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Abstract

The choice of the right drug remains a complex decision for physicians, despite floods of patient
data and continuously growing drug lists. We see recommendation systems helping in many
online spaces. But when it comes to health, especially drug choices, these systems need to be
much alert. Many current drug recommendation systems face problems and challenges. This
turns their suggestions to be not precise or clinically helpful as they could be.

This research addresses precisely these issues, by building a new kind of drug recommendation
system, rooted in deep learning. By adopting the highly regarded Neural Collaborative Filtering
(NCF) model and significantly improved it. The system does not just look at demographics; it
digs into what patients say in their reviews using sentiment analysis and groups similar patient
experiences together through a custom clustering. The concept is simple: combine clinical data
with patient feedback to get a more complete picture, providing more personalized and accurate
drug recommendations.

The system is tested with a large, real-world collection of drug reviews. This approach clearly did
better than a range of existing methods in important measures such as accuracy, precision, and
F1 score. This work shows a promising path toward making drug recommendations genuinely
more helpful and precise.

Keywords: Recommender System, Healthcare, Drug Recommendation System, Neural
Collaborative Filtering, Sentiment Analysis, U-KMeans Clustering.
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Introduction

Context and Motivation

In recent years, the integration of technology into healthcare has led to the development of
systems that help diagnoses disease and plan treatment. Recommendation systems, which have
been widely used in E-commerce, are now being adapted to healthcare to provide personalized
medication suggestions. These systems analyze patient data, including medical history and
current symptoms, to recommend appropriate drugs, thus supporting healthcare professionals
and improving patient care. For example, a study by Granda Morales et al. (2022) developed
a Drug Recommendation System (DRS) for diabetes patients using collaborative filtering
and clustering techniques, demonstrating the potential of such systems to improve treatment

outcomes.

Problem Statement

Despite advances in healthcare technology, selecting the most appropriate medication for
individual patients remains a complex challenge. Factors such as patient specific characteristics,
potential drug interactions, and the vast array of available medications complicate the decision
making process. Existing systems may not adequately account for the personalized needs of
patients or may lack the integration of comprehensive data sources. This gap highlights the need
for a robust drug recommendation system that can provide tailored suggestions to healthcare
providers, therefore improving patient outcomes. This dissertation is therefore guided by a

central research question:

Baseline drug recommendation models suffer from data sparsity, inability to address
subjective patient experiences, and inaccurate personalization. How can a deep
learning architecture, combined with insights from patient reviews and user ratings,
overcome these limitations to improve drug recommendations accuracy?

Objectives

The primary objectives of this dissertation are:
- To design a drug recommendation system that integrates patient data to provide personalized
medication suggestions.



List of Figures 2

- To implement the system using advanced machine learning techniques, ensuring accuracy
and reliability in recommendations.

- To evaluate the system’s performance through rigorous testing and validation against
existing benchmarks.

Dissertation Organization

After this introduction, the rest of the dissertation is organized as follows:

Chapter 1: Recommendation Systems in Healthcare
This chapter introduces the role of recommendation systems in healthcare, covering their types,
common applications, and the challenges facing their implementation. We also explain how these
systems are evaluated. Then we focus more closely on Health Recommender Systems (HRSs)
and their importance, illustrating their relevance in clinical contexts, and discussing specific
evaluation strategies used for them.

Chapter 2: Drug Recommendation Systems: A Literature Review
This chapter provides a comprehensive review of existing DRSs, highlighting the latest ad-
vancements in the field. It critically analyzes previous works methodologies from traditional
approaches to advanced Deep Learning (DL) models, the data sources and the evaluation
strategies that are commonly employed, identifying their strengths and challenges. Finally, it
discusses existing gaps and potential research opportunities to improve DRSs.

Chapter 3: The Proposed Drug Recommendation System: Design, Implementa-
tion, and Evaluation
This chapter presents our major contribution: a novel DL-based drug recommendation sys-
tem. We describe the system architecture, which extends the Neural Collaborative Filtering
NCF framework by incorporating sentiment analysis from user reviews and a custom KMeans
clustering algorithm for user segmentation. We outline the data preprocessing steps, feature en-
gineering techniques, model implementation, and experimental setup. Furthermore, we conduct
a comprehensive evaluation of the model performance against established baselines, highlighting

how our approach addresses the specific limitations identified in Chapter 2.
General Conclusion

We conclude the dissertation by summarizing the key findings, contributions, and insights
derived from this research. It revisits the initial objectives and discusses the extent to which they

were met. Furthermore, this chapter outlines directions for future research and development in
the field of DRSs.



Chapter 1

Recommendation Systems in Healthcare

1.1 Introduction

Today, a large collection of clinical data spread across the Internet makes it difficult for users
to find useful information to improve their well being. In addition, the overload of medical
information (for example, on drugs, medical tests and treatment suggestions) has brought many
difficulties to medical professionals in making patient oriented decisions. These issues raise the
need to apply Recommendation Systems (RSs) in the healthcare domain to help end users and
medical professionals make more efficient and accurate health related decisions.

In this chapter, we will explore different types of RSs and their underlying principles,
advantages and limitations; then we will discuss their applications in different domains and
highlight some of the problems and challenges in the field. In addition, we will provide an
overview of the evaluation metrics and methods for RSs and introduce the domain of Health
Recommender Systems (HRSs) and their scenarios.

1.2 Recommendation Systems

The use of RSs is a crucial aspect in addressing the problem of online information overload
and improving customer relationship management. These systems are designed to provide
personalized recommendations to users of online products and services, enhancing the user’s
online experience. The applications of RSs can be seen in various online platforms, such as
product recommendations for customers and content recommendations for readers, among others.
Figure 1.1 illustrates a modern RS workflow. The objective of these systems is to identify new
and relevant items that align with the user’s preferences.

The fundamental principle of RSs is to suggest relevant items to users by using feature engineering
techniques on user preferences, item features and their interactions (such as purchases or clicks).
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Figure 1.1: The workflow of a modern recommendation system

1.2.1 Types

RSs play a crucial role in filtering and suggesting relevant items to users based on their
preferences, behaviors, or interactions. These systems are widely used in various domains, such
as E-commerce, healthcare and entertainment. Depending on the approach used to generate
recommendations, RSs can be categorized into different types, each with its strengths and

limitations.

Figure 1.2 provides a visual representation of the main types of RSs, illustrating their
classification based on different methodologies. In this section, we will explore these types in

detail and discuss their underlying techniques.

Reoommender System ]

—/

filtering

[ Content-based ] [ Col Iaboratwe Knowledge ]

filtering approach

Hybrid
approach

Figure 1.2: Types of Recommendation Systems (RSs)

1.2.1.1 Content-based Recommendation System

The main idea of Content-based Recommendation System (CB) is to recommend items based on
the similarity between different users or items (Lops et al. (2011b)). This algorithm determines
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and differentiates the main common attributes of a particular user’s favorite items by analyzing
the descriptions of those items. Then, these preferences are stored in the user profile. The
algorithm then recommends items with a higher degree of similarity to the user profile.

Figure 1.3 provides an illustration of the CB recommendation approach, demonstrating
how items are recommended based on their similarity to user preferences. In addition, CB
can capture the specific interests of the user and can recommend rare items that are of little
interest to other users. However, since the feature representations of items are designed manually
to some extent, this method requires a lot of domain knowledge. In addition, CB can only
recommend based on user existing interests, so the ability to expand user existing interests is
limited.

Read by user

\ Similar articles

Recommended
to user

Figure 1.3: Hlustration for CB Recommendation Systems

1.2.1.2 Collaborative Filtering-based Recommendation System

CF-based methods are mainly used in big data processing platforms due to their parallelization
characteristics (Elahi et al. (2016)). The basic principle of CF-based RSs is illustrated in
Figure 1.4. CF RSs use the behavior of a group of users to recommend items to other users
(Hassaniceh et al. (2018)). Figure 1.5 illustrates the two mainly types of CF techniques, user-based
and item-based.

e User-based CF: In user-based CF RSs, users receive recommendations for products
that similar users have liked (Burke et al. (2006)). Many similarity metrics can be
used to calculate the similarity between users or items, such as the Constrained Pearson
Correlation (CPC), cosine similarity and adjusted cosine similarity (Manning et al. (2008)).
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Figure 1.4: Illustration for CF Recommendation Systems

One of the most commonly used similarity measures is cosine similarity, which determines
the angle between two vectors. It is mathematically defined as:

211 T;Yi
cos(f) = i |
) \/Z?:l 5512\/2?:1 y; (1.1)

where x; and y; are the components of vectors x and y respectively, n is the dimension of

the vectors and 6 is the angle between the two vectors.

Similarly, the Pearson correlation coefficient measures the strength of the linear relationship
between two variables and is defined as:

_ > i1 (@i — T)(yi — 9)
\/Z?ﬂ(% - j)g\/Z?:l(yi — )2

where x; and y; are the individual sample points indexed with ¢, n is the sample size, T is

(1.2)

Tay

the mean of the = values, ¥ is the mean of the y values and r,, is the Pearson correlation
coefficient between variables x and y.

e Item-based CF': In contrast, item-based CF algorithms predict user ratings for items
based on the similarity between items rather than between users. Generally, item-based
CF tends to yield better results than user-based CF because user-based CF suffers from
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data sparsity and scalability issues. However, both techniques may face challenges such as
the cold-start problem (Zhang et al. (2016)).

P
(O

User-based filtering Item-based filtering

Figure 1.5: Hlustration for CF Recommendation techniques

1.2.1.3 Knowledge-based Recommendation Systems

The main idea of KBs as illustrated in Figure 1.6 is to recommend items to users based on
basic knowledge of users, items and relationships between items (Aggarwal (2016a)). Since KBs
do not require user ratings or purchase history, there is no cold start problem for this type of
recommendation (Cabezas et al. (2017)). KBs are commonly used in complex domains where
items are not typically purchased, such as cars and apartments (Tarus et al. (2018)). In such
scenarios, users may face constraints like budget limits when making a purchase. KBs rely on
domain knowledge, which includes user insights, item details, or the interactions between users
and items (Chen et al. (2019)). But the acquisition of required domain knowledge can become a
bottleneck for this recommendation technique (Dong et al. (2020)).

1.2.1.4 Hybrid Approach Recommendation System

Hybrid-based Recommendation System (HB) combine the advantages of multiple recommen-
dation techniques and aim to overcome the potential weaknesses of traditional RSs (Ribeiro
et al. (2012)). There are seven basic hybrid recommendation techniques (Ibrahim et al. (2021)):
weighted, mixed, switching, combination of characteristics, augmentation of characteristics,
cascade and meta-level methods (Zhang et al. (2016)).

Among these methods, the most commonly used approach is the combination of CF with
other recommendation methods, such as content-based or knowledge-based approaches. This



1.2. Recommendation Systems

genre

| |
reo \c\\@6 [ I
«® Al- Mufamsh Taher Comedy 1 I
Yusajjil al-Hadaf genre | .
| I
Mohamed : = :
r// Le Clandestin
ey acted . :
friend u \ :
C ‘l | 1
arnava.
’ Othman
,‘ fi Dachra R | |
Araiwat i I
acted )
direct 1 I
/ v
B e -
b A directed B I '
Le Retour e b o= o= o= o o s o e 4
Bakhti

Recommended movies

Figure 1.6: Ilustration for KB Recommendation Systems

combination helps mitigate issues such as data sparsity, scalability and cold start problems
(Zagranovskaia and Mitura (2021)). Figure 1.7 illustrates the hybrid recommendation approach,
demonstrating how different recommendation techniques are integrated to enhance accuracy
and overcome the limitations of individual methods.

