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Extracting meaningful information from a scanned document 



 

 

Abstract 

The extraction of information from scanned documents is a crucial process in numerous 

fields such as administrative digitization, medical record management, business automation, 

and information retrieval. This project aims to develop a methodology to assist administrators 

in extracting relevant data from scanned documents. The proposed system combines 

techniques from image processing, object detection, and OCR (Optical Character 

Recognition) to detect and extract structured data such as names, dates, phone numbers, and 

addresses. This extracted information can be used to populate forms, generate reports, or 

serve as input for automated systems, ultimately making the processing of scanned 

documents more efficient and reliable. 

 

 

 الملخص

دارة لإدارية، إارقمنة يُعد استخراج المعلومات من الوثائق الممسوحة ضوئيًا عملية أساسية في العديد من المجالات مثل ال

ين في لمسؤولاالسجلات الطبية، أتمتة الأعمال، واسترجاع المعلومات. يهدف هذا المشروع إلى تطوير منهجية تساعد 

لصور، واكتشاف ايعتمد النظام المقترح على تقنيات معالجة  .ئق الممسوحة ضوئيًااستخراج البيانات المهمة من الوثا

يخ، أرقام لاكتشاف واستخراج بيانات منظمة مثل الأسماء، التوار (OCR) الكائنات، والتعرف البصري على الأحرف

لجة امما يجعل مع تمتة،ة أنظمة الأالهواتف والعناوين. يمكن استخدام هذه البيانات لانٕشاء تقارير، ملء النماذج، أو تغذي

 .الوثائق أكثر كفاءة وموثوقية
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1 General Introduction 
 

1.1 Context and Motivation 

Today, technology is advancing at a greater pace than ever before. Organizations across 

industries are going for the deployment of digital solutions for greater productivity, 

traceability, and ease of access. Digital transformation is the process of transforming paper 

records to electronic records that are easy to search, utilize, and maintain. It is not just a 

technological upgrade but a big change that helps businesses to move away from traditional 

processes to intelligent, automated systems. 

Banks, hospitals, government offices, and insurance companies generate significant volumes 

of paperwork every day like customer forms, medical reports, legal documents, and 

transaction records. By digitizing these types of documents, these entities are able to speed up 

their processes, decide faster, and respond to their customers faster. Electronic documents are 

easy to store for long periods of time, are retrievable anywhere, and save paper, being eco-

friendly. 

One of the most important uses of digitization, in this case human resource, is resume 

processing. Thousands of resumes in different forms like PDFs, word document, scanned 

document, or image. All the resumes are in different layouts, designs, and languages, and 

reading and interpreting the information that is included like personal information, education, 

experience, and skills is not easy. 

Manual resume sorting is time-consuming, where the best workers might not be spotted or 

incorrect decisions might be made. Resume processing becomes a reality with the aid of 

automation, thus enabling companies to select the best workers at any given time, and even 

make more well-based hiring decisions. However, there's no point in simply reading a resume 

as an image. It must be processed so that the words and data contained within are computer-

readable. Otherwise, digital resumes will be just images, and companies will have to read 

them manually. 

In most companies, the workload is higher due to the presence of thousands of resumes. For 

example, companies trying to extract information from old resumes or filter through new job 

applications may be hampered if done manually. Therefore, extracting useful information 

from electronic resumes is no longer just a technical challenge. Most specifier resumes. 

1.2 Challenges of Information Extraction from Scanned Documents 

It is a difficult problem to obtain quality data from scanned documents. First of all, scanned 

document quality can be poor which can include blurred text, poor lighting, skewed pages, 

handwritten notes, or background noise making the text hard to read. Second, documents 

have complex layouts, i.e., multi columns, tables, stamps, signatures, as well as lists, which 

need to be detected and processed correctly. 
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Aside from that, texts can have very diverse forms, languages, and handwriting, so the 

extraction becomes even harder. Common OCR software is hardly able to read things such as 

this, especially if the structure is poor or even missing. 

1.3 Importance in Real-World Applications 

The power to extract data from scanned documents routinely is applicable to many industries. 

With businesses seeking to automate processes and manage vast volumes of data more 

effectively, the scanning of documents into electronic form with valuable content extraction 

is at the core of their success. Below are some exemplary real-world applications of 

extracting data from scanned documents routinely: 

 Automating data entry: It is a tedious and time-consuming process of data entry for 

banking, insurance, as well as government sectors. Handwritten documents and forms 

are entered quickly through computerized systems that fill customer data, financial 

data, or application data directly into databases. It helps reduce the workload of 

humans and minimizes chances of error. 

 Resume Processing in HR: Businesses typically receive thousands of resumes, many 

of which are scanned documents or PDFs. Automated extractions of items such as 

names, contact details, education, work history, and qualifications simplify it for HR 

departments to screen, enter résumé data into applicant tracking software, and 

compare applicants against keyword lists. This improves the recruiting pace and helps 

to provide fair consideration. 

 

 Archiving and Knowledge Management: Government agencies, museums, and 

libraries are converting historical documents into digital formats to save culture and 

make them more accessible. Intelligent document processing enables browsing of 

archives and retrieval of specific information without the need to view each page. 

 Invoice and Financial Document Processing: Organizations that have a high volume 

of invoices, orders, and receipts can leverage automated applications that extract 

vendor name, date, amount, and invoice number. Such applications typically integrate 

with enterprise software to create end-to-end workflows. 

 Healthcare and Legal Sectors: Handwritten medical reports, prescriptions, and lab 

results need to be scanned and digitized for creating electronic health records (EHRs) 

within healthcare. Legal documents and contracts need to be digitized and searchable 

for legal research, compliance, and case handling. 

 

These cases demonstrate that information extraction using machines, aside from accelerating 

the processing and accuracy of data, cuts the cost as well as enables better decision-making. 

For this purpose, building robust, adaptable, and scalable extracting mechanisms is now a key 

part of digital transformation. 
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1.4 Problem Statement 

Despite the advancements of deep learning and the developments of OCR, structured data 

extraction from scanned documents is a multi-problematic issue, particularly in the presence 

of diverse layouts, document types, and low-quality inputs. Although the majority of the 

state-of-the-art approaches take a two-stage approach to handling OCR and layout analysis. 

They lower the performance if documents follow to non-standard templates or contain 

complex layouts. 

The goal of this project is to solve these issues by creating a system that can both interpret the 

structure of scanned documents and extract valuable information in a structured form. It 

needs to be able to work with a range of documents and be able to adapt to learning new 

structures without having to be trained anew. 

1.5 Objectives of the Project 

The overall goal of this project is to create an automatic system that extracts useful, 

structured information from scanned documents. The system converts raw visual information 

in the form of plain text and scanned images to machine-readable, structured data. It aims to: 

 Correctly identify the major sections of a given document. 

 Convert the scanned document to editable, searchable format. 

 extract information like names, date, telephone number, titles, etc., that are the key 

information. 

 Provide a scalable, flexible solution that is suitable for the majority of documents. 

It will make the document processing process faster, more accurate, and time-efficient. 

1.6 Methodology Overview 

The project employs a three-stage modular process for extracting data from scanned 

documents based on the combination of natural language processing techniques with the 

concepts of computer vision: 

 Document Layout Detection: Identifying the most important document structure 

elements with an object detection model trained on a custom document data set. 

 Text Extraction: Using Optical Character Recognition (OCR) with Tesseract to 

extract text from detected regions. 

 Post Processing (NLP): Pulling information from raw text with the help of Natural 

Language Processing techniques like regular expressions and spaCy to transform raw 

text to organized information, including pulling section headers, dates, emails, and 

phone numbers. 

1.7 Report Organization 

This document is structured as follows: 

 Introduction introduces the context, motivation, and objectives of the project. 
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 Chapter 1 presents the preprocessing and image analysis techniques used for layout 

detection and OCR. 

 Chapter 2 provides an overview of the current state-of-the-art approaches and tools in 

document information extraction. 

 Chapter 3 explains the proposed pipeline in detail, along with experimental results 

and a discussion of the findings. 

 Conclusion concludes the report by summarizing the main contributions, highlighting 

limitations, and suggesting directions for future work. 
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2 Image Processing 
2.1 Introduction 

In the era of increasing digitalization, visual information plays a pivotal role in how humans 

and machines perceive and process the world. Image processing, once a specialized technical 

niche, has become a central pillar of modern computing, ranging from the digitization of 

basic documents to medical diagnostics and self-driving cars. This discipline lies at the 

intersection of mathematics and physics, and increasingly of signal processing, and now also 

of artificial intelligence. 

In short, image processing refers to the capture, conversion, examination, and interpretation 

of digital images to extract useful information or record their visual appearance. Early 

advances in the early 1960s involved processes such as noise reduction, geometric correction, 

and contrast enhancement, which are still central to the subject today and are referred to as 

traditional or classical techniques. 

But the growing availability of large datasets, the significant increase in computing power, 

and the success of machine learning in recent years, particularly deep learning, have marked a 

turning point. Unlike manually designed filters or rules, modern systems now learn to 

represent and process images based on examples, and internal representations automatically 

adapt to perform complex tasks such as object recognition, semantic segmentation, or image 

generation. 

This chapter presents a comprehensive history of image processing around two fundamental 

principles: 

 Traditional methods use mathematical models, manually developed rules, and 

deterministic filters to perform operations such as enhancement, edge detection, and 

segmentation. 

 Modern AI methods use data-driven models, particularly convolutional neural 

networks (CNNs), to automatically learn hierarchical representations from images. 

This chapter aims to: 

Present the theoretical foundations of digital image processing and its key components. 

Provide examples and describe traditional practices based on real-life experiences; 

Highlight the strengths, weaknesses, and complementarities of the two paradigms. 

At the end of the chapter, the reader will have a two-part perspective: a solid understanding 

of traditional image processing concepts and an in-depth understanding of the new AI-

inspired approaches shaping the next generation of visual intelligence. 

2.2 Digital Image Representation 

Image processing starts with a rigorous mathematical definition of an image. In digital 

systems, an image is usually a two-dimensional function: f(x, y) where x and y are spatial 

coordinates (columns and rows), and f(x,y) is the brightness value at a particular location. A 

discretization of both spatial and intensity dimensions creates a digital image. 
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Figure 2.1: Representation of Digital image processing 

2.2.1 Pixels and Image Matrix 

Is a 2D array of pixels. Each pixel is characterized by its (x, y) coordinates and its value. 

Digital images are characterized by matrix size, pixel depth and resolution. The matrix size is 

determined from the number of the columns (m) and the number of rows (n) of the image 

matrix (m × n). 

Or an RGB model color value consisting of three 8-bit values: Red, Green, and Blue. 

 

Figure 2.2: The input image and its interpretation in pixels Image 

2.2.2 Image Resolution and Size 

Spatial resolution is an estimate of the number of pixels per unit length (e.g., pixels per inch – 

ppi). 

Image size is the number of pixels: height × width. 
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Examples: 

 Full High Definition image: 1920×1080 ≈ 2 megap 

 MRI scan: typically 256×256 or 512×512 

 

Figure 2.3: Image Size And Resolution 

2.2.3 Dynamic Range and Color Depth 

Color depth is an estimate of the number of bits representing a pixel: 

 8 bits → 256 shades of gray 

 16 bits → 65,536 

 24 bits (8 bits × 3 channels) → Approximately 16.7 million colors 

Dynamic range is contrast between shadows and highlights of an image. More dynamic 

range, more details in shadows and highlights. 
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Figure 2.4: Dynamic Rang and Color depth 

2.2.4 Image Histogram 

Graphical representation of intensity value distribution: 

• In grayscale images: x-axis = intensity values (0–255), y-axis = frequency. 

• In color images: histograms for R, G, and B channels. 

Applications: 

• Brightness and contrast analysis 

• Under exposure or overexposure detection 

• Inform operations like histogram equalization or thresholding 

 

Figure 2.5: Example of Image Histogram 
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2.2.5 Types of Images 

 Binary : Only 0 and 1 (black and white); masks 

 

Figure 2.6: Example of Binary Image 

 Grayscale :256 levels (monochrome) 

 

Figure 2.7: Example of Grayscale Image 

 RGB Color :Three channels (Red, Green, Blue) 

 

Figure 2.8: Example of RGB Color Image 

 Multispectral :More than 3 channels used in remote sensing 
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Figure 2.9: Example of Multispectral Image 

 

 3D Volumetric :Used in medical imaging (CT, MRI volumes) 

 

 

Figure 2.10 : Example of 3D Volumetric Image 

A clear understanding of digital image representation is essential before applying any 

processing technique whether classical or AI-based. This foundation allows us to manipulate, 

analyze, and transform visual information in meaningful ways. 

2.3 Image Acquisition and Preprocessing 

Before processing or analysis of the image is done, the image needs to be captured in a 

format that is compatible with computational systems. Image acquisition is the entry point to 

the image processing pipeline. Acquired images are normally subjected to preprocessing to 

enhance the quality of the images so that the artifacts that would otherwise cause problems 

later may be minimized. 

2.3.1 Image Acquisition 

Image acquisition is the process of capturing an image of a real scene with a sensor and 

converting it to a digital format.  
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Primary acquisition devices 

• Digital Cameras: Capture images with CMOS or CCD sensors. Suited for 

consumer applications and machine vision. 

• Scanners: Provide high-resolution line-by-line scans, appropriate for artwork 

and documents. 

• Frame Grabbers: Acquisition Cards: Capture analog video signals from 

devices like security or medical cameras. 

• Professional cameras: Infrared cameras, X-ray cameras, multispectral cameras, 

and hyperspectral cameras for medical, remote sensing, or science. 

