
n+1(t) +Mwn+1(t) ≥ 0, t ∈ [a, b]T,

wn+1(a) ≥ 0.

Then by Lemma 2.1.4, we have

wn+1(t) ≥ 0, for all t ∈ [a, σ(b)]T.

That is
x2n+2 ≤ x2n+4, in [a, σ(b)]T. (2.24)

Similarly, we can prove that

x2n+5 ≤ x2n+3, in [a, σ(b)]T. (2.25)

x2n+4 ≤ x2n+3, in [a, σ(b)]T. (2.26)

and
x2n+4 ≤ x2n+5, in [a, σ(b)]T. (2.27)

Then by (2.24)− (2.27) one has

x2n+2 ≤ x2n+4 ≤ x2n+5 ≤ x2n+3 in [a, σ(b)]T.

Hence for all n ∈ N, we have

x2n ≤ x2n+2 ≤ x2n+3 ≤ x2n+1 in [a, σ(b)]T.

Claim 2: The sequences of functions (x2n)n∈N and (x2n+1)n∈N converge to quasi-
solutions of (2.1).
By Claim 1, the sequences (x2n)n∈N and (x2n+1)n∈N are monotone and bounded, hence
the sequences of functions (x2n)n∈N and (x2n+1)n∈N converge to x∗ and x∗,.i.e

lim
n→∞

x2n = x∗, lim
n→∞

x2n+1 = x∗.

Next, we prove that (x∗, x
∗) is a pair of quasi-solutions to (2.1).

Let n ∈ N∗ and t ∈ [a, b]T, we have

x2n(t) =

∫ c

a

g(s)x2n−1(s)∆s+

∫ σ(b)

c

g(s)x2n−2(s)∆s+

∫ t

a

ỹn(s)∆s
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and

x2n+1(t) =

∫ c

0

g(s)x2n(s)∆s+

∫ σ(b)

c

g(s)x2n−1(s)∆s+

∫ t

a

ŷn(s)ds

where
ỹn(s) := f (s, x2n−2(s)) +M (x2n−2(s)− x2n(s)) ,

and
ŷn(s) := f (s, x2n−1(s)) +M (x2n−1(s)− x2n+1(s)) .

Now, as n tends to +∞, we obtain

ỹn(s)→ f (s, x∗(s)) ,

and
ŷn(s)→ f (s, x∗(s)) .

Also, we have
∃c1 > 0,∀n ∈ N,∀s ∈ [a, b]T, |ỹn(s)| ≤ c1,

and
∃c2 > 0,∀n ∈ N, ∀s ∈ [a, b]T, |ŷn(s)| ≤ c2.

Hence, the dominated convergence theorem of Lebesgue implies that

x∗(t) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s+

∫ t

a

f (s, x∗(s)) ∆s, (2.28)

and

x∗(t) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s+

∫ t

a

f (s, x∗(s)) ∆s. (2.29)

Now we are going to prove that (x∗, x
∗) is a pair of quasi-solutions of (2.1).

First, it is not difficult to see that
x∗(a) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s,

x∗(a) =

∫ c

a

g(s)x∗(s)∆s+

∫ σ(b)

c

g(s)x∗(s)∆s.

(2.30)

On the other hand since f is continuous, x ≤ x∗ ≤ x and x and x are continuous,
then there exists a constant K1 > 0 such that for all s ∈ [a, b]T, we have

|f (s, x∗(s))| ≤ K1. (2.31)
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Then by (2.28) and (2.31), one has

∀t1 ∈ [a, σ(b)]T,∀t2 ∈ [a, σ(b)]T, |x∗ (t1)− x∗ (t2)| ≤ K |t1 − t2| .

This implies that x∗ is continuous on [a, σ(b)]T and consequently by (2.28) it follows
that x∗ is ∆-differentiable on [a, b]T.

Similarly, we can prove that the functions x∗ is ∆-differentiable on [a, b]T and con-
sequently by (2.28) and (2.29), it follows that{

x∆
∗ (t) = f (t, x∗(t)) , t ∈ [a, b]T,

x∗∆(t) = f (t, x∗(t)) , t ∈ [a, b]T,

and by (2.30), it follows that (x∗, x
∗) is a pair of quasi-solutions of (2.1).

The proof of Theorem 2.2.4 is complete. �

2.3 An example

To illustrate our main results, we present the following example.

Example 2.3.1 We consider the following boundary value problem:
x(∆)(t) = 4t sin(x(t))− 11x(t) + e−t, t ∈ I = [0, 10]T,

x(0) =
1

35

∫ σ(10)

0

(s− 5)x(s)∆s.
(2.32)

This problem is a particular case of problem (2.1), with, a = 0, b = 10, I = [0, 10]T,

J = [0, σ(10)]T, f(t, x) = 4t sin(x)− 11x+ e−t, t ∈ I and g(t) =
1

35
(t− 5), t ∈ J .

It is clear that f and g are continuous functions, with:

g(t) ≤ 0, t ∈ [0, 5]T and g(t) ≥ 0, t ∈ [5, σ(10)]T.

We put (x(t), x(t)) = (−L,L), where L > 0 and t ∈ J = [0, σ(10)]T.
(x, x) is a lower-upper solutions of (2.32) if we have

x(∆)(t) ≤ f(t, x(t)), t ∈ [0, 10],

x(0) ≤ 1

35

∫ 5

0

(s− 5)x(s)∆s+
1

35

∫ σ(10)

5

(s− 5)x(s)∆s,

x(∆)(t) ≥ f(t, x(t)), t ∈ [0, 10],

x(0) ≥ 1

35

∫ 5

0

(s− 5)x(s)∆s+
1

35

∫ σ(10)

5

(s− 5)x(s)∆s.
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That is 

0 ≤ 4t sin(−L) + 11L+ e−t, t ∈ [0, 10],

−L ≤ L

35

∫ 5

0

(s− 5)∆s− L

35

∫ σ(10)

5

(s− 5)∆s,

0 ≥ 4t sin(L)− 11L+ e−t, t ∈ [0, 10],

L ≥ − L
35

∫ 5

0

(s− 5)∆s+
L

35

∫ σ(10)

5

(s− 5)∆s.

Then if we choose for example L ≥ 1, we obtain (x, x) is a lower and upper solutions
of (2.32) respectively, then assumptions (H1) and (H2) holds.
Let x1, x2 ∈ R with x(t) ≤ x1 ≤ x2 ≤ x(t), t ∈ J , then we have

f(t, x2)− f(t, x1) = 4t (sin(x2)− sin(x1))− 11(x2 − x1)

≥ −4t(x2 − x1)− 11(x2 − x1)

≥ −4t(x2 − x1)− 11(x2 − x1)

≥ −51(x2 − x1).

