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Introduction
Fractional calculus a generalization of classical integer-order calculus, has garnered
significant attention in recent decades. Yet its widespread application in diverse
scientific and engineering disciplines is a more recent phenomenon. Unlike classical
derivatives and integrals that describe localized changes, fractional operators inher-
ently capture non-local, memory-dependent, and hereditary properties of various
phenomena. This unique ability makes them exceptionally well-suited for model-
ing complex systems in fields such as anomalous diffusion, viscoelasticity, control
theory, finance, and biological systems, where traditional integer-order models often
fall short.

Among the various forms of fractional equations, Fractional Integro-Differential
Equations (FIDEs) stand out as a particularly rich and challenging class. These
equations combine fractional derivatives, fractional integrals, and classical integral
terms, providing a powerful framework to describe systems exhibiting both memory
effects and accumulation processes. The inclusion of the Caputo fractional derivative
is particularly significant for practical applications. Unlike the Riemann-Liouville
derivative, the Caputo definition allows for the direct use of physically interpretable
initial and boundary conditions, aligning more naturally with real-world scenarios
and making it a preferred choice for modeling.

Despite their immense modeling potential, finding analytical solutions to most
FIDEs is exceptionally difficult, if not impossible. This inherent complexity neces-
sitates the development of robust and efficient numerical methods to approximate
their solutions. Over the years, various numerical techniques have emerged, includ-
ing finite difference methods, finite element methods, and spectral methods. Among
these, spectral methods have distinguished themselves by offering high accuracy and
rapid convergence rates for problems with smooth solutions. These methods rely
on approximating the solution using a series of global basis functions, typically or-
thogonal polynomials, leading to a system of algebraic equations that can then be
solved efficiently.

This thesis focuses on the numerical solution of linear fractional integro-differential
equations
Involving ;the Caputo derivative using a spectral collocation method. We specifically
leverage Jacobi polynomials, and their important special case, Legendre polynomi-
als, as the basis functions. The collocation approach transforms the FIDE into a
system of linear algebraic equations by enforcing the satisfaction of the equation
at specific collocation points (e.g., Gauss-Lobatto points). This methodology cap-
italizes on the high approximation capabilities of orthogonal polynomials and the
efficiency of solving linear systems.

The structure of this thesis is organized as follows:

• Chapter 1 provides a comprehensive theoretical background on fractional
calculus, introducing key concepts such as the Gamma, Beta, and Mittag-
Leffler special functions. It then delves into the definitions and properties
of the Riemann-Liouville and Caputo fractional derivatives, emphasizing the
advantages of the latter for our study.
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• Chapter 2 is dedicated to the theory of orthogonal polynomials, with a par-
ticular focus
on Jacobi and Legendre polynomials, discussing their properties and their cru-
cial role in spectral approximations.

• Finally, Chapter 3 presents the core contribution of this work: the detailed
formulation and application of the spectral collocation method for solving
linear fractional integro-differential equations with the Caputo derivative. This
chapter will include the derivation of necessary operational matrices, the setup
of the linear system, and numerical examples to demonstrate the accuracy,
efficiency, and convergence of the proposed method.
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Chapter 1

Fractional derivatives

In this chapter we mainly concentrate on introducing typical fraction derivatives;
Fractional derivatives are a mathematical concept that extands traditional deriva-
tives to include derivatives of non-integer orders;
such a shalf-derivatives or quarter-derivatives.They allow for a more flexible way
of calculating changes in functions ;going beyond the conventional limits of integer
derivatives .
Fractional derivatives are used in various fields ; such as physics ; engineering;
neuroscience; and mathematical modeling of systems exhbiting nonlinear behavior
or memory effects .
There are several types of fractional derivatives including :
Riemann-Liouville ; Caputo

1.1 Special Function
A quick tour of the mathematical definitions associated with this concept can sim-
plify and clarify the understanding of the definitions and the use of fractional calcu-
lus. Among these definitions, we will briefly look at the Gamma function, the Beta
function, The Error function and The Complementary Error function.

1.1.1 Gamma Function
One of the fundamental functions of fractional calculus is Gamma function. This
function generalizes the factorial n! and allows n to be a non - integer number.

9
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Figure 1.1: Gamma Function Plot on [-5, 5]

Definition 1.1.1 [1]
The gamma function Γ(z) is defined by the integral

Γ(z) =
∫ +∞

0
tz−1e−tdt (1.1)

Properties 1.1.1 [2]
The basic properties of the Gamma function are:

1 The Γ(z) function is continuous for z > 0.

2 One of the fundamental properties of the Gamma function is that it satisfies
the following functional equation:

Γ(z + 1) = zΓ(z). (1.2)

which can be easily proven by including:

Γ(z) =
∫ +∞

0
e−ttz−1dt (1.3)

=
[

e−ttz

z

]+∞

0
+ 1

z

∫ +∞

0
e−ttzdt (1.4)

= 0 + 1
z

∫ +∞

0
e−tt(z+1)−1dt (1.5)

= 1
z

Γ(z + 1), (1.6)

then
zΓ(z) = Γ(z + 1).
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3 Factorial Property Obviously, Γ(1) = 1, and using the recurrence relation,
we get values for z = 1, 2, 3, . . . :

Γ(2) = 1 · Γ(1) = 1! (1.7)
Γ(3) = 2 · Γ(2) = 2! (1.8)
Γ(4) = 3 · Γ(3) = 3! (1.9)

... (1.10)
Γ(n + 1) = nΓ(n) = n!. (1.11)

4 Gamma Function at Zero

Γ(0) = ∞. (1.12)

5 Gamma Function for Negative Integers For z = −n = −1, −2, −3, . . . ,
the result is:

Γ(−n) = Γ(−n + 1)
−n

(1.13)

= Γ(−n + 2)
(−n)(−n + 1) = Γ(−n + 3)

(−n)(−n + 1)(−n + 2) = · · · = Γ(0)
(−1)nn! (1.14)

=

−∞, if n is even,

+∞, if n is odd.
(1.15)

6 Binomial Relation

Γ(z + 1)
Γ(y + 1)Γ(z − y + 1) =

(
z

y

)
. (1.16)

7 Special Values The following special values for the Gamma function are
known:

• Γ
(

1
2

)
=

√
π.

• Γ
(
−1

2

)
= −2

√
π.

• Γ
(

3
2

)
= Γ

(
1 + 1

2

)
= 1

2Γ
(

1
2

)
= 1

2
√

π.

• Γ
(

5
2

)
= Γ

(
2 + 1

2

)
= 4

2Γ
(

3
2

)
= 3

4
√

π.

8 Reflection Property The reflection property of the Gamma function is given
by:

Γ(z)Γ(1 − z) = π

sin(πz) , 0 ≤ z ≤ 1. (1.17)
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1.1.2 The Beta Function
Beta function has been studied by Euler and is related to the gamma function.

Figure 1.2: Beta Function B(x,y) for x,y in [0.3],[0.3]

Definition 1.1.2 [3] The beta function is the Euler integral equation of the first
kind defined for complex numbers z and v by:

B(z, v) =
∫ 1

0
tz−1(1 − t)v−1dt; (1.18)

with ℜ(z) > 0, ℜ(v) > 0.

Properties 1.1.2 [4] For all x, y ∈ C with ℜ(x) > 0, ℜ(y) > 0:

• The Beta function is related to the Gamma function by the following relation-
ship:

B(z, v) = Γ(z)Γ(v)
Γ(z + v) . (1.19)

• B(z, v) = B(v, z) (symmetric).

• B(z, 1) = 1
z
.