All acquisition systems are characterized according to: 

• Spatial resolution 

• Sensor sensitivity 

• Noise characteristics 

• Bit depth 

Digitization steps 

1. Sampling: Converts continuous spatial data to a discrete pixel space. 

2. Quantization: Assigns numerical values of intensity (gray level or RGB triplet) to 

every sample point. 

2.3.2 Preprocessing 

The purpose of preprocessing is to prepare the image for more complex operations such as 

segmentation or object detection. It typically addresses: 

 Noise reduction 

 Contrast enhancement 

 Normalization 

 Artifact correction 

 

Technique Purpose 

Histogram equalization Enhances contrast 

Median filter Removes salt-and-pepper noise 

Gaussian blur  Smooths image, reduces high-frequency 

noise 

Normalization Scales intensity values into a uniform range 

Color space conversion Transforms RGB to HSV, LAB, etc. for 

better segmentation 

Table 2.1: Common preprocessing techniques 
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2.3.3 Importance in the Processing Pipeline 

Improper acquisition or preprocessing can greatly impair the performance at later stages such 

as: 

• Edge detection 

• Object recognition 

• Machine learning inference 

Thus, a high quality input is important to provide stable and good outcomes in the process 

chain. 

2.4 Geometric Transformations 

Geometric transformations are operations that alter the spatial configuration of an image 

without modifying its pixel values directly. They are fundamental in aligning, scaling, 

rotating, or repositioning images—tasks commonly required in image registration, robotics, 

medical imaging, and data augmentation for machine learning. 

2.4.1 Basic Transformations 

1. Translation 

Moves the entire image or object by a fixed number of pixels in a given direction. 

[
𝒙̀
𝒚̀

] = [
𝒙 + 𝒕𝒙
𝒚 + 𝒕𝒚] 

𝒕𝒙Horizontal and vertical shift values 

2. Scaling 

Resizes the image either uniformly or non-uniformly. 

[
𝒙̀
𝒚̀

] = [
𝒔𝒙. 𝒙
𝒔𝒚. 𝒚] 

.𝑺𝒙,, 𝑺𝒚Scale factors for width and height 

3. Rotation 

Rotates the image about a point (typically the center). 

[
̀𝒙̀
𝒚̀

] = [
𝒄𝒐𝒔𝜽 − 𝒔𝒊𝒏𝜽

𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝜽
] [

𝒙
𝒚] 

𝜽: rotation angle in radians 
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2.4.2 Affine and Projective Transformations 

1. Affine Transformations 

Preserve points, straight lines, and planes. Parallel lines remain parallel after transformation. 

General affine matrix: 

[
𝒙
𝒚
𝟏

] = [
𝒂 𝒃 𝒕𝒙
𝒄 𝒅 𝒕𝒚
𝟎 𝟎 𝟏

] [
𝒙
𝒚
𝟏

] 

2. Projective (Homographic) Transformations 

Used when perspective effects are present (e.g., camera calibration, AR). Lines remain lines, 

but parallelism may not be preserved 

2.4.3 Applications of Geometric Transformations 

 Image alignment (e.g., in satellite imagery or panoramic stitching) 

 Object tracking (adjusting bounding boxes) 

 Medical image registration (aligning CT, MRI, and PET scans) 

 Data augmentation (rotations and flips for training neural networks) 

2.4.4 Implementation Notes 

 In practice, transformation is applied via inverse mapping to avoid holes in the 

output image. 

 Interpolation methods such as nearest-neighbor, bilinear, or bicubic are used to 

estimate pixel values at non-integer coordinates 

2.5 Image Enhancement 

Image enhancement is the process of employing techniques to enhance the visual quality of 

an image or to prepare it for future analysis. Enhancement differs from restoration in that 

restoration seeks to restore the original image, whereas enhancement seeks subjective 

improvement—enhancing the visual distinction of features or highlighting structures of 

interest. 
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Figure 2.11: Example Of Image Enhancement 

2.5.1 Purpose of Image Enhancement 

Enhancement methods can help: 

 Improve human visual interpretation, 

 Boost contrast and visibility, 

 Highlight edges or textures, 

 Enhance features for downstream tasks like segmentation or classification. 

2.5.2 Spatial Domain Techniques 

These operate directly on pixel values. 

1. Contrast Stretching 

Enhances contrast by expanding the range of intensity values: 

𝒇´(𝒙, 𝒚) =
𝒇(𝒙, 𝒚) − 𝑰𝒎𝒊𝒏

𝑰𝒎𝒂𝒙 − 𝑰𝒎𝒊𝒏
. 𝟐𝟓𝟓 

Where 𝑰𝒎𝒊𝒏and 𝑰𝒎𝒂𝒙are the minimum and maximum pixel intensities. 

2. Histogram Equalization 

Redistributes pixel intensities to produce a more uniform histogram, improving global 

contrast. 

 Works best for images with poor dynamic range. 

 Can also be applied adaptively (CLAHE – Contrast Limited Adaptive Histogram 

Equalization). 

3. Log and Power-Law (Gamma) Transformations 

Used to compress or expand intensity ranges non-linearly 
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𝒇´(𝒙, 𝒚) = 𝒄. 𝐥𝐨𝐠(𝟏 + 𝒇(𝒙, 𝒚))     𝒐𝒓    𝒇(𝒙, 𝒚) = 𝒄. 𝒇(𝒙, 𝒚)𝜰 

2.5.3 Frequency Domain Techniques 

These manipulate the image in its Fourier transform space, often for periodic noise removal 

or global pattern enhancement. 

 Low-pass filters (blurring): remove high-frequency noise. 

 High-pass filters (sharpening): emphasize edges. 

Steps: 

1. Apply 2D Fourier Transform 

2. Filter the frequency spectrum 

3. Inverse transform to return to spatial domain 

2.5.4 Filtering and Smoothing 

Filtering helps remove noise and refine the visual appearance. 

Filter Type Effect Example Use 

Mean filter Smooths image, reduces 

noise 

General blur 

Median filter Removes salt-and-pepper 

noise 

Document cleanup 

Gaussian filter Preserves edges better Preprocessing step 

Bilateral filter Smooths while preserving 

edges 

Face smoothing 

Table 2.2: Type Of filter and its uses 

2.5.5 Edge Enhancement 

Enhancing edges can make structural information more prominent: 

 Unsharp masking: Adds a scaled version of the Laplacian or high-pass filtered image 

back to the original. 

 Laplacian filtering: Emphasizes rapid intensity changes. 

2.5.6 Color Enhancement 

 Color balancing: Adjusts color channels to correct white balance. 

 Saturation and brightness adjustment: Performed in HSV or LAB color spaces. 

 Color histogram equalization: Applied per channel or globally (with caution). 
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Figure 2.12: Example of LAB Color Enhancement 

Image enhancement is often the first visual step users or algorithms take in understanding an 

image. When chosen carefully, enhancement techniques can greatly improve clarity and 

downstream processing performance. 

2.5.7 Edge Detection 

Edge detection is perhaps the most important operation in computer vision and image 

processing. It identifies points in an image where intensity changes suddenly those points 

typically correspond to object boundaries, texture boundaries, or structural contours. 

2.5.8 Why Detect Edges? 

 To extract structural information from images 

 To facilitate object recognition, segmentation, and shape analysis 

 To reduce data while preserving key features 

2.5.9 Types of Edges 

Edges can appear in several forms depending on the change in intensity: 

Edge Type Description 

Step Sudden change in intensity (e.g., object edge) 

Ramp Gradual change (e.g., soft shadows) 

Roof Peak in intensity, then return 

Line Narrow edge with intensity drop on both 

sides 

Table 2.3: Types of Edges and their descriptions 
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2.5.10  Gradient-Based Methods 

Gradient methods detect edges by calculating the first derivative of intensity 

 Gradient Magnitude 

‖𝛁𝒇(𝒙, 𝒚)‖ = √(
𝝏𝒇

𝝏𝒙
)

𝟐

+ √(
𝝏𝒇

𝝏𝒚
)

𝟐

 

 Direction of the Gradient 

𝜽(𝒙, 𝒚) = 𝐭𝐚𝐧 −𝟏 (
𝝏𝒇/𝝏𝒚

𝝏𝒇/𝝏𝒙
) 

Operator Kernel Size Description 

Sobel 3×3 Good for vertical/horizontal 

edges 

Prewitt 3×3 Similar to Sobel, simpler 

weights 

Roberts 2×2 Fast, but sensitive to noise 

Table 2.4: Discrete Operators 

2.5.11 Laplacian-Based Methods 

𝛁𝟐𝒇(𝒙, 𝒚) =
𝝏𝟐𝒇

𝝏𝟐𝒙  
+

𝝏𝟐𝒇

𝝏𝟐𝒚
 

Laplacian (Rafael C. Gonzalez & Richard E. Woods, 2018 (4th edition)) highlights regions of 

rapid intensity change but is sensitive to noise, so it is often used with smoothing filters (e.g., 

LoG – Laplacian of Gaussian). 

2.5.12  Canny Edge Detector 

The Canny algorithm (John Canny, 1986) is a gold standard in edge detection due to its 

optimal balance between noise sensitivity and edge accuracy. 

2.5.13  Canny steps:  

1. Gaussian smoothing to reduce noise. 

2. Gradient calculation (magnitude + direction). 

3. Non-maximum suppression to thin edges. 

4. Double thresholding to classify strong/weak edges. 

5. Edge tracking by hysteresis to finalize edges. 
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2.5.14  Key strengths: 

 Good localization 

 Low false detection rate 

 Thin and connected edge output 

Method Noise 

Resistance 

 Edge 

Localization 

Output Quality 

Sobel Medium  Medium Medium 

Prewitt Medium  Medium Medium 

Laplacian Low  Low Low 

Canny High  High Excellent 

Table 2.5: Comparison of Edge Detectors 

Edge detection is often a prerequisite step in high-level tasks like segmentation, feature 

extraction, or object tracking. While traditional methods are effective, deep learning-based 

detectors are increasingly used for more complex or noisy scenes (see Section 6). 

2.6 Classical Segmentation Techniques 

Image segmentation is the process of dividing an image into meaningful, non-overlapping 

regions, typically based on pixel similarity. In classical (non-learning-based) image 

processing, segmentation methods rely on intensity, texture, or geometric features to group 

pixels that share common properties. 

2.6.1 Why Segment an Image? 

 To isolate objects of interest (e.g., organs, vehicles, text) 

 To simplify image representation for feature extraction or analysis 

 To enable object-based classification and recognition 

2.6.2 Thresholding 

Thresholding is one of the simplest and most widely used techniques for segmenting 

grayscale images. 

1. Global Thresholding 

 

𝒈(𝒙, 𝒚) = {
𝟏, 𝒊𝒇 𝒇(𝒙, 𝒚) ≥ 𝑻

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒊𝒔𝒆  
 

 Works well when the histogram is bimodal (two distinct peaks). 

 T is often chosen using methods like Otsu’s algorithm (minimizes intra-class 

variance). 
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2. Adaptive Thresholding 

 Computes local thresholds based on neighborhood statistics. 

 Useful for non-uniform illumination or shadows. 

2.6.3 Region-Based Segmentation 

These techniques group neighboring pixels that are similar based on a homogeneity criterion. 

Region Growing 

 Start from seed pixels and expand the region by adding neighbors with similar 

properties. 

 Requires a similarity threshold and connectivity rule (e.g., 4- or 8-neighborhood). 

                Region Splitting and Merging 

 Splitting: Recursively divides the image (e.g., via quadtrees) until regions become 

homogeneous. 

 Merging: Combines adjacent similar regions that were over-divided. 

 Often combined in Split-and-Merge algorithms for efficiency. 

2.6.4 Edge-Based Segmentation 

Detects closed boundaries and separates regions based on edge continuity. 

Accuracy depends heavily on the quality of the edge detection step (Section 5). 

Common techniques: 

 Border tracing (e.g., Moore-neighborhood tracing) 

 Watershed transformation (see below) 

2.6.5 Morphological Segmentation 

Morphological operators are particularly effective on binary or thresholded images. 

Operation Purpose 

Erosion Shrinks white regions; removes noise 

Dilation Expands white regions 

Opening Erosion followed by dilation; removes small 

objects 

Closing Dilation followed by erosion; fills holes 

Table 2.6: Types of  Morphological Segmentation 

 

Applied to segmentation masks, these operations help clean and refine object boundaries. 
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2.6.6 Watershed Segmentation 

The watershed algorithm treats the image like a topographic surface, where pixel intensities 

represent elevation. 

 Flooding starts from local minima. 

 Watershed lines are formed where different regions meet. 

 Requires preprocessing (e.g., gradient magnitude) and marker selection to prevent 

over segmentation. 

Limitation Description 

Sensitive to noise Small variations can break continuity 

Struggle with complex scenes Difficult to separate overlapping textures 

Hard-coded thresholds May not generalize well across images 

No semantic understanding Can’t differentiate between similar-looking 

objects 

Table 2.7 : Limitations of Classical Methods 

Despite these limitations, classical segmentation techniques remain relevant in well-

controlled environments and form the basis for many hybrid or preprocessed pipelines in 

modern AI systems. 

2.6.7 Limitations of Traditional Image Processing 

Traditional image processing techniques filtering, edge detection, and thresholding have 

formed the cornerstone of computer vision. Although still useful in some contexts, they 

are crippled by a number of intrinsic weaknesses, especially when applied to high-

variability real-world data. 

 Sensitivity to Noise and Illumination 

 Many classical methods, especially those based on gradients or histograms, are highly 

sensitive to noise. 

 Variations in lighting conditions, shadows, or sensor quality can cause substantial 

errors in tasks like thresholding or segmentation. 