- \\ I |
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Ve ~
. [ \
Combiner B —— [ Reco ]
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/ | Content Based |
Input l I Recommender
~_7" o2

Figure 1.7: Hlustration of Hybrid Recommendation System

1.2.2 Applications

RSs have become everywhere and in various sectors, such as search engines, digital media
platforms and E-commerce sites on the Internet (Wang et al. (2020a)). The progression of
Information Technology (IT) has led to their significant evolution, embracing increasingly

complex models.
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1.2.2.1 Recommendation System in Electronic Commerce (E-commerce)

RSs have evolved from specialized tools utilized by a select few E-commerce platforms to vital
commercial assets that significantly transform the E-commerce landscape (Ali et al. (2017)).
Figure 1.8 illustrates The workflow of a E-commerce Recommendation System (RS). Major
online platforms and applications, such as Amazon and TikTok, now harness the power of big
data to refine their recommendation algorithms for users Rismanto et al. (2020) previously
highlighted the need for advancements in data collection and analytics to expand the operational
advantages in the marketing sector, prompted by the advent of new applications for information
agents (Li et al. (2021)). With the advancement of big data, the application of information
agents has shifted towards providing accurate and tailored recommendations to customers on
online markets and platforms through innovative models like topic modeling and sentiment
analysis (Numnonda (2018)). Therefore, in an era dominated by big data, it’s evident that RSs
have become widely integrated into various aspects of E-commerce operations. This extensive
adoption confirms the pivotal role these systems play in improving user experience, personalizing
customer interactions and boosting the overall efficiency of E-commerce RS platforms.

Viewed by user i I

g Similar
. product

Recommended to user

Figure 1.8: The workflow of a E-commerce Recommendation System (RS)

1.2.2.2 Recommendation System in Electronic Governance (E-governance)

E-governance stands as a fundamental challenge in the realm of smart city initiatives, integrating
IT and big data in the public sector to elevate the delivery of services and information. This
approach not only aims to enhance government transparency, accountability and trustworthiness
but also to engage citizens in the governance process (Xiao et al. (2018)). In the digital era,
particularly highlighted by the rise of epidemics, the demand for E-governance in society is on

the rise. This underscores the necessity for governments to establish adept online information
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systems to meet the goals of effective E-governance (Huang et al. (2019)). Businesses, including
pharmaceutical companies, are also recognizing the need for digital governance. For instance,
they can implement RSs, built on blockchain and Machine Learning (ML) technologies, to
streamline drug shipment monitoring (Zhang et al. (2018)). Additionally, these systems have
applications in demand-side management, like energy management, where they utilize big data
analytics to identify residential users’ preferences for energy-efficient appliances (Benouaret and
Amer-Yahia (2020)). Thus, the deployment of RSs, bolstered by big data technologies, plays a
crucial role in improving the digital governance framework, optimizing business processes and

facilitating efficient energy management in the digital age.

1.2.2.3 Recommendation System in Sustainable Lifestyle

The digital transformation created by the Internet revolution has significantly facilitated the
transition to a lifestyle centered on digital interactions, concurrently with a greater focus on
sustainability in the environment, societal and other sectors (Xia et al. (2023)).

These systems are instrumental in refining the practices of daily activities, such as online
shopping, dietary habits and transportation, aiming to promote sustainable living by prioritizing
options. thus, facilitating a shift towards sustainability among both providers and consumers.
Addressing the progression of technological innovation, consumer behavior and environmental
responsibility, recent studies advocate the integration of green marketing strategies with online
retail platforms through the deployment of sophisticated RSs (Felfernig et al. (2023)). The work
of Zhang et al. (2022) highlights the critical capacity of RSs to advocate for environmentally
sustainable choices, green building emerges as a significant aspect that profoundly influences
our connection to sustainable living (Xu (2021)). With the advancement of RSs, big data and
the Internet of Things (IoT), several challenges associated with green building can be addressed
through the integration of RSs and ML technologies. These technologies have the potential to
enhance various aspects of green building.

1.2.2.4 Recommendation System in Healthcare

The healthcare industry is experiencing a paradigm shift with the incorporation of advanced
technologies and RSs have emerged as a key component in this transformation. Leveraging
ML algorithms and data analytics, RSs in healthcare offer a wide range of applications, from
improving clinical decision-making to enhancing patient engagement. This subsection explores
the diverse facets of RSs in healthcare and their impact on various stakeholders within the
ecosystem.

1. Clinical Decision Support: One of the primary applications of RSs in healthcare is
in clinical decision support. These systems analyze Electronic Health Records (EHRs),
medical literature and patient data to assist healthcare professionals in making informed
decisions about diagnostics, treatment plans and interventions. By providing relevant and

evidence-based information, RSs contribute to more accurate and personalized patient
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care, potentially reducing diagnostic errors and improving overall healthcare outcomes
(Shojania et al. (2009)).

. Patient Centered Care: In the era of patient centered care, RSs play a crucial role in

tailoring healthcare services to individual patient needs. These systems analyze patient
preferences, demographics and health histories to generate personalized recommendations
for treatment options, preventive measures and lifestyle modifications. By facilitating
patient engagement and empowerment, RSs contribute to a more collaborative and effective

healthcare relationship between providers and patients (Jr et al. (2009)).

. Resource Optimization: RSs help optimize healthcare resources by optimizing workflows

and improving operational efficiency. For instance, in hospital management, these systems
can suggest optimal bed allocation, appointment scheduling- resource utilization based
on historical data and real-time information. By minimizing bottlenecks and enhancing

resource allocation, RSs contribute to cost-effectiveness and improved service delivery Li
and Wang (2017).

Remote Monitoring: With the rise of remote monitoring, RSs support healthcare
providers in delivering virtual care. These systems analyze patient generated health
data from wearable devices, monitoring tools and telehealth platforms to provide timely
recommendations for interventions, medication adjustments, or lifestyle modifications.
This realtime support contributes to proactive healthcare management, particularly for
patients with chronic conditions (Fatehi and Wootton (2018).)

. Healthcare Collaboration Networks: RSs facilitate collaboration and knowledge

sharing among healthcare professionals through the creation of collaborative networks.
By analyzing expertise, research interests and clinical experiences, these systems connect
healthcare professionals for consultations, research collaborations and second opinions.
This fosters a culture of continuous learning and knowledge sharing within the healthcare
community (Al-Shammary et al. (2019). )

As RSs continue to evolve and offer a significant help and guidance with their diverse

applications and scenarios 1.3, their development and deployment do face some difficulties.

Section 1.2.2.5 looks at the key problems and challenges that must be overcome to fully exploit

the potential of these systems.

1.2.2.5 Common Problems and Challenges in Recommendation Systems (RSs)

To build competent RSs, developers must address several inherent problems and challenges

that can limit their effectiveness. The following highlights the key issues crucial to improving

performance and advancing research in RSs.

e Data Sparsity: Many commercial RSs utilize large datasets where the user-item interac-

tion matrix (e.g., purchases, views, ratings) is often very sparse, meaning most users have
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interacted with only a small fraction of items. Figure 1.9 demonstrates how data sparsity can
severely compromise the performance of CF techniques, which rely on user interactions that
overlap to identify similarity and make predictions (Isinkaye et al. (2015)). Content-based
recommendations are generally less affected by this particular issue as they rely on item/user
features.

MAE vs. Data Sparsity

—e— Content-based
»— Collaborative Filtering

1.0

0.8 A

0.6

0.0 T T

0.0 0.2 0.4 0.6 0.8 1.0
Data Sparsity

Figure 1.9: The impact of data sparsity

e Cold Start Problem: This well-known issue occurs when the system has insufficient data to
make reliable recommendations (Bobadilla et al. (2013)). It manifests in two primary forms:

— User Cold-Start: Occurs when a new user enters the system and there is little to no

information about their preferences.

— Item Cold-Start: Occurs when a new item is added to the system and there is little to

no interaction data for it.

A common initial strategy for new systems is to employ content-based filtering, gradually
transitioning to or incorporating CF as more user data becomes available (Lops et al. (2011a)).

e Lack of User Activity: Closely related to data sparsity and cold-start, insufficient overall
user activity (e.g., few ratings, limited browsing) makes it challenging for the system to learn

user preferences accurately and generate meaningful recommendations.

e Privacy Concerns: RSs often collect extensive user data, including ratings, preferences

and browsing history, to improve recommendation accuracy. This raises significant concerns
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regarding data storage, processing, security and potential sharing with third parties. Build-
ing user trust through transparent data handling practices and robust privacy-preserving
techniques is crucial (Hossain et al. (2023)).

e Synonymy: Synonymy arises when a single item is represented by multiple names or entries
that have equivalent meanings (e.g., “laptop” vs. “notebook computer”). The RS might fail
to recognize these as the same entity, leading to fragmented interaction data and potentially
inefficient or inaccurate recommendations (Su (2009)).

e Shilling (Profile Injection) Attacks: These attacks involve malicious users or competi-
tors manipulating the system by providing false ratings or interaction data. The goal is
to artificially inflate or deflate the popularity of specific items, thereby undermining the
system’s trustworthiness and degrading recommendation quality (Mobasher et al. (2007)).
CF techniques are particularly vulnerable.

e Gray Sheep Problem: Users classified as “gray sheep” possess diverse or idiosyncratic
preferences that do not align well with any significant user group. Consequently, CF methods
often struggle to provide accurate or relevant recommendations for these users, as their tastes

are not easily predictable based on community behavior (Su and Khoshgoftaar (2009)).

e Long Tail Problem (Item Popularity Bias): Recommendation algorithms, especially
those based on popularity, tend to recommend popular items (the “head” of the distribution)
more frequently, often neglecting a vast number of less popular or niche items (the “long
tail”). This leads to an imbalance where many available items remain underrepresented or

undiscovered by users, limiting diversity and serendipity Park and Tuzhilin (2008).

e Over-Specialization: This occurs when the system predominantly recommends items that
are very similar to a user’s past interactions or explicitly stated preferences, thereby limiting
exposure to new, diverse, or serendipitous options. While aiming for relevance, extreme
over-specialization can lead to filter bubbles and reduce user satisfaction by failing to broaden
horizons (Pariser (2011)). Content-based systems can be particularly prone to this if user

profiles are narrow.

e Achieving Novelty and Serendipity: Beyond mere accuracy, effective RSs should aim to
provide:
— Nowelty: Recommending items that are new and unfamiliar to the user.

— Serendipity: Recommending items that are not only novel but also surprisingly relevant
and useful, items the user might not have discovered on their own or thought to search
for (Ge et al. (2010)).

Balancing relevance with novelty and serendipity is a significant design challenge.

e Scalability: As the number of users and items grows (often into millions or billions),

traditional algorithms can face significant scalability issues. RSs must efficiently manage
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large-scale data and computations to provide timely responses to users (Linden et al. (2003a)).
This often requires distributed computing architectures and optimized algorithms.

e Diversity in Recommendations: Related to avoiding over-specialization and addressing
the long-tail problem, actively promoting diversity in recommendations helps users discover a
broader range of items. This can improve user satisfaction and exploration but needs to be
balanced with relevance (Ziegler et al. (2005)).

e Evaluating RSs: Comprehensive evaluation of RSs is itself a challenge. It requires considering
multiple dimensions beyond simple prediction accuracy, including ranking quality, diversity,
novelty, serendipity, user satisfaction and system scalability. The choice of appropriate metrics
(as discussed in Section 1.2.3.1) and evaluation methodologies (e.g., offline vs. online A/B
testing) is critical (Shani and Gunawardana (2011)).

The field of RSs is shaped by an interplay of these problems and challenges, each demanding
targeted solutions while acknowledging their interconnected nature. For instance, issues like
data sparsity, cold starts and shilling attacks directly degrade recommendation quality, while
challenges such as scalability and achieving diversity reflect systemic considerations in designing
robust, effective and user-centric systems.

1.2.3 Evaluation

RSs aim to provide personalized suggestions to users based on their preferences and needs.
Evaluating RSs involves measuring how well they achieve this goal using different metrics and
methods.