• B(z, v) = B(z + 1, v) = B(z, v + 1).
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1.1.3 The Error Function and Complementary Error Func-
tion

Definition 1.1.3 [2] We call the error function, the function erf : R → R, defined
by

erf(z) = 2√
π

∫ z

0
e−t2

dt. (1.20)

As the exponential function is continuous on R, this function is differentiable, and
its derivative is:

erf ′(z) = 2√
π

e−z2
. (1.21)

Properties 1.1.3 [4] The Error Function has four main properties:
• erf(−∞) = −1.

• erf(+∞) = 1.

• erf(−z) = − erf(z).

• erf(z∗) = [erf(z)]∗.
The entire series

+∞∑
n=0

(−1)n

(2n + 1)n!z
2n+1

converges for all real x (the radius of convergence is infinite). Moreover, we have

erf(x) = 2√
π

+∞∑
n=0

(−1)n

(2n + 1)n!x
2n+1.
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1

x
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)

Figure 1.3: Error Function erf(x) on [-5, 5]
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Definition 1.1.4 [1]
Erfc is the complementary error function, commonly denoted erfc(z), and is an entire
function defined by:

erfc(z) = 1 − erf(z) = 2√
π

∫ ∞

z
e−t2

dt.

The derivative is given by
d

dz
erfc(z) = −2e−z2

√
π

,

and the indefinite integral by
∫

erfc(z)dz = z erfc(z) − e−z2

√
π

+ C,

Properties 1.1.4 [1] The complementary error function, denoted by erfc(x), has
the following special values:

• erfc(−∞) = 2

• erfc(0) = 1

• erfc(+∞) = 0

• erfc(−z) = 2 − erfc(z)

•
∫∞

0 erfc(t) dt = 1√
π

•
∫∞

0 erfc2(t) dt = 2−
√

2√
π

1.1.4 The Mittag-Leffler Function
The MLF arises from the solution of fractional-order differential or integral equa-
tions. It extends exponential functions and can be represented as a power series.

Definition 1.1.5 [2]
(Generalized Mittag-Leffler Function). The generalized MLF can be defined
as

Eγ
α,β(z) =

∞∑
k=0

(γ)k

Γ(β + kα)
zk

k! for R(α), R(β), R(γ) > 0 and z, α, β, γ ∈ C. (1.7)

14
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Figure 1.4: Mittag-Leffler Function Eα(z) for Different α Values

Definition 1.1.6 [1]
One-parameter MLF is defined as

Eα(z) =
∞∑

n=0

zn

Γ(1 + nα) for z ∈ C and α > 0. (1.22)

If we put α = 1 in 1.1.6, we obtain

E1(z) =
∞∑

n=0

zn

Γ(1 + n) for z ∈ C. (1.23)

which is the summation form of the exponential function ez. So, MLF is an extension
of the exponential function in one parameter.
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Definition 1.1.7 [1][4]
Two-parameter representation of the MLF may be written as

Eα,β(z) =
∞∑

n=0

zn

Γ(β + nα) for z ∈ C and α, β > 0. (1.6)

Especially,

E1,2(z) = ez − 1
z

, E2,2(z2) = sinh(z)
z

, E1/2,1(z) = ez2 erfc(−z).

where (γ)n is the Pochhammer symbol and is defined as:

(γ)n =

1, n = 0, γ ̸= 0,
Γ(γ+n)

Γ(γ) = (γ + n − 1) · · · (γ + 2)(γ + 1), n ∈ N, γ ∈ C.
(1.8)

Remark 1.1.1
The derivative of the two-parametric MLF can be expressed in the form of generalized
MLF as:

dn

dzn
Eα,β(z) = n!Eγ+n

α,β+n(z), n ∈ N, z ∈ C. (1.9)

Properties 1.1.5 [2] Some properties of the MLF are given as follows:

16



1. Eα,β(z) = 1
z
[Eα,α+β−1(z) + βEα,β+1(z)],

2. d
dz

Eα,β(z) = βEα,β+1(z) + αzEα,β+1(z),

3.
(

d
dz

)m
[zβ−1Eα,β(zα)] = zβ−m−1Eα,β−m(zα), R(β − m) > 0, m = 0, 1, 2, . . .

1.2 Riemann-Liouville derivative
In this section ; We are intersted in Riemann-Liouville fractional derivative firstly
its definition ; then present some examples.

Definition 1.2.1 Riemann-Liouville fractional derivative
The Riemann-Liouville fractional derivative can be defined using the definition of
the Riemann-Liouville fractional derivative,its used in the stady of fractional calculs
and defined for a function f(x) as:[16]

D[D1−αf(x)] =D[D−1D−(1−α−1)f(x) (1.24)
=D[D−1Dαf(x) (1.25)
=Dαf(x) (1.26)

Hence:

D[D−1−αf(x) =Dαf(x) (1.27)

Now, using the definition of the fractional integral we get ;

Dαf(x) = d

dx

[
1

Γ(1 − α)

∫ x

0
(x − t)−αf(t)dt

]
(1.28)

= 1
Γ(1 − α)

d

dx

∫ x

0
(x − t)−αf(t)dt (1.29)

if we differentiate the fractional integral n-times so we have

Dαf(x) = d

dx

d

dx
...

d

dx
D−(n−α)f(x) (1.30)

Dαf(x) =Dn
[
D−(n−α)f(x)

]
; n − 1 ≤ α ≤ n (1.31)

Now we can give the definition of The Riemann-Liouville fractional derivative .

Definition 1.2.2
Let f : R −→ R be a coutinous f function . Then Riemann-Liouville fractional
derivative of order α of a functions f(x) is giving by :

Dαf(x) =


1

Γ(n − α)
dn

dxn

∫ x

0

f(t)
(x − t)α−n+1 dt n − 1 ⩽ α ⩽ n

dn

dxn
f(x) α = n ∈ N

(1.32)

Where Γ(α) denotes Gamma function.
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1.2.1 Examples of Riemann-liouivill fractional derivative :
1. Constant function:

if:f(x) = k Were k is a constant ; then Dαf(x) = k

Γ(1 − α)x−α

solution:by the definition of Riemann-Liouville fractional derivative we have :

Dαf(x) = 1
Γ(n − α)

dn

dxn

∫ x

0

f(t)
(x − t)α−n+1 dt (1.33)

Dαk = 1
Γ(n − α)

dn

dxn

∫ x

0

k

(x − t)α−n+1 dt (1.34)

tet t = xu ; 0 ⩽ u ⩽ 1 and dt = u then

Dαk = k

Γ(n − α)
dn

dxn

∫ 1

0
(x − xu)n−α−1du (1.35)

= k

Γ(n − α)
dn

dxn
xn−α

∫ 1

0
(1 − u)n−α−1du (1.36)

= k

Γ(n − α)
dn

dxn
xn−αβ(1; n − α) (1.37)

= k

Γ(n − α + 1)
dn

dxn
xn−α (1.38)

= k

Γ(n − α + 1)
Γ(n − α + 1)

Γ(1 − α) x−α (1.39)

= k

Γ(1 − α)x−α (1.40)

(1.41)

Tus we have establish that

Dαk = k

Γ(1 − α)x−α (1.42)

From this example we can say that the fractional derivative of a constant is
not zero by Riemann-Liouiville definition ; not that it is inconsistant result ;
since the result is a function of x .