Hence the assumption (H3) holds with M = 51.
By Theorem 2.2.4, problem (2.32) admits a pair of quasi-solutions (x∗, x

∗) ∈ [−L,L]×
[−L,L] on [0, σ(10)]T, which can be obtained by taking limits from the iterative se-
quences:

x2n(t) =
1

35

∫ 5

0

(s− 5)x2n−1(s)∆s+
1

35

∫ σ(10)

5

(s− 5)x2n−2(s)∆s+

∫ t

0

ỹn(s)∆s,

t ∈ J = [0, σ(10)]T,

x2n+1(t) =
1

35

∫ 5

0

(s− 5)x2n(s)∆s+
1

35

∫ σ(10)

5

(s− 5)x2n−1(s)∆s+

∫ t

0

ŷn(s)ds,

t ∈ J,

where
ỹn(s) := f (s, x2n−2(s)) + 51 (x2n−2(s)− x2n(s)) ,

and
ŷn(s) := f (s, x2n−1(s)) + 51 (x2n−1(s)− x2n+1(s)) .

Case If T = R.
In this case, problem (2.32) is equivalent to the following:

x
′
(t) = 4t sin(x(t))− 11x(t) + e−t, t ∈ I = [0, 10],

x(0) =
1

35

∫ 10)

0

(s− 5)x(s)ds.
(2.33)
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We choose L ≥ 1, we obtain (−L,L) is a lower and upper solutions of (2.33) respec-
tively, with 

0 ≤ 4t sin(−L) + 11L+ e−t, t ∈ [0, 10],

−L ≤ L

35

∫ 5

0

(s− 5)ds− L

35

∫ 10

5

(s− 5)ds = −0.71429L,

0 ≥ 4t sin(L)− 11L+ e−t, t ∈ [0, 10],

L ≥ − L
35

∫ 5

0

(s− 5)ds+
L

35

∫ 10

5

(s− 5)ds = 0.71429L.

Assumptions (H1)− (H3) are satisfied.
By Theorem 2.2.4, problem (2.33) admits a pair of quasi-solutions (x∗, x

∗) ∈ [−L,L]×
[−L,L] on [0, 10], which can be obtained by taking limits from the iterative sequences:

x2n(t) =
1

35

∫ 5

0

(s− 5)x2n−1(s)ds+
1

35

∫ σ(10)

5

(s− 5)x2n−2(s)∆s+

∫ t

0

ỹn(s)ds, t ∈ [0, 10],

and

x2n+1(t) =
1

35

∫ 5

0

(s− 5)x2n(s)∆s+
1

35

∫ σ(10)

5

(s− 5)x2n−1(s)∆s+

∫ t

0

ŷn(s)ds, t ∈ I.



Chapter 3

Existence of solutions for nonlinear
conformable fractional differential
equations with integral boundary
conditions

In this chapter, we prove the existence of extremal solutions for the following nonlinear
conformable fractional differential equations with integral boundary conditions:

x(α)(t) = f(t, x(t)), t ∈]0, 1[,

x(0) = −rx(1) + λ

∫ 1

0

x(s)ds,
(3.1)

where 0 < α ≤ 1, r > 0, λ > 0, f : [0, 1]× R→ R is a continuous function and x(α)(t)
denotes the conformable fractional derivative of x at t ∈]0, 1[ of order α. The existence
of solutions for this problem is proved by using the monotone iterative technique and
the method of coupled upper and lower solution. The original results of this chapter
are found in [21].

In [20] T. Jankowski studied the existence of extremal solutions to the following
nonlinear ordinary differential equations with integral boundary conditions:

x
′
(t) = f(t, x(t)), t ∈ I = [0, T ], T > 0

x(0) = λ

∫ T

0

x(t)dt+ d,
(3.2)

where f : I × R→ R is a continuous function, d ∈ R and λ = −1 or λ = 1.

M. Benchohra et al. in [5], studied the existence of solutions to the following



3.1. Linear problem and comparison principle 25

nonlinear fractional differential equations with integral boundary conditions:
cDαy(t) = f(t, y(t)), t ∈ J = [0, T ],

y(0) + µ

∫ T

0

y(s)ds = y(T ),
(3.3)

where 0 < α ≤ 1, f : J ×R→ R is a given function satisfying some assumptions, cDα

is the Caputo fractional derivative and µ ∈ R∗.

3.1 Linear problem and comparison principle

In this section, we study the expression of the solutions of a linear conformable frac-
tional differential equation with initial value conditions.

Lemma 3.1.1 Let 0 < α ≤ 1, M > 0, m ∈ R and g ∈ C([0, 1],R). The function
y : [0, 1]→ R defined by

y(t) = me−
M
α
tα +

∫ t

0

sα−1g(s)e
M
α

(sα−tα)ds. (3.4)

is a solution of the initial value problem:y
(α)(t) +My(t) = g(t), t ∈]0, 1],

y(0) = m.
(3.5)

Proof. Assume that y(t) is given by (3.4), then y is differentiable for t > 0, there-
fore we have

y(α)(t) = t1−αy′(t) = t1−α
(
me−

M
α
tα + e−

M
α
tα
∫ t

0

sα−1g(s)e
M
α
sαds

)′
= t1−α

(
−M
α
αtα−1me−

M
α
tα −Me−

M
α
tαtα−1

∫ t

0

sα−1g(s)e
M
α
sαds+ e−

M
α
tαtα−1g(t)e

M
α
tα
)

= t1−αtα−1

(
−Mme−

M
α
tα −Me−

M
α
tα
∫ t

0

sα−1g(s)e
M
α
sαds+ g(t)

)
= −M

(
me−

M
α
tα +

∫ t

0

sα−1g(s)e
M
α

(sα−tα)ds

)
+ g(t)

= −My(t) + g(t),

from Theorem 1.2.3, and y(t) subject to the condition

y(0) = m.

�

In the next Lemmas, we discuss comparison results for the linear problem (3.5)
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Lemma 3.1.2 Let y ∈ C([0, 1],R) satisfy{
y(α)(t) +My(t) ≤ 0, t ∈ [0, 1],

y(0) ≤ 0,

where 0 < α 6 1, M > 0, then y(t) ≤ 0, for all t ∈ [0, 1].

Proof. we put yα(t) + My(t) = g(t) and y(0) = m ≤ 0. We are know that
g(t) ≤ 0, for every t ∈ I = [0, 1] andy

(α)(t) +My(t) = g(t), t ∈ [0, 1],

y(0) = m ≤ 0.
(3.6)

By Lemma 3.1.1, the expression of y(t) is:

y(t) = me−
M
α
tα +

∫ t

0

sα−1g(s)e
M
α

(sα−tα)ds

we can conclude that, y(t) ≤ 0 for every t ∈ [0, 1]. �

3.2 Main Result

In this section, we prove the existence of extremal solutions for problem (3.1). Let us
defining what we mean by a solution of this problem.

Definition 3.2.1 A solution of problem (3.1) will be a function x ∈ C([0, 1],R) for
which (3.1) is satisfied.

We introduce the notion of coupled solutions of this problem.

Definition 3.2.2 The function pair (y, z) ∈ (C([0, 1],R))2 is said to be coupled solu-
tions of (3.1), if the following inequalities hold:

y(α)(t) = f(t, y(t)), t ∈]0, 1[, y(0) + rz(1) = λ

∫ 1

0

y(s)ds,

z(α)(t) = f(t, z(t)), t ∈]0, 1[, z(0) + ry(1) = λ

∫ 1

0

z(s)ds.

(3.7)

Let γ, δ ∈ C([0, 1],R), then (γ, δ) is said to be minimum and maximum coupled
solutions ( are extremal solutions) of (3.1), respectively, if (γ, δ) are coupled solutions
of (3.1), and γ(t) ≤ y(t), z(t) ≤ δ(t) for any coupled solution (y, z) of (3.1).
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Next, we introduce the concept of coupled lower and upper solutions of this problem
as follows.