1.2.3.1 Evaluation Metrics

In terms of evaluation metrics, RSs can be classified into Rating Based Indicators (RBIs) and
Item Based Indicators (IBIs). RBI evaluates the recommendations based on a predicted rating
score, while IBI evaluates the recommendations based on a set or list of predicted items. This
taxonomy allows for the classification of most existing evaluation indicators. Additionally, other
key evaluation metrics, such as coverage and novelty, provide further insights into recommenda-
tion performance (Kaminskas and Bridge (2016)). Further metrics evaluate the ranking quality,
such as Mean Average Precision (MAP), Normalized Discounted Cumulative Gain (NDCG)
and Hit Rate (HR), often considering the top-k items. The AUROC is also a valuable metric

for assessing ranking or classification performance.

1. Indicators: Which is divided into two categories:

¢ Rating Based Indicator (RBI):
The rating-based indicator is to evaluate the quality of the prediction rating score.
The direct way is to calculate the gap between implicit/explicit labels. One of the
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most popular measurements is RMSE when the rating score is an explicit value. The
equation format for the RMSE can be expressed in Equation 3.10.
Similarly, Mean Absolute Error (MAE) is another popular measurement that can be

expressed in Equation 1.3.

1

MAE = ——— |Pui = Tui] (1.3)
U] UGUZ;GI

Mean Squared Error (MSE) is also a fundamental measurement, which squares the

differences before averaging. It can be expressed as:

1
MSE = ——= > (Fui — Tu)’ (14)
UM e

where U is the set of the users, I is the set of items, 7,; denotes the predicted rating
and r,; denotes the true rating.

RMSE, MAE and MSE are non-negative; a lower value for each is better than a higher
one. While each error term ((7,; — ry;)? in RMSE, |f; — 7| in MAE) contributes to
the final error, RMSE penalizes larger errors more severely due to the squaring term,
making both sensitive to outliers.

e Item Based Indicator (IBI):
When the RS output is a set or list of items and if there is no inherent ranking
information considered for these initial metrics, a confusion matrix as illustrated in
(Figure 1.10) AI (n.d.), and listed in Table 3.2, can be adopted in the evaluation.

Predicted
[ . \
Positive Negative
B e )
Positive True False
positive negative
Actual % )
( A
Negative False True
9 positive negative
L (& _J/

Figure 1.10: Illustration of confusion matrix

Generally, more comprehensive compositions of these four values are adopted, such
as Accuracy, Precision, Recall, F1-Score and Specificity. A detailed discussion of

these metrics can be found in Chapter 3.3.3.
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2. Coverage: is how many items or users can be recommended by the system. This can
be measured by calculating the percentage of items or users that receive at least one
recommendation. Coverage reflects how broad or diverse the system is in providing
recommendations (Ge et al. (2010)).

3. Novelty: is how surprising or unexpected the recommendations are for the users. This can
be measured by calculating the average popularity or familiarity of the recommended items
among the users. Novelty reflects how creative or innovative the system is in providing

recommendations (Hossain et al. (2023)).

1.2.3.2 Evaluation Methods

Some common methods for evaluating RSs Shani and Gunawardana (2011) are:

e Offline Testing: Using historical data to simulate user feedback allows to compare
different algorithms or parameters efficiently and cost-effectively. However, this approach
may not accurately represent real user behavior or account for dynamic shifts in their

preferences.

e Online Evaluation: Deploying different versions of the system to real users and analyzing
their responses. This approach provides more realistic and reliable insights but can be

costly, risky and raise ethical concerns.

e User Studies: Gathering user opinions and feedback through surveys or interviews with
a sample group. This approach offers valuable qualitative insights but may be limited by

low response rates, biases and scalability challenges.

1.3 Health Recommender System

Today, a large amount of clinical data scattered across different sites on the Internet hinders users
from finding useful information for their well-being improvement. In addition, the overload of
medical information (for example, on drugs, medical tests and treatment suggestions) has brought
many difficulties to medical professionals in making patient-oriented decisions. These issues
raise the need to apply RSs in the healthcare domain to help end-users and medical professionals
make more efficient and accurate health-related decisions. This section explores the various
facets of RSs in healthcare, such as food recommendation, drug recommendation, health status
prediction, healthcare service recommendation and healthcare professional recommendation.

Finally, we discuss challenges concerning the future development of healthcare RSs.

1.3.1 Scenarios

Health Recommender System (HRS) can be applied in a variety of real-world healthcare
settings, each highlighting specific needs within the healthcare domain, offering personalized
recommendations. In this section, we will present the key areas where HRS being developed
and applied.
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1. Food recommendation: Due to the extensive growth of food options and increasingly
busy lifestyles, people have been struggling and facing the issue of making healthy food
choices, which are essential for to reduce the risk of chronic diseases (Ge et al. (2015)).
In this context, food RSs can motivate users to change their eating behaviors or suggest
healthier food choices (Figure 1.11) (Yang et al. (2017)).

2. Drug recommendation: Drug RSs assist caregivers in improving medication selection,
accuracy and safety by considering patient conditions and characteristics, Figure 1.12 (Al-
generated image created using SORA by OpenAl) illustrate the workflow of a DRS. The
following points discuss their use in recommending treatments for diseases and predicting
potential side effects.

L
Healthy Recipes

DISCOVER TASTY AND NUTRITIOUS
RECIPES

RECOMMENDED FOR YOU

Quinoa Salad
® 20min  © 350 kcal

Recipe Categories

Breakfast

Figure 1.11: Healthy recipes recommendation app

(a) Medication recommendations for treating diseases: Prescribing errors con-
sidered to be one of the most serious medical errors that could endanger patients’
lives (Gorgich et al. (2015)). More than 42% of these errors are caused by doctors
who have limited experiences/knowledge about drugs and diseases (Bao and Jiang
(2016)). Another reason lies in the increasing number of available drug information,
which has brought obstacles concerning the discovery of relevant drugs and drug-
disease interactions (Doulaverakis et al. (2012)). In this context, drug RSs have been
developed to assist end-users and healthcare professionals in identifying accurate
medications for a specific disease.

(b) Predict drug side effects: Adverse Drug Reactions (ADRs) as known as drug side
effects are a leading cause of misery and mortality, with 100,000 deaths annually in
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the USA (Galeano and Paccanaro (2018)). Early prediction methods used Structure-
Activity Relationships (SARs), such as effect spectra Fliri et al. (2006) and gene
pathway analysis Fukuzaki et al. (2009). ML approaches like in silico methods
leverage drug structures and biological features for prediction (Lafta et al. (2015)).
However, these methods face challenges like data availability, high computational
demands and false positives (Deshpande and Butte (2011)). Since clinical trials may
miss side effects, improved prediction models are needed (Zhang et al. (2016)). A
RS approach has been proposed, using neighborhood-based methods to predict side

effects from similar drugs.

Patient

Medical Data

NN

i LU E
Drug
Recommendation
System

J
loutput

e

Recommended
Drugs

Figure 1.12: Drug recommendation system workflow

3. Healthcare professional recommendations: In recent years, there has been a sig-
nificant increase in the amount of available medical information, which results in some
difficulties for patients when searching for suitable doctors. What concerns patients greatly
is how to find medical professionals with the best expertise for resolving their health issues
(Narducci et al. (2015)). Most existing healthcare providers do not provide patients with
full infrastructure or service design implementations that assist them in fulfilling this task.
This gap raises an open topic on patient-doctor matchmaking, in which patients can find
the right doctors to build a trust relationship Figure 1.13. Han et al. (2018) proposed
a hybrid RS, in which family-doctor recommendations are made based on the level of
available information about users.

4. Workout recommendation: Besides treatment recommendations, HRSs now focus on
physical-activity suggestions to prevent fragility and health complications (Valdez et al.
(2016)). These recommendations help users meet calorie-burn goals through personalized

plans Figure 1.14.
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Figure 1.13: Healthcare professional recommendation system

Systems like RUNNER Donciu et al. (2011) and SHADE Faiz et al. (2014) offer food and
exercise recommendations, considering that meal timing is crucial for exercise effectiveness.
Recommendations are tailored using user data from various sources, including health
status, goals and preferences. Ontologies and semantic technologies help manage data
heterogeneity (Orgun and Vu (2006)). The process involves selecting exercises based
on health status and goals, then refining them using usage history and feedback before

delivering them to users.

5. Health status prediction: Over the past few decades, researchers have spent a lot of
time studying how to predict the risks of certain diseases. In particular, studies on chronic
diseases have increased a lot because these illnesses are spreading quickly worldwide
(Hussein et al. (2012)). Chronic diseases can make it hard for people to stay active and
can also be expensive and time-consuming to treat (Nasiri et al. (2016)).

To help people avoid these diseases, HRSs have been created. These systems can detect
symptoms early and assist doctors in planning the best treatments for patients. Davis et al.
(2009) developed RSs that predict possible risks, such as complications or other diseases,
that a person with a chronic illness might face in the future. These systems use CF, which
is based on the idea that “patients with similar diseases and health conditions may have
similar risks.” The system makes predictions by comparing a patient’s information with
data from similar patients. Traditional CF techniques have been adjusted to work better
in the healthcare field.
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Figure 1.14: Workout recommendation system

1.3.2 Evaluation

Evaluating HRSs is crucial to ensure their effectiveness, trustworthiness and impact on users.
Below, we discuss key evaluation criteria based on recent research.

1.3.2.1 Evaluation Metrics and Real World Implementation

HRSs are often evaluated based on traditional accuracy metrics. However, a recent scoping review
highlights the lack of real-world assessments measuring actual health outcomes. Future studies
should incorporate longitudinal evaluations and user feedback to assess practical effectiveness
(Chen et al. (2024)).

1.3.2.2 Beyond Accuracy: Trust, Ethics and Privacy

HRSs must be evaluated not just on accuracy but also on trust, privacy and ethical considerations.
Researchers suggest that causability, robustness and interpretability should be key components
of evaluation (Hmida et al. (2020)).

1.3.2.3 User Engagement and Reproducibility

A systematic review of 73 HRSs found that many focus on lifestyle and nutrition but lack
standardized evaluation frameworks. The study proposes five guidelines for improving reporting
clarity and reproducibility (Smith et al. (2021)).
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1.4 Conclusion

In conclusion, this chapter provides a comprehensive overview of recent developments in RSs.
The field has seen significant progress in the past few years due to the attention of researchers
and academicians. We have identified and explain different topics in RSs domain like different
application fields, techniques used, performance metrics, challenges of different RSs and the
research gaps and challenges were put forward to explore the future research perspective on RSs.

Furthermore, we aimed more attention in our research on the HRS domain, especially the
DRS which will be discussed in depth in the next chapter.



Chapter 2

Drug Recommendation Systems: A Literature Review

2.1 Introduction

Hospitals have a large amount amount of patient data and a constantly growing number
of treatment options, making it difficult for doctors to choose the best course of action. A
recommendation engine solves this by analyzing the history, symptoms, and tests of a patient to
find similar cases in its database. By identifying what treatments were most successful for those
similar patients, DRS helps medical professionals make more precise and effective decisions.
In this chapter, we explore the field of drug RS, highlighting traditional approaches as well
as modern techniques. We will explore the various models that have shaped this field, from the
early rule-based systems to the latest DL based methods. Furthermore, we will discuss the data
sources used to train these models, and the evaluation strategies that ensure their effectiveness.
In addion, we well acknowledge the challenges and gaps in drug recommendation in current
research and potential opportunities for improving these systems will also be highlighted.

2.2 Overview of Drug Recommendation Systems

DRSs represent a pivotal application of IT and Artificial Intelligence (AI), specifically ML,
within the modern healthcare ecosystem. At their core, DRSs are sophisticated computational
tools designed to assist healthcare professionals by suggesting appropriate medications, dosages,
or comprehensive treatment regimens tailored to individual patients (Waleed et al. (2021)).
These systems operate by processing and analyzing vast quantities of patient-specific data, which
can include EHRs, demographic details, genomic information, past medical history, current
symptomatology, and laboratory test results. This patient data is often contextualized with
extensive medical knowledge bases, such as pharmacological databases, disease ontologies, and
established clinical guidelines.