 Without robust preprocessing, these methods often fail on natural images. 

 Parameter Dependency 

 Classical techniques rely heavily on hand-tuned parameters (e.g., filter sizes, 

threshold values). 

 These parameters must often be adjusted per image or dataset, reducing scalability 

and automation. 

 Small changes in parameters can produce drastically different results. 

 Lack of Semantic Understanding 

 Traditional methods work at the pixel level and do not understand image content. 
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 For example, they can detect edges but cannot distinguish between a human face and 

a street sign. 

 They cannot generalize patterns or "learn" from data, which limits their adaptability. 

 Rigid Rule-Based Logic 

 Rule-based systems (e.g., fixed thresholds, logic conditions) lack flexibility. 

 They struggle with complex scenes involving occlusions, texture variations, 

perspective distortions, or background clutter. 

 Difficulty Handling High-Dimensional Data 

 Multispectral or hyperspectral imagery involves dozens or hundreds of channels. 

 Traditional methods, designed for 1–3 channels, often fail to exploit inter-channel 

correlations effectively. 

 Likewise, time-series images (e.g., videos or medical volumes) require models that 

can track spatial-temporal patterns—something classical tools cannot do efficiently. 

 Absence of Learning or Adaptation 

 Traditional algorithms do not learn from experience or data. 

 They cannot improve their performance over time, adapt to new environments, or 

generalize from examples. 

 In contrast, machine learning models (explored in Part 2) can automatically learn 

robust features and adapt to new inputs. 

Limitation Classical Methods 

Generalization Poor 

Noise robustness Limited 

Semantic interpretation None 

Data adaptability Fixed rules only 

Parameter tuning Manual 

Table 2.8: Summary of classical methods 

2.7 Modern AI-Based Image Processing 

2.7.1 Introduction to Data-Driven Image Processing 

The past of image processing has taken a revolutionary leap over the last couple of years, 

driven by the rise of learning-based and data-driven methods. Instead of using hand-designed 

rules and filters, modern systems learn to process and understand images from examples, 

with the help of powerful statistical models, most notably deep neural networks. 
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2.7.2 From Rule-Based to Learning-Based 

Approach Type Description 

Traditional Methods Use fixed filters, thresholding, edge 

detection, etc. 

Learning-Based Use data to learn patterns, extract features, 

and generalize 

Table 2.9: Types Of Approach’s 

The major reasons for this shift: 

 Classical techniques perform poorly in open areas. 

 Large-scale annotated image datasets such as COCO and ImageNet. 

 Application of high-performance computers such as GPUs and TPUs. 

 Deep learning and machine learning platform advancements (TensorFlow and 

PyTorch). 

2.7.3 What Makes Modern Methods Different? 

1. Automatic Feature Extraction 

Instead of manually designing filters to detect features (such as edges and shapes), neural 

networks learn optional features directly from the data. 

2. End-to-End Learning 

Deep learning models are trained to go directly from raw input (pixels) to desired output 

(e.g., object class, segmentation mask), eliminating the need for intermediate steps like edge 

detection or histogram analysis. 

3. Generalization 

Well-trained models can recognize objects and structures across variations in lighting, pose, 

background, and scale, which traditional methods struggle with 

 

Component Description 

Convolutional Neural Networks (CNNs) Core engine for visual feature learning 

Transfer Learning Reusing pre-trained models on new tasks 

Data Augmentation Synthetic variation for improved training 

Loss Functions Drive learning toward correct predictions 

Optimizers Algorithms like SGD, Adam for training 

Table 2.10: Key Components of Modern Pipelines 

 Application Areas 

Modern image processing powers a wide range of applications: 

 Medical imaging (tumor detection, organ segmentation) 
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 Autonomous vehicles (scene parsing, obstacle detection) 

 Satellite and drone imagery (land cover classification) 

 Security and biometrics (face recognition, surveillance) 

 Augmented reality and entertainment (real-time filters, pose tracking) 

 Challenges and Considerations 

Despite their power, AI-based methods introduce new challenges: 

 Need for large datasets 
 Bias and fairness issues in training data 

 Explain ability of predictions (deep networks are often black boxes) 

 High computational cost during training 

These are active research areas, and hybrid approaches combining traditional insights with 

modern learning models are also emerging. 

This section sets the stage for a deeper dive into specific AI-based image processing 

techniques, beginning with the foundational tool of modern vision: the Convolutional 

Neural Network (CNN) 

2.7.4 Convolutional Neural Networks (CNNs) 

 Inspired by the human visual cortex, CNNs (Alex Krizhevsky, Ilya Sutskever, & Geoffrey E. 

Hinton, 2012) are designed to recognize spatial patterns and hierarchical structures in visual 

data. They automatically learn to extract and combine visual features through a layered 

architecture optimized for image understanding. 

 

Figure 2.13: Example of Convolution Neural Network Architecture 
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2.7.5 Why CNNs for Image Processing? 

CNNs have revolutionized image analysis because they: 

 Exploit the 2D structure of images efficiently 

 Share weights across space (translation invariance) 

 Automatically learn low- to high-level features (e.g., edges → textures → objects) 

They outperform classical methods in tasks such as: 

 Image classification 

 Object detection 

 Image segmentation 

 Super-resolution 

 Style transfer and generation 

2.7.6 CNN Architecture Overview 

A typical CNN is composed of a series of layers, each transforming the input image into a 

more abstract representation 

 

Layer Type Function 

Convolutional Applies filters to detect features like edges, 

corners 

Activation (ReLU) Introduces non-linearity 

Pooling Downsamples features to reduce size and 

overfitting 

Fully Connected Maps features to output predictions 

Softmax / Sigmoid Produces final probabilities for classification 

tasks 

Table 2.11: Key components of Layer Type and Function 

 Convolution Operation 

The convolutional layer applies small filters (kernels) that scan over the image to detect 

local patterns. 

𝒈(𝒙, 𝒚) = ∑ ∑ 𝒘(𝒊, 𝒋). 𝒇(𝒙 + 𝒊, 𝒚 + 𝒋)

𝒌

𝒋=−𝟏

𝒌

𝒊=−𝟏

 

 f: input image 

 w: filter 

 Output: a feature map indicating where patterns are found 

Multiple filters in the same layer allow the network to detect different features. 
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 Pooling Layers 

Pooling reduces spatial resolution while retaining the most important information. It helps: 

 Lower computational cost 

 Control overfitting 

 Create location invariance 

Type Description 

Max Pooling Takes the maximum value in a region 

Average Pooling Computes the mean value in a region 

 

 Feature Hierarchies 

CNNs build hierarchical representations of an image: 

This hierarchical structure enables CNNs to generalize across complex and varied images. 

Layer Depth Learned Feature Example 

Shallow (early) Edges, gradients, corners 

Intermediate Textures, patterns, shapes 

Deep (late) Object parts, faces, categories 

Table 2.12: layer Depth And Learned Feature Examples 

2.7.7 Training a CNN 

Training involves: 

1. Feeding images with labels (supervised learning) 

2. Computing the loss (e.g., cross-entropy) 

3. Updating weights via backpropagation using optimizers like SGD or Adam 

Large annotated datasets (e.g., CIFAR-10, ImageNet) are used to pre-train networks that can 

then be adapted (via transfer learning) to new tasks 

2.7.8 Limitations of CNNs 

 Require large amounts of labeled data 

 Sensitive to adversarial examples 

 Poor at capturing long-range dependencies (solved partially by attention 

mechanisms and transformers) 

 Difficult to interpret decisions (black-box behavior) 

Despite these limitations, CNNs remain the de facto standard for visual recognition tasks 

and are foundational in modern AI-based image pipelines. 
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2.8 Semantic and Instance Segmentation 

Segmentation in the context of deep learning refers to the process of assigning a class label 

to each pixel in an image. It goes beyond detecting what is in an image it also tells you where 

each object is 

Type Description 

Semantic Segmentation Assigns a class to every pixel (e.g., road, 

tree, sky) 

Instance Segmentation Distinguishes between separate instances of 

the same class (e.g., 2 cars) 

Panoptic Segmentation  Combines both semantic and instance 

segmentation 

Table 2.13: Types of Segmentation 

2.8.1 Semantic Segmentation with CNNs 

1. Fully Convolutional Networks (FCNs) 

FCNs (Jonathan Long, Evan Shelhamer, & Trevor Darrell, 2015) were among the first deep 

architectures tailored for semantic segmentation. They: 

 Replace fully connected layers with convolutional layers 

 Use up sampling layers to recover spatial resolution 

 Output a pixel-level probability map 

 

Figure 2.14: CNN Architecture For Image Processing 
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2. U-Net (for medical and small datasets) 

Originally developed for biomedical segmentation, U-Net (Olaf Ronneberger, Philipp 

Fischer, & Thomas Brox, 2015) features: 

 Encoder-decoder architecture: down sampling followed by up sampling 

 Skip connections: fuse low-level and high-level features for better accuracy 

 Efficient on small datasets 

2.8.2 DeepLab family (DeepLabv3, v3+) 

 Use dilated convolutions for multi-scale context 

 Combine CNN backbones (e.g., ResNet) with Atrous Spatial Pyramid Pooling 

(ASPP) 
 Achieve state-of-the-art performance on benchmarks like PASCAL VOC and 

Cityscapes 

2.8.3 Instance Segmentation 

While semantic segmentation assigns class labels, instance segmentation identifies and 

separates each occurrence of an object class. 

1. Mask R-CNN 

An extension of Faster R-CNN, Mask R-CNN (Kaiming He, Georgia Gkioxari, Piotr Dollár, 

& Ross B. Girshick, 2017) adds a branch for predicting object masks in parallel with 

bounding box and class predictions. 

Key components: 

 Region Proposal Network (RPN) (Shaoqing Ren, Kaiming He, Ross B. Girshick, & 

Jian Sun, 2017): proposes candidate object regions 

 RoIAlign: ensures precise spatial alignment 

 Mask head: outputs a pixel-wise binary mask per object 
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Figure 2.15: Mask R-CNN Architecture 

2.8.4 Other Approaches 

 YOLACT (Daniel Bolya, Chong Zhou, Fanyi Xiao, & Yong Jae Lee, 2019): real-

time instance segmentation with high speed 

 CondInst: uses conditional convolution to generate instance-specific masks 

 

Domain Application Example 

Medical imaging Tumor and organ segmentation (MRI, CT 

scans) 

Self-driving Road, pedestrian, lane, sign detection 

Agriculture Crop type segmentation, weed detection 

AR/VR Real-time background separation 

Industrial Surface defect detection, part identification 

Table 2.14: Applications of Segmentation 

 

Metric Purpose 

IoU (Jaccard Index) Overlap between predicted and ground truth 

masks 

Dice Coefficient Similar to IoU, commonly used in medical 

imaging 

Pixel Accuracy Ratio of correctly classified pixels 

Mean IoU Average IoU over all classes 

Table 2.15: Evaluation Metrics 

2.8.5 Challenges in Segmentation 

 Class imbalance (e.g., small vs. large objects) 

 Precise boundary localization (especially for tiny or overlapping objects) 

 Real-time performance requirements 
 Lack of labeled data in some domains (e.g., medical) 
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These challenges are being addressed with advanced architectures, self-supervised learning, 

and synthetic data generation 

2.9 Object Detection with Deep Learning 

Segmentation annotates each pixel but object detection detects and positions objects within 

the image by drawing bounding boxes around them and classifying them into categories. It is 

central to applications such as surveillance, autonomous driving, robots, and retail analytics. 

 

Figure 2.16: Example of Labeling And Data Annotation 

2.9.1 What is Object Detection? 

Object detection answers: 

 What is in the image? (classification) 

 where is it? (localization) 

It delivers: 

 One or more bounding boxes 

 The respective class label 

 Optional: confidence scores 

Generation Examples Description 

Two-stage models R-CNN, Fast R-CNN, Faster 

R-CNN 

Generate object proposals, 

then classify them 

One-stage models YOLO, SSD, RetinaNet Perform detection and 

classification in one pass 

Transformer-based DETR, DINO-DETR Replace convolutions with 

attention-based mechanisms 

   

Table 2.16: Evolution of Object Detection Models 
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2.9.2 Two-Stage Models: Accuracy-Oriented 

 Faster R-CNN 

 Introduces the Region Proposal Network (RPN) (Shaoqing Ren, Kaiming He, Ross 

B. Girshick, & Jian Sun, 2017)  to generate candidate boxes. 

 Uses a CNN backbone (e.g., ResNet, VGG) to extract features. 

 Offers high accuracy but can be slower in real-time scenarios. 

 
Figure 2.17: Architecture of Faster R-CNN 

2.9.3 One-Stage Models: Speed-Oriented 

 YOLO (You Only Look Once) 

YOLO (Ultralytics, 2023) reframes detection as a regression problem: 

 Divides the image into an S×S grid. 

 Each grid cell predicts bounding boxes and class probabilities. 

Variants: 

 YOLOv3: Fast and accurate for real-time detection. 

 YOLOv5/YOLOv8: More compact and efficient for deployment on edge devices. 
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Figure 2.18: Example Of Detection Object By Yolo 

 SSD (Single Shot MultiBox Detector) 

 Detects objects (Wei Liu, et al., 2016)at multiple scales using feature maps from 

different CNN layers. 

 Good trade-off between speed and accuracy. 

2.9.4 Transformer-Based Models 

 DETR (DEtection TRansformer) 

DETR (Carion, Nicolas, et al., 2020) reformulates object detection as a direct set prediction 

task using a Transformer-based encoder-decoder architecture. It eliminates the need for 

anchor boxes and NMS, simplifying the pipeline but requiring high computational resources. 