Definition 3.2.3 We say that (y0, z0) ∈ (C([0, 1],R))2 is a pair of coupled lower and
upper solutions of the problem (3.1), respectively, if y0(t) ≤ z0(t) for all t ∈ [0, 1] and
the following inequalities hold:

y
(α)
0 (t) ≤ f(t, y0(t)), t ∈]0, 1[, y0(0) + rz0(1) ≤ λ

∫ 1

0

y0(s)ds,

z
(α)
0 (t) ≥ f(t, z0(t)), t ∈]0, 1[, z0(0) + ry0(1) ≥ λ

∫ 1

0
z0(s)ds.

(3.8)

We define the sector:

D = [y0, z0] = {x ∈ C ([0, 1],R) : y0(t) ≤ x(t) ≤ z0(t), t ∈ I = [0, 1]}.

We assume the following hypothesis:

(H1) f : I = [0, 1]× R→ R is continuous function.

(H2) There exists (y0, z0) ∈ (C([0, 1],R))2 a pair of coupled lower and upper solutions
of (3.1), with y0(t) ≤ z0(t) for t ∈ I = [0, 1].

(H3) There exist M > 0 such that

f(t, x1)− f(t, x2) ≥ −M(x1 − x2), (3.9)

where y0(t) ≤ x2 ≤ x1 ≤ z0(t), for all t ∈ I.

Now, We have the following results.

Theorem 3.2.4 Assume that (H1), (H2) and (H3) hold. If we take y0(t), z0(t) as
initial elements, the iterative sequences defined by:
yn(t) =

(
λ

∫ 1

0

yn−1(s)ds− rzn−1(1)

)
e
−M
α
tα +

∫ t

0

sα−1fyn−1(s)e
M
α

(sα−tα)ds, t ∈ I,

zn(t) =

(
λ

∫ 1

0

zn−1(s)ds− ryn−1(1)

)
e
−M
α
tα +

∫ t

0

sα−1fzn−1(s)e
M
α

(sα−tα)ds, t ∈ I,

(3.10)
are {yn(t)} and {zn(t)}, then

1) yn(t)→ y∗(t) and zn(t)→ z∗(t) converging uniformly and y∗, z∗ ∈ D;

2) (y∗, z∗) are coupled minimal and maximal solutions of (3.1) respectively in D;

3) If x(t) is the solution of (3.1) in D, then we have y∗ ≤ x ≤ z∗; i.e.,

y∗(t) ≤ x(t) ≤ z∗(t), for t ∈ I = [0, 1].
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Proof. 1). There is a unique solution to the boundary value problem as follows
y(α)(t) = f(t, u(t))−M (y(t)− u(t)) , t ∈]0, 1[, and y(0) + rv(1) = λ

∫ 1

0

u(s)ds

z(α)(t) = f(t, v(t))−M (z(t)− v(t)) , t ∈]0, 1[, z(0) + ru(1) = λ

∫ 1

0

v(s)ds.

which is given by
y(t) =

(
λ

∫ 1

0

u(s)ds− rv(1)

)
e
−M
α
tα +

∫ t

0

sα−1fu(s)e
M
α

(sα−tα)ds, t ∈ I,

z(t) =

(
λ

∫ 1

0

v(s)ds− ru(1)

)
e
−M
α
tα +

∫ t

0

sα−1fv(s)e
M
α

(sα−tα)ds, t ∈ I,

for u, v ∈ D, and u ≤ v from Theorem 1.2.3 and Lemma 3.1.1, where
fv(t) = f(t, v(t)) +Mv(t), fu(t) = f(t, u(t)) +Mu(t).

Define operator T : D ×D → C([0, 1],R)× C([0, 1],R)

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)) ,

where operators T1, T2 are given by
T1(u, v)(t) =

(
λ

∫ 1

0

u(s)ds− rv(1)

)
e
−M
α
tα +

∫ t

0

sα−1fu(s)e
M
α

(sα−tα)ds, t ∈ I,

T2(u, v)(t) =

(
λ

∫ 1

0

v(s)ds− ru(1)

)
e
−M
α
tα +

∫ t

0

sα−1fv(s)e
M
α

(sα−tα)ds, t ∈ I,

respectively. Then the fixed point of operator T in D×D means the coupled solutions
of (3.1).

Let y1 = T1(y0, z0), z1 = T2(y0, z0).

Here we prove that y0 ≤ y1; z1 ≤ z0, y1 ≤ z1, and y1, z1 are coupled lower and upper
solutions of (3.1).
Whereas


y

(α)
1 (t) = f(t, y0(t))−M (y1(t)− y0(t)) , t ∈]0, 1[, and y1(0) + rz0(1) = λ

∫ 1

0

y0(s)ds.

z
(α)
1 (t) = f(t, z0(t))−M (z1(t)− z0(t)) , t ∈]0, 1[, z1(0) + ry0(1) = λ

∫ 1

0

z0(s)ds.

(3.11)
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And y0, z0 are coupled lower and upper solutions of (3.1), then we have
(
y

(α)
0 (t)− y(α)

1 (t)
)

+M (y0(t)− y1(t)) ≤ 0, t ∈]0, 1[, and y0(0)− y1(0) ≤ 0,(
z

(α)
1 (t)− z(α)

0 (t)
)

+M (z1(t)− z0(t)) ≤ 0, t ∈]0, 1[, and z1(0)− z0(0) ≤ 0.

(3.12)
Let p = y0 − y1 and q = z1 − z0, then (3.12) is equivalent to the following:p

(α)(t) +M p(t) ≤ 0, t ∈]0, 1[, and p(0) ≤ 0,

q(α)(t) +M q(t) ≤ 0, t ∈]0, 1[, and q(0) ≤ 0.

By Lemma 3.1.2, we know that p(t) ≤ 0, q(t) ≤ 0, for all t ∈ I, i.e.,

y0(t) ≤ y1(t), z1(t) ≤ z0(t), t ∈ [0, 1].

So we can easily get that

y
(α)
1 (t) = f(t, y0(t))−M (y1(t)− y0(t)) ≤ f(t, y1(t)), t ∈]0, 1[,

y1(0) + rz1(1) ≤ λ

∫ 1

0

y1(s)ds.

z
(α)
1 (t) = f(t, z0(t))−M (z1(t)− z0(t)) ≥ f(t, z1(t)), t ∈]0, 1[,

z1(0) + ry1(1) ≥ λ

∫ 1

0

z1(s)ds.

From formula (3.9) and (3.11). i.e., (y1, z1) are coupled lower and upper solutions of
(3.1). We also get that

y
(α)
1 (t)− z(α)

1 (t) ≤ −M (y1(t)− z1(t)) , t ∈]0, 1[,

y1(0)− z1(0) = λ

∫ 1

0

(y0(s)− z0(s))ds+ r(y0(1)− z0(1)) ≤ 0,
(3.13)

from formula (3.11) and y0 ≤ z0.
Similarly, Let w = y1 − z1, then (3.13) is equivalent to the following:w

(α)(t) +M w(t) ≤ 0, t ∈]0, 1[,

w(0) ≤ 0.