The imperative for such systems stems from the confluence of rapidly expanding medical
knowledge and the increasing complexity of patient care. Healthcare facilities are inundated with
an ever-growing volume of patient data, while the pharmaceutical landscape sees a continuous
influx of new drugs, and treatment protocols evolve with ongoing research (Shameer et al. (2018)).
This information overload makes it exceptionally challenging for clinicians to assimilate all
relevant variables for every patient, potentially impacting the quality and timeliness of care.

22
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As noted in the introduction, “it becomes increasingly difficult for health professions to decide
which treatment to provide to a patient based on his symptoms, test results or previous medical
history”.

It is within this intricate environment that the importance of DRSs becomes particularly
salient. DRSs offer significant potential to:

e Enhance Personalized Medicine

Improve Clinical Decision Support

Mitigate Information Overload

Reduce Medication Errors and Adverse Events

Increase Efficiency in Clinical Workflows

2.2.1 Taxonomy

To better understand the diverse landscape of DRSs, it is useful to classify them along several
key dimensions. This taxonomy helps in categorizing existing systems, identifying research
trends, and pinpointing areas for future development. The primary dimensions for classifying
DRSs include their recommendation objective, the underlying approach or methodology, the
types of data utilized, and the target users (Zheng et al. (2021a)).

¢ Recommendation Objective: This dimension defines the primary goal or task the DRS
is designed to accomplish. Figure 2.1 summarizes the main objectives of DRSs. Common
objectives include:

DDI Avoidance and
Polypharmacy Management

[Recommendation Objective]

Personalized Medication
Recommendation

Figure 2.1: Core objectives of DRSs

— Drug-Drug Interaction (DDI) Avoidance and Polypharmacy Management: Systems
designed to identify and flag potentially harmful interactions between multiple drugs a
patient might be taking. This is crucial for patients with multiple comorbidities requiring
polypharmacy, aiming to enhance safety by preventing adverse events.

— Personalized Medication Recommendation: This involves tailoring drug prescriptions
and dosages based on an individual patient’s comprehensive profile. Such profiles may
include demographics, genetic markers, lifestyle, comorbidities, and treatment history,

moving towards precision medicine.
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¢ Recommendation Approach / Methodology: This describes the core algorithmic or
technical strategy employed by the DRS to generate recommendations. As shown in Figure 2.2,
DRSs can be classified by the methodology they use to generate recommendations. Broad
categories include:
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Collaborative Filtering }

Recommendation Approachw

*‘:[ Knowledge-Based '= Knowledge Graph-based
Systems

Hybrid Models S RNNs
Va

Content-Based FiIteringJ

/
/1 o
D — Mod;I;]
N s Transformers
\\\
| GNNs

Figure 2.2: Methodologies used in DRSs

— Rule-Based Systems: Utilize predefined rules, often derived from clinical guidelines, expert
knowledge, or pharmacological databases (e.g., for DDIs from sources like DrugBank
(Wishart et al. (2018))). Related work often involves encoding clinical pathways or safety
alerts directly into the logic of system (Wright and Sittig (2009)).

— Collaborative Filtering (CF): Predicts drug suitability by identifying patterns from a
large group of patients, recommending drugs that were effective for similar patients or
that similar patients rated highly (Adomavicius and Tuzhilin (2005)). In DRSs, this
often involves analyzing EHRs to find patient clusters with similar treatment responses
(Zheng et al. (2021D)).

— Content-Based Filtering: Recommends drugs based on the characteristics (content) of
the drugs themselves (e.g., chemical structure, mechanism of action from databases like
Chemical Exploration of Molecule Bioactivity Large-scale (ChEMBL) (Mendez
et al. (2019))) and/or the features of the patient (e.g., specific symptoms, biomarkers).

Related work includes predicting drug efficacy based on molecular fingerprints or patient
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genomic data (Gottlieb et al. (2011)).

— Knowledge-Based Systems (including Knowledge Graphs (KGs)-based): Leverage struc-
tured medical knowledge, often represented in ontologies (e.g., SNOMED CT, MeSH) or KGs,
to infer relationships between diseases, drugs, genes, and symptoms for recommendation
(Hogan et al. (2021)). Work in this area often focuses on drug repurposing, polypharmacy
side-effect prediction, or explaining recommendations through paths in the KG (Xiong
et al. (2021)).

— Hybrid Models: Combine two or more of the above approaches (e.g., CF with content-
based features, or rule-based systems augmented with ML) to leverage their respective
strengths and mitigate individual weaknesses (Burke (2002)). In DRSs, a hybrid model
might use a KG to enrich patient/drug features for a CF algorithm or use rules to
post-filter ML-generated recommendations for safety (Sun et al. (2022)).

— Deep Learning (DL) Models: Employ various neural network architectures (e.g., RNNs for
sequential patient data, CNNs for medical imaging or molecular structures, Transformers
for clinical text, GNNs for KGs or interaction networks) to learn complex patterns from
large-scale and often heterogeneous health data (Gao et al. (2022)). Applications in
DRSs include predicting drug-target interactions, drug adverse events, or personalized
treatment effects from multi-modal data (Wang et al. (2020b)).

e Data Type Utilized: The nature of the input data significantly influences the design and
capabilities of a DRS. As illustrated in Figure 2.3, DRSs often rely on various types of data,
which can be broadly categorized into structured, unstructured, and multi-modal formats.

{ Data Type Utilized ]
|
[ , || , |
Structured Data ] Unstructured Data ] Multi-modal Data ]

—— Demographics —— Clinical Notes —— Genomic Data
Lab Results —— Discharge Summaries’ —— Imaging Data \

il

ICD Codes —— Medical Literature ] —— Sensor Data
——{ EHR Medications ] —— Health Forum Reviews]
—— Pathology Reports ’

Figure 2.3: Taxonomy of data types used in DRSs
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Data sources can be broadly categorized as:

— Structured Data: Includes organized and easily queryable data such as patient demo-
graphics, lab results, codified diagnoses (e.g., ICD codes), medication administration
records from EHRs, and data from structured biomedical databases (e.g., DrugBank,
SIDER).

— Unstructured Data: Comprises free-text data that requires Natural Language Process-
ing (NLP) techniques for information extraction. Examples include clinical notes, dis-
charge summaries, medical literature, patient-generated reviews from health forums, and
pathology reports.

— Multi-modal Data: Some advanced systems aim to integrate diverse data types, such as
genomic data (e.g., SNPs), imaging data (e.g., MRI, CT scans), and sensor data (e.g.,
from wearables), alongside clinical data.

e Target User: DRSs can be designed with different end-users in mind, which affects their
interface, the type of recommendations provided, and the level of detail in explanations.
Figure 2.4 presents the types of target users for DRSs. Depending on whether the system
is designed for clinicians, patients, or researchers, its functionalities, interface, and level of
explanation will vary accordingly.

Physicians and Healthcare
Providers

Target User Patients and Consumers

Researchers and
Pharmacologists

Figure 2.4: Target users of DRSs

— Physicians and Healthcare Providers: Systems tailored for clinicians typically focus on
providing decision support at the point of care, integrating with EHRs, and offering

evidence-backed recommendations that can be critically evaluated by the expert.

— Patients and Consumers: DRSs aimed at patients might focus on medication adherence,
understanding potential side effects, providing information on over-the-counter drugs, or
supporting self-management of chronic conditions through health apps. These systems
usually prioritize user-friendliness and easily understandable information.
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— Researchers and Pharmacologists: Some systems may be designed for drug discovery,
repositioning, or pharmacovigilance research, providing insights into drug efficacy, safety
profiles, or novel therapeutic targets.

Understanding these classifications is essential for navigating the literature on DRSs and
for designing new systems that effectively address specific clinical needs or research questions.
Each combination of objective, approach, data, and target user presents unique challenges and
opportunities.

2.2.2 Data Sources

The effectiveness of DRSs largely depends on the quality, diversity, and appropriate use of the
datasets employed for their training and evaluation. The nature of these data sources—whether
structured clinical records, unstructured patient narratives, or curated knowledge bases—profoundly
influences the choice of recommendation methodologies and the types of insights that can be
derived. This section highlights prominent data sources commonly utilized in DRS research.

e Medical Information Mart for Intensive Care (MIMIC): The MIMIC datasets are
among the most extensively used public data sources in healthcare-related ML and DRS re-
search. These datasets contain comprehensive health records of patients admitted to Intensive
Care Units (ICUs), encompassing demographics, vital signs, laboratory measurements, med-
ication administration records, diagnoses, procedures, and lengthy clinical notes (Johnson
et al. (2016))'. For drug recommendation tasks, tables such as PRESCRIPTIONS (detailing
drug orders), INPUTEVENTS (covering drug administrations, particularly for IV medications),
and NOTEEVENTS (containing free-text clinical narratives) are particularly relevant and widely
exploited.

e Drug Review Datasets (e.g., Drugs.com, WebMD): Datasets comprising user-submitted

reviews of pharmaceutical drugs, often scraped from consumer health websites like Drugs . com?
or WebMD?, offer a rich source of real-world patient experiences. Each entry typically includes
the drug name, the condition treated, a patient-assigned rating (e.g., for efficacy or satisfaction),
reported side effects, and free-text reviews detailing personal experiences (Garg (2021)). Such
datasets are invaluable for studies leveraging sentiment analysis and NLP to incorporate

patient perspectives, satisfaction levels, and side effect into recommendation models.

e FDA Adverse Event Reporting System (FAERS): Maintained by the USA Food and
Drug Administration (FDA), the FAERS? database is a crucial repository for post-marketing
surveillance of drug safety. It contains voluntary reports of Adverse Drug Events (ADEs) and

medication errors submitted by healthcare professionals, consumers, and manufacturers (fae

IMIMIC-III Dataset on PhysioNet
’https://www.drugs.com/
3https://www.webmd.com/
‘https://open.fda.gov/data/faers/
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(2021)). FAERS data is frequently employed in pharmacovigilance research and for developing
safety-aware RSs. These systems aim to identify and potentially avoid recommending drugs
that have a historical pattern of causing adverse events in patients with similar profiles or

co-medications.

e Side Effect Resource (SIDER): The SIDER® database consolidates information on mar-
keted medicines and their documented ADRs, extracted from public documents and package
inserts (Kuhn et al. (2016)). It systematically links drugs to their known side effects, often
categorized by frequency. SIDER is a valuable resource for developing DRSs that prioritize
safety, particularly in scenarios involving polypharmacy where the risk of cumulative side
effects or interactions is high. It can also be used to inform content-based models by providing
drug feature information related to safety profiles.

e UK Biobank: The UK Biobank® is a large-scale, prospective biomedical database containing
in-depth genetic and health information from over 500,000 UK participants (Sudlow et al.
(2015)). Data includes prescription records, diagnoses (linked to primary and secondary
care data), extensive genotyping and exome sequencing data, lifestyle questionnaires, and
various physiological measurements. Its rich, multi-modal nature makes it exceptionally
valuable for building highly personalized DRS models, particularly those aiming to integrate
pharmacogenomic insights to predict drug response or ADR susceptibility.

e National Health and Nutrition Examination Survey (NHANES): NHANES' is
a program of studies designed to assess the health and nutritional status of adults and
children in the USA, conducted by the National Center for Health Statistics (NCHS). It
uniquely combines interviews (including prescription drug use, dietary information, and health
conditions) with physical examinations and laboratory tests (nha (2019)). The prescription
drug component of NHANES provides population-level data on medication usage patterns,
which can be used to build or validate DRSs, understand medication trends, and explore

associations between drug use and health outcomes in a representative sample.

In addition, several other data sources (e.g., Kyoto Encyclopedia of Genes and Genomes
(KEGG), DrugBank, ChEMBL, PubChem) are essential for many DRSs. Databases like KEGG® Kane-
hisa and Goto (2000) provide information on metabolic pathways and drug targets. DrugBank
Wishart et al. (2018)? offers comprehensive details on drugs, including chemical data, pharmacol-
ogy, interactions, and targets. ChEMBL!® and PubChem!! are rich sources of chemical structures
and bioactivity data. This “side information” is crucial for Constructing feature, build and
enrich medical KGs.