Component Role 

Classification loss Predict correct class for each box (e.g., cross-

entropy) 

Localization loss Match predicted box to ground truth (e.g., 

Smooth L1) 

IoU loss Measures box overlap to fine-tune 

localization 

Table 2.17: Training and Loss Functions 

Metric Description 

mAP (mean Average Precision) Measures precision at different IoU 

thresholds 

IoU (Intersection over Union) Evaluates box overlap accuracy 

FPS (Frames Per Second) Measures inference speed (real-time or not) 

Table 2.18: Evaluation Metrics 

Domain Example Use Case 

Security Intrusion detection, face recognition 

Autonomous driving Detecting cars, pedestrians, traffic signs 

Retail Shelf analysis, customer tracking 

Industrial  

Defect detection, package inspection Identifying lesions or abnormalities 

Table 2.19: Applications of Object Detection 
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2.9.5 Challenges 

 Small object detection (e.g., distant pedestrians) 

 Occlusion and overlapping objects 

 Real-time inference on edge devices 

 Training with limited labeled data 

Advanced models now combine detection with segmentation, tracking, and language 

understanding, expanding capabilities far beyond basic object recognition 

In many real-world systems, deep learning is not used alone. Traditional image processing 

techniques are still useful for: 

 

Stage Classical Technique Used 

Post processing Morphological operations, connected 

components 

Weak supervision Edge maps or contours used as pseudo-labels 

  

Table 2.20: Hybrid Image Processing Pipelines 

Example: A pipeline for cell segmentation might use: 

 Classical thresholding for seed generation 

 CNN for region refinement 

 Morphological operations for mask cleanup 

This hybrid approach enhances speed, interpretability, and data efficiency. 

2.9.6  Vision Transformers (ViTs) 

Transformers, initially designed for natural language processing, have recently been adapted 

to vision tasks with excellent results. 

 Vision Transformer (ViT) 

 Divides images into patches (e.g., 16×16) 

 Embeds them into a sequence of tokens 

 Uses self-attention to model long-range dependencies 

ViTs outperform CNNs in some benchmarks when trained on large-scale datasets, and are: 

 Highly parallelizable 

 Better at modeling global context 

 Flexible across modalities (image + text) 



33 

 

 Hybrid CNN-ViT Models 

Some architectures combine the local strength of CNNs with the global attention of 

transformers: 

 CvT (Convolutional Vision Transformer) 

 Swin Transformer (hierarchical, windowed attention) 

  Self-Supervised and Few-Shot Learning 

Data labeling is expensive. New learning strategies reduce the dependence on annotated 

datasets: 

Approach Description 

Self-supervised learning Models learn from unlabeled data via pretext 

tasks (e.g., predicting rotation, missing 

patches) 

Contrastive learning Learn feature similarity/dissimilarity (e.g., 

SimCLR, MoCo) 

Few-shot learning Train models with very few examples (e.g., 

Meta-learning) 

Table 2.21: Vision Transformers Approachs 

They are especially useful in 

 Medical imaging 

 Remote sensing 

 Rare object detection 

2.10 Conclusion 

Here, we have embarked upon a step-by-step tour of the field of image processing, from 

traditional methods all the way up to state-of-the-art AI systems. 

We began with traditional methods 

 Model- and hand-designed, and algorithm-based 

 Filtering, edge detection, geometrical transformation, and threshold-based 

segmentation 

 Commonly used for decades due to their simplicity, interpretability, and effectiveness. 

But we also acknowledged their shortcomings vulnerability to noise, lack of semantic 

understanding, and rule-based reasoning inflexibility initiating the emergence of data-driven 

models. 

Part II described how image processing was transformed by deep learning: 

 Machines are able to automatically learn from the data with CNNs architectures. 
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 Object detection models like YOLO and Mask R-CNN support real-time recognition 

and localization. 

 Segmentation and its types 

 Traditional techniques are still effective, particularly in preprocessing and in low-

resource setups. 

 Deep learning models are dominating modern-day vision applications due to their 

performance and flexibility. 

 Hybrid pipelines combining traditional logic with learned representations are common 

in practice. 

 The future of image processing is increasingly multi-modal, ethical, and edge-aware. 

 Real-time, Low-Power Vision 

 Mobile phone, wearables, and embedded system optimized models. 

 Quantum and Neuromorphic Vision 

 Exploring hardware beyond silicon through quantum vision and brain-inspired chips. 

 Aim for Social Good 

 Applications in health, disaster recovery, climate, and accessibility 

Final Word It is no longer a matter of pixels, but a matter of perception. As machines learn to 

see, understand, and even imagine the world around them, this field will continue to define 

the boundaries of artificial intelligence, machine-human interaction, and technological 

innovation. Whether it is through traditional filters or through generative networks, the end 

result is the same - converting visual data into actionable intelligence. 
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3 State of the art 
3.1 Introduction 

 Information extracted from scanned documents is an indispensable task in many fields, 

e.g., finance, healthcare, and legal. Automated processing of information and documents 

is required for optimal business performance with minimal human errors. Prior to the 

advent of deep learning, rule-based methods towards such a task were heavily reliant 

upon domain knowledge as well as hand-crafted features. Following the advent of deep 

learning, there have been more efficient and nimble methods, and there have been 

improvements in terms of precision, alongside scale. The critical factors for effective 

information extraction are: 

 • Perception of layout: For inferring relations among different elements, there needs to be 

perception of document layout, i.e., tables, paragraphs, and key-value pairs. Layout 

analysis helps make the future systems more efficient in retrieving the relevant 

information to search and extract.  

• Optical Character Recognition or OCR plays an important part whenever we scan 

documents to render them machine-readable. The quality of OCR decides the quality of 

the pipeline of information. The progress made in the field of deep learning over the past 

couple of years revolutionized the quality of OCR even when the quality is poor, i.e., 

scanned or handwritten. 

 • Post-processing: Post-processing techniques, i.e., natural language processing (NLP), 

and machine learning (ML), are utilized when extracting text and layout information to 

improve the quality of extracted data. These techniques detect errors, recognize relevant 

data, and make the output structured and usable. In the following, we present the state of 

the art for all of these building blocks, with an emphasis on layout analysis, OCR, and 

post-processing. In addition, we describe end-to-end pipeline systems which combine 

these building blocks into high-performance systems for document understanding 

3.2 Document Layout Analysis 

 Document layout analysis is a critical task in information extraction from a scanned 

document. It is used for the identification and understanding of the physical layout of the 

document with a view towards locating different elements such as headings, paragraphs, 

tables, forms, and images. Layout analysis is to understand the visual layout of the document 

for extracting useful information from specific regions such as key-value pairs or tables.  



36 

 

 

Figure 3.Representative examples of the document layout analysis 

3.2.1 Traditional Methods  

 Before the era of deep learning, layout analysis techniques were rule-based. These were 

generally composed of heuristics and hand-written rules to identify and distinguish between 

various layout components. 

3.2.2 Rule-based Segmentation 

Rule-based segmentation is a traditional method used for segmenting digitized or scanned 

documents into individual regions based on pre-defined rules and heuristics.  

Document segmentation is a fundamental step for document layout analysis that helps the 

system identify and distinguish individual components of a document, e.g., text block, 

images, table, headers, and footers. The primary purpose of rule-based segmentation is to 

provide an accurate structural representation of content within a document that is process able 

for subsequent OCR, information extraction, or post-processing. 

Key Concepts 

Rule-based segmentation involves applying a set of well-defined rules to divide a document 

according to its visual and textual features. These rules often rely on spatial information (such 

as coordinates), text density, and the presence of visual elements like lines or boxes. Unlike 

machine learning approaches, rule-based methods do not require large training datasets and 

are especially effective for simple, well-structured documents. 
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Figure 3.1: Page segmentation techniques in document layout analysis 

3.2.3 Methodologies in rule-based segmentation 

There are several rule-based methods in common use. 

 X-Y Cut Method 

The X-Y (K. T. Wong, A. Cai, & P. Shi, 1995) cut is the simplest and most common method 

of document partitioning. It is an operation of two cuts in the document, one along the X-axis 

(horizontal) and one along the Y-axis (vertical), along the distribution of the text and 

whitespace in the document, and divides it into areas. 

 X-Cut: The text is divided into horizontal slices by cutting along text lines. The 

engine reads the file line-by-line and detects lines or text blocks. When there is 

significant white space separating two lines of text, this is a sign of a break among 

two independent parts (e.g., between the header or the paragraph and the body text). 

 Y Cutting: Following horizontal cutting, the system further divides the text blocks 

into columns or parts in the direction of the y-axis. It can also be utilized for detecting 

multi-column documents, where the text is broken into individual columns (e.g., 

newspapers or newsletters). 
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Benefits: 

 X-Y cut technique is computationally straightforward and quick, and it is, therefore, 

suitable for documents with well-defined visual organization. 

Advantages: 

This technique falters with documents with complicated structures where there are 

more than simple row-column structures involved (e.g., documents with non-

rectangular text areas or irregularly shaped layouts). 

 

 

 
 

 

 

Projection Profiles 

Projection profiles are another technique used for rule-based segmentation. This method 

computes the horizontal and vertical projections of the document, which essentially 

calculates the sum of pixel intensities along the horizontal and vertical axes. The 

projection profile can be used to identify the boundaries of text blocks, images, and other 

components. 

o Horizontal Projection Profile: This technique computes the sum of pixel 

values along each horizontal line of the document image. Areas with high 

pixel intensity correspond to lines of text, while regions with low pixel 

intensity represent blank spaces. The peaks and valleys in the projection 

profile correspond to the top and bottom boundaries of text blocks, 

respectively. 

o Vertical Projection Profile: Similar to the horizontal profile, the vertical 

projection profile computes the sum of pixel intensities along each vertical 

column. This is useful for detecting column boundaries in multi-column 

documents. 

Figure 3.2: Representative diagram of the X-Y cut method 
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o Advantages: Projection profiles are relatively simple and fast to compute, and 

they work well with structured documents that follow a regular grid layout. 

o Disadvantages: Projection profiles may not perform well on complex 

documents with irregular layouts or overlapping components (e.g., when text 

and images are interspersed). 

 

Figure 3.3: Horizontal projection profile and contour tracing for line and word segmentation 

3.2.4 Connected Component Analysis: 

Connected component analysis, or CCA, is an operation where all pixels of the document are 

treated as graph nodes. The algorithm finds groups of pixels that belong to common objects 

(i.e., image, text, or graphic). These groups are then combined into larger regions. 

Text Region Identification:  

Text regions in an ordinary document are often represented as character-related parts. 

Through examining component connectivity’s, the algorithm can group them into text 

areas. 

 Line Segmentation 

 Once the regions of text are identified, these elements are then segmented into lines. 

This involves analyzing the spatial relationship of the elements and segmenting them 

according to proximity to each other. 

 Page Segmentation 

Subsequent to line segmentation, the method can then further be utilized to segment 

the identified text units, images, and other page features into higher-level units, i.e., 

into columns, paragraphs, and headers. 

Advantages 

CCA performs very well in distinguishing areas of text and images in documents 

which have clear boundaries and well-separated objects. Fine-grained feature 
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partitioning can also be achieved with CCA, which can handle documents with 

irregular layouts to a certain extent. 

Limitations 

It is challenging when there is superimposition of text, images, or graphics over 

documents. It also requires meticulous parameter calibration, e.g., pixel connectivity, for 

optimal performance. 

3.2.5 Use of Rule-Based Segmentation 

Rule-based segmentation is especially well suited for use in documents with predictable, 

regular structures, such as: 

• Forms: Forms with well-defined fields (e.g., address, signature, and name) can 

be broken down with rule-based methods. 

• Invoices: The receipts and invoices have pre-designated places for item 

listings, sums, and dates, and hence are good candidates for rule-based 

segmentation. 

• Legal Documents: Legal documents with properly structured, standardized 

form (e.g., contracts, agreements) are likewise suitable for processing with 

rule-based methods. 

• Text-based reporting with clearly organized sections and paragraphs can best 

take advantage of rule-based segmentation techniques. 

 

 

 

 

 
Figure 3.4: Connected Component Analysis (CCA) Segmentation Workflow 
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3.2.6 Limitations and Difficulties 

Despite its strengths, rule-based segmenting also has some drawbacks: 

• Sensitivity to layout inconsistencies: rule-based methods do not fare well with documents 

with nonstandard layout or inconsistent layout style. Such documents have inconsistent styled 

layout or combinations of content types (e.g., mix of text and image in the same area). 

• Inflexibility: The rule-based methods are inflexible and do not support new document 

structures or new formats unless the rules are manually reconfigured. The inflexibility 

restricts optimization of rule-based methods in changing environments. 

• Propagation of Errors: A single mistake in a segmentation step (e.g., wrong text block 

bounds) can propagate all the way through the document understanding pipeline, impairing 

the quality of OCR and other extracted data. 

3.2.7 Algorithmic Foundations 

The foundation of rule-based segmentation lies in the heuristics derived from document 

geometry. For example, equal application of margins, line heights, and font sizes can be 

utilized for developing segmentation rules. 

One standard approach is to binaries the image initially (e.g., Otsu's thresholding), followed 

by morphological treatment (e.g., dilation, erosion) to enhance such elements like table edges 

and lines of text. Features like aspect ratio, size of connected components, and spatial 

relationships govern the segmentation reasoning afterwards. 

3.2.8  Hybrid Rule-based Systems 

Many modern systems employ hybrid techniques combining rule-based segmentation with 

ML classifiers for instance: 

 Use rules to detect probable text regions. 