2. Power Function If we take f(x) = xm; m ≥ 0 the fractional derivative
becomes:
solution:by the definition of Riemann-Liouiville fractional derivative we obtain
:

Dαxm = 1
Γ(n − α)

dn

dxn

∫ x

0

tm

(x − t)α−n+1dt
(1.43)

18



set t = ux for 0 ≤ u ≤ 1; dt = xdu we got

Dαxm = 1
Γ(n − α)

dn

dxn

∫ 1

0
(xu)m(x(1 − u))n−α−1xdu (1.44)

Dαxm = 1
Γ(n − α)

dn

dxn
xm+n−α

∫ 1

0
um(1 − u)n−α−1du (1.45)

Dαxm = 1
Γ(n − α)

dn

dxn
xm+n−αβ(m + 1; n − α) (1.46)

Dαxm = 1
Γ(n − α)

dn

dxn
xm+n−α Γ(m + 1)Γ(n − α)

Γ(m + n − α + 1) (1.47)

Dαxm = Γ(m + 1)
Γ(m + n − α + 1)

dn

dxn
xm+n−α (1.48)

Dαxm = Γ(m + 1)
Γ(m + n − α + 1)

Γ(m + 1 − α + 1)
Γ(m − α + 1) xm−α (1.49)

Dαxm = Γ(m + 1)
Γ(m − α + 1)xm−α (1.50)

In the above example which is known as the power rule we obtain .

Dαxm = Γ(m + 1)
Γ(m − α + 1)xm−α; m ≥ 0 (1.51)

1.3 Caputo derivative

the fractional-order derivative Dα
c f(x) in the Caputo sense is defined as follows :[12]

Dα
c f(x) = 1

Γ(n − α)

∫ x

0
(x − t)n−α−1f (n)(t)dt; n − 1 < α ≤ n; n ∈ N (1.52)

Where α ∈ R∗
+ is the order of the derivative .

we also have Dα
c is a linear where :

Dα
c (βf(x) + γg(x)) = βDα

c (f(x) + γDα
c g(x)) (1.53)

where Dn
c is the classical differential operator of order n. For the Caputo derivative

we have

Dα
c xβ =

0, for β < α,
Γ(β+1)

Γ(β+1−α)x
β−α, for β ≥ α.

(1.54)

Recall that for α ∈ N, the Caputo differential operator coincides with the usual
differential operator of an integer order. Similar to the integer-order differentiation,
the Caputo’s fractional differentiation is a linear operation; i.e.

Dα
c (λf(x) + µg(x)) = λDα

c f(x) + µDα
c g(x), (1.55)

where λ and µ are constants.[15]
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Definition 1.3.1 [10][15]
the left and the right-sided Caputo derivatives of order α > 0 are defined by :

cDα
α;xf(x) = 1

Γ(n − α)

∫ x

α

fmdt

(x − t)α−n+1 ; x > α (1.56)

and
cDα

x;bf(x) = (−1)n

Γ(n − α)

∫ b

x

fmdt

(t − x)α−n+1 ; x < b (1.57)

resectivly where n is a positive integer satisfying m − 1 < α ≤ m
it follows from equation 1.56 and 1.57 that the n th order diffferentiation is required
for the Caputo derivtive precise results on the existence of Caputo derivative are
presented as follows

Remark 1.3.1
if k is a constant then cDα

t k = 0 from this formal we cn find the fractional derivative
of any polynominal ; by taking fractional derivatives of each term separately .

1.3.1 Example of caputo derivative
Calculation of the Caputo Fractional Derivative of the Function f(t) = t

The derivation of the function f(t) = t using the Caputo fractional derivative of
order α (where 0 < α ≤ 1) can be summarized as follows:

1. Definition of the Caputo Fractional Derivative
The Caputo fractional derivative of a function f(t) of order α is defined as:

Dαf(t) = 1
Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α−n+1 dτ

where n − 1 < α ≤ n. Given that 0 < α ≤ 1 in our case, we take n = 1.
Consequently, the definition simplifies to:

Dαf(t) = 1
Γ(1 − α)

∫ t

0

f ′(τ)
(t − τ)α

dτ

2. Application to the Function f(t) = t
First, we calculate the first ordinary derivative of the function f(t) = t:

f ′(t) = d

dt
(t) = 1

Substituting this into the Caputo derivative definition:

Dα(t) = 1
Γ(1 − α)

∫ t

0

1
(t − τ)α

dτ

3. Solving the Integral
We then evaluate the definite integral:∫ t

0
(t − τ)−αdτ =

[
−(t − τ)1−α

1 − α

]t

0
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Applying the limits of integration, where the upper limit (τ = t) yields zero (since
1 − α > 0) and the lower limit (τ = 0) yields −t1−α/(1 − α):

= 0 −
(

− t1−α

1 − α

)
= t1−α

1 − α

4. Final Result
Substituting the result of the integral back into the Caputo derivative equation:

Dα(t) = 1
Γ(1 − α)

(
t1−α

1 − α

)

By utilizing the Gamma function property Γ(z + 1) = zΓ(z), which allows us to
simplify (1 − α)Γ(1 − α) to Γ(2 − α), we arrive at the final result:

Dα(t) = t1−α

Γ(2 − α)

Proposition 1.3.1 We have the following properties :

1.
RD−α

a f(t) = 1
Γ(1 − α)

(∫ t

a
(t − τ)α−1f(τ)dτ

)
, f(a) (1.58)

CDα
a

RD−α
a f(t) = f(a)

Γ(1 − α)(t − a)1−α
+ CDα

a f(t). (1.59)

2.
CDα

a f(t) = RDα
a (f(t) − f(a)). (2.35) (1.60)

3. if f is continuous on [a, b], then :

CDα
a Iα

a f(t) = f(t). (2.36) (1.61)

4. if f ∈ Cm[a, b],then :

Iα
a

CDα
a f(t) = f(t) −

m−1∑
i=0

f (i)(a)
i! (t − a)i. (1.62)

Thus the Caputo fractional differentiation operator is a left inverse of the Riemann-
Liouville fractional integration operator of the same order ; but it is not a right
inverse.
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1.4 Relationship between fractional derivatives of
Riemann-Liouville and Caputo

Let Re(α) > 0 with n − 1 < Re(α) < n, (n ∈ N∗) assume that f is a function such
that CDαf(x) and RLDαf(x) exist, then:

CDαf(x) = RLDαf(x) −
n−1∑
k=0

f (k)(0)
Γ(k − α + 1)xk−α. (1.63)

We deduce that if f (k)(0) = 0 for k = 0, 1, 2, . . . , m − 1, then:

CDαf(x) = RLDαf(x). (1.64)
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Chapter 2

Classical orthogonal polynomials

This chapter is dedicated to introducing some fundamental notions; we will also
give a generality about orthogonal polynomials, notions of orthogonality with some
definitions that we will need in our study.

2.1 Orthogonal Polynomials
The simplest scalar product of functions is the integral of the product of these
functions, over a bounded interval :[5]

(f, g) =
∫ b

a
f(y)g(y)dy

More generally, we can introduce a weight function w(y) in the integral (over the
integration interval [a, b]), w(y) must take finite and strictly positive values, and the
integral of the product of the weight function by a polynomial must be finite, the
bounds a, b can be infinite):

(f, g) =
∫ b

a
f(y)g(y)w(y)dy

With this definition of the scalar product, two functions are orthogonal to each
other if their scalar product is zero (in the same way that two vectors are orthogonal
if their scalar product is zero). We also introduce the norm ∥f∥ =

√
(f, f), the scalar

product makes the set of all functions of finite norm a Hilbert space, the integration
interval is called the orthogonality interval.

2.1.1 Rodrigues’ Formula
In this section, we assume that we have a family of orthogonal polynomials given
by a Rodrigues’ formula of the form:

pn(y) = 1
Knw(y)

dn

dyn
[w(y)yn]

Where:
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• pn(y): is a polynomial of degree n.

• Kn: is a number depending on the normalization.

• y: is a polynomial in y of degree k.

• w(y): is the weight function of the orthogonal polynomials.