Shttp://sideeffects.embl.de/
Shttps://www.ukbiobank.ac.uk/
"https://www.cdc.gov/nchs/nhanes/index.html
8https://www.genome. jp/kegg/
Yhttps://go.drugbank.com/
Onttps://www.ebi.ac.uk/chembl/
Uhttps://pubchem.ncbi.nlm.nih.gov/
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The wise selection, preprocessing, and integration of these diverse data sources are paramount
for developing robust, effective, and clinically relevant DRSs. The subsequent challenge lies in
appropriately evaluating the performance and utility of systems built upon such data.

2.2.3 Evaluation Strategies

The rigorous evaluation of DRSs is important to ensure their efficacy, safety, and clinical utility
before any consideration for real-world deployment. Given the critical nature of healthcare
decisions, evaluation cannot just rely on computational metrics; it must also include clinical
relevance and user acceptance. This section outlines common quantitative metrics, many of
which are adaptations of general metrics mentionned in Section 1.2.3.1, and essential qualitative

and clinical evaluation approaches for DRSs.

2.2.3.1 Quantitative Metrics

Quantitative metrics provide objective measures of a DRSs performance, typically by comparing
its recommendations against a ground truth (e.g., drugs actually prescribed, drugs known to be
effective from literature or trials). These are often adapted from the fields of information retrieval
and ML (Manning et al. (2008)), with foundational concepts introduced in Section 1.2.3.1 and
further detailed in Section 3.3.3.

e Precision@k, Recall@k, and F1-score@k: These are fundamental metrics for eval-
uating set-based recommendation tasks (Powers (2011)), building upon the definitions
of Precision (Equation 3.13), Recall (Equation 3.14), and Fl-score (Equation 3.15) that
will be see Chapter 3. In DRSs, it is common to evaluate the top-k recommendations, as
clinicians typically review a limited list.

— Precision@k: Measures the proportion of recommended drugs within the top-£ list
that are relevant. In DRSs, this indicates how many of the k suggested drugs are
appropriate for the patient/condition. It is calculated as:

|{Relevant Recommended Drugs} N {Top-k Recommended Drugs}|
k

Precision@k =
(2.1)
where k is the number of top recommendations considered.

— Recall@k: Measures the proportion of all relevant drugs (that should have been
recommended) that are actually present in the top-k recommendations. In DRSs,
this shows how many of the truly appropriate drugs the system managed to find
within the top-k. Its formula is:

|{Relevant Recommended Drugs} N {Top-k Recommended Drugs}|

Recall@k =
eca |{ All Relevant Drugs}]

(2.2)
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— F1-score@k: The harmonic mean of Precision@k and Recall@Qk, providing a single
measure that balances both for the top-£ items. It is useful when both false positives
and false negatives within the top-k are important, and is defined as:

Precision@k - Recall@k

F1- Qk =2 - 2.
SeOTe Precision@k + Recall@k (2.3)

where k is the number of top recommendations considered.

The choice of k (the number of recommendations considered) is crucial and should reflect

realistic clinical scenarios.

e Area Under the Receiver Operating Characteristic Curve (AUROC): The
Receiver Operating Characteristic (ROC) curve, as represented in Figure 2.5 (Martinez-
Rios et al. (2021)), plots the True Positive (TP) Rate (Recall) against the False Positive
(FP) Rate at various threshold settings. The AUROC represents the probability that
the model ranks a randomly chosen positive instance higher than a randomly chosen
negative instance (Fawcett (2006)). In DRSs, this can be used if the task is framed as
binary classification (e.g., will this drug be effective/safe for this patient: yes/no) or for
evaluating ranked lists where a threshold determines recommendation. A higher AUROC

(closer to 1) indicates better discrimination.

Perfect Classifier

Excellent

True Positive Rate

False Positive Rate

Figure 2.5: AUROC

e Mean Average Precision (MAP): A popular metric for evaluating ranked retrieval
results. It considers the order of recommendations and is the mean of Average Precision
(AP) scores across all queries (or patients). AP for a single patient rewards systems that
rank relevant drugs higher in the recommendation list. This is particularly important in
DRSs as clinicians are more likely to consider drugs listed at the top. For a set of queries
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@, MAP is defined as:
MAP = i| > AP(g) (2.4)
@l &5
where AP for a query ¢ is:
w1 (P(K) x rel(k))

AP(q) = Bl
(9) Number of relevant drugs for ¢

(2.5)

Here N, is the number of recommended drugs for query ¢ (or total drugs in the list
considered for ranking), P(k) is the precision at cut-off k in the list of recommendations
for query ¢, rel(k) is an indicator function equaling 1 if the item at rank k is relevant for
query ¢, and 0 otherwise. “Number of relevant drugs for ¢” is the total count of truly
relevant drugs for patient g.

e Normalized Discounted Cumulative Gain (NDCG)@k: Evaluates ranked lists but
allows for multiple levels of relevance (e.g., highly relevant, moderately relevant, irrelevant
drug) (Jéarvelin and Kekéldinen (2002)). Discounts the value of relevant drugs found
lower in the list. The “normalized” aspect compares the system’s Discounted Cumulative
Gain (DCG) to the Ideal Discounted Cumulative Gain (IDCG) (if all relevant drugs were
ranked perfectly), resulting in a score between 0 and 1. This is highly suitable for DRSs
where not all correct drugs are equally optimal.

k
rel;
DCGQ@k = — 2.6
; log, (i + 1) (26)
DCG@k

where k is the number of recommendations considered, rel; is the graded relevance of the
drug at position ¢ in the recommended list, and IDCG@k is the Ideal DCG at k.

e Hit Rate (HR)@k: This simpler metric measures the proportion of cases (e.g., patients)
for which at least one of the ground-truth relevant drugs appears in the top-k recommended
drugs. It indicates whether the system can successfully suggest at least one correct option
within a limited list size.

HR@k = ’—é' > hit(u, k) (2.8)

uelU

where |U] is the total number of users or test cases (e.g., patients), u is an individual user
or test case, and hit(u, k) is an indicator function, which is 1 if at least one relevant drug
for user u is found within the top-k£ recommendations, and 0 otherwise. k is the number

of top recommendations considered.

e Coverage: As introduced in Section 1.2.3.1 and illustrated in Figure 2.6, coverage

measures the percentage of the total drug formulary (or relevant drug set) that the DRS
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is capable of recommending. Low coverage might indicate the system is overly specialized
or biased towards popular drugs, which is a critical concern in healthcare.

O Subset of drugs the DRS is
capable of recommending

Coverage:

o
25% O Total drug formulary /

Complete relevant drug set

Figure 2.6: Example of coverage illustration in DRS

It is important to note that the definition of relevance or ground truth in DRS evaluation
can be complex, depending on whether it is based on historical prescriptions (which may not

always be optimal), clinical trial outcomes, or expert-defined appropriateness.

2.2.3.2 Qualitative and Clinical Evaluation

While quantitative metrics are essential for assessing algorithmic performance, they do not
capture the full picture of a DRSs value in a clinical setting. Qualitative and clinical evaluations
are crucial for assessing safety, real-world utility, and trustworthiness. This involves having
domain experts (e.g., physicians, clinical pharmacists, specialists) review the recommendations
generated by the DRS.

e Methodologies: This can be done through expert panel reviews, where a group of clinicians
assesses recommendations for given patient scenarios (real or simulated cases). They evaluate
aspects like appropriateness for the diagnosis, safety (considering DDIs, ADRs, contraindi-
cations), alignment with clinical guidelines, and potential efficacy. Scoring rubrics or Likert
scales are often used!?.

e Focus: Experts can identify nuances that quantitative metrics might miss, such as whether a
recommended drug, while technically correct for a disease, is inappropriate due to a patient’s
specific comorbidity, age, or other contextual factors not fully captured by the model.

A comprehensive evaluation strategy for DRSs should thus combine offline quantitative
assessments with rigorous online or expert-driven qualitative and clinical validation to ensure

the system is not only accurate but also safe, useful, and trustworthy in practice.

12Gcoring rubrics are tools that assess performance based on defined criteria, while Likert scales measure
attitudes using agreement ratings (e.g., 1 = strongly disagree to 5 = strongly agree).
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2.3 Challenges and Opportunities

Despite significant advancements, the field of DRSs faces numerous challenges that hinder
their widespread adoption and optimal performance. Addressing these challenges concurrently
presents exciting opportunities for future research and development, ultimately aiming to create
more effective, safer, and personalized clinical decision support tools. Many of these challenges
are specific manifestations or intensifications of general issues discussed in Section 1.2.2.5.

2.3.1 Data-related

The foundation of any DRS is data, and issues related to data quality, availability, and charac-

teristics are paramount.

e Data Sparsity and Missing Values: EHRs and patient profiles are often incomplete, with
many patients having data for only a few drugs or conditions as illustrated in Figure 2.7.
This high data sparsity hinders CF and other models from identifying reliable patterns (Lu
et al. (2015)) (see Section 1.2.2.5).

TREATMENTS

Dru |Drig | Dru | Drug | Drug | Drug | Drug

A | B|C E F G I
Patient 1 O O
Patient 2 O O O
Patient 3 O
Patient 4
Patient 5 OO O
Patient 6 O OO0
Patient 7

Figure 2.7: Hlustration of Data Sparsity

e Data Imbalance: Healthcare datasets are typically imbalanced, overrepresenting common
diseases and drugs while underrepresenting rare but potentially more appropriate treatments.
This bias, related to the long-tail problem (Section 1.2.2.5), can reduce recommendation

effectiveness for less common cases.

e Label Noise and Quality: Training data such as diagnoses, prescriptions, and outcomes
may be inaccurate, incomplete, or subjective. Issues like miscodings and non-adherence

introduce noise and affect model reliability.



2.3. Challenges and Opportunities 34

e Privacy and Security: Patient data is highly sensitive and regulated (e.g., Health Insurance
Portability and Accountability Act (HIPAA), General Data Protection Regulation (GDPR)).
Ensuring privacy and security through techniques like de-identification, federated learning'?
and differential privacy'® is essential for compliance and trust (El Emam and Arbuckle (2013)),
building upon general RS privacy concerns (Section 1.2.2.5).

e Lack of Standardized Data Formats and Interoperability: Inconsistent data formats
and terminologies (e.g., SNOMED CT, ICD, RxNorm) across healthcare systems limit data in-
tegration and model generalizability, amplifying synonymy-related issues (Section 1.2.2.5)
(Benson (2012)).

2.3.2 Model-related

The algorithms and models themselves present several intrinsic challenges when applied to the
DRS domain.

e Personalization vs. Generalization: Achieving a balance between personalized recom-
mendations (based on genomics, comorbidities, lifestyle, etc.) and models that generalize well
to unseen patients is critical (Figure 2.8). Over-personalized systems may fail to generalize,
reflecting a subtle facet of the cold-start problem (Section 1.2.2.5).

Generalization

252

Ability to
recommendd
across unseen
or new patients

Personalization

2 o

Optimal
Balance

Figure 2.8: Illustration of Personalization vs. Generalization

e Cold-Start Problem in DRSs: The cold-start issue is especially prominent in DRSs.
Making drug recommendations for new patients (with limited history) or for newly introduced

drugs (with insufficient real-world data) requires specialized techniques beyond conventional
CF (Section 1.2.2.5).

BFederated learning is a machine learning approach where multiple decentralized devices or servers collab-
oratively train a shared model without exchanging their raw data. Only model updates are communicated,
preserving data privacy.

l4Differential privacy is a technique that adds small amounts of noise to data or computations to protect
individuals’ private information while still allowing useful insights to be learned from the data.
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e Scalability for Clinical Utility: DRS models need to be scalable to support large-scale
patient populations, comprehensive drug databases, and fast-growing clinical data while still
delivering timely recommendations suitable for clinical settings (Section 1.2.2.5).

e Computational Complexity: Sophisticated models like deep neural networks, which handle
high-dimensional and heterogeneous data, demand significant computational power for both
training and inference. This can limit their feasibility in resource-constrained healthcare
environments.

e Temporal Dynamics: Patients health conditions, treatment responses, and drug effectiveness
often change over time. DRS models must capture these temporal trends to offer relevant

recommendations, surpassing the static approaches used in traditional RSs.