 Apply a lightweight CNN to classify whether a region is a paragraph, table, or figure. 

Such pipelines benefit from the interpretability and speed of rule-based heuristics and the 

adaptability of ML models. 

 Specialized Use Cases 

Some documents have unique structures that are best handled with rule-based logic: 

 Passports and ID cards: Specific zones like MRZ (Machine Readable Zone) follow 

strict formatting. 

 Bank checks: Regions like date, payee, and amount are fixed by regulation. 

 Academic transcripts: Repeated structures in tabular form are often easy to extract 

with predefined row/column logic. 
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Aspect Rule-based Deep Learning 

Data requirement None High(thousands of labeled 

images) 

Adaptability Low High 

Interpretability High Often opaque 

Processing speed Fat (real-time) Depend on model complexity 

Layout Flexibility Poor for irregular layouts Robust to complex design 

Hardware Requirement Low Require GPU/TPU for 

training 

Table 3.1: Comparison with Learning-based Approaches 

3.3 Recent Techniques 

3.3.1  Layout Analysis using Deep Learning 

Deep learning techniques transformed layout analysis over the last three years with stronger, 

more precise, and more flexible means of document structure understanding and layout 

extraction. Deep learning models outshined most rule-based and heuristic techniques with the 

capability to handle complex and heterogeneous layouts more accurately. This significant 

shift is triggered by uses of Convolutional Neural Networks (CNNs), which achieve excellent 

performance with image data in the shape of document images. CNNs and other deep 

learning architectures like Transformer-based architectures have enabled auto-extraction of 

layout items like text blocks, images, tables, figures, and headings from digital images or 

scanned documents. These methods overcome conventional computer vision methods by 

learning from data directly without human intervention or the requirement of handcrafted 

features. 

Deep learning-based layout analysis methods are particularly useful in real-world 

applications where documents have diverse structures and layouts. These methods are 

capable of learning to generalize across a number of layouts and even on noisy or distorted 

images, thus proving to be very helpful in applications like Optical Character Recognition 

(OCR) and document understanding. Also, since they can use huge annotated data sets and 

are trained on challenging document types, deep learning models can attain human-like 

performance in the majority of scenarios and are thus the solution of choice in current 

document processing systems. 

 

Figure 3.5: Implementation of deep learning in Document Layout Analysis 
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3.3.2 YOLO Family (YOLOv3 to YOLOv8) 

The "You Only Look Once" (YOLO) (Ultralytics, 2023) detector family has made object 

detection in real time, and their application in document layout analysis has experienced 

staggering gains in the speed and effectiveness of document processing. YOLO is a one-stage 

detector that does classification along with localization in a single pass in the forward 

direction, i.e., can process images rapidly with no compromise in performance. Thus, YOLO 

is best suited to real-time applications where timely response is most critical, such as 

document scanning and processing on mobile devices or embedded systems. 

The YOLO models are used extensively for layout analysis since they are capable of 

detecting multiple document elements at the same time and hence are ideal to extract 

complicated document layouts from scanned documents. The YOLO family has evolved from 

YOLOv3 to YOLOv8, and every version has become more accurate, efficient, and 

generalizable. These models are specifically used for the detection of text blocks, headings, 

tables, figures, and logos from scanned documents, which typically appear in the form of 

scientific papers, invoices, receipts, and forms. 

 Working Mechanism of YOLO Models 

YOLO (Ultralytics, 2023) models divide an input image into a grid and estimate the 

bounding boxes of objects of interest within the grid. Simultaneously, they allocate each 

bounding box class probabilities so that the model can detect and classify multiple objects 

simultaneously. By doing so, YOLO can identify various parts of a document within shorter 

processing times, thus low latency, and hence the system being suitable for real-time 

document analysis systems. YOLO models must employ anchor boxes to make bounding box 

size predictions, and by training on big sets of documents with annotations, they can become 

proficient at locating very dissimilar parts of the document even on complex layouts. 

 Applications of YOLO Models in Document Layout Analysis  

YOLO (Ultralytics, 2023) models have also been used effectively to a number of different 

document layout analysis tasks: 

Text Block Detection: Text area detection in a document, most important in OCR systems for 

text material detection and processing. 

Heading Detection: Heading and subheading detection to structure content of a document for 

easier navigation and understanding. 

Table Detection: Table and cell detection to support structured data extraction from 

documents. 

Figure and Image Detection: Image detection, charts, and graphs that are generally integrated 

in the visual content of a document. 

Logo Detection: Logo or watermark detection one can find on documents for authentication 

or branding. 
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Pre-trained YOLO models are exported in such applications as PubLayNet and DocLayNet to 

document classes, be they scientific papers or bills. When exporting, models better identify 

the document structure and document format of a specific field, which boosts their 

performance and accuracy further. 

 YOLOv5 and YOLOv8 

YOLOv5 is among the most popular PyTorch-based YOLO versions. It is very popular due 

to the fact that it is simple and efficient. YOLOv5 comes with anchor learning and mixed 

precision training capabilities, which improve training efficiency and inference speeds. 

YOLOv8 by Ultralytics is a better version of its predecessors. It has fewer architectures and 

newer accuracy advancements, making it faster and more efficient. Apart from this, YOLOv8 

also has an important addition: instance segmentation. This allows the model not only to 

identify boxes but also to segment a single object within a box. This feature is particularly 

well worth the addition for precise boundary detection in the layout, where proper separation 

of overlapping fragments (such as text blocks or figures) is essential. 

  YOLOv11: A Radical Leap in Object 

Ultralytics' YOLOv11 is a step forward in the development of the You Only Look Once 

series of real-time object detection models released in September 2024. The model boasts 

notable architectural changes that make it more accurate and effective. 

 Architectural innovations 

 YOLOv11 integrates a number of state-of-the-art components to enhance feature 

extraction and computation performance: 

 C3k2 (Cross Stage Partial kernel size 2): Improves feature representation while 

mitigating redundant calculations 

 SPPF (Spatial Pyramid Pooling - Fast): Enabling rapid spatial pooling of 

information across different scales. 

 Parallel Spatial Attention Convolution (C2PSA) 

 Enhances the model ability to attend to significant regions in the image through parallel 

attention. 

These improvements enable YOLOv11 (Ultralytics, 2023) to attain a better mean Average 

Precision (mAP) on the COCO dataset but with 22% fewer parameters than YOLOv8m. 

Consequently, YOLOv11 is lighter and faster. 

Flexibility in Supported Activities YOLOv11 is designed for a wide range of different 

computer vision tasks and is thus a highly versatile  (Ultralytics, 2023) model 

 Object Detection: Identifies and detects multiple objects in an image. 

 Instance Segmentation: Generates accurate masks for each instance of an object. 

 Image labeling: Assigns one tag to an entire image. 

 Human pose estimation involves finding out key body points. 
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 Oriented Bounding Box Detection (OBB): Handles detection of rotated objects—

particularly useful for skewed document photos or aerial images. 

This type of flexibility makes YOLOv11 especially suitable for document layout analysis 

where accurate positioning of things such as headings, paragraphs, tables, and images is 

essential. 

 Performance and deployment 

There are several variations of YOLOv11 (Ultralytics, 2023) ranging from nano to extra-

large that balance speed against accuracy depending on specific deployment needs. 

 YOLOv11n (nano) : Optimized for low-power edge devices 

 YOLOv11x (extra large): Focuses on maximum accuracy for fine-grained detection  

Furthermore, YOLOv11 is also deployable on a large variety of platforms ranging from 

edge and cloud-based systems to systems equipped with GPUs (e.g., NVIDIA systems), for 

maximum flexibility for developers. 

Feature YOLOv5 YOLOv8 YOLOv11 

Release Year 2020 2023 2024 

Framework PyTorch (Ultralytics) PyTorch (Ultralytics) PyTorch (Ultralytics) 

Instance 

Segmentation 

None Yes Yes 

Rotated Object 

Detection (OBB) 

None None Yes 

Pose Estimation None Limited Yes 

Speed and Efficiency Fast Faster Fastest (optimized 

with fewer params) 

Edge Deployment Yes Yes (lighter with same 

accuracy) 

Model Sizes s, m, l, x n, s, m, l, x n, s, m, l, x 

Advanced Attention 

Mechanisms 

None Limited C2fPSA, C3k2) 

Best For General OCR tasks Overlapping layout 

segmentation 

Multitask doc layout 

with OBB & pose 

Table 3.2: YOLO Model Comparison for Document Layout Analysis 

 Benefits of YOLO Models in Layout Analysis 

Fast Inference Time: YOLO models are optimized for real-time object detection, i.e., they 

can produce output at quick rates, which is beneficial for applications that need to process 

fast, i.e., mobile apps and embedded systems. 

Good Generalization: Domain-specific YOLO models fine-tuned on such datasets are of 

good generalization, i.e., capable of dealing with varied document layouts and forms. This 

proves best for document processing tools using documents with mixed sources like invoices, 

receipts, or research documents. 
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Effective Deployment: YOLO models are lightweight and can be deployed on edge devices, 

thus they can be used in applications where computational resources are constrained, i.e., 

smart phones, IoT devices, or embedded systems. 

 Drawbacks of YOLO Models in Layout Analysis 

 Bounding Box Accuracy: While YOLO models are fast and efficient, they may not 

be as accurate in the bounding box when the parts overlap heavily or are of unusual 

shapes. Here, the model predictions could be less precise, and this may lead to 

document interpretation issues. 

 Instance-Level Limited Knowledge: YOLO models, being a basic example, are 

object detection-focused but not necessarily endowed with in-depth knowledge of 

instance-level inter-component relationships. This limitation can be overcome with 

the use of versions like YOLOv8-seg, possessing instance segmentation capability 

for better disentanglement and comprehension of overlapped components. 

Overall, the YOLO series of models have served wonderfully for real-time document 

layout analysis tasks. As model design, training practices, and domain-specific components 

like instance segmentation develop further, YOLO models keep pushing limits of what can 

be done in document processing and analysis. Nonetheless, as is the case with any machine 

learning method, they are not without their flaws, particularly when it comes to processing 

complicated layouts or where precision matters most.

 

Figure 3.6: How to Analyze document Layout by Yolo 
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3.3.3 Faster R-CNN and Mask R-CNN 

 Powerful Two-Stage Architectures for Document Object Detection and Segmentation 

Faster R-CNN and Mask R-CNN are pioneering models in computer vision, particularly 

object detection and segmentation. They have a two-stage detection model, which, while 

computationally more costly than one-stage models, is far more accurate and precise—

attributes that are especially desirable when working with document image analysis. 

3.3.4 Faster R-CNN 

R-CNN (Region-based Convolutional Neural Network) (Girshick, 2014) is a fast object 

detection framework that introduced the concept of an end-to-end trainable Region Proposal 

Network (RPN). The model operates in two consecutive phases: 

In the first step, the RPN scans the input image to propose a set of candidate regions in which 

the object of interest might be located. The proposals are generated with learned 

convolutional features and therefore the approach is far more efficient compared to previous 

methods like selective search. 

Stage two sees the recommended areas being handed to a bounding box regressor and a 

classifier, which simultaneously predict the class of the object and adjust its spatial location.  

The framework enables the model to accurately define and classify the location of an object 

in a document, as in text regions, tables, figures, or icons, and has been prevalently applied 

for layout analysis processes owing to the fact that it has robust localizing capabilities.  

3.3.5 Mask R-CNN 

Mask R-CNN adds to the Faster R-CNN architecture an extra segmentation branch that is 

executed in parallel with the classification and bounding box regression tasks. The third 

branch predicts a binary mask for every object, enabling instance-level semantic 

segmentation. 

In document analysis, this addition offers a number of strong capabilities: 

Fine-grained segmentation of document elements such as form fields, handwritten signatures, 

annotations, and graphical elements. 

Effective disambiguation of rival elements, such as closely clustered paragraphs and tables 

that occupy common visual space. 

Pixel-level understanding of structure, necessary to rebuild rational hierarchies within 

complex documents such as scientific articles, contracts, and technical reports. 

 

 Benefits in Document Processing 

 

Instance Segmentation: Unlike bounding box detection, which offers coarse localization, 

instance segmentation can provide extraction of precise shapes and edges—a central aspect 

for understanding complex page layout. 

 

Overlapping Element Differentiation: The models excel at disentangling overlapping or 

nested objects, which in many cases present themselves in richly formatted text. 

 

 Limitations and Considerations 

 

Though they are highly accurate, these models have significant trade-offs: 
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 High Computational Cost: Because of their multi-stage processing and convolution-

rich architecture, Faster R-CNN and Mask R-CNN both require a high amount of 

computational resources. They are generally slower during inference than one-stage 

detectors such as YOLO, making them unsuitable for real-time applications. 

 

 Data Dependency: Annotation of such big models from the beginning requires vast 

amounts of labeled data. Moreover, fine-tuning them to domain-specific document 

layout normally needs accurate bounding boxes and segmentation masks. 

 

 Infrastructure Requirements: Production deployment normally needs high-end 

GPUs, which may not be feasible in low-resource environments. 

3.3.6 Donut 

OCR-Free Transformer for End-to-End Document Understanding 

Donut (Document Understanding Transformer) is a revolution in document image processing 

technology. Unlike traditional pipelines, which are heavily reliant on Optical Character 

Recognition (OCR) for text extraction, Donut completely does away with the OCR step and 

offers a fully end-to-end solution that takes raw document images as input and produces 

structured textual content as output. 

 

 Core Characteristics 

 

 OCR-Free Architecture: Donut processes the content of the image directly using 

transformer-based vision-language modeling without any intermediate OCR and 

subsequent error drift. 