For n = 1:
k1p1(y) = y′ + y

w′(y)
w(y)

2.1.2 Differential Equation and Form
Let (pn(y))n∈N be a sequence of orthogonal polynomials defined using a Rodrigues’
formula. Then pn(y) satisfies, for n ≥ 0, a differential equation of the form:

A(y)Y ′′ + B(y)Y ′ + λnY = 0

Where A(y) and B(y) do not depend on n, and λn depends on n.

Remark 2.1.1
The associated formally self-adjoint operator to this differential equation is:

d

dy

[
yw

dY

dy

]
+ λnwY = 0

2.1.3 Classical Orthogonal Polynomials [6]
2.1.3.1 Jacobi Polynomials [6]

The study interval: [−1, 1] Weight function: where a > −1 and b > −1

w(y) = (1 − y)a(1 + y)b

Explicit formulat:

J (a,b)
n (y) = 1

2n

n∑
m=0

(
n + a

m

)(
n + b

n − m

)
(y − 1)n−m(y + 1)m

Where we have: (
n

k

)
= n!

k!(n − k)!
Differential equation:

(1 − y2)Y ′′ + (b − a − (a + b + 2)y)Y ′ + n(n + a + b + 1)Y = 0

Y (y) = J (a,b)
n (y)
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Rodrigues’ formula:

J (a,b)
n (y) = (−1)n

2nn!(1 − y)a(1 + y)b

dn

dyn

[
(1 − y)n+a(1 + y)n+b

]
The orthogonality relation for Jacobi polynomials J (a,b)

n (x) is given by:

∫ 1

−1
(1 − y)a(1 + y)bJ (a,b

n (y)J (a,b)
m (y)dy =

0, if n ̸= m
2a+b+1

2n+a+b+1
Γ(n+a+1)Γ(n+b+1)
Γ(n+1)Γ(n+a+b+1) , if n = m

where the parameters satisfy a > −1 and b > −1
The well-known Jacobi polynomials are defined on the interval [−1, 1] and can be
generated with the aid of the following recurrence formula:

J
(a,b)
i (y) = (a + b + 2i − 1)((a2 − b2 + y(a + b + 2i)(a + b + 2i − 2))

2i(a + b + i)(a + b + 2i − 2) J
(a,b)
i−1 (y) (2.1)

− (a + i − 1)(b + i − 1)(a + b + 2i)
i(a + b + i)(a + b + 2i − 2) J

(a,b)
i−2 (y), (2.2)

i = 2, 3, . . ..
where

J
(a,b)
0 (y) = 1 and J

(a,b)
1 (y) = a + b + 2

2 y + a − b

2 .

The three polynomials of Jacobi are:
J

(a,b)
0 (y) = 1 (2.3)

J
(a,b)
1 (y) = 1

2[2(a + 1) + (a + b + 2)(y − 1)] (2.4)

J
(a,b)
2 (y) = 1

8[4(a + 1)(a + 2) + 4(a + 2)(a + b + 3)(y − 1) (2.5)

+ (a + b + 3)(a + b + 4)(y − 1)2] (2.6)

2.1.3.2 Special Jacobi Polynomials

(a) Legendre
Pn(y) = J (0,0)(y)

(b) Chebyshev 1st kind: Tn(y) = 1

( 1
2 +k

k )
J

(− 1
2 ,− 1

2)
k

2nd kind : Un(y) = k+1

( 1
2 +k

k )
J

( 1
2 , 1

2)
k

(c) Gegenbauer (ultraspherical)

Gn(y) =

(
2Y +k+1

k

)
(

y− 1
2 +k
k

) J
(Y − 1

2 ,Y − 1
2)

k , for 0 ̸= Y > −1
2

And

J
(0)
k = lim

Y →0

G
(Y )
k

Y
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2.1.3.3 Legendre Polynomials [6]

Study interval: [−1, 1]
Weight function:

w(y) = 1
Explicit formula:

Pn(y) = 1
2n

⌊ n
2 ⌋∑

m=0
(−1)m

(
n

m

)(
2n − 2m

n

)
yn−2m

Differential equation:

(1 − y2)Y ′′ − 2yY ′ + n(n + 1)Y = 0 (2.7)
Y = Pn(y) (2.8)

Rodrigues’ Formula:

Pn(y) = (−1)n

2nn!
dn

dyn

{
(1 − y2)n

}
Orthogonality Relation:

∫ +1

−1
Pn(y)Pm(y)dy =

0, if n ̸= m
2

2n+1 , if n = m

The first three functions of these polynomials are:

P0(y) = 1, P1(y) = y, P2(y) = 3
2y2 − 1

2

Pn(1) = 1, Pn(−1) = (−1)n

2.1.3.4 Chebyshev Polynomials (first kind)

Study interval: [−1, 1]
Weight function:

w(y) = (1 − y2)− 1
2

Explicit formula:

Tn(y) = n

2

⌊ n
2 ⌋∑

m=0
(−1)m (n − m − 1)!

m!(n − 2m)! (2y)n−2m = cos(n arccos y)

Differential equation:

(1 − y2)Y ′′ − yY ′ + n2Y = 0 (2.9)
Y = Tn(y) (2.10)
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Rodrigues’ Formula:

Tn(y) = (−1)n(1 − y2) 1
2

2n
√

πΓ(n + 1
2)

dn

dyn

{
(1 − y2)n− 1

2
}

Orthogonality Relation:

∫ +1

−1

Tn(y)Tm(y)√
1 − y2 dy =


0, n ̸= m

π, n = m = 0
π
2 , n = m > 0

The three polynomials of Chebyshev Polynomials (first kind)are:

T0(y) = 1, T1(y) = x, T2(y) = 2y2 − 1

2.1.3.5 Chebyshev Polynomials (second kind)

Study interval: [−1, 1]
Weight function:

w(y) = (1 − y2) 1
2

Explicit Formula:

Un(y) =
⌊ n

2 ⌋∑
m=0

(−1)m

(
n − m

m

)
(2y)n−2m = sin((n + 1) arccos y)√

1 − y2

Differential equation:

(1 − y2)Y ′′ − 3yY ′ + n(n + 2)Y = 0 (2.11)
Y = Un(y) (2.12)

Rodrigues’ Formula:

Un(y) = (−1)n(n + 1)
√

π

(1 − y2) 1
2 2n+1Γ(n + 3

2)
dn

dyn

{
(1 − y2)n+ 1

2
}

Orthogonality Relation:

∫ +1

−1
Un(y)Um(y)

√
1 − y2dy =

0, n ̸= m
π
2 , n = m

three polynomials of Chebyshev Polynomials (second kind) are:

U0(y) = 1, U1(y) = 2y, U2(y) = 4y2 − 1
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2.1.3.6 Gegenbauer Polynomials (or ultraspherical)

Study interval: [−1, 1]
Weight function:

w(y) = (1 − y2)α− 1
2

Explicit formula:

G(a)
n (y) = 1

Γ(a)

⌊ n
2 ⌋∑

k=0
(−1)k Γ(n − k + a)

k!(n − 2k)! (2x)n−2k

G(a)
n (y) =

⌊ n
2 ⌋∑

m=0
(−1)m Γ(n − m + a)

Γ(a)m!(n − 2m)!(2y)n−2m

Differential equation:

(1 − y2)Y ′′ − (2a + 1)yY ′ + n(n + 2a)Y = 0 (2.13)
Y = G(a)

n (y) (2.14)

Rodrigues’ Formula:

G(a)
n (y) = (−1)n(1 − y2) 1

2 −aΓ(n + 2a)
2nn!Γ(a + 1

2)Γ(n + a + 1
2)

dn

dyn

{
(1 − y2)n+a− 1

2
}

Orthogonality Relation:

∫ +1

−1
(1 − y2)a− 1

2 G(a)
n (y)G(a)

m (y)dy =

0, if n ̸= m
π21−2aΓ(n+2a)
n!(n+a)[Γ(a)]2 , if n = m

where a > 1
2

The three polynomials of Gegenbauer are :

G
(a)
0 (y) = 1, G

(a)
1 (y) = 2ay, G

(a)
2 (y) = −a + 2a(1 + a)y2

2.1.3.7 Laguerre Polynomials [14]

Interval of Study [0, +∞[
Weight Function

W (y) = e−y

Explicit Formula: Ln(y) = ∑n
k=0

(−1)kn!yk

k!2(n−k)!
Differential Equation

Y ′′ + (1 − y)Y ′ + nY = 0

Rodrigues’ Formula:
Ln(y) = ey

n!
dn

dyn
(xne−y)
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Orthogonality Relation:
∫ +∞

0
e−yLn(y)Lm(y)dy =

0, if n ̸= m

(n!)2, if n = m

The Three Polynomials of Laguerre are:

L0(y) = 1, L1(y) = 1 − y, L2(y) = y2 − 4y + 2

2.1.3.8 Hermite Polynomials [7]

Study interval: y ∈ R =] − ∞, +∞[
Weight function:

w(y) = e−y2

Explicit formula:

Hn(y) = n!
E(n

2 )∑
k=0

(−1)k(2y)n−2k

k!(n − 2k)!
Differential equation:

H ′′
n(y) − 2yH ′

n(y) + 2nHn(y) = 0

Rodrigues’ Formula:
Hn(y) = (−1)ney2 dn

dyn
e−y2

Orthogonality Relation:∫ +∞

−∞
Hn(y)Hm(y)e−y2

dy = 0, if n ̸= m

∫ +∞

−∞
Hn(y)Hm(y)w(y)dy = γnδmn, γn =

√
π2nn!, if n = m

The Three Polynomials of Hermite are:

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2

2.2 Numerical Integration

2.2.1 Gaussian Methods [6]
Gauss methods are among the most common and most precise methods; the inte-
gration is exact for any polynomial of degree less than or equal to 2n + 1. Let {Ψi}
be a family of orthogonal polynomials for the weight function w(y) over the interval
[a, b]. We are looking for an approximate integral

∫ b
a f(y)w(y)dy using a formula of

Lagrange type:

f(y) =
n∑

i=0
Li(y)f(yi) +

n∏
j=0

f (n+1)(c)
(n + 1)! , with c ∈ [a, b]
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Li(y) +
n∏

0⩽j⩽n,j ̸=i

(y − yj)
(yi − yj)

If {Ψn} is a basis of orthogonal polynomials for the weight function w(y) on
[a, b], we have: ∫ b

a
Ψn(y)Ψm(y)ω(y)dy = 0, if n ̸= m

Let’s develop the product based on this property:
n∏

i=0
(y − yi) =

n+1∑
i=0

aiΨi(y)

And if f is a polynomial of degree (2n + 1), let’s denote:

Qn(y) = f (n+1)(y)
(n + 1)! =

n+1∑
i=0

biΨi(y)

The remainder is expressed by:

Rn(y) =
n∏

i=0
(y − yi)

f (n+1)(c)
(n + 1)! =

n∑
i=0

aibiΨi(y)Ψj(y) + an+1

n∑
i=0

biΨi(y)Ψi+1(y)

whose integral is:∫ b

a
f(y)f(y)ω(y)dy =

∫ b

a

n∑
i=0

Li(y)f(yi)w(y)dy +
∫ b

a
Rn(y)ω(y)dy + ε

Thus, by virtue of the orthogonality of the polynomials:∫ b

a
Rn(y)ω(y)dy =

n∑
i=0

aibi

∫ b

a
Ψ2

i(y)ω(y)

By choosing the points {yi} of the subdivision as the (n + 1) roots of the poly-
nomial of degree n + 1, we set ai = 0 for i = 0, 1, ..., n and an+1 ̸= 0, that is to
say:

n∏
i=0

(y − yi) =
n+1∑
i+0

aiΨi(y) = an+1Ψn+1(y)

From where: ∫ b

a
Rn(y)ω(y)dy = 0.

Consequently, the Gaussian method applied to a function f leads to an approxima-
tion of the form: ∫ b

a
f(y)ω(y)dy =

n∑
i=0

ωif(yi) + ϵ

With
ωi =

∫ b

a
Li(y)ω(y)dy.

The error is of the form ϵ = εnf (2n+2)(c) where c ∈ (a, b) depends on the choice of
the orthogonal polynomials {Ψn} .[8]
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2.2.2 Gauss-Legendre Integration [6]
When the family of orthogonal polynomials is the family of Legendre polynomials
relative to the weight function w(y) = 1 over the interval [−1, 1], the integral is
approximated by the formula:

∫ 1

−1
f(y)dy =

n∑
i=0

wif(yi) + ϵ

Where the numbers wi are given by:

wi =
∫ 1

−1

∏
0≤j≤n,j ̸=i

(y − yj)
(yi − yj)

dy

And the yi are the roots of the Legendre polynomial Pn+1.
The error is expressed by:

ϵ = 22n+3[(n+1)!]4
(2n+3)[(2n+2)!]3 f (2n+2)(c), with c ∈ [−1, 1]

2.2.3 Shifted Jacobi polynominals
In order to use these polynomials on the interval x ∈ [0, L], we defined the so-called
shifted Jacobi polynomials by introducing the change of variable y = 2x

L
− 1. Let

the shifted Jacobi polynomials J
(a,b)
L,i (x) be denoted by J

(a,b)
L,i (x). Then J

(a,b)
L,i (x) can

be generated from:

J
(a,b)
L,i (x) =

(a + b + 2i − 1)(a2 − b2 + (2x
L

− 1))(a + b + 2i)(a + b + 2i − 2)
2i(a + b + i)(a + b + 2i − 2) J

(a,b)
L,i−1(x)

(2.15)

− (a + i − 1)(b + i − 1)(a + b + 2i)
i(a + b + i)(a + b + 2i − 2) J

(a,b)
L,i−2(x) (2.16)

i = 2, 3, . . . where

J
(a,b)
L,0 (x) = 1 and J

(a,b)
L,1 (x) = a + b + 2

2

(2x

L
− 1

)
+ a − b

2 . (2.17)

The analytic form of the shifted Jacobi polynomials J
(a,b)
L,i (x) of degree i is given

by

J
(a,b)
L,i (x) =

i∑
k=0

(−1)i−kΓ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i − k)!k!Lk

xk (2.18)

where
J

(a,b)
L,i (0) = (−1)i Γ(i + b + 1)

Γ(b + 1)i! (2.19)

and
J

(a,b)
L,i (L) = Γ(i + a + 1)

Γ(a + 1)i! (2.20)
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The orthogonality condition of shifted Jacobi polynomials is∫ L

0
J

(a,b)
L,i (x)J (a,b)

L,j (x)w(a,b)
L (x)dx = hi (2.21)

where w
(a,b)
L (x) = xb(L − x)a and

hi =


La+b+1Γ(i+a+1)Γ(i+b+1)
(2i+a+b+1)i!Γ(i+a+b+1) , i = j,

0, i ̸= j.
(2.22)
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Chapter 3

Numerical solution of FI-DEs
using spectral collocation methode

In this chapter our goal is to find an approximate solution of this equation:{
Dαu(x) +

∫ L
0 k(x, t)u(x)dx = f(x)

u(0) = ρ x, t ∈ [0, L]

Let uN(x) the approximate solution of the exact solution u(x), then uN(x) can
be expressed in terms of shifted Jacobi polynomials as[9]

uN(x) =
N∑

j=0
cjJ

(a,b)
L,j (x) = CT ϕL(x), (3.1)

where the coefficients cj are given by

cj = 1
hj

∫ L

0
w

(a,b)
L (x)u(x)J (a,b)

L,j (x)dx, j = 0, 1, . . . (3.2)

If the shifted Jacobi coefficient vector C and the shifted Jacobi vector ϕ(x) are
written as

CT = [c0, c1, . . . , cN ], (3.3)
and

ϕL(x) = [J (a,b)
L,0 (x), J

(a,b)
L,1 (x), . . . , J

(a,b)
L,N (x)]T . (3.4)

Lemma 3.0.1 [9]
Let J

(a,b)
L,i (x) be a shifted Jacobi polynomial. Then

DαJ
(a,b)
L,i (x) = 0, i = 0, 1, 2, . . . , ⌊α⌋ − 1, α > 0. (3.5)

Proof —
Using Eqs 1.54 and 1.55 in Eq 2.18 the lemma can be proved.