2.3.3 Ethical, Interpretability, and Implementation

Beyond data and models, broader considerations impact the adoption and responsible use of
DRSs.

e Interpretability and Explainable AI (XAI): As discussed in evaluation contexts, the
black box nature of many advanced models is a significant barrier to clinical trust and
adoption. Clinicians need to understand the rationale behind a drug recommendation to
critically assess it, ensure it aligns with their clinical judgment, and take responsibility for
the treatment decision (Holzinger et al. (2019)).

¢ Bias and Fairness: Al models can accidentally learn and perpetuate biases present in
historical medical data related to race, gender, socioeconomic status, or geographic location,
potentially leading to health disparities (Obermeyer et al. (2019)). Ensuring fairness and
equity in DRSs is a critical ethical concern that goes beyond general discussions of item
popularity bias (Section 1.2.2.5).

e Accountability and Responsibility: Determining who is accountable if a DRS provides
an incorrect or harmful recommendation (the algorithm developer, the deploying institution,
the clinician who accepts or rejects it) is a complex medico-legal and ethical issue that needs
clear frameworks.

e Clinical Workflow Integration: Seamlessly integrating DRSs into existing clinical work-
flows and EHR systems without causing alert fatigue, increasing clinician charge, or undue
disruption is crucial for practical adoption. The user interface and interaction design are key
to success.

¢ Regulatory Hurdles and Validation Standards: Establishing clear regulatory pathways
(e.g., via FDA, European Medicines Agency (EMA)) and standardized validation protocols
for Al-driven medical devices, including DRSs, is essential for ensuring their safety, efficacy,
and reliability before widespread clinical use.
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Addressing these multifaceted challenges will be crucial for realizing the full potential of
DRSs to transform patient care and improve health outcomes.

2.4 Conclusion

This chapter has systematically reviewed the field of DRSs, emphasizing their critical role in
advancing personalized medicine and improving clinical decision-making. We explored the
taxonomy of DRSs, the evolution of methodologies from traditional to advanced Deep Learning
(DL) and hybrid models, and the essential data sources that fuel them. The necessity of rigorous,
multifaceted evaluation, confirming both quantitative metrics and clinical interpretability
analysis, was also highlighted. Despite significant advancements, major challenges persist in
relation to data quality, model robustness (especially in DDI/ADR prediction), and ethical
considerations like bias and accountability. However, these challenges also define inspiring
direction for future research, focusing on XAI, multi-modal data integration, and fairness-aware
systems.

In the third chapter, by recognizing the previews gaps and opportunities, we will propose a
novel approach developed to address several of these key limitations.



Chapter 3

The Proposed Drug Recommendation System: Design,

Implementation, and Evaluation

3.1 Introduction

Personalized drug RSs are increasingly critical in modern healthcare, aiming to support clinical
decision making by suggesting the most appropriate treatment for individual patients. These
systems leverage MLs models to predict the effectiveness of specific drugs based on patient
features such as condition, sex and prior experiences with medications. However, many current
DRS approaches struggle to effectively associate the richness and subjectivity of patient experi-
ences and the small difference characteristics that define patient groups. This often limits their
ability to achieve truly personalized and accurate drug suggestions.

This chapter presents the design, implementation, and evaluation of our proposed model,
describing our algorithm and its underlying principles. Finally, we will discuss the results
obtained from our experiments, providing insights into the strengths and limitations of our
approach.

3.2 The Proposed Drug Recommendation System: Architecture and Design

This section outlines the foundational principles and methodologies that rise our proposed
drug RS. We cover the three main areas: Sentiment Analysis, User/Item Clustering in Recom-
mendation and Enhanced NCF. Each principle plays a crucial role in capturing accurate user
preferences and interaction patterns, ultimately contributing to a more accurate and context
aware drug recommendation model. By integrating these concepts, our system aims to move
beyond traditional recommendation approaches to provide more personalized and effective drug

suggestions.

3.2.1 Conceptual Framework

Building upon the concepts and techniques of sentiment analysis, clustering and enhanced
NCF that will be see in Section 3.2.2, we introduce the framework of our proposed drug
recommendation model 3.1. That aims to capture both implicit interaction patterns and explicit

feature characteristics to predict the suitability of a drug for a given user context.

37
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Figure 3.1: The proposed model Conceptual Framework

The model first leverages sentiment analysis to transform each user review into a quantitative
compound score that captures overall sentiment polarity on a continuous scale from —1 (most
negative) to +1 (most positive). This compound score,provides a robust representation of
textual opinions.

Next, these sentiment scores are combined with various data such as drug and medical
condition and other additional engineered features to feed a modified clustering algorithm
(U-KMeans), which partitions the data into homogeneous groups based on both semantic and
contextual similarity. The result of clustering is then introduced as input, alongside drug,
condition and other featuers into an enhanced NCF (multi-input NCF).

In sum, this three-stage pipeline lexicon based sentiment extraction, feature clustering,
and enhanced deep NCF,constitutes a cohesive architecture optimized for personalized drug
recommendation.

3.2.2 Main Architectural Components

This section details the main elements that constitute our proposed methodology, each playing
a crucial role in enhancing the recommendation process. We begin by exploring Sentiment
Analysis in User Reviews (Section 3.2.2.1). Next, we discuss User/Item Clustering in Recom-
mendation (Section 3.2.2.2). Finally, we introduce an Enhanced NCF model (Section 3.2.2.3).
Together, these components form an integrated framework for more accurate and effective
recommendations.

3.2.2.1 Sentiment Analysis in User Reviews

Sentiment analysis, or opinion mining, computationally studies opinions and emotions in text
Liu (2012). In RSs using textual feedback, it helps understand the qualitative aspects of user
experiences beyond numerical ratings Pang and Lee (2008).

Integrating sentiment analysis into RSs offers several advantages:

e Enhanced User Preference Modeling: Augments ratings by providing deeper insights
into why a user liked or disliked an item, helping to disambiguate experiences (e.g., a high

rating with negative sentiment might indicate sneer or a mixed experience).
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e Improved Recommendation Accuracy: By combining sentiment as a feature, models
can learn more exact user preferences, leading to more accurate predictions and relevant

recommendations Zhang et al. (2014).

Dictionary

Pre-built

lexicon Data handling

Capitalization ',
and )
punctuation

i Negations

Textual

. Tokenizer

Intensifiers
and
modifiers

Polarity
scores

Positive Neutral Negative|| «— Sentiment
aggregation

Classification Overall sentiment

score

Figure 3.2: Conceptual flow of VADER model in sentiment analysis

e Feature Engineering: Sentiment polarity or intensity scores can be directly used as
features in recommendation models.

e Addressing Review Sparsity: Sentiment from reviews can act as an implicit preference

signal, even without explicit ratings.

¢ Explainability: Sentiment can contribute to more explainable recommendations by
highlighting positive aspects from reviews.

The model first leverages VADER, a lexicon and rule based sentiment analyzer Hutto and
Gilbert (2014), to transform each user review into a quantitative compound score that captures
overall sentiment polarity. This compound score, computed by aggregating and normalizing
valence scores from a sentiment lexicon, provides a robust single feature representation of textual
opinions without extensive preprocessing. The choice of VADER is motivated by its effectiveness
in analyzing sentiments expressed in social media and short informal texts, which often share
characteristics with user reviews.
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3.2.2.2 User/Item Clustering in Recommendation

User/item clustering is a key technique in modern RSs, addressing challenges like data sparsity,
scalability, and the cold start problem Linden et al. (2003b). It involves grouping similar users

or items to generate recommendations based on collective cluster preferences rather than sparse
individual data.

Clustering offers multiple benefits:

e Scalability: Reduces computational load by operating on clusters instead of individual
entities in large datasets Aggarwal (2016b).

e Alleviating Data Sparsity: Creates denser neighborhoods for recommendations by
pooling preferences within clusters.

e Cold Start Problem Mitigation: Assigns new users or items to existing clusters based
on available features to enable initial recommendations.

e Improved Recommendation Quality and Diversity: Can lead to more diverse and
unexpected recommendations by understanding group behaviors.

Common clustering techniques employed in RSs include K-Means (and its variants), DB-

SCAN, and hierarchical clustering Jain (2010). The choice depends on data characteristics

and recommendation goals. For example, K-Means is efficient for large datasets but needs a
predefined number of clusters, while hierarchical clustering offers a nested cluster structure.
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Figure 3.3: Clustering concept

This research use a modified K-Means approach, termed U-KMeans, specifically developed for
robust user segmentation. The methodology involves integrating diverse user features, including

demographic data, sentiment scores derived from reviews, drug information, medical conditions,



3.2. The Proposed Drug Recommendation System: Architecture and Design 41

and other engineered features, as input for the U-KMeans algorithm. This algorithm then
partitions users into homogeneous groups by considering both semantic (e.g., sentiment) and
contextual (e.g., medical condition) similarities as illustrated in Figure 3.3. A key methodological
distinction from standard K-Means is that U-KMeans assigns specific weights to the sentiment
dimension, ensuring that the resulting clusters effectively capture the small difference of patient

experiences alongside other defining characteristics.

3.2.2.3 Enhanced Neural Collaborative Filtering

The NCF model was proposed by He et al. (2017) to leverages DL to model user/item interactions,
moving beyond the simple dot product. Its core idea is to replace the dot product with a
learnable Multi-Layer Perceptron (MLP) for more expressive interaction modeling.

The NCF framework typically includes:
e Input Layer: Takes user and item IDs (e.g., one hot encoded or integer indices).

e Embedding Layer: Maps sparse input IDs to dense, lower dimensional embeddings (p,
for user u, q; for item i) that capture latent features. These embeddings can be initialized

randomly and learned during training.

e Neural CF Layers (Interaction Layers): The core, where user and item embeddings
are fed into neural network layers to learn the interaction function He et al. (2017).

Variants include:

— Generalized Matrix Factorization (GMF): Learns user/item interactions via
element wise multiplication of their embeddings, generalizing the dot product in
traditional Matrix Factorization (MF). The GMF interaction vector is:

hour = pu © q; (3.1)

where ® denotes the element wise product.

— Multi-Layer Perceptron (MLP): Concatenates user/item embeddings and passes
them through MLP layers with non linear activation functions to learn complex
interactions. The input to the MLP path is:

o = [Pu; qi] (3.2)

This concatenated vector is then processed through multiple dense layers:
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71 = ¢ (Wizo+ by) (3.3)
2y = ¢2(W3 21 + by)

hyip = ¢L<WEZL71 +by) (3.5)

where W, b;, and ¢; are the weight matrix, bias vector, and activation function (e.g.,
ReLU) for the I-th layer, respectively. hyyp is the output of the MLP path.

— Neural Matrix Factorization (NeuMF'): A hybrid model combining GMF and
MLP. It typically learns separate embeddings for the GMF and MLP paths (e.g.,
Pu.cMrs Qi.amrF and Py vLp, Qi mrp respectively). The outputs of the GMF path (hawr,
derived from its specific embeddings) and the MLP path (hyp, derived from its

specific embeddings) are then fused, usually by concatenation:
Viusion = [hamr; hvrp] (3.6)

— Output Layer: Produces the predicted interaction score, often with a sigmoid
activation for binary classification (e.g, predicting implicit feedback like click or
purchase) or linear activation for solving the regression problem.

The main advantage of NCF are its flexibility, enhanced modeling capacity, and ability to
automatically learn complex feature interactions. It often outperforms traditional MF-based
methods, especially with sparse data He et al. (2017); Zhang et al. (2019).