 

 End-to-End Transformer: The model consists of a vision encoder and sequence 

decoder, where it functions similar to encoder-decoder transformer architecture used 

in machine translation. 

 

Structured Output: Donut generates a structured text description such as key-value pairs, 

table contents, or JSON objects from an input image, hence very well suited for information 

extraction. 

 

 Why Donut is a Breakthrough 

 

Eliminates OCR Limitations: The traditional OCR engines usually do not work well on non-

standard fonts, handwriting, noisy scans, or low-resolution images. Donut avoids all these 

limitations by learning to directly infer textual content from visual representations. 

Multiformat and Multilingual Compatibility: Absent reliance on character-level recognition, 

Donut is language and script tunable to those that do not perform well with OCR technology. 

Single-Model Joint Layout and Content Modeling: Contrary to layout detection as well as 

text recognition being addressed in modular pipelines as separate tasks, Donut addresses the 

same jointly in one model. 

 

 Applications 

Form Understanding: Information extraction from administrative forms in insurance, 

healthcare, and finance automated. 
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 Low-Quality Document Processing: Excellent performance on low-quality 

documents, faxes, or scanned handwritten text where OCR traditionally fails. 

 Rapid Prototyping: As Donut is an end-to-end solution, it simplifies development 

pipelines and reduces dependency on multiple software pieces. 

 Limitations 

 

 Early Development Stage: As a relatively new development, Donut is still evolving. 

Optimal performance often requires task-specific tuning. 

 Interpretability Concerns: As Donut merges layout and text modeling into a single 

transformer, it could be harder to debug or interpret compared to a modular 

architecture where each step is standalone and inspect able. 

 Training Resource Requirements: While inference is efficient, training Donut in an 

optimal manner still requires access to large-scale annotated document data sets and 

significant computational capacities. 

3.3.7 Layout LM (v1, v2, v3) 

Multimodal Transformers for Document Layout Understanding 

Layout LM is a family of transformer models designed by Microsoft particularly for 

document comprehension through joint modeling of textual, visual, and positional data. 

Unlike general-purpose NLP models that handle regular text, Layout LM considers spatial 

layout information on text components—an important aspect of document semantics.  

 

 Architectural Overview 

 

Textual Embedding: Layout LM inherits BERT and embodies the semantic context of each 

textual token. 

Positional Embedding: Tokens have their 2D positions (bounding box) in the document 

layout space so that the model can learn positional structures (e.g., labels followed by values). 

Visual Embedding (v2 and beyond): The model incorporates visual features from the raw 

image with convolutional backbones like ResNet, adding even more multimodal capability. 

 Real-World Applications 

Form Parsing: Automatically detecting and labeling form fields and their related values (e.g., 

"Name: John Smith"). 

Key-Value Pair Extraction: Key-value pair extraction of structured data like invoice dates, 

payment amounts, or item descriptions. 

Document Classification: Document classification of documents according to structure or 

content (resume vs. invoice). 

Question Answering: Supporting tasks like DocVQA, where answers need to be implied from 

structured visual-textual data. 

 

Model Evolution 

 

 LayoutLMv1: Established multimodal input via mixing textual embedding’s with 

spatial positions in a paradigm-breaking leap ahead over text-only baselines. 

 

 LayoutLMv2: Integrated visual features from doc images and augmented retraining 

tasks (e.g., masked visual-language modeling). 
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 LayoutLMv3: Integrated all three modalities (text, layout, image) into a unified 

framework, achieving state-of-the-art performance on benchmarking sets such as 

FUNSD, SROIE, and DocVQA. 

 

 Strengths 

Layout Awareness: Captures document structure globally, required to comprehend complex 

layouts such as receipts, certificates, or academic papers. 

Cross-Modal Integration: Strong performance in tasks that require simultaneous reasoning 

over visual and textual features. 

 

 Transfer Learning 

LayoutLM models are retrained on large datasets of documents, which allows them to be 

easily adapted (fine-tuned) for specific tasks or domains. 

Limitations 

 High Computational Cost: Because the model uses both image and text features and 

has a complex structure, training and running it require a lot of computing power. 

 OCR Dependency: Unlike models like Donut, LayoutLM depends on OCR to extract 

text and its position in the document before processing. This adds complexity and can 

introduce errors if the OCR is not accurate. 

 Difficult Fine-Tuning: Adapting the model to a new task often requires a lot of 

manual work, including labeling data and trying different settings for layout-specific 

inputs. 

Model Architecture 

Type 

Key Features Strengths Limitations 

Faster R-CNN Two-stage 

detector 

RPN for region 

proposals, 

classification & 

bounding box 

regression 

High detection 

accuracy; 

effective for 

locating objects 

in structured 

layouts 

High 

computational 

cost; slower than 

one-stage 

models (e.g., 

YOLO) 

Mask R-CNN Two-stage 

detector + 

segmentation 

Adds a mask 

prediction head 

for instance 

segmentation 

Pixel-level 

segmentation; 

excels at 

distinguishing 

overlapping 

elements 

Requires more 

annotations 

(segmentation 

masks); slower 

inference 

Donut Transformer 

(OCR-free 

End-to-end 

image-to-text 

model; directly 

outputs 

structured 

sequences 

No OCR 

dependency; 

robust on low-

quality scans; 

suitable for 

multiple 

languages 

Less 

interpretable; 

requires large 

datasets for fine-

tuning 

LayoutLM (v1-

v3) 

Transformer + 

Multimodal 

Fuses text, 

layout (2D 

Captures visual-

textual 

Depends on 

OCR for text + 
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Fusion position), and 

image features 

relationships; 

SOTA results on 

form parsing, 

DocVQA, etc. 

bounding boxes; 

computationally 

intensive 

Table 3.3: Comparison Table: Document Analysis Models 

3.4 Optical Character Recognition(OCR) 

Optical Character Recognition, or OCR, is the technology to pull printed words out of the 

interior of an image—scanned paper, photographs, even handwriting—and get it into an 

editable, machine-readable form. A central part of document digitization and verification 

processes, OCR is a foundation upon which steps such as information extraction, semantic 

interpretation, indexing, and searching are built. 

OCR is applied extensively for a range of purposes like finance (e.g., invoice processing), 

health (e.g., scanning patient records), law (e.g., court documents), and education (e.g., 

correction of exam papers). It is also an important application for automatic forms 

processing, print archiving, and assistive technology for visually impaired users. 

The initial OCR systems were rule-based and relied extensively on hand-crafted features and 

traditional computer vision techniques. These tended to be a sequence of operations, 

including image preprocessing (e.g., thresholding, denoising), word- or character-level 

segmentation, and character recognition using template matching or basic machine learning 

classifiers. 

These approaches were limited by image quality, fixed fonts, and rigid layouts. They did not 

perform well with noisy scans, mixed layout documents, and multilingual documents. 

Deep learning revolutionized OCR. Today's OCR is now based on convolutional neural 

networks (CNN), recurrent neural networks (RNN), and more recent transformer models, 

which can deliver strong, high-quality recognition for distorted, complicated, or handwriting 

input. 

These deep-learning techniques allow OCR engines to extract generalizable text and context 

visual abstractions on a big, domain-independent scale, and also languages. Moreover, the 

combination of OCR with layout analysis in end-to-end document understanding pipelines 

combined with natural language post-processing now allows you to extract, aside from raw 

text, semantic and structured content. 

The following is a summary of how OCR technologies progressed from earlier pipeline 

frameworks to current deep learning frameworks, challenges, metrics, and real-world 

applications. 

3.4.1 Traditional OCR Systems 

Before the revolution of deep learning, OCR systems relied largely on rule-based and 

conventional machine learning approaches. Conventional OCR pipelines were generally 

multi-stage with image preprocessing, segmentation, feature extraction, and character 

recognition. Although very effective for structured and high-quality inputs, their accuracy 

would generally weaken when given noisy, degraded, or complex layouts. 
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 Image Preprocessing 

The first step of traditional OCR is to improve the input image so that it becomes less noisy 

and text will be more prominent. Techniques such as binarization (e.g., Otsu's method), 

morphological processing (e.g., dilation, erosion), skew correction, and denoising filters (e.g., 

Gaussian or median filter) are used. All these steps make the text more distinguishable from 

the background and reduce the likelihood of recognition failures. 

 Text Segmentation 

Segmentation is the process of splitting the image into text lines, words, and ultimately 

characters. Rule-based heuristics, connected component analysis (CCA), and projection 

profiles are common techniques. It is strongly affected by layout variation; overlapping 

characters or inconsistent spacing can significantly reduce accuracy. 

 Feature Extraction 

Once characters are separated, features are extracted to describe their shape and structure. 

Traditional OCR systems traditionally use hand-designed features such as edge detection 

(Sobel, Canny), zoning (dividing character space into zones), and geometric descriptors (e.g., 

aspect ratio, stroke width). 

 Character Recognition 

In this step, the system classifies characters using simple classifiers like: 

 Template Matching: Comparing segmented character images to a library of known 

characters. 

 K-Nearest Neighbors (KNN) or Support Vector Machines (SVM): Used on extracted 

features for classification. 

 Hidden Markov Models (HMMs): Sometimes employed for recognizing sequences of 

characters, particularly in printed or cursive scripts. 

 Post-processing 

Spell-checkers, dictionaries, and domain-specific correction rules are applied to refine the 

output, especially for noisy documents or poor-quality scans. This step attempts to correct 

recognition errors that occur due to visually similar characters (e.g., 'O' vs. '0', 'l' vs. '1'). 

 Limitations of Traditional OCR 

Despite being useful, traditional OCR systems suffer from the following limitations: 

• Not so excellent a generalization to new fonts, languages, or layouts. 

• Prone to image noise in low-resolution or deteriorated images. 

• Poor performance with handwritten or cursive scripts. 

• Hand-crafted rules and features are required, thus decreased adaptability. 

These limitations provided opportunities for application of data-learned deep learning-based 

OCR. 
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3.4.2 Deep Learning-based OCR 

With the advent of deep learning, OCR systems have dramatically improved in both accuracy 

and robustness, especially in handling complex layouts, low-quality scans, and cursive or 

handwritten text. Deep learning-based OCR eliminates the need for handcrafted features and 

instead learns powerful visual representations directly from data through convolutional and 

recurrent neural networks. 

 Convolutional Neural Networks (CNNs) for Feature Extraction 

Deep learning OCR systems start with CNNs, which automatically extract hierarchical visual 

features from input images. CNNs such as VGG, ResNet, or EfficientNet form the backbone 

of most modern OCR architectures, capturing patterns in fonts, textures, and structures. 

These networks handle: 

 Variability in fonts and styles 

 Noisy or low-contrast backgrounds 

 Complex document layouts (e.g., overlapping or rotated text) 

 Sequence Modeling with RNNs and LSTMs 

Text in scanned documents is sequential. To model this, OCR systems employ Recurrent 

Neural Networks (RNNs), especially Long Short-Term Memory (LSTM) units. These 

networks capture dependencies between characters and words over time, improving 

recognition accuracy for entire text lines. 

Combined models, often referred to as CRNNs (Convolutional Recurrent Neural Networks), 

leverage CNNs for spatial feature extraction and RNNs for sequence decoding. 

 Connectionist Temporal Classification (CTC) 

Many OCR systems use CTC loss for training. This allows the model to predict variable-

length sequences (such as words) without requiring character-level alignment between input 

images and output sequences. 

Advantages of CTC : 

 No need for detailed annotation (only sequence labels are needed) 

 Robust to input distortions and irregular spacing 

 Attention-based Encoder-Decoder Models 

Inspired by machine translation, attention mechanisms have been integrated into OCR 

pipelines. These models consist of an encoder (CNN or CNN-RNN) and a decoder (LSTM or 

Transformer) that generates character sequences, guided by attention over relevant image 

regions. 
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Notable models: 

 Show, Attend and Read (SAR) 

 ASTER 

 TRBA (TPS-ResNet-BiLSTM-Attention) 

These models outperform traditional CRNNs on irregular or curved text. 

 Transformer-based OCR Models 

Transformers have recently become dominant in OCR due to their powerful sequence 

modeling capabilities and global attention mechanism. 

 State-of-the-art models include: 

 TrOCR (Transformer for OCR): developed by Microsoft, pre-trained on large 

corpora, and fine-tuned on OCR tasks. It supports printed and handwritten text. 

 Donut (Document Understanding Transformer): a fully OCR-free model for 

structured document understanding. Although Donut bypasses OCR in the traditional 

sense, its architecture performs OCR implicitly as part of document comprehension. 

 LayoutLMv3: integrates visual, textual, and layout information in a unified 

Transformer framework for end-to-end document processing. 

 Advantages of Deep Learning-based OCR 

 High Accuracy on diverse fonts, styles, and noisy inputs 

 End-to-End Learning, minimizing need for manual preprocessing 

 Adaptability to various scripts and languages through transfer learning 

 Handwriting Recognition and irregular layout handling 

 Limitations 

 Requires large annotated datasets for training 

 High computational demands (during training and inference) 

 Might still struggle with extremely poor quality scans or artistic fonts 

3.4.3 Pre-trained OCR Systems and Frameworks 

In recent years, various powerful pre-trained OCR systems and open-source frameworks have 

emerged, enabling researchers and developers to implement high-quality OCR solutions with 

minimal training. These systems combine advanced deep learning techniques with robust 

preprocessing and post processing pipelines. 

 Tesseract OCR (with LSTM) 

 Overview: Originally developed by HP and now maintained by Google, Tesseract is 

one of the most widely-used open-source OCR engines. 