By Lemma 3.1.2, we know that w(t) ≤ 0, for all t ∈ I, i.e.,

y1(t) ≤ z1(t), t ∈ [0, 1].
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Let
yn = T1(yn−1, zn−1), zn = T2(yn−1, zn−1),

then from formula (3.10), we have that yn and zn are coupled lower and upper solutions
of (3.1) for any n ≥ 2, which is similar to the proof above. And

yn−1 ≤ yn ≤ zn ≤ zn−1.

In summary, we have

y0(t) ≤ y1(t) ≤ ... ≤ yn(t) ≤ ... ≤ zn(t) ≤ ... ≤ z1(t) ≤ z0(t), for t ∈ [0, 1].

Therefore, sequences {yn(t)} and {zn(t)} are uniformly bounded, i.e.,

‖yn‖ ≤M0, ‖zn‖ ≤M0,

for n = 0, 1, 2, . . . and M0 > 0. Because f is continuous, we have

|fyn−1(t)| = |f(t, yn−1(t)) +Myn−1(t)| ≤M1,

for t ∈ [0, 1], n = 1, 2, 3, . . ., and M1 > 0.

In addition, because that functions e
M
α

(sα−tα) and e
−M
α
tα are continuous, we have

|yn(t2)− yn(t1)|

=

∣∣∣∣(λ∫ 1

0

yn−1(s)ds− rzn−1(1)

)(
e−

M
α
tα2 − e−

M
α
tα1

)
+

∫ t2

0

sα−1fyn−1(s)e
M
α

(sα−tα2 )ds−
∫ t1

0

sα−1fyn−1(s)e
M
α

(sα−tα1 )ds

∣∣∣∣
≤
∣∣∣∣(λ∫ 1

0

yn−1(s)ds− rzn−1(1)

)∣∣∣∣ ∣∣∣e−Mα tα2 − e−Mα tα1 ∣∣∣
+

∣∣∣∣∫ t1

0

sα−1fyn−1(s)
(
e
M
α

(sα−tα2 ) − e
M
α

(sα−tα1 )
)
ds

∣∣∣∣+

∣∣∣∣∫ t2

t1

sα−1fyn−1(s)e
M
α

(sα−tα2 )ds

∣∣∣∣
≤
∣∣∣∣(λ∫ 1

0

yn−1(s)ds− rzn−1(1)

)∣∣∣∣ ∣∣∣(e−Mα t2 − e−Mα t1)∣∣∣
+

∣∣∣∣∫ t1

0

sα−1fyn−1(s)

∣∣∣∣ ∣∣∣eMα (sα−tα2 ) − e
M
α

(sα−tα1 )
∣∣∣ ds+

∫ t2

t1

∣∣∣sα−1fyn−1(s)e
M
α

(sα−tα2 )
∣∣∣ ds benchoua1

→ 0

if 0 ≤ t1 < t2 ≤ 1 and t2 → t1. Hence, the sequence {yn(t)} is equicontinuous. We
can also obtain that {zn(t)} is equicontinuous similarly.

In summary, by the Ascoli-Arzela Theorem, we can prove that the sequences {yn}
and {zn} are convergent because of the monotonicity of sequences, i.e., there exist two
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functions y∗, z∗ such that

lim
n→∞

‖yn − y∗‖∞ = 0, lim
n→∞

‖zn − z∗‖∞ = 0.

and y∗, z∗ ∈ D. Next we take limits on both sides of (3.10), then from Lebesgue
Dominated Convergence Theorem, we have

T (y∗, z∗) = (T1(y∗, z∗)(t), (T 2(y∗, z∗)) = (y∗, z∗)(t),

if n→∞, i.e., (y∗, z∗) are coupled solutions of (3.1).

2). Here, we prove that (y∗, z∗) are coupled minimal and maximal solutions of (3.1)
respectively in D.
Assume that (x1, x2) are a set of coupled solutions of (3.1), then the above problem is
equivalent to prove that

y∗ ≤ x1, x2 ≤ z∗.

Whereas x1, x2 ∈ D, therefore y0 ≤ x1 ≤ x2 ≤ z0. Assume that yk ≤ x1 ≤ x2 ≤ zk for
k > 1, here we prove that yk+1 ≤ x1, x2 ≤ zk+1.
Consider that 

y
(α)
k+1(t) = f(t, yk(t))−M(zk(t)− yk(t)), t ∈]0, 1[,

yk+1(0) + r1zk(1) = λ
∫ 1

0
yk(s)ds.

z
(α)
k+1(t) = f(t, zk(t))−M(zk+1(t)− zk(t)), t ∈]0, 1[,

zk+1(0) + r1yk(1) = λ
∫ 1

0
zk(s)ds.

And from Definition 3.2.2, we have thatx
(α)
1 (t) = f(t, x1(t)), t ∈]0, 1[, and x1(0) + rx2(1) = λ

∫ 1

0
x1(s)ds.

x
(α)
2 (t) = f(t, x2(t)), t ∈]0, 1[, and x2(0) + rx1(1) = λ

∫ 1

0
x2(s)ds.

Then from (3.9), we get thatx
(α)
1 (t)− y(α)

k+1(t) +M(x1(t)− yk+1(t)) ≥ 0, t ∈]0, 1[, and x1(0)− yk+1(0) ≥ 0.

z
(α)
k+1(t)− x(α)

2 (t) +M(zk+1(t)− x2(t)) ≥ 0, t ∈]0, 1[, and zk+1(0)− x2(0) ≥ 0.

(3.14)
Let ϕ = yk+1 − x1, and ψ = x2 − zk+1, then (3.14) is equivalent to the following:ϕ

(α)(t) +M ϕ(t) ≤ 0, t ∈]0, 1[, and ϕ(0) ≤ 0,

ψ(α)(t) +M ψ(t) ≤ 0, t ∈]0, 1[, and ψ(0) ≤ 0.

By Lemma 3.1.2, we know that ϕ(t) ≤ 0, ψ ≤ 0, for all t ∈ I, i.e.,

yk+1(t) ≤ x1(t), x2(t) ≤ zk+1(t), t ∈ [0, 1],
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By Mathematical Induction, we can get

yn ≤ x1, ≤ x2 ≤ zn.

for n = 1, 2, 3, . . . . In addition, because of the convergence of iterative sequences, we
have

y∗(t) ≤ x1(t), x2(t) ≤ z∗(t),

if n→∞, i.e.,
y∗(t) ≤ x1(t), x2(t) ≤ z∗(t),

for t ∈ [0, 1]. Therefore, (y∗, z∗) are coupled minimal and maximal solutions of (3.1)
respectively in D from Definition 3.2.2.

3). Here we prove that if x(t) is the solution of (3.1) in D, then y∗ ≤ x ≤ z∗. In
conclusion 2) above, let x1(t) = x(t) = x2(t), because that x is the solution of (3.1) in
D, therefore, (x1, x2) are a set of coupled solutions of (3.1). Obviously, x subject to

y∗ ≤ x ≤ z∗.

Thus, the proof is finished.

3.3 An example

To illustrate our main results, we present the following example.