The following theorem is generalizing the operational matrix of derivatives of
shifted Jacobi polynomials given in Eq. (2.12)[18] to fractional calculus.
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3.1 Matrix of the Fractional derivative part
Theorem 3.1 [11]
Let ϕ(x) be shifted Jacobi vector defined in Eq. 3.1 and let also α > 0. Then

Dαϕ(x) ≃ D(α)ϕ(x), (3.6)

where D(α) is the (N + 1) × (N + 1) operational matrix of fractional derivatives of
order α in the Caputo sense and is defined by:

D(α) ≡



0 0 0 · · · 0
0 ∆α(1, 1) ∆α(1, 2) · · · ∆α(1, N)
0 ∆α(2, 1) ∆α(2, 2) · · · ∆α(2, N)
... ... ... . . . ...
0 ∆α(N, 1) ∆α(N, 2) · · · ∆α(N, N)

 (3.7)

where
∆α(i, j) =

i∑
k=⌈α⌉

δijk (3.8)

and δjk is given by

δijk = (−1)i−kLa+b−α+1Γ(j + b + 1)Γ(i + k + a + b + 1)
hjΓ(j + a + b + 1)Γ(k + b + 1)Γ(i + a + b + 1)Γ(k − α + 1)(i − k)!

j∑
l=0

× (−1)j−1Γ(j + l + a + b + 1)Γ(a + 1)Γ(l + k + b − α + 1)
Γ(l + b + 1)Γ(l + k + a + b − α + 2)(j − l)!l!

(3.9)

Note that in D(α), the first ⌊α⌋ rows are all zeros.[13]

Proof —
The analytic form of the shifted Jacobi polynomials J

(a,b)
L,i (x) of degree i is given by

2.18 Using Eqs 1.54 and 1.55 in Eq.2.18 we have

DαP
(a,b)
L,i (x) =

i∑
k=0

(−1)i−kΓ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i − k)!k!Lk

Dαxk

=
i∑

k=⌈α⌉

(−1)i−kΓ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i − k)!Γ(k − α + 1)Lk

xk−α,

(3.10)

i = ⌈α⌉, ⌈α⌉ + 1, . . .

Now, approximate xk−α by (N + 1) terms of shifted Jacobi series, we get

xk−α ≃
N∑

j=0
b

(α)
k,j P

(a,b)
L,j (x), (3.11)
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where bk,j is given from 3.2 with u(x) = xk−α, and this immediately gives

bk,j = La+b+k−α+1Γ(j + b + 1)
hjΓ(j + a + b + 1) (3.12)

×
j∑

l=0

(−1)j−lΓ(j + l + a + b + 1)Γ(a + 1)Γ(l + k + b − α + 1)
Γ(l + b + 1)(j − l)!l!Γ(l + k + a + b − α + 2) (3.13)

Employing Eqs 3.10 and 3.12 , we get

DαJ
(a,b)
L,i (x) =

N∑
j=0

∆α(i, j)J (a,b)
L,j (x), i = ⌈α⌉, ⌈α⌉ + 1, . . . , N. (3.14)

where ∆α(i, j) is given in Eq 3.9. Accordingly, rewriting Eq. 3.14 as a vector form
gives

DαJ
(a,b)
L,i (x) ≃ [∆α(i, 0), ∆α(i, 1), ∆α(i, 2), . . . , ∆α(i, 0), ∆α(i, N)](x) (3.15)

i = 0, 1, . . . , ⌈α⌉ − 1 Also according to 3.0.1 one can write

DαJ
(a,b)
L (x) ≃ [0, 0, . . . , 0]ϕ(x), i = 0, 1, . . . , ⌈α⌉ − 1. (3.16)

A combination of Eqs 3.15 and 3.16 leads to the desired result.

3.2 Matrix of the Integral part

I =
∫ L

0
k(x, t)u(t)dt =

∫ L

0

k(x, t)
W

(a,b)
L (t)

W
(a,b)
L (t)u(t)dt (3.17)

=
N∑

j=0

k(x, σ̂L,j)
W

(a,b)
L,j (σ̂L,j)

ω̂L,ju(σ̂L,j) (3.18)

=
N∑

j=0

k(x, σ̂L,j)
W

(a,b)
L,j (σ̂L,j)

ω̂i,j

N∑
i=0

ciĴ
(a,b)
L,i (σ̂L,i) (3.19)

=
N∑

i=0

N∑
j=0

ci
k(x, σ̂L,j)

W
(a,b)
L (σ̂L,j)

ω̂L,jĴ
(a,b)
L,i (σ̂L,j) (3.20)

where {σ̂L,j}N
j=0 are the shifted Jacobi Gauss nodes on the interval [0, L] such

that

• σ̂L,j = L
2 (1 + σj)

• {σj}N
j=0 are the standard Jacobi Gauss nodes on [−1, 1]

• {ω̂L,j}N
j=0 are standard shifted Jacobi Gauss weights on [0, L] ,

ω̂L,j = (L
2 )a+b+1ωj
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• {ωj}N
j=0 are standard Jacobi-Gauss weights on [−1, 1]

The fundamental matrix relation for the fractional derivative part based on colloca-
tion points is given by

α
c D = D(α)ϕ C (3.21)

where

ϕ =


Ĵ

(a,b)
L,0 (σ̂L,0) Ĵ

(a,b)
L,1 (σ̂L,0) . . . Ĵ

(a,b)
L,N (σ̂L,0)

Ĵ
(a,b)
L,0 (σ̂L,1) Ĵ

(a,b)
L,1 (σ̂L,1) . . . Ĵ

(a,b)
L,N (σ̂L,1)

... ... . . . ...
Ĵ

(a,b)
L,0 (σ̂L,N) Ĵ

(a,b)
L,1 (σ̂L,N) . . . Ĵ

(a,b)
L,N (σ̂L,N)


And

C = [c0, c1, ..., cN ]T

The fundamental Matrix relation of the Integral part based on collocation points
is given by

I = MWϕC (3.22)

where

M =
k(σ̂L,i, σ̂L,j)

W
(a,b)
L (σL,j)


for 0 ≤ i, j ≤ N And

W = diag((ω̂L,j)0≤j≤N)

Using relation 3.21 and 3.22 the equation of the system is reduced to the following
system

AC = F (3.23)

where
W = D(α)ϕ + λMWϕ

and
F = [f(σ̂L,0), f(σ̂L,1), ..., f(σ̂L,N)]T

On the other hand, the fundamental Matrix for The Initial condition can be
written as

VC = f (3.24)

where

V = [Ĵ (a,b)
L,0 (0), Ĵ

(a,b)
L,1 (0), Ĵ

(a,b)
L,2 (0), ..., Ĵ

(a,b)
L,N (0)] (3.25)

= [v0, v1, ..., vN ] (3.26)

In order to satisfy the Initial condition in collocation Method we add the equation
3.24to the final system3.23 then we obtain

ÃC = F̃
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so that the new augmented Matrix is of the form

[Ã|F̃ ] =



A0,0 A0,1 . . . A0,N f(σ̂L,0)
A1,0 A1,1 . . . A1,N f(σ̂L,1)

... ... . . . ... ...
AN,0 AN,1 . . . AN,N f(σ̂L,N)
V0 V1 . . . VN ρ


finally, we have an over determined system with (N + 1) linear equations which can
be solved by using least square Method by matlab R2009b.