 Deep Learning Upgrade: Since version 4, Tesseract integrates LSTM-based neural 

networks, dramatically improving accuracy for printed text. 
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 Languages Supported: 100+ languages. 

Strengths: 

 Good for multi lingual printed documents 

 Supports custom training 

Limitations: 

 Struggles with layout understanding 

 Less effective for handwritten or artistic text 

 EasyOCR 

Overview: A lightweight, Python-based OCR library that supports over 80 languages. 

Architecture: Based on CRNN and CTC loss. 

Strengths: 

 Easy to use 

 Good performance for printed and handwritten text 

Use Case: Frequently used for mobile and embedded applications. 

 PaddleOCR 

Overview: Developed by Baidu, PaddleOCR is a highly optimized and modular OCR 

framework that supports over 80 languages and multiple model types. 

Features: 

 Includes detection + recognition modules 

 Supports layout analysis and table recognition 

 Offers Lightweight and Server-grade models 

Advanced Models: Includes support for Transformer-based architectures like PP-OCRv3 and 

LayoutXLM. 

 TrOCR 

Overview: A Transformer-based OCR model developed by Microsoft and available through 

the Hugging Face Transformers library. 

Architecture: 

 Vision Transformer (ViT) as encoder 

 Text Transformer decoder 
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Capabilities: 

 Handles printed and handwritten text 

 Pre-trained and fine-tuned on large-scale OCR datasets 

Performance: Achieves state-of-the-art accuracy on benchmarks such as IAM and SROIE. 

 Donut (Document Understanding Transformer) 

Key Idea: An OCR-free model designed for end-to-end document parsing. 

Functionality: Learns to generate JSON-structured outputs directly from document images. 

Strengths: 

 No intermediate OCR step 

 Excellent for structured data extraction 

Use Case: Invoices, forms, ID cards 

 Layout LM Series 

LayoutLMv1, v2, v3: These models fuse visual, textual, and positional information using a 

multimodal Transformer architecture. 

Input: Takes in images, OCR text, and layout coordinates. 

Strengths: 

 Ideal for document classification, QA, and information extraction 

 Can capture document structure effectivel 

Use Cases: 

 Form understanding (FUNSD) 

 Invoice parsing (SROIE) 

 Document classification (RVL-CDIP) 

 

Framewor

k 

Type Deep 

Learning 

Handwriti

ng 

Layout

-

Aware 

Languag

e 

Support 

Strengths 

Tesseract Open-

source 

OCR 

LSTM Limited No 100+ Easy to use, 

widely 

supported 

EasyOCR Python 

library 

CRNN + 

CTC 

Yes No 80+ Lightweight

, good 

accuracy 
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PaddleOCR Full 

pipeline 

CNN + 

Transform

er 

Yes Yes 80+ Modular, 

supports 

layout/table 

TrOCR Transforme

r-based 

Yes Yes No Pretraine

d 

SOTA 

performance 

Donut OCR-free 

model 

Vision 

Encoder 

Yes Yes JSON 

output 

Best for 

structured 

document 

tasks 

LayoutLM

v3 

Multimodal Yes Yes Yes Pretraine

d 

Best for 

document 

understandi

ng 

 

Table 3.4: Summary Table of Key OCR Frameworks 

3.5 Post-processing Techniques in OCR Pipelines 

Even the most advanced OCR models may produce noisy results from complex layouts, 

scanning noise, or handwriting difference. Post-processing is therefore an important step to 

enhance the quality, consistency, and usability of extracted text. These techniques typically 

follow layout detection and OCR steps in an attempt to correct errors, structure information, 

and extract key data points. 

3.5.1 Text Correction and Normalization 

Spell Checking and Correction: Integration of language models (e.g., BERT, GPT, or 

n-gram based) helps fix OCR errors such as incorrect characters, missing punctuation, 

or spacing mistakes. 

Noise Reduction: Techniques such as Levenshtein distance or edit distance algorithms 

are used to clean malformed words and non-ASCII artifacts. 

3.5.2 Named Entity Recognition (NER) 

Goal: Extract structured information such as names, dates, organizations, and 

monetary values from unstructured OCR text. 

Tools: 

 SpaCy and Hugging Face NER models 

 Custom-trained BERT/Transformer-based NER pipelines for specific domains 

(e.g., finance, legal) 

Example: From a scanned invoice, NER can extract vendor names, invoice numbers, 

and payment terms. 
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3.5.3 Table Structure Recognition and Parsing 

Structure recovery from OCR output is crucial for documents like invoices or scientific 

papers. 

Techniques include: 

 Rule-based cell alignment 

 Deep learning models (e.g., TableNet, CascadeTabNet, and Graph Neural 

Networks) 

 OCR + Vision integration to reconstruct rows/columns and headers 

 Relationship Extraction 

Some documents (e.g., forms or medical records) require linking related pieces of text. 

Post-processing can apply: 

 Dependency parsing 

 Relation classification models 

 Semantic similarity measures to pair fields (e.g., linking a patient’s name with 

ID number) 

 Output Structuring and Export 

Final step is to export the cleaned and organized data in usable formats such as: 

 JSON (structured entities) 

 XML (hierarchical layout) 

CSV/XLS (for table-heavy documents) 

3.6 Conclusion 

In short, layout-aware information extraction from scanned documents is a high-level task 

reliant on several interdependent factors. Among them, layout analysis, OCR, and post-

processing are essential elements of the pipeline for document understanding. 

Accurate layout analysis enables the system to understand the spatial and logical structure of 

a document, improving identification and clustering of content blocks. Robust optical 

character recognition (OCR) translates visual data into readable text by machines, giving the 

basis for any future processing. Finally, intelligent post-processing enables refinement and 

structuring of the data that has been extracted, usually based on NLP and machine learning 

methodology to detect errors and improve semantic understanding. 

The combination of these components forms the basis of current end-to-end scanned 

document processing systems. In the next chapter, we will be detailing OCR technologies and 

approaches, which form the next crucial step in our document analysis pipeline. 
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4 Chapter 3: Proposed Methodology and 

Experimental Results. 
 

4.1 Introduction 

In this chapter, we introduce in depth the pipeline that will be used to extract structured data 

from scanned document (Resume). The system integrates layout analyses and optical 

character recognition (OCR) techniques to automatically detect key areas within the 

documents and accurately extract text content from them. The ultimate goal is to transform 

unstructured document images into machine-readable, structured data and process or store 

them in databases further. 

4.2 Proposed Methodology Architecture 

The developed pipeline for the document information extraction (resume) is composed of 

several interconnected stages, each responsible for a critical task within the end-to-end 

process. The architecture is designed to be modular, scalable, and adaptable to different 

document layouts and formats. Figure 0.1: Proposed Methodology illustrates a high-level 

overview of the proposed method. 
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Figure 0.1: Proposed Methodology 



61 

 

4.2.1 Dataset Collection and Annotation 

A critical preliminary step in the development of the information extraction pipeline was the 

collection and annotation of a custom dataset personalized for object detection in scanned 

resume documents. Given the absence of publicly available datasets with bounding box 

annotations for resume components, a custom dataset was collected and carefully labeled. 

A total of approximately 2,300 resume images were gathered from a variety of online 

sources, encompassing diverse formats, templates, and visual layouts. These images were 

then manually annotated using the Roboflow platform, with particular attention given to 

labeling semantically meaningful fields relevant to resume parsing. 

The annotation schema comprised 13 distinct classes, defined as follows: 

Class 

ID 
Class Name Description 

0 Extracurricular 
Consolidated class representing Achievements and Community 

involvement, due to low individual sample counts 

1 Certifications Certificates, licenses, or professional accreditations 

2 Contact Email, phone number, address, and other contact information 

3 Education Academic qualifications and institutions attended 

4 Experience Work history, job titles, responsibilities 

5 Interests Hobbies and personal interests 

6 Languages Spoken and written language proficiencies 

7 Name Candidate’s full name 

8 Profile Summary or personal statement 

9 Projects Descriptions of academic or personal projects 

10 Image Profile photograph or headshot, if present 

11 Resume Entire resume container or page layout 

12 Skills Technical and soft skills listings 

Table 0.1: Classes Description 

 

Two additional classes Achievements and Community were originally defined as separate 

classes, but due to extreme class imbalance, they were merged into a single class named 

"Extracurricular" for the purposes of annotation consistency and successful model training. 
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4.2.2 Resume Fields Detection (Object Detection Stage) 

After the dataset preparation phase, the second key component of the proposed methodology 

is to identify semantically significant fields in CV documents using object detection 

mechanisms. A process often known as layout analysis. This aims to automatically find and 

detect key information fields, such as "name," "experience," "skills," and "education," by 

predicting their bounding boxes. 

To achieve this, we trained and compared three state-of-the-art object detection models 

YOLOv11 (Ultralytics, 2023), Faster R-CNN (Ren, Shaoqing, He, Kaiming, Girshick, Ross, 

& Sun, Jian, 2015), and DETR (Carion, Nicolas, et al., 2020) on the prepared dataset. All 

models were compared based on standard object detection evaluation metrics, and the best-

performing model was selected for inclusion in the final pipeline. 

 

Figure 0.2: Layout Analysis Stage 

4.2.3 Text Extraction (OCR Stage) 

The second key component of the proposed methodology is text extraction from the 

previously detected resume fields. This stage involves applying Optical Character 

Recognition (OCR) to each cropped field region to retrieve its textual content. 

Multiple OCR engines were evaluated for this task, including open-source and deep learning-

based solutions such as TrOCR (Li, Minghao, Yin, Fei, Zhang, Cheng, & Liu, Cheng-Lin, 

2021), EasyOCR (JaidedAI, 2021), and PaddleOCR (Baidu, 2022). Despite the promising 

accuracy of transformer-based approaches like TrOCR, challenges with generalization on 

real-world resume formats and high computational cost made it less suitable for deployment. 

Ultimately, Tesseract OCR was selected due to its robustness, flexibility, and efficiency in 

structured document parsing. Its support for multilingual text, ease of integration, and 

favorable performance in our study. 

The OCR stage plays a critical role in transforming layout-structured visual data into 

machine-readable text, enabling downstream information extraction and semantic structuring 

in later stages of the pipeline. 
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4.2.4 Post-Processing and Information Structuring 

Following text extraction, a post-processing stage was introduced to improve the reliability 

and usability of the detected text. This component plays a key role in transforming raw OCR 

outputs into a structured, machine-readable format suitable for downstream applications such 

as applicant filtering or resume analytics. 

The post-processing module is composed of the following high-level stages: 

 Text Cleaning and Normalization: Removes common OCR errors, standardizes text 

case and spacing, and prepares the text for semantic parsing. 

 Field-Specific Parsing: Extracts domain-relevant entities (such as dates, emails, 

phone numbers, institutions, and skill sets) using rule-based and pattern-matching 

techniques. 

 Validation and Error Correction: Applies logical and pattern-based validation to 

ensure consistency and correctness across fields. 

 Structured Output Generation: Assembles the cleaned and validated data into 

JSON and CSV formats. 

This step bridges the gap between raw OCR output and meaningful resume understanding, 

completing the transformation pipeline from document to structured data. 

4.2.5 Summary of the Pipeline 

The architecture outlined is a modular, multi-step pipeline for the conversion of unstructured 

resume images into structured, machine-readable data. Each step within the pipeline is 

carefully designed to address one specific problem, and as such, it is an extensible and 

adaptable document understanding system. The major stages of the methodology are listed 

below: 

1. Dataset preparation and annotation 

2. Resume Field Detection (Layout Analysis) 

3. Text Extraction (OCR Stage) 

4. Post Processing (Structured Data) 

4.3 Experiments and Results 

This section describes the experimental setup followed during training and evaluation of the 

proposed resume information extraction pipeline in detail. We provide the data preparation, 

model configurations, learning procedure, evaluation metric, and hardware and software 

infrastructure. Each step has been carefully designed to provide the experiments with the 

desired reproducibility, scalability. 

4.3.1 Dataset Preparation 

The experiment is based on a dataset of approximately 2,300 high-resolution resume images, 

each annotated with a bounding box representing a semantic field commonly used in 

professional resumes. The dataset is designed to enable the extraction of tagged information 
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from semi-structured or unstructured documents. Its use cases are critical in resume parsing, 

recruitment automation, and HR analytics. 

 Image Specifications 

 Format: Most images are in JPG format, with some in PNG. JPG is preferred due to 

its universal compatibility and smaller file size, despite minor compression artifacts. 

 Average Resolution: Approximately 693 × 813 pixels. 

 Source: Roboflow Platform. 

 Preprocessing 

Preprocessing of all the data was done prior to training the models to normalize the data 

and to strengthen the machine-learning pipeline as well. The below steps were performed: 

1. Normalization of pixels: The pixel intensity values were all normalized to the range 

[0, 1] to stabilize and accelerate the learning process during the model's training. 

2. Bounding Box Format Conversion: The formats of the annotations were converted 

into the appropriate bounding box formats that are supported by different object 

detection models. YOLO and COCO formats were designed to be compatible with 

different architectures. 

3. Duplication and Cleaning of the dataset: Duplicate images were found and were 

removed. There was rigid separation between the training set, validation set, and 

testing set to avoid data leakage and obtain good evaluation. 

 Annotation Process 

Manual annotations were performed manually using Roboflow platform, which is cloud-

based and accepts various formats for object detection including YOLO, COCO. A 

predefined labeling schema was used to ensure semantic consistency. 

 Quality Assurance: 

o Random sampling and visual inspection 

o Verification of label accuracy and bounding box alignment 

 Exported Formats: 

o YOLO Format: For models such as YOLOv5 and YOLOv11 

o COCO Format: For models like Faster R-CNN and DETR 

This multi-format compatibility supports flexible experimentation with different detection 

architectures. 