Example 3.3.1 Consider the boundary value problem of conformable fractional dif-
ferential equation: 

x( 1
2

)(t) = t(1− x2(t))− 3x(t), t ∈]0, 1[,

x(0) = −1

3
x(1) +

1

2

∫ 1

0

x(s)ds.
(3.15)

This problem is a particular case of problem (3.1), with α = 1
2
, f(t, x) = t(1− x2(t))−

3x(t), 0 < r = 1
3
< 1 and 0 < λ = 1

2
.

It is clear that f is continuous function. Take y0(t) = −1 and z0(t) = 1 for t ∈ [0, 1],
then
y

( 1
2

)

0 (t) = 0 ≤ f(t, y0(t)) = 3, t ∈]0, 1[, y0(0) + rz0(1) = −2
3
≤ λ

∫ 1

0

y0(s)ds = −1

2
,

z
( 1
2

)

0 (t) = 0 ≥ f(t, z0(t)) = −3, t ∈]0, 1[, z0(0) + ry0(1) = 2
3
≥ λ

∫ 1

0
z0(s)ds = 1

2
.

So, y0(t) = −1 and z0(t) = 1 for t ∈ [0, 1], are coupled lower and upper solutions of
problem (3.15) with y0(t) = −1 ≤ z0(t) = 1, for t ∈ [0, 1], then assumptions (H1) and
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(H2) holds.
Let x1, x2 ∈ R, then we have:

f(t, x1)− f(t, x2) = t(1− x2
1)− 3x1 − t(1− x2

2) + 3x2

= − (t(x1 + x2) + 3) (x1 − x2)

≥ −5(x1 − x2),

with −1 = y0(t) ≤ x2 ≤ x1 ≤ y0(t) = 1, for all t ∈ [0, 1].
Hence the assumption (H3) holds with M = 5 > 0. By Theorem 3.2.4, the nonlinear
problem (3.15) has coupled minimal and maximal solutions, respectively (the extremal
solutions) (y∗, z∗) ∈ (D)2 with D = [−1, 1] = {x ∈ C([0, 1],R)| − 1 ≤ x(t) ≤ 1}. i.e.,
(x∗, y∗) ∈ [−1, 1]× [−1, 1] on I = [0, 1], which can be obtained by taking limits from the
iterative sequences:
yn(t) =

(
1
2

∫ 1

0

yn−1(s)ds− 1

3
zn−1(1)

)
e−10t1/2 +

∫ t

0

s−1/2fyn−1(s)e
10(s1/2−t1/2)ds, t ∈ I,

zn(t) =

(
1
2

∫ 1

0

zn−1(s)ds− 1

3
yn−1(1)

)
e−10t1/2 +

∫ t

0

s−1/2fzn−1(s)e
10(s1/2−t1/2)ds, t ∈ I,

where fyn−1 = f(t, yn−1) + 5yn−1 = t(1− y2
n−1) + 2yn−1,

fzn−1 = f(t, zn−1) + 5zn−1 = t(1− z2
n−1) + 2zn−1.



Chapter 4

Extremal solutions to a coupled
system of conformable fractional
dynamic equations on time scales

In this chapter, we investigate the existence of extremal solutions for a coupled system
of nonlinear conformable fractional dynamic equations on time scales, by applying the
comparison principle and the monotone iterative technique combined with the method
of upper and lower solutions:

x
(α)
∆ (t) = f(t, xσ(t), yσ(t)), t ∈ I = [a, b]T,

y
(α)
∆ (t) = g(t, yσ(t), xσ(t)), t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0.

(4.1)

Here, T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 < a < b,

λ0, β0 ∈ R, λ0 ≤ β0, f, g : I × R× R→ R are continuous functions and x
(α)
∆ , y

(α)
∆ are

the conformable fractional derivatives (on time scales) with α ∈ (0, 1]. The original
results of this chapter are found in [6]..

S. Liu et al. in [25], studied the existence of extremal iteration solution to the
following coupled system of conformable nonlinear fractional differential equations:

x(α)(t) = f(t, x(t), y(t)), t ∈ [a, b],

y(α)(t) = g(t, y(t), x(t)), t ∈ [a, b],

x(a) = x∗0, y(a) = y∗0,

(4.2)

where, x∗0, y
∗
0 ∈ R, x∗0 ≤ y∗0, f, g ∈ C([a, b]×R×R,R) and x(α), y(α) are the conformable

fractional derivatives with α ∈ (0, 1].
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4.1 Linear problems and comparison principles

In this section, we study the expression of the solutions of a linear conformable frac-
tional dynamic equation of order α ∈ (0, 1], with initial value conditions.

Lemma 4.1.1 The initial problemx
(α)
∆ (t)− t1−αp x(σ(t)) = g(t), t ∈ I = [a, b]T;

x(a) = λ0,
(4.3)

with −p ∈ Rµ, λ0 ∈ R, and g ∈ Cα
rd(I,R), has a unique solution x ∈ Cα

rd(J,R),
given by the following expression

x(t) :=

∫
[a,t]T

e−p(s, t)g(s)∆αs+ λ0e−p(a, t), t ∈ J = [a, σ(b)]T. (4.4)

Proof. Let x be a solution to (4.3). By Theorem 1.3.5, consider[
x(t)e−p(t, a)

](α)

∆
= x

(α)
∆ (t)e−p(t, a)− p(t)t1−αe−p(t, a)x(σ(t)),

= e−p(t, a)g(t).

and hence integrating the above on [a, t]T obtain

x(t)e−p(t, a)− x(a) =

∫
[a,t]T

e−p(s, a)g(s)∆αs. (4.5)

So,

x(t) = e−p(a, t)

(
x(a) +

∫
[a,t]T

e−p(s, a)g(s)∆αs

)
=

∫
[a,t]T

e−p(s, t)g(s)∆αs+ λ0e−p(a, t).

�

As a direct consequence of expression (4.4), we deduce the following comparison
result for the linear problem (4.3):

Lemma 4.1.2 (Comparison principle). Let x ∈ Cα
rd(J,R), then the following compar-

ison principles hold for every −p ∈ R+
µ :

(i) If x
(α)
∆ (t)− t1−αp x(σ(t)) ≥ 0, t ∈ I;

x(a) ≥ 0,

then x ≥ 0 on J .
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(ii) If x
(α)
∆ (t)− t1−αp x(σ(t)) ≤ 0, t ∈ I;

x(a) ≤ 0,

then x ≤ 0 on J .

Proof.

(i) We put x
(α)
∆ (t) − t1−αp x(σ(t)) = g(t) and x(a) = λ0 ≥ 0. We are know that

g(t) ≥ 0, e−p(., t) > 0 for every t ∈ I = [a, b]T andx
(α)
∆ (t)− t1−αp x(σ(t)) = g(t), t ∈ [a, b]T,

x(a) = λ0 ≥ 0.
(4.6)

By Lemma 4.1.1, the expression of x(t) is:

x(t) =

∫
[a,t]T

e−p(s, t)g(s)∆αs+ λ0e−p(a, t)

we can conclude that, x(t) ≥ 0 for every t ∈ I = [a, b]T.