3.3 Examples

3.3.1 Example 1
Let the following Fractional Fredholm Integro-differential equation with initial con-
dition

D0.5
c u(x) +

∫ 1

0
xtu(t)dt = x

4 + 8
3
√

π
x

3
2

with the initial condition u(0) = 0, and the exact solution u(x) = x2.
In the following tables 3.1 and 3.2 we show the absolute errors EN(xi) = |u(xi) −
uN(xi)| using Legendre polynomials and Chebyshev polynomials of first kind respec-
tively .

xi E4(xi) E8(xi) E16(xi)
0 5.042e-17 1.552e-16 1.510e-16

0.1 4.163e-17 2.776e-17 1.457e-16
0.2 6.245e-17 7.633e-17 1.457e-16
0.3 8.327e-17 1.110e-16 1.804e-16
0.4 2.776e-17 8.327e-17 1.943e-16
0.5 2.776e-17 2.776e-17 1.943e-16
0.6 0.000e+00 0.000e+00 2.220e-16
0.7 5.551e-17 0.000e+00 1.665e-16
0.8 0.000e+00 2.220e-16 0.000e+00
0.9 0.000e+00 2.220e-16 2.220e-16
1 1.110e-16 1.110e-16 5.551e-16

Table 3.1: Absolute errors En(xi) for different values of N at various points xi using
Legendre polynomials (α, β) = (0, 0)
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xi E4(xi) E8(xi) E16(xi)
0 2.261e-07 3.019e-09 3.315e-11

0.1 1.717e-04 5.034e-05 1.399e-05
0.2 4.735e-04 1.436e-04 3.960e-05
0.3 8.791e-04 2.628e-04 7.276e-05
0.4 1.367e-03 4.047e-04 1.120e-04
0.5 1.920e-03 5.661e-04 1.565e-04
0.6 2.526e-03 7.442e-04 2.058e-04
0.7 3.179e-03 9.373e-04 2.593e-04
0.8 3.875e-03 1.145e-03 3.168e-04
0.9 4.619e-03 1.367e-03 3.780e-04
1 5.416e-03 1.601e-03 4.428e-04

Table 3.2: Absolute errors En(xi) for different values of N at various points xi using
Chebyshev polynomials of first kind (α, β) = (−0.5, −0.5)

3.3.2 Example 2
Let the following Fractional Fredholm Integro-differential equation with initial con-
dition

D0.3
c u(x) +

∫ 1

0
(x − t)u(t)dt = 3418

2493x
11
5 − 11

14x − 602
547x

7
10 + 7

18
with the initial condition u(0) = 1, and the exact solution u(x) = x

5
2 − x + 1.

In the following tables 3.3 and 3.4 we show the absolute errors EN(xi) = |u(xi) −
uN(xi)| using Legendre polynomials and Chebyshev polynomials of first kind respec-
tively .

xi E4(xi) E8(xi) E12(xi) E16(xi) E20(xi)
0 1.796e-04 5.619e-06 7.140e-07 1.607e-07 4.773e-08

0.1 5.858e-05 1.250e-05 7.424e-07 4.220e-07 2.480e-08
0.2 3.479e-04 5.025e-06 1.505e-06 5.145e-08 2.018e-08
0.3 4.685e-04 8.001e-06 3.809e-07 4.929e-08 1.121e-07
0.4 2.912e-04 1.200e-05 1.596e-06 2.700e-07 4.149e-08
0.5 3.436e-05 3.896e-07 3.956e-08 1.045e-08 1.015e-08
0.6 8.373e-05 1.311e-06 8.719e-07 3.087e-07 1.020e-07
0.7 4.106e-05 1.244e-05 1.058e-06 1.770e-08 6.261e-08
0.8 3.319e-04 7.289e-06 4.355e-07 3.224e-07 1.723e-08
0.9 4.878e-04 3.115e-06 1.009e-06 2.512e-07 5.004e-09
1 4.610e-05 8.399e-08 5.169e-08 1.423e-08 2.269e-07

Table 3.3: Absolute errors En(xi) for different values of N at various points xi using
Legendre polynomials (α, β) = (0, 0)
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xi E4(xi) E8(xi) E12(xi) E16(xi) E20(xi)
0 8.293e-04 2.430e-04 1.036e-04 5.544e-05 3.352e-05

0.1 5.097e-03 1.496e-03 6.127e-04 4.104e-04 2.372e-04
0.2 5.757e-03 1.313e-03 7.130e-04 3.903e-04 2.520e-04
0.3 5.020e-03 1.425e-03 5.935e-04 3.539e-04 2.428e-04
0.4 3.872e-03 1.246e-03 5.765e-04 3.199e-04 1.966e-04
0.5 2.760e-03 8.433e-04 3.959e-04 2.283e-04 1.477e-04
0.6 1.828e-03 5.725e-04 2.861e-04 1.690e-04 1.071e-04
0.7 1.025e-03 3.802e-04 1.381e-04 5.453e-05 3.565e-05
0.8 1.759e-04 3.406e-05 6.330e-05 2.319e-05 3.021e-05
0.9 9.784e-04 4.943e-04 2.198e-04 1.411e-04 9.341e-05
1 2.748e-03 8.684e-04 4.323e-04 2.593e-04 1.838e-04

Table 3.4: Absolute errors En(xi) for different values of N at various points xi using
Chebyshev polynomials of first kind (α, β) = (−0.5, −0.5)

3.3.3 Example 3
Let the following Fractional Fredholm Integro-differential equation with initial con-
dition

D0.9
c u(x) +

∫ 1

0
e−x−tu(t)dt = e2x

with the initial condition u(0) = 1, and the exact solution is unknown.
In the following table 3.5 and 3.6 we show the approximate solutions uN(x) at
different values of xi using Legendre polynomials and Chebyshev polynomials of
first kind respectively .

xi u4(xi) u8(xi) u12(xi) u16(xi) u20(xi)
0.0 1.0001040678 0.9999982417 0.9999997047 0.9999999133 0.9999999632
0.1 1.0186428919 1.0186159352 1.0186430837 1.0186300718 1.0186308190
0.2 1.0788771264 1.0783976561 1.0783542867 1.0783576700 1.0783550657
0.3 1.1826145020 1.1815209580 1.1815235071 1.1815154181 1.1815131132
0.4 1.3343957761 1.3333257250 1.3333380652 1.3333392091 1.3333387149
0.5 1.5414947332 1.5411615969 1.5411481522 1.5411444397 1.5411428634
0.6 1.8139181849 1.8144716606 1.8144482086 1.8144441437 1.8144430912
0.7 2.1644059692 2.1652924376 2.1652937596 2.1652949619 2.1652934582
0.8 2.6084309516 2.6087449970 2.6087524477 2.6087467958 2.6087470318
0.9 3.1641990241 3.1634868393 3.1634687103 3.1634687585 3.1634679841
1.0 3.8526491058 3.8524889989 3.8524840076 3.8524820624 3.8524827448