Since the DRS is very complex due to the non-linear relationships between drugs, disease
conditions, and demographics, to capture all these relationships, we need to improve NCF
to capture all interactions from multiple inputs rather than just user/item inputs (vanilla!
NCF). Therefore, we proposed an improved NCF (multi-input NCF) as shown in Figure 3.4,
which takes categorical inputs. In this stage, embedding layers map each categorical feature
(drug, condition, ...) into dense latent vectors. These embeddings are then processed through
parallel GMF and MLP branches. GMF applies element-wise multiplication to capture latent
interactions, while MLP captures higher-order feature interactions via dense layers. The outputs

are fused and passed through a final dense layer with linear activation.

3.3 Experiments and implementations

This section outlines the specific details of the experimental environment, including the dataset

processing, the software stack, development tools, and hardware utilized. It also defines the

!The term vanilla refers to the simplest or most basic version of a model or algorithm, implemented without
any modifications, enhancements, or additional features.
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Figure 3.4: Architecture Diagram of the Enhanced NCF (Multi-inputs)

evaluation metrics used to assess the performance of the proposed model and discusses baseline

models used for comparison.

3.3.1 Dataset and Pre-processing

This section details the dataset processing that utilized for developing and evaluating the
proposed drug recommendation model. The primary dataset used in this study is sourced from
Github, titled Recomed Dataset and is available as Drug Rating.csv. This dataset contains
patient-reported drug reviews, ratings, and related information. Initially, the dataset comprises

3292 instances (rows) and 15 features (columns).

3.3.1.1 Key Features

The raw dataset contains several features that are pertinent to the task of drug recommendation.
The key features utilized in this work are summarized in Table 3.1.

3.3.1.2 Data Cleaning

Prior to any feature engineering, several data cleaning steps were performed to ensure data
quality and consistency. The dataset was first processed to remove any rows containing missing
values across any of the columns. This was achieved using the pandas dropna() method on the
entire DataFrame.
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Feature Name Data Type (Original) Description

DrugName Text The name of the drug reviewed.

Condition Reason Text The medical condition.

Age Text /Numeric The age of the patient.

Genus Text The gender of the patient.

Effectiveness Categorical Text Patient’s perceived effectiveness of the drug.
SideEffect Categorical Text Severity of side effects experienced by the patient.
Comment Review Text The textual review or comment by the patient.
OverallRating Numeric An overall numerical rating given by the patient.
Category Text The broader category to which the drug belongs.

Table 3.1: Key features in the original dataset.

3.3.1.3 Feature Engineering

Following data cleaning, several new features will be engineered, and existing features were
transformed to better capture the underlying information relevant for drug recommendation.

e Text Preprocessing for Review Comments: The raw textual data in Comment Review
requires significant preprocessing to be suitable for sentiment analysis. The following steps
were applied:

— Lowercasing: Converting all text to lowercase for consistency.

— Special Character Removal: Eliminating punctuation and special characters, retain-
ing only alphanumeric characters and whitespace to simplify text to word tokens.

[15P%))

— Stopword Removal: Removing common English stopwords (e.g., “the”, “is”) using the
Natural Language Toolkit (NLTK) library, as they typically lack significant sentiment
meaning.

— Lemmatization: Reducing words to their base form (lemma?) using NLTKs WordNet

lemmatizer to consolidate different word forms.

e Sentiment Analysis (Polarity of User Comment Score): To quantify sentiment
in user reviews, the VADER sentiment intensity analyzer Hutto and Gilbert (2014) was
employed, selected for its effectiveness in handling short texts such as reviews, which are

similar in style to social media content.

— Methodology: An instance of NLTKs Sentiment Intensity Analyzer (with the
vader_lexicon) was initialized. For each preprocessed review, VADER polarity -

scores method yielded positive, negative, neutral, and a composite compound score.

2A lemma is the base or dictionary form of a word. For example, the lemmas of “running” and “better” are
“run” and “good,” respectively.
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— Sentiment Indicator: The compound score, a normalized weighted composite ranging
from -1 (most negative) to +1 (most positive), was extracted as the primary sentiment
measure.

This compound sentiment score was stored in a new column named PUC.

e Mapping Categorical Features (Effectiveness and Side Effects): The categorical
text features Effectiveness and SideEffect were converted to numerical scales to

capture their ordinal nature.

— Effectiveness to DOE (Degree of Effectiveness): The Effectiveness categories
(from Ineffective to Highly Effective) were mapped to numerical values from 0
to 4, respectively. This raw score was then normalized by dividing by 4, scaling it to
a 0-1 range to produce the DOE.

— SideEffect to DOS (Degree of Side Effects): Similarly, the SideEffect cate-
gories (from No Side Effects to Extremely Severe Side Effects) were mapped
to numerical values from 0 to 4. This score was also normalized by dividing by 4,
yielding a 0-1 scaled value referred to as DOS.

e Consolidated User Rating Calculation: A novel Consolidated User Rating (CUR),
as proposed in the RECOMED framework Zomorodi et al. (2024),was developed to
comprehensively represent user experience, integrating overall rating, effectiveness, side
effects, and Polarity of User Comment (PUC).

The CUR was then calculated using the following formula:

<0vera11Rati;gnorm+DUE> — DOS + PUC
2

CUR =

(3.7)

where:

— OverallRating,,,,, is the normalized overall rating (scaled to [0, 1]).
DOE is the Degree of Effectiveness (DOE) (scaled to [0, 1]).

— DOS is the Degree of Side Effects (DOS) (scaled to [0, 1]).

PUC is the PUC (ranging from -1 to +1).

The resulting CUR scores were then normalized to a range of [0, 10] using MinMaxScaler.
This CUR serves as the target variable for the recommendation model. Finally we
encoded categorical features into numerical representations, and numerical features were

appropriately scaled for model input.

e User Segmentation via U-KMeans Clustering: To enhance recommendation per-
sonalization, a modified K-Means algorithm, U-KMeans, was applied to generate a clus-

ter_label feature for each user interaction. This clustering aims to group users with
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similar characteristics (demographics, sentiments, drug interactions, medical conditions)
to identify distinct user personas, improve the enhanced NCF model’s ability to learn
accurate preferences, and address data sparsity.

Features selected for U-KMeans included: conditionReason_encoded, Genus (encoded),
age_encoded, PUC, category_encoded, and drugName_encoded. The numerical features

were standardized using StandardScaler before clustering.

The U-KMeans algorithm employed is a modification of the standard K-Means by incorpo-
rating an entropy-based penalty to encourage balanced cluster sizes. This penalty, adjusts
distances, allowing points to move from large to smaller, closer clusters.

Penalty; = 3 - log(count; + 1) (3.8)
The optimal number of clusters (k) was determined by minimizing a modified objec-

tive function:

k
Objective(k) = Inertia(k) — /5 Z log(count; (k) + 1) (3.9)
=1

where:

— Objective(k) is the objective function value for a k-cluster solution.

— Inertia(k) is the sum of squared distances of samples to their closest cluster center
for k clusters.

— [ is the hyperparameter (same as in Equation 3.8),to control how strongly U-KMeans
avoids imbalanced cluster sizes..

— count;(k) is the number of points in cluster j for a k-cluster solution.

Finally, each dataset instance received a cluster_label, which was added as an input
feature for the enhanced NCF model.

3.3.2 Implementation Details

The entire experimental pipeline, from data preprocessing to model training and evaluation,
was primarily conducted across multiple platforms (Anaconda®, Google Colab*, and Kaggle®)
using the Python programming language and a suite of open-source libraries. The core software

components and libraries used in this research are as follows:

e Python®: Served as the primary programming language.

3Anaconda is a distribution of Python and R for scientific computing and data science.

4Google Colab is a cloud-based Jupyter notebook environment provided by Google.

5Kaggle is a data science competition and collaboration platform that also offers hosted notebooks and
datasets.

Shttps://www.python.org/
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e Pandas”: Was used for data manipulation, loading CSV files, and managing DataFrames.
e NumPy?3: Provided support for numerical operations and multi-dimensional arrays.
e Scikit-learn?: Was extensively used for various ML tasks, including:

— Feature preprocessing (LabelEncoder, StandardScaler, MinMaxScaler).
— Clustering (KMeans).

— Model evaluation metrics (accuracy score, precision score, recall score, f1 -

score, confusion matrix, mean squared_error).

Data splitting (train_test_split).

e Natural Language Toolkit (NLTK)!: Was employed for natural language processing
tasks, specifically:

— Stopword removal (stopwords).
— Lemmatization (WordNetLemmatizer).

— Sentiment analysis (SentimentIntensityAnalyzer for VADER).

e TensorFlow and Keras!': Was used for building, training, and evaluating the neural
network model (The proposed model). This included defining layers (Input, Embedding,
Dense, Flatten, Concatenate, Multiply, Dropout), compiling the model (Adaptive Moment
Estimation (Adam) optimizer, Binary Cross-Entropy (BCE) loss), and managing training.

e Matplotlib!?: Was used for generating visualizations, such as learning curves.

3.3.3 Evaluation Metrics

The performance of the proposed model was evaluated in two stages. First, its ability to
predict the continuous CUR score was assessed using regression metrics like Root Mean Square
Error (RMSE) and Relative Root Mean Squared Error (RRMSE). Subsequently, to evaluate its
effectiveness as a binary classifier, the continuous predictions were converted to binary labels
using a threshold of 6.0. The performance of this classification task was then comprehensively
assessed using a set of standard metrics derived from the confusion matrix components (True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)), as outlined
in Section 1 and Table 3.2.

"https://pandas.pydata.org/

8https://numpy.org/

Yhttps://scikit-learn.org/stable/
Onttps://www.nltk.org/
Unttps://www.tensorflow.org/guide/keras
2https://matplotlib.org/
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e Root Mean Square Error: This metric measures the square root of the average squared
difference between the predicted continuous scores and the actual continuous scores. It
quantifies the average magnitude of the regression error.

N

1
RMSE =, | — i — Ui)? 3.10
¥ =) (3.10)
where N is the number of instances in the test set, y; is the true continuous target score

for instance 7, and ; is the predicted continuous score from the model’s output layer.

e Relative Root Mean Squared Error: Normalizes the RMSE by the mean of the true
target values. This provides a relative measure of the error, expressing it as a fraction of
the average score, which can be easier to interpret than an absolute error value.

RRMSE — o RMSE (3.11)

N —
% 21:1 Yi Y

where ¢ is the mean of the true continuous scores in the test set.

e Confusion Matrix: A table layout (as exemplified in Table 3.2) that allows visualization
of the performance. Each row of the matrix represents the instances in an actual class

while each column represents the instances in a predicted class for this specific task.

Recommended Not Recommended

Used (Relevant) TP FN
Not Used (Irrelevant) FP TN

Table 3.2: General confusion matrix for recommendation results.

From the confusion matrix components:
— True Positive: Outcome where relevant items are correctly recommended by the
system.

— False Positive: Outcome where irrelevant items are incorrectly recommended by
the system (Type I error).

— False Negative: Outcome where relevant items are not recommended by the system
(Type II error).

— True Negative: Outcome where irrelevant items are correctly not recommended by

the system.

e Accuracy: The proportion of correctly classified instances.

Accuracy = P+ TN (3.12)
YT TP+TN+FP+FN '




3.3. Experiments and implementations 49

e Precision (Positive Predictive Value): The proportion of correctly predicted positive
instances among all instances predicted as positive. It measures the exactness of the
model. TP

Precision = ———— 3.13
TP+ FP ( )

e Recall (Sensitivity, True Positive Rate): The proportion of correctly predicted
positive instances among all actual positive instances. It measures the completeness or
ability of the model to find all positive instances.

TP

l = ———— 14
Reca TPLFN (3.14)

e F1-Score: The harmonic mean of Precision and Recall, providing a single score that
balances both. It is particularly useful for imbalanced datasets.

Precision - Recall 2T P

F1- =2. =
Score Precision + Recall 2TP+ FP+ FN

(3.15)

e Specificity (True Negative Rate): The proportion of correctly predicted negative

instances among all actual negative instances.