(ii) We put x
(α)
∆ (t) − t1−αp x(σ(t)) = g(t) and x(a) = λ0 ≤ 0. We are know that

g(t) ≤ 0, e−p(., t) > 0 for every t ∈ I = [a, b]T andx
(α)
∆ (t)− t1−αp x(σ(t)) = g(t), t ∈ [a, b]T,

x(a) = λ0 ≤ 0.
(4.7)

By Lemma 4.1.1, the expression of x(t) is:

x(t) =

∫
[a,t]T

e−p(s, t)g(s)∆αs+ λ0e−p(a, t)

we can conclude that, x(t) ≤ 0 for every t ∈ I = [a, b]T. �

4.2 Main Result

In this section, we prove the existence of extremal solutions for problem (4.1). Let us
defining what we mean by a solution of this problem.

Definition 4.2.1 A solution of problem (4.1) will be a pair (x, y) ∈ Cα
rd(J,R) ×

Cα
rd(J,R) for which (4.1) is satisfied.
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Next, we introduce the concept of coupled lower and upper solutions of this problem
as follows.

Definition 4.2.2 We say that γ, δ ∈ Cα
rd(J,R) is a pair of coupled lower and upper

solutions of the problem (4.1), if γ ≤ δ in J and the following inequalities hold:γ
(α)
∆ (t) ≤ f(t, γσ(t), δσ(t)), for t ∈ I, γ(a) ≤ λ0,

δ
(α)
∆ (t) ≥ g(t, δσ(t), γσ(t)), for t ∈ I, δ(a) ≥ β0.

(4.8)

We assume the following hypothesis:

(H1) f, g : I × R× R→ R are continuous functions.

(H2) There exists γ, δ ∈ Cα
rd(J,R), a pair of coupled lower and upper solutions of the

problem (4.1).

(H3) There exist constants p, q ∈ R with −p,−q ∈ R+
µ and q ≤ 0 such thatf(t, x, y)− f(t, x, y) ≥ t1−αp(x− x) + t1−αq(y − y),

g(t, y, x)− g(t, y, x) ≥ t1−αp(y − y) + t1−αq(x− x),

where γσ(t) ≤ x ≤ x ≤ δσ(t), γσ(t) ≤ y ≤ y ≤ δσ(t) for all t ∈ I, and

g(t, y, x)− f(t, x, y) ≥ t1−αp(y − x) + t1−αq(x− y),

where γσ(t) ≤ x ≤ y ≤ δσ(t) for all t ∈ I.

To study the nonlinear system (4.1), we first consider the associated linear system:
x

(α)
∆ (t) = h1(t) + t1−αp x(σ(t)) + t1−αq y(σ(t)), for t ∈ I = [a, b]T,

y
(α)
∆ (t) = h2(t) + t1−αp y(σ(t)) + t1−αq x(σ(t)), for t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0,

(4.9)

where α ∈ (0, 1], (λ0, β0) ∈ R2, λ0 ≤ β0, −p,−q ∈ Rµ, q ≤ 0 and h1, h2 ∈ C(I,R).

Lemma 4.2.3 The linear system (4.9) has a unique solution (x, y) ∈ Cα
rd(J,R) ×

Cα
rd(J,R), with

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ J = [a, σ(b)]T,
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where

z(t) :=

∫
[a,t]T

e−(p+q)(s, t)(h1 + h2)(s)∆αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J,

and

w(t) :=

∫
[a,t]T

e−(p−q)(s, t)(h1 − h2)(s)∆αs+ (λ0 − β0)e−(p−q)(a, t), t ∈ J.

Proof. The pair (x, y) ∈ Cα
rd(J,R)×Cα

rd(J,R) is a solution to system (4.9) if and
only if

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, for every t ∈ J = [a, σ(b)]T,

where z(t) and w(t) are the solutions to the following problems:z
(α)
∆ (t) = (h1(t) + h2(t)) + t1−α(p+ q) z(σ(t)), for t ∈ I = [a, b]T,

z(a) = λ0 + β0,

and w
(α)
∆ (t) = (h1(t)− h2(t)) + t1−α(p− q) w(σ(t)), for t ∈ I = [a, b]T,

w(a) = λ0 − β0.

By Lemma 4.1.1, we have

z(t) :=

∫
[a,t]T

e−(p+q)(s, t)(h1 + h2)(s)∆αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J, (4.10)

w(t) :=

∫
[a,t]T

e−(p−q)(s, t)(h1 − h2)(s)∆αs+ (λ0 − β0)e−(p−q)(a, t), t ∈ J. (4.11)

The proof is finished. �

Lemma 4.2.4 (Comparison principle 2). Let (x, y) ∈ Cα
rd(J,R)× Cα

rd(J,R) satisfy


x

(α)
∆ (t)− t1−αp x(σ(t)) + t1−αq y(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

y
(α)
∆ (t)− t1−αp y(σ(t)) + t1−αq x(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

x(a) ≥ 0, y(a) ≥ 0,

(4.12)

where α ∈ (0, 1], −p,−q ∈ R+
µ and q ≤ 0. Then x(t) ≥ 0, y(t) ≥ 0 for all t ∈ J .
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Proof. Let w(t) = x(t) + y(t), then (4.12) is equivalent to the following:w
(α)
∆ (t)− t1−α(p− q) w(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

w(a) ≥ 0.

By Lemma 4.1.2, we know that w(t) ≥ 0, for all t ∈ J , i.e., x(t) + y(t) ≥ 0, for all
t ∈ J ,
So. 

x
(α)
∆ (t)− t1−α(p+ q) x(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

y
(α)
∆ (t)− t1−α(p+ q) y(σ(t)) ≥ 0, for t ∈ I = [a, b]T,

x(a) ≥ 0, y(a) ≥ 0.

By Lemma 4.1.2, we have x(t) ≥ 0 and y(t) ≥ 0 for all t ∈ J . The proof is completed. �

The obtained result is the following.

Theorem 4.2.5 Assume that (H1), (H2) and (H3) hold. Then (4.1) has an extremal
system of solutions (x∗(t), y∗(t)) ∈ [γ(t), δ(t)]×[γ(t), δ(t)], and there exist two monotone
sequences {yn}n∈N and {zn}n∈N converging uniformly to x∗(t), y∗(t), respectively, where
yn(t), zn(t) ∈ [γ(t), δ(t)], such that

γ =: y0 ≤ y1 ≤ ... ≤ yn ≤ ... ≤ zn ≤ ... ≤ z1 ≤ z0 := δ, on J for all n ∈ N.

Proof. Firstly, for all yn, zn ∈ Cα
rd(J,R), we consider the linear system:

yn+1
(α)
∆ (t) = f(t, yσn(t), zσn(t))− t1−αp(yσn(t)− yσn+1(t))− t1−αq(zσn(t)− zσn+1(t)),

for t ∈ I,

zn+1
(α)
∆ (t) = g(t, zσn(t), yσn(t))− t1−αp(zσn(t)− zσn+1(t))− t1−αq(yσn(t)− yσn+1(t)),

for t ∈ I,

yn+1(a) = λ0, zn+1(a) = β0,

i.e.,

yn+1
(α)
∆ (t) = (f(t, yσn(t), zσn(t))− t1−α(pyσn(t) + qzσn(t))) + t1−α(pyσn+1(t) + qzσn+1(t)),

for t ∈ I,

zn+1
(α)
∆ (t) = (g(t, zσn(t), yσn(t))− t1−α(pzσn(t) + qyσn(t))) + t1−α(pzσn+1(t) + qyσn+1(t)),

for t ∈ I,

yn+1(a) = λ0, zn+1(a) = β0.