Table 3.5: Approximate solutions uN(xi) at various points xi using Legendre poly-
nomials (α, β) = (0, 0)
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xi u4(xi) u8(xi) u12(xi) u16(xi) u20(xi)
0.0 1.0002118097 0.9999915015 0.9999980121 0.9999992430 0.9999974319
0.1 1.0164934977 1.0179260357 1.0183335354 1.0184423664 1.0185091253
0.2 1.0751317251 1.0772666688 1.0778010868 1.0780397195 1.0781416305
0.3 1.1776432085 1.1799352171 1.1807866495 1.1810836185 1.1812272203
0.4 1.3283598619 1.3313786967 1.3324189385 1.3328062639 1.3329921861
0.5 1.5344287965 1.5389411883 1.5400915158 1.5405281376 1.5407335053
0.6 1.8058123210 1.8119903757 1.8132615681 1.8137504644 1.8139905267
0.7 2.1552879414 2.1625486714 2.1639892601 2.1645378302 2.1647955330
0.8 2.5984483607 2.6057899624 2.6073570874 2.6079295354 2.6082088775
0.9 3.1537014797 3.1603741384 3.1619803000 3.1626031335 3.1628982588
1.0 3.8422703961 3.8492026857 3.8509217627 3.8515711486 3.8518833501

Table 3.6: Approximate solutions uN(xi) at various points xi using Chebyshev poly-
nomials of first kind (α, β) = (−0.5, −0.5)

In the following tables 3.7 and 3.8 we show the absolute errors between different
approximate solutions uN(x) at different values of xi using Legendre polynomials
and Chebyshev polynomials of first kind respectively .

xi |u8 − u4| |u12 − u8| |u16 − u12| |u20 − u16|
0.0 1.058e-04 1.463e-06 2.086e-07 4.989e-08
0.1 2.696e-05 2.715e-05 1.301e-05 7.472e-07
0.2 4.795e-04 4.337e-05 3.383e-06 2.604e-06
0.3 1.094e-03 2.549e-06 8.089e-06 2.305e-06
0.4 1.070e-03 1.234e-05 1.144e-06 4.942e-07
0.5 3.331e-04 1.344e-05 3.712e-06 1.576e-06
0.6 5.535e-04 2.345e-05 4.065e-06 1.052e-06
0.7 8.865e-04 1.322e-06 1.202e-06 1.504e-06
0.8 3.140e-04 7.451e-06 5.652e-06 2.360e-07
0.9 7.122e-04 1.813e-05 4.821e-08 7.744e-07
1.0 1.601e-04 4.991e-06 1.945e-06 6.824e-07

Table 3.7: Absolute errors En(xi) for different values of N at various points xi using
Legendre polynomials (α, β) = (0, 0)
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xi |u8 − u4| |u12 − u8| |u16 − u12| |u20 − u16|
0.0 2.203e-04 6.511e-06 1.231e-06 1.811e-06
0.1 1.433e-03 4.075e-04 1.088e-04 6.676e-05
0.2 2.135e-03 5.344e-04 2.386e-04 1.019e-04
0.3 2.292e-03 8.514e-04 2.970e-04 1.436e-04
0.4 3.019e-03 1.040e-03 3.873e-04 1.859e-04
0.5 4.512e-03 1.150e-03 4.366e-04 2.054e-04
0.6 6.178e-03 1.271e-03 4.889e-04 2.401e-04
0.7 7.261e-03 1.441e-03 5.486e-04 2.577e-04
0.8 7.342e-03 1.567e-03 5.724e-04 2.793e-04
0.9 6.673e-03 1.606e-03 6.228e-04 2.951e-04
1.0 6.932e-03 1.719e-03 6.494e-04 3.122e-04

Table 3.8: Absolute errors En(xi) for different values of N at various points xi using
Chebyshev polynomials of first kind (α, β) = (−0.5, −0.5)

3.3.4 Example 4
Let the following Fractional Fredholm Integro-differential equation with initial con-
dition

D0.5
c u(x) +

∫ 1

0
u(t)dt = 2 − erf(

√
x)ex − e

with the initial condition u(0) = 0, and the exact solution u(x) = 1 − ex.
In the figures 3.1 and 3.2 we show the comparison between approximate solutions
of Legendre polynomials and Chebyshev polynomials of first kind with the exact
solution, and comparison between log10 |(u(x) − u4(x))| of Legendre polynomials
and Chebyshev polynomials of first kind respectively .
In table 3.9 we show the comparison of absolute errors at N = 10 at various points
xi between Spectral collocation method using Legendre polynomials and method in
[17] using Gegenbauer polynomials .
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Figure 3.1: Comparison between Approximate solutions of Legendre polynomials
and Chebyshev polynomials of first kind with the exact solution
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Figure 3.2: Comparison between log10 |(u(x) − u4(x))| of Legendre polynomials and
Chebyshev polynomials of first kind

xi E10(xi) In Method [17] E10(xi) using Legendre polynomials
using Gegenbauer polynomials

0 3.3225e-12 1.280e-014
0.1 1.1718e-11 1.296e-014
0.2 4.6097e-11 3.580e-015
0.3 1.8265e-10 2.959e-014
0.4 4.0956e-10 1.527e-014
0.5 7.3089e-10 1.354e-014
0.6 1.1368e-09 2.687e-014
0.7 1.6012e-09 1.932e-014
0.8 2.0906e-09 2.398e-014
0.9 2.5908e-09 9.326e-015
1 3.1642e-09 1.443e-014

Table 3.9: Comparison of absolute errors at N = 10 at various points xi between
Spectral collocation method using Legendre polynomials and method in [17]
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Conclusion
In this thesis, we tackled the challenging task of numerically solving linear fractional
integro-differential equations (FI-DEs), with a particular focus on those involving
the Caputo fractional derivative. This class of equations serves as a vital modeling
tool for systems exhibiting memory effects and non-local properties, which often lie
beyond the scope of classical integer-order models. Given the inherent complexity
in finding analytical solutions for these equations, developing efficient numerical
methods becomes essential.

This thesis successfully presented and applied the spectral collocation method as
a robust and effective approach to solve these equations. We began by establishing
a solid theoretical foundation.
in Chapter 1, where we reviewed fundamental special functions such as Gamma,
Beta, and Mittag-Leffler functions. We then delved into the definitions and proper-
ties of both Riemann-Liouville and Caputo fractional derivatives, emphasizing the
latter’s importance in practical applications due to its compatibility with traditional
initial conditions.
In Chapter 2, we highlighted orthogonal polynomials, particularly Jacobi and
Legendre polynomials, discussing their optimal properties that make them excellent
choices as basis functions in spectral methods. We also included a discussion on
Chebyshev polynomials, which are commonly used in this context.

The main contribution of this thesis lay in Chapter 3, where the spectral col-
location methodology was detailed. We demonstrated how a linear FI-DEs can be
transformed into a system of linear algebraic equations by approximating the solu-
tion with orthogonal polynomials and enforcing the equation at carefully selected
collocation points. Detailed derivations for the fractional derivative of the basis
functions and the handling of integral terms were presented. When applying the
method to numerical examples using both Legendre and Chebyshev polynomials as
basis functions, the results clearly showed that Legendre polynomials yielded supe-
rior performance in terms of solution accuracy and convergence rate for the problems
studied. These findings confirm the high accuracy and spectral (exponential) con-
vergence rates of the proposed method, underscoring its effectiveness and efficiency
in solving this complex class of equations.

This work demonstrates that the spectral collocation method, when applied cor-
rectly, provides a powerful and reliable tool for engineers and scientists dealing with
phenomena described by linear fractional integro-differential equations. It also of-
fers a valuable insight into the choice of basis functions, suggesting that Legendre
polynomials might be the optimal choice for certain classes of these equations.
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