TN

—_— q
TN+ FP (3.16)

Specificity =

3.3.4 Baseline Models

The proposed model is compared to a set of commonly used baselines:

e Support Vector Machine (SVM): A supervised learning model that finds an optimal
separating hyperplane for classification Cortes and Vapnik (1995).

e Neural Network (NIN): A standard feed-forward Neural Network designed to learn complex
non-linear mappings from inputs to outputs Goodfellow et al. (2016).

e K-Means Collaborative Filtering (KMeans-CF): This model applies K-Means clustering
MacQueen (1967); Dakhel and Mahdavi (2011) to group users based on interaction patterns,
then generates recommendations based on cluster membership, representing a common

model-based CF approach.

e Non-dominated Sorting Genetic Algorithm ITT (NSGA-III): An evolutionary algo-
rithm for multi-objective optimization, finding a set of Pareto-optimal solutions by managing
trade-offs between conflicting objectives Deb and Jain (2014).

e Conventional Matrix Factorization (ConvMF): A standard collaborative filtering
technique that decomposes the user-item interaction matrix into latent user and item factors
to predict preferences Koren et al. (2009).
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e Multi-Layer Perceptron (MLP): A feedforward artificial neural network with multiple
hidden layers, capable of learning complex non-linear functions Rumelhart et al. (1986).

¢ RECOMED: A hybrid medical RS that leverages Neural network-based matrix factorization
and Knowledge-based component to provide personalized suggestions Zomorodi et al. (2024).

3.4 Results and Discussion

This section evaluates and review the performance of our proposed model. We first detail the
model’s performance metrics and learning behavior, followed by a comparative analysis against
baseline methods, highlighting its advantages. We then discuss the key architectural and feature
contributions to these results and finish by addressing the model’s current limitations.

3.4.1 Results

This subsection discusses the performance of our proposed model, which includes different
metrics that can be used to verify the efficiency of models in DRS.

Training and Validation MSE Training and Validation MAE

30 —— Training MSE —— Training MAE
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Figure 3.5: Learning curves for the proposed model: (Left) Training and validation MSE over
epochs. (Right) Training and validation MAE over epochs.

From Figure 3.5, we see that the MSE and MAE decreases with each iteration. This is
exactly what we want in a DRS where robustness and accuracy are is critical.

Predicted Class
Negative (CUR=0) Positive (CUR=1)

Negative (CUR=0) 211 7
Positive (CUR=1) 31 221

Actual Class

Table 3.3: Confusion matrix for The proposed model.
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From Tables 3.3, 3.4 and 3.5,the model demonstrates strong performance. The low number
of classification errors (FP: 7, FN: 31) results in high values for precision, recall, and specificity.
The excellent Fl-score of 0.9208 confirms that precision and recall are well-balanced, indicating
the model does not sacrifice one for the other. Furthermore, the low RMSE (0.5821) and
RRMSE (0.0980) reflect the model’s ability to predict the continuous scores with minimal error.
Together, these results paint a picture of a robust model that both correctly classifies cases and
accurately predicts their underlying scores.

3.4.2 Comparison with Baselines

The performance of the proposed model was systematically benchmarked against several estab-
lished baseline models. The comprehensive comparison, detailing key classification and error

metrics, is presented in Tables 3.4 and 3.5.

Algorithm Acc. Sens. Spec. Prec.  Fl-score
SVM 0.3400  0.7500  0.3300 0.0400  0.0700
NN 0.3100  0.1300  0.8600  0.3100  0.1800
KMeans-CF 0.5500  0.6100  0.5400  0.3200  0.4100
NSGA-III 0.6300  0.3900  0.6600 0.4100  0.3900
ConvMF 0.4800  0.4500 0.4900 0.3300  0.3800
MLP 0.4500  0.6000  0.3800 0.3600  0.4500
RECOMED’s method 0.6500  0.6900  0.6400  0.6200  0.6500
The proposed model 0.9191 0.8770 0.9679 0.9693 0.9208

Table 3.4: Comparison of classification performance with baseline models.

Algorithm RMSE RRMSE
SVM 1.6872  0.2928
NN 1.7259  0.2847
KMeans-CF 0.8219 0.2402
NSGA-III 0.6175  0.2299
ConvMF 0.4248 0.2203
MLP 0.5752  0.1582

RECOMED’s method 0.2077  0.1298
The proposed model 0.5821  0.0980

Table 3.5: Comparison of error metrics (RMSE and RRMSE) with baseline models.

As shown in Table 3.4, the proposed model significantly outperforms all baseline methods
across key classification metrics. It achieves an Accuracy of 0.9191, Precision of 0.9693, Recall
(Sensitivity) of 0.8770, Specificity of 0.9679, and a notable Fl-score of 0.9208. These results
represent substantial gains over the best performing baseline, RECOMED’s method (e.g., F1-

score 0.9208 vs. 0.65). The high Fl-score indicates an excellent balance between precision
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and recall, confirmed by high specificity (correctly identifying 97% of negatives) and strong
sensitivity (correctly identifying 88% of positives).

The confusion matrix (Table 3.3) further improves this performance, with 221 TPs and 211
TNs against only 31 FNs and 7 FPs (out of 470 samples).

The significant improvements across all evaluation metrics demonstrate the effectiveness of
the proposed model in the recommendation task. These improvements are attributed to the
following:

1. Enhanced NCF Architecture: An enhanced NCF framework that can capture both linear

and nonlinear interactions from the inputs.

2. Sentiment-Enhanced Embeddings: Capture emotions from patient reviews, allowing the
network to distinguish between similar cases with different subjective outcomes.

3. U-KMeans Cluster Feature: Captures latent user-drug—condition communities, mitigating
data sparsity and guiding the model toward group-specific interaction patterns.

Concerning error metrics (Table 3.5), our model outperforms the RECOMED model in terms
of RRMSE (0.0980) against (0.1298). In contrast, the model’s RMSE of RECOMED method
(0.2077) is lower than ours (0.5821). This is due to:

1. Our model’s architecture is designed to maximize the separation between positive and
negative classes, producing high-confidence predictions. A consequence of this approach is
that the few but confident misclassifications have a greater impact on the squared error
calculation, thus increasing the RMSE.

2. Features like sentiment embeddings and clustering, while powerful, can lead to highly
confident but incorrect predictions on atypical data (e.g., sarcastic reviews or anomalous
patient cases). These rare, large errors are heavily penalized by RMSE, marginally

increasing the overall score.

Despite the significant performance achieved by the proposed model, there are still some
improvements to be made such as in term of RMSE, which will be considered in a near future

work.

3.4.3 Limitations of the Proposed Model

Despite the promising results, the current proposed model and experimental setup have several
limitations:

e Static User Segmentation: The U-KMeans clusters, once generated from the initial
dataset, do not adapt to evolving user preferences or characteristics over time, which is a

challenge in dynamic real-world scenarios.



3.5. Conclusion 53

e Interpretability of NCF: NCF component, especially its Multi-Layer Perceptron MLP
pathway, offers limited insight into the reasoning behind its recommendations, which pose
a challenge for clinical trust and verification.

e Cold-Start for New Users/Drugs: The model’s ability to provide effective recommen-
dations for entirely new users or drugs, for which there are no prior interaction data or
initial cluster assignment strategy exists; this is a manifestation of the persistent cold
start problem (Section 1.2.2.5 and Section 2.3.2).

Highlighting these limitations provides directions for future research and model refinement.

3.5 Conclusion

This chapter has presented the architecture and design of a novel drug recommendation system
aimed at improving personalization and accuracy by integrating sentiment analysis and user
segmentation within a deep learning framework. We introduced a three-stage pipeline including
lexicon-based sentiment analysis using VADER, accurate user segmentation via a modified
U-KMeans algorithm leveraging multiple patient and drug features, and an enhanced multi-input
NCF model designed to learn complex interactions from diverse inputs including sentiment
scores and cluster labels.

We have also detailed the data preprocessing pipeline, the rationale behind our model architecture.
Furthermore, we evaluated the model performance, demonstrating its efficiency. Our proposed
model significantly outperformed several established baseline models across evaluation metrics.
While error metrics showed competitive performance.



General Conclusion

Summary

This dissertation addressed the critical challenge of personalizing drug recommendations in
healthcare, where existing systems often struggle to use complex patient data effectively.
Motivated by the need to reduce the information overload for clinicians and offer personalized
treatments, this work focused on developing a more advanced and accurate (DRS). Following a
comprehensive review of RSs in healthcare (Chapter 1) and a detailed analysis of the current
DRS landscape, its methodologies, and persistent challenges (Chapter 2), to answer the research
question that previously mentioned in the problem statement of this research, we introduced a
novel DL-based solution (Chapter 3).

The core contribution of this research is a proposed model with an enhanced version of
NCF framework. This enhancement was achieved by uniquely integrating sentiment analysis
from patient reviews to capture subjective experiences, combined with a modified U-KMeans
clustering algorithm to identify distinct user segments. This comprehensive approach allowed
our enhanced NCF model to learn from a richer set of patient and drug characteristics. Precise
evaluation on a real world dataset demonstrated as shown in (Chapter 3) that our proposed
system significantly outperformed several established baseline models in key evaluation metrics.
This validates the efficacy of combining deep learning with advanced feature engineering that
integrates both textual sentiment and user segmentation for improved drug utility prediction.

Ultimately, this dissertation has not only provided a comprehensive overview of the DRS
landscape but has also presented a tangible advancement in DRS design, showcasing a path
towards more personalized, context-aware, and effective medication recommendations in clinical

practice.

Directions for Future Research

Although the proposed DRS has shown promising results, this research also opens several
opportunities for future exploration and improvement. Based on the findings and limitations

discussed in section 3.4.3, the following directions are proposed:

¢ Developing Adaptive User Segmentation Techniques: To overcome the static
nature of the current U-KMeans clusters, future work should investigate methods for
dynamic or incremental user segmentation. This could involve online clustering algorithms

that update user groups as new interaction data becomes available, or techniques that

o4
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allow user profiles to evolve and potentially transition between clusters over time, thereby
better reflecting changes in patient conditions or preferences.

e Enhancing Model Interpretability through Explainable AI (XAI): The limited
transparency of the NCF model, particularly its MLP component, necessitates further
exploration into XAI. Future research should aim to integrate Explainable AI (XAI)
methods, such as Local Interpretable Model agnostic Explanations (LIME)!* and SHapley
Additive exPlanations (SHAP)™, or attention mechanisms. The goal would be to provide
clinicians with clear, understandable justifications for the recommended drugs.

e Improving Cold-Start Performance for New Entities: To address the inherent
constraints of the cold-start problem for entirely new users or drugs, future research
should explore advanced strategies. This could include incorporating knowledge graph
embeddings to infer similarities for new drugs based on their properties, or developing
few-shot learning!® or meta-learning approaches'® that enable the model to quickly adapt

and make reasonable predictions for new entities with very limited initial data.

e Multi-Modal Data Integration: The current system primarily utilizes structured
data and textual reviews. Expanding the model to incorporate other data modalities,
such as genomic data, lab results, or even medical imaging data (where relevant for drug
response prediction), could lead to a more holistic and precise patient representation,
further advancing precision medicine objectives. This would necessitate research into
effective multi-modal fusion techniques within the dl framework.

By focusing on these research directions, the field can continue to advance toward DRSs
that are not only algorithmically sophisticated, but are also clinically relevant, trustworthy,
equitable, and seamlessly integrated into the practice of medicine, thereby realizing their full
potential to improve patient care.

BLIME explains individual predictions of any classifier by approximating them locally with an interpretable
model.

14SHAP is a game theoretic approach that explains the output of any ML model by assigning each feature an
importance value for a particular prediction.

15Few-shot learning refers to a ML techniques in which a model is trained to make accurate predictions with
very few training examples per class.

16\Meta-learning, or learning to learn, aims to train a model that can quickly adapt to new tasks or data
distributions with minimal additional training.
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