(4.13)
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By Lemma 4.2.3, the linear system (4.13) has a unique solution (yn+1, zn+1) ∈ Cα
rd(J,R)×

Cα
rd(J,R), with

yn+1(t) =
vn+1(t) + wn+1(t)

2
, zn+1(t) =

vn+1(t)− wn+1(t)

2
, for every t ∈ J = [a, σ(b)]T,

where

vn+1(t) =

∫
[a,t]T

e−(p+q)(s, t)
[
f(s, yσn(s), zσn(s)) + g(s, zσn(s), yσn(s))

− s1−α(p+ q)(yσn(s) + zσn(s))
]
∆αs+ (λ0 + β0)e−(p+q)(a, t), t ∈ J,

and

wn+1(t) =

∫
[a,t]T

e−(p−q)(s, t)
[
f(s, yσn(s), zσn(s))− g(s, zσn(s), yσn(s))

− s1−α(p− q)(yσn(s)− zσn(s))
]
∆αs+ (λ0 − β0)e−(p−q)(a, t), t ∈ J.

Secondly, we shall prove that

yn ≤ yn+1 ≤ zn+1 ≤ zn, on J for all n ∈ N.

Let v := y1−y0 = y1−γ, w := z0−z1 = δ−z1. According to (4.13) and (H1)-(H2),
we have

v
(α)
∆ (t) ≥ −t1−αp (y0(σ(t))− y1(σ(t)))− t1−αq (z0(σ(t))− z1(σ(t))) , for t ∈ I,

v(a) ≥ λ0 − λ0 = 0,

w
(α)
∆ (t) ≥ t1−αp (z0(σ(t))− z1(σ(t))) + t1−αq (y0(σ(t))− y1(σ(t))) , for t ∈ I,

w(a) ≥ β0 − β0 = 0,

i.e., v
(α)
∆ (t) ≥ t1−αpv(σ(t))− t1−αqw(σ(t)), for t ∈ I, v(a) ≥ 0,

w
(α)
∆ (t) ≥ t1−αpw(σ(t))− t1−αqv(σ(t)), for t ∈ I, w(a) ≥ 0.

Then, by Lemma 4.2.4, we have v(t) ≥ 0, w(t) ≥ 0, i.e., y1 ≥ y0, z0 ≥ z1.
Let ξ := z1 − y1. According to (4.13) and (H3), we have

ξ
(α)
∆ (t) = z1

(α)
∆ (t)− y1

(α)
∆ (t)

= g(t, zσ0 (t), yσ0 (t))− t1−α(pzσ0 (t) + qyσ0 (t)) + t1−α(pzσ1 (t) + qyσ1 (t))

− f(t, yσ0 (t), zσ0 (t)) + t1−α(pyσ0 (t) + qzσ0 (t))− t1−α(pyσ1 (t) + qzσ1 (t))

≥ t1−αp(zσ1 (t)− yσ1 (t))− t1−αq(zσ1 (t))− yσ1 (t)) = t1−α(p− q)ξσ(t).
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So. ξ
(α)
∆ (t) ≥ t1−α(p− q)ξσ(t), for t ∈ I,

ξ(a) = β0 − λ0 ≥ 0.
(4.14)

By Lemma 4.1.2, we have ξ(t) ≥ 0, i.e., z1(t) ≥ y1(t) for all t ∈ J .
By mathematical induction, we can prove that

yn ≤ yn+1 ≤ zn+1 ≤ zn, on J for all n ∈ N.

Thirdly, the sequences {yn}n∈N and {zn}n∈N are monotone and bounded, hence

lim
n→∞

yn = x∗, lim
n→∞

zn = y∗,

(x∗, y∗) is an extremal system of solutions to (4.1).

Finally, we prove that (4.1) has at most one extremal system of solutions.
Assume that (x, y) ∈ [γ = y0, δ = z0]× [y0, z0] is the system of solutions to (4.1), then

y0 = γ ≤ x, y ≤ z0 = δ.

For some k ∈ N, assume that the following relation holds

yk(t) ≤ x(t), y(t) ≤ zk(t), t ∈ J.

Let u(t) = x(t)− yk+1(t), ϑ(t) = zk+1(t)− y(t). According to (4.13) and (H3), we have

u
(α)
∆ (t) = x

(α)
∆ (t)− yk+1

(α)
∆ (t)

= f(t, xσ(t), yσ(t))− f(t, yk
σ(t), zk

σ(t)) + t1−αp(yk
σ(t)− yk+1

σ(t))

+ t1−αq(zk
σ(t)− zk+1

σ(t))

≥ t1−αp(xσ(t)− ykσ(t)) + t1−αq(yσ(t)− zkσ(t)) + t1−αp(yk
σ(t)− yk+1

σ(t))

+ t1−αq(zk
σ(t)− zk+1

σ(t))

= t1−αp(xσ(t)− yk+1
σ(t)) + t1−αq(yσ(t)− zk+1

σ(t)),

and

ϑ
(α)
∆ (t) = zk+1

(α)
∆ (t)− y(α)

∆ (t)

= g(t, zk
σ(t), yk

σ(t))− g(t, yσ(t), xσ(t))− t1−αp(zkσ(t)− zk+1
σ(t))

− t1−αq(ykσ(t)− yk+1
σ(t))

≥ t1−αp(zk
σ(t)− yσ(t)) + t1−αq(yk

σ(t)− xσ(t))− t1−αp(zkσ(t)− zk+1
σ(t))

− t1−αq(ykσ(t)− yk+1
σ(t))

= t1−αp(zk+1
σ(t)− yσ(t))− t1−αq(xσ(t)− yk+1

σ(t)),
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we can getu
(α)
∆ (t) ≥ t1−αpu(σ(t))− t1−αqϑ(σ(t)), for t ∈ I, u(a) ≥ 0,

ϑ
(α)
∆ (t) ≥ t1−αpϑ(σ(t))− t1−αqu(σ(t)), for t ∈ I, ϑ(a) ≥ 0.

Then, by Lemma 4.2.4, we have u(t) ≥ 0, ϑ(t) ≥ 0, i.e., yk+1(t) ≤ x(t), y(t) ≤
zk+1(t), t ∈ J ,
By the induction arguments, the following relation holds

yn(t) ≤ x(t), y(t) ≤ zn(t), t ∈ J.

Taking the limit as n → ∞, we get that x∗ ≤ x, y ≤ y∗ on J. Hence, (x∗, y∗) ∈
[γ, δ]× [γ, δ] is the extremal system of solutions to (4.1). So the proof is finished. �

4.3 Examples

We present the following two examples, where we apply Theorem 4.2.5.

Example 4.3.1 Consider the system of nonlinear conformable fractional dynamic equa-
tions: 

x
( 1
3

)

∆ (t) =
t(2− x(σ(t)))2 − y2(σ(t))

3
√
t

, t ∈ I = [1, 2]T,

y
( 1
3

)

∆ (t) = t
2
3 (2− y(σ(t)))3 − t− 1

3x2(σ(t)), t ∈ I = [1, 2]T,

x(1) = 0, y(1) = 0.5,

(4.15)

where α = 1
3
, f(t, x, y) =

t(2− x)2 − y2

3
√
t

and g(t, y, x) = t
2
3 (2− y)3 − t− 1

3x2.

It is clear that f, g are continuous functions. Take γ(t) = 0 ≤ δ(t) = 2 for t ∈
[1, σ(2)]T, then

γ
( 1
3

)

∆ (t) = 0 ≤ f(t, γσ(t), δσ(t)) =
4(t− 1)

3
√
t

for t ∈ [1, 2]T, γ(1) = 0 ≤ 0,

and
δ

( 1
3

)

∆ (t) = 0 ≥ g(t, δσ(t), γσ(t)) = 0 for t ∈ [1, 2]T, δ(1) = 2 ≥ 0.5,

then assumptions (H1) and (H2) holds.
Let x, x, y, y ∈ R, then we have:

f(t, x, y)− f(t, x, y) = t1−
1
3

(
(2− x)2 − (2− x)2

)
− 1

3
√
t
(y2 − y2)



4.3. Examples 43

≥ t1−
1
3

(
−4(x− x) + x2 − x2

)
≥ −4t1−

1
3 (x− x)

≥ −12t1−
1
3 (x− x) + 0.t1−

1
3 (y − y),

g(t, y, x)− g(t, y, x) = t
2
3

(
(2− y)3 − (2− y)3

)
− t−

1
3 (x3 − x3)

≥ t
2
3

(
−4(y − y) + 2(y2 − y2)− (y3 − y3)

)
≥ −12t1−

1
3 (y − y) + 0.t1−

1
3 (x− x),

with γσ(t) ≤ x ≤ x ≤ δσ(t), γσ(t) ≤ y ≤ y ≤ δσ(t) for all t ∈ I, and we have

g(t, y, x)− f(t, x, y) = t
2
3

(
(2− y)3 − (2− x)2

)
+ t−

1
3 (y2 − x2)

≥ t
2
3

(
−4(y − x) + (4− x2 + 2y2)− y3)

)
≥ −12t1−

1
3 (y − x) + 0.t1−

1
3 (x− y).

with γσ(t) ≤ x ≤ y ≤ δσ(t), for all t ∈ I.
Hence the assumption (H3) holds with p = −12 and q = 0. By Theorem 4.2.5, the non-

linear system (4.15) has the extremal solution (x∗, y∗) ∈ C
1
3
rd([1, σ(2)]T)×C

1
3
rd([1, σ(2)]T),

such that (x∗, y∗) ∈ [γ, δ] × [γ, δ] on [1, σ(2)]T, which can be obtained by taking limits
from the iterative sequences:

xn+1(t) =

∫
[1,t]T

s
−2
3 e12(s, t)

[
t(2− xn(σ(t)))2 − y2

n(σ(t))
3
√
t

+ 12(xσn(s))

]
∆s,

t ∈ J = [1, σ(2)]T,

yn+1(t) = 0.5e12(1, t) +

∫
[1,t]T

s
−2
3 e12(s, t)

[
t
2
3 (2− yn(σ(t)))3 − t−

1
3x2

n(σ(t)) + 12(yσn(s))
]

∆s,

t ∈ J,

Example 4.3.2 Consider the system of nonlinear conformable fractional differential
equations: 

x( 1
3

)(t) =
t(2− x(t))2 − y2(t)

3
√
t

, t ∈ I = [1, 2],

y( 1
3

)(t) = t
2
3 (2− y(t))3 − t− 1

3x2(t), t ∈ I = [1, 2],

x(1) = 0, y(1) = 0.5,

(4.16)

where α = 1
3
, f(t, x, y) =

t(2− x)2 − y2

3
√
t

and g(t, y, x) = t
2
3 (2− y)3 − t− 1

3x2.

It is clear that f, g are continuous functions. Take γ(t) = 0 and δ(t) = 2 for t ∈ [1, 2],
then

γ( 1
3

)(t) = 0 ≤ f(t, γ(t), δ(t)) =
4(t− 1)

3
√
t

for t ∈ [1, 2], γ(1) = 0 ≤ 0,
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and
δ( 1

3
)(t) = 0 ≥ g(t, δ(t), γ(t)) = 0 for t ∈ [1, 2], δ(1) = 2 ≥ 0.5.

So, γ and δ, are lower and upper solutions of problem (4.15), respectively with γ(t) =
0 ≤ δ(t) = 2 for t ∈ [1, 2], then assumptions (H1) and (H2) holds.
Let x, x, y, y ∈ R, then we have:

f(t, x, y)− f(t, x, y) = t1−
1
3

(
(2− x)2 − (2− x)2

)
− 1

3
√
t
(y2 − y2)

≥ t1−
1
3

(
−4(x− x) + x2 − x2

)
− (y2 − y2)

≥ −4t
2
3 (x− x)

≥ −24(x− x)− 0(y − y),

g(t, y, x)− g(t, y, x) = t
2
3

(
(2− y)3 − (2− y)3

)
− t−

1
3 (x2 − x2)

≥ −t
2
3 (y − y)

(
(2− y)2 + (2− y)(2− y) + (2− y)2

)
≥ −12t

2
3 (y − y),

≥ −24(y − y)− 0.(x− x),

with γ(t) ≤ x ≤ x ≤ δ(t), γ(t) ≤ y ≤ y ≤ δ(t) for all t ∈ I, and we have

g(t, y, x)− f(t, x, y) = t
2
3

(
(2− y)3 − (2− x)2

)
+ t−

1
3 (y2 − x2)

≥ −t
2
3 (y − x)

(
(2− y)2 + (2− y)(2− x) + (2− x)2

)
≥ −12t1−

1
3 (y − x)

≥ −24(y − x)− 0.(x− y).

with γ(t) ≤ x ≤ y ≤ δ(t), for all t ∈ I.
Hence the assumption (H3) holds with p = −24 and q = 0. By Theorem 4.2.5, the

nonlinear system (4.16) has the extremal solution (x∗, y∗) ∈ C
1
3 ([1, 2]) × C

1
3 ([1, 2]),

such that (x∗, y∗) ∈ [γ, δ]× [γ, δ] on [1, 2], which can be obtained by taking limits from
the iterative sequences:

xn+1(t) =

∫ t

1

s
−2
3 e72(s

1
3−t

1
3 )

[
s(2− xn(s))2 − y2

n(s)
3
√
s

+ 24(xn(s))

]
ds, t ∈ I,

yn+1(t) =

∫ t

1

s
−2
3 e72(s

1
3−t

1
3 )
[
s

2
3 (2− yn(s))3 − s−

1
3x2

n(s) + 24yn(s)
]
ds+ 0.5e72(1−t

1
3 ), t ∈ I.



Conclusion

In this work, we have considered the existence of quasi-solutions for the firs-order dy-
namic equations involving integral boundary conditions, and we present the existence
of extremal solutions for nonlinear conformable fractional differential equations involv-
ing integral boundary conditions. Also, we present the existence of extremal solutions
for a coupled system of nonlinear conformable fractional differential equations on time
scales with initial conditions.

These results were obtained by applying the comparison principle and the monotone
iterative technique combined with the method of upper and lower solutions.
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