 Class Distribution 

The class distribution of annotated instances is summarized in the table below Table 0.2: 

Classes Distribution: 
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Field Category Count Percentage 

Contact 6,066 12.97% 

Skills 5,383 11.51% 

Name 5,343 11.42% 

Experience 5,217 11.15% 

Education 5,117 10.94% 

Profile Summary 4,396 9.40% 

Resume Title/Header 3,930 8.40% 

Image 3,754 8.03% 

Languages 2,448 5.23% 

Interests 2,170 4.64% 

Extracurricular 1,138 2.43% 

Certifications 1,068 2.28% 

Projects 739 1.58% 

Table 0.2: Classes Distribution 

 

Figure 0.3: Class Distribution Across Annotated Categories 

This distribution indicates a moderate imbalance, with fields such as Contact, Skills, and 

Experience being more frequent than others. Class imbalance was taken into consideration 

during model training and evaluation to ensure equitable performance across categories. 

 Dataset Splitting 

To maintain representativeness and balance across semantic classes, the dataset was 

partitioned into three mutually exclusive subsets using a stratified sampling strategy: 

 Training Set: 70% (~1,610 images) 

 Validation Set: 15% (~345 images) 

 Test Set: 15% (~345 images) 
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 Data Augmentation 

In order to improve the model's robustness and generalization capabilities under various real-

world conditions. The augmentation techniques employed include: 

 Random rotation (±15°) to simulate document skew. 

 Random scaling and resizing to support scale invariance. 

 Horizontal flipping to encourage spatial generalization. 

 Brightness and contrast adjustments to address lighting variations. 

 Gaussian noise injection (σ in [5, 25]) to simulate sensor noise. 

Each transformation was applied with controlled probabilities to avoid distributional drift.  

4.3.2 Models Training and Result (Detection Models) 

This section outlines the configurations applied to train the object detection models in this 

study. The aim is to provide transparency regarding the hyperparameters, training strategies, 

and loss functions used, ensuring that readers can fully understand and potentially replicate 

the experiments. 

 YOLOv11 

The training of the object detection model in this study is based on YOLOv11-M, a 

hardware-optimized variant (Ultralytics, 2023) known for its balance between detection 

accuracy and inference efficiency. The model was trained using its default architecture, with 

key hyperparameters fine-tuned according to the specific characteristics of the dataset and 

available computational resources. 

Training Configurations: 

 Model Architecture: YOLOv11-M This design seeks a balance between accuracy 

and efficiency in order to be suitable for both real-time use and for use in which high 

detection performance is desired. 

 Input Image Size: 640 × 640 pixels This input size is a general choice for YOLO 

models in balancing detection performance against computational load. Larger images 

are generally going to have superior detection performance but come at increased 

computational expense, while smaller images can lead to faster training but lose 

detection performance for smaller objects. 

 Batch Size: 16 

Batch size describes the quantity of images being processed simultaneously per 

training iteration. We choose a batch size of 16 based upon a trade-off between 

convergence and memory. When using a batch size that is too big, memory issues 

arise on GPUs, and with a batch size that is too small, convergence slows. 

 Number of Epochs: 60 

This is an instruction that has the model train for 60 times over the entire training set. 

The number of epochs is often based on how rapidly the model converges and 100 

epochs are chosen so that it is sufficient for obtaining a satisfactory performance 

without overfitting, especially with optimally trained models such as YOLOv11. 

 Learning Rate Schedule: Cosine Annealing 



67 

 

Cosine annealing is a learning rate schedule that anneals learning rate gradually 

according to a cosine function. It slows down learning by starting with a bigger 

learning rate and slowly graduating it, avoiding any sudden learning drops which tend 

to break learning process of model. 

 Optimizer: AdamW 

AdamW (Adam with Weight Decay) is an improved variant of the Adam optimizer 

that decouples weight decay from the gradient update, enabling better generalization 

and regularization. It combines the benefits of adaptive learning rates and L2 

regularization, making it particularly effective for training deep networks. AdamW 

helps stabilize training and often converges faster and more reliably than traditional 

Adam or SGD, especially in complex tasks like object detection. 

Loss Function: YOLOv11 uses a composite loss function that includes multiple 

components: 

o Bounding Box Regression Loss: Measures how accurate predicted bounding 

boxes are against true values. 

o Objectness Loss: Quantifies a model's confidence level about detection of an 

object within a specific bounding box. 

o Classification Loss: Measures how well a predicted object class approximates 

the true class. 

These loss terms are designed so that it encourages all aspects of object detection, with a 

trade-off being made for class accuracy vs. localization (bounding box). 

This deployment employs the empirically set default parameter values for YOLOv11 

architecture for general object detection tasks. This gives robust performance with potential 

for tuning and adaptation based on dataset size and hardware. 

 Faster R-CNN (Two-Stage Detector Configurations):  

Faster R-CNN (Ren, Shaoqing, He, Kaiming, Girshick, Ross, & Sun, Jian, 2015) were also 

used for a contrast of YOLOv11 with more conventional two-stage detectors. They were 

chosen because they perform well for tasks with accurate localization and object class 

identification, for instance, structured document comprehension. 

 Backbone Network: Pre-trained ResNet-50 (He, Kaiming, Zhang, Xiangyu, Ren, 

Shaoqing, & Sun, Jian, 2016) witch is a deep convnet renowned for residual 

connections that combat the vanishing gradient challenge at training time. Initiating 

with a pre-trained ResNet-50 provides a solid image feature extraction backbone, 

promoting convergence and performance, especially if training from scratch is 

computationally impractical. 

 Input Image size: 600 × 600 pixels 

The input size is lower compared to YOLOv11 for a balance of performance and 

computational expense. 600x600 is a reasonable size for object detection tasks, 

particularly for smaller objects or when faster training iterations are needed. 

 Batch Size: 6 

A batch size of 6 is used so that memory overflow and stable training are avoided. 

 Adam (Loshchilov, Ilya & Hutter, Frank, 2019) and SGD Optimizer  

 Learning Rate: 0.0001 
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The smaller learning rate is chosen so a gradual adjustment is made to the model's 

weights, particularly for use with pre-trained networks, which are already optimized. 

Fine tuning with a low learning rate avoids interference with pre-trained weights. 

 Number of Epochs: 50 

Faster R-CNN would converge sooner due to more structured training pipeline, and 

therefore 50 epochs were sufficient for good performance without overfitting. 

 Loss Function: 

Faster R-CNN applies a multi-task loss function, and components of said loss 

function are typically: 

o Classification Loss (Cross-entropy loss): 

It measures precisely how accurately the model is classifying any given object 

into the correct class. Cross-entropy is being used here because the model is 

classifying into all of the possible regions. 

o Bounding Box Regression Loss (Smooth L1 loss): 

It makes a prediction whether or not the predicted bounding boxes are well 

aligned with true bounding boxes. It is referred to as Smooth L1 loss (a 

variation of the L1 loss) and is less sensitive to outliers compared to normal 

L2 loss. Small misalignments are penalized less than large ones, avoiding 

overly big gradients. 

o Region Proposal Network (RPN) Objectness Loss: 

This is a quality measure for RPN's region proposals. It differentiates object 

(foreground) and backgrounds. It is often a binary class loss (like cross-

entropy) for whether a proposal is an object or not. 

 Early Stopping: Training stopped if validation loss does not improve for 5 

consecutive epochs. This avoids training for too many epochs and helps keep model 

parameters generalizable. 

 DETR Configuration 

DETR (Carion, Nicolas, et al., 2020) is a highly advanced object detection model based on a 

Transformer architecture (Carion et al., 2020) that, unlike traditional anchor-based region 

proposals, predicts object classes and locations directly. This results in a more generalizable 

and strong detection mechanism, especially suited for hard scenes. 

 Architecture: Transformer-based Detection Model (Vaswani, Ashish, et al., 2017) 

uses a Transformer encoder-decoder architecture, with global context modeling 

capability and therefore suited for object detection within densely or visually cluttered 

scenes. 

 Backbone Network: ResNet-50 (He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, & 

Sun, Jian, 2016) with Feature Pyramid Network (FPN) (Lin, Tsung-Yi, et al., 2017) 

Backbone network ResNet-50 produces hierarchical feature maps of an input image, 

which are enhanced by FPN with multi-scale detection features, for excellent 

performance over objects with varied sizes. 

 Image size input: 600 × 600 pixels 

This size provides a good balance between computational efficiency and detection 

accuracy, providing sufficient resolution to detect both small and large objects. 

 Batch Size: 16 

Since the Transformer model is memory-demanding, a smaller batch size was utilized 

for enabling successful training within GPU memory constraints. 
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 Optimizer: AdamW (Loshchilov, Ilya & Hutter, Frank, 2019) witch is specifically 

suited for Transformer models and produces better weight regularization, which is 

particularly crucial for convergence with large models. 

 Learning Rate Schedule: 0.0001 Cosine Annealing  

 Number of Epochs: 50 

 Loss Function: Composite Loss 

DETR uses a combination of losses that are optimized jointly for object classification 

and localization: 

a. Classification Loss (Cross-Entropy Loss): Responsible for classifying 

objects recognized into respective classes. 

b. Bounding Box Regression Loss (L1 Loss): The metric measures predicted 

vs. ground truth bounding box difference. 

c. Generalized IoU Loss (GIoU Loss): Provides better bounding box 

localization through consideration of predicted box and ground truth box 

overlap. 

d. No Object Loss: Penalizes inaccurate forecasts for background regions, 

maintaining high precision for the model. 

4.3.3 Detection Results 

 Evaluation Metrics 

In order for a strong object detection performance assessment, multiple critical metrics were 

utilized: 

 Precision: The ratio of correctly predicted positive observations to the total predicted 

positives. It is calculated as: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Where TP is the number of true positives, and FP is the number of false positives. 

High precision indicates a low false-positive rate. 

 Recall: The ratio of correctly predicted positive observations to all actual positive 

observations. It is calculated as: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Where FN is the number of false negatives. High recall indicates a low false-negative 

rate. 

 Mean Average Precision at 0.5 (mAP@0.5): The mean of all the values of precision 

calculated at Intersection over Union (IoU) = 0.5 for all categories. This is a standard 

measure for object detection models, checking whether a model is excellent at 

classifying and is also great at object localization. 

 Mean Average Precision at 0.5:0.95 (mAP@0.5:0.95): An extension of mAP that 

calculates the average precision at multiple IoU thresholds ranging from 0.5 to 0.95 
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(in increments of 0.05). This provides a more comprehensive evaluation of model 

performance. 

 F1-Score: The harmonic mean of precision and recall, providing a single metric to 

evaluate model performance. It is defined as: 

𝐅𝟏 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×  𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 Confusion Matrix: Breakdown of true positives, false positives, true negatives, and 

false negatives by class, enabling extensive error analysis. 

 Inference Time: The average time taken for the model to process an image and 

produce predictions. This is critical for real-time deployment scenarios. 

 

 YOLOv11 Performance 

The YOLOv11 model demonstrated strong performance on the resume dataset, achieving 

high detection accuracy across most semantic categories. The Losses Curve are in Figure 0.4: 

YOLO Losses and The overall performance metrics on the test set are summarized in the 

Table 0.3 

 

Figure 0.4: YOLO Losses 

 

 

 

Class Precision Recall mAP@0.5 mAP@0.5:0.95 
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Class Precision Recall mAP@0.5 mAP@0.5:0.95 

Extracurricular 0.817 0.740 0.815 0.736 

Certifications 0.813 0.807 0.875 0.763 

Contact 0.927 0.907 0.952 0.803 

Education 0.945 0.932 0.974 0.901 

Experience 0.938 0.944 0.978 0.930 

Interests 0.931 0.894 0.955 0.834 

Languages 0.945 0.905 0.959 0.817 

Name 0.951 0.943 0.979 0.759 

Profile 0.895 0.855 0.908 0.668 

Projects 0.846 0.904 0.912 0.851 

Image 0.954 0.994 0.979 0.865 

Resume 0.938 0.938 0.965 0.851 

Skills 0.924 0.924 0.965 0.873 

Overall 0.909 0.899 0.940 0.819 

Table 0.3: YOLOv11 Performance Metrics by Class 

The model obtained an overall mAP@0.5 score of 0.94 and an mAP@0.5:0.95 score of 

0.819, which is 

Precision-recall analysis 

The YOLOv11's precision-recall features are further demonstrated using the given curves: 

 Precision-Recall Curve: The figure illustrates the precision-recall trade-off for 

different confidence cutoff points. 

 F1-Score Curve: Graphs the harmonic mean of recall and precision, with the peak 

being the best point for the model's operation. 

 ROC Curve (Receiver Operating Characteristic): Illustrates a model's ability to 

distinguish between classes. 

 Confusion matrix: Indicates classification accuracy and misclassifications for every 

class, revealing any existing biases. 
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Figure 0.5: Confusion Matrix (YOLO) 

 

Figure 0.6: Precision-Recall curve (YOLO) 
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Figure 0.7: Precision-Confidence Curve (YOLO) 

 

Figure 0.8: F1-Confidence Curve (YOLO) 
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Figure 0.9: Recall-Confidence Curve (YOLO) 

Error Analysis 

The confusion matrix provides insights into common misclassifications. Categories such as 

Profile, Projects, and Extracurricular exhibited relatively lower mAP@0.5:0.95, indicating 

that the model struggled with these classes. This can be attributed to: 

 Visual Similarity: Overlapping features between categories like "Profile" and 

"Resume Header". 

 Class Imbalance: Lower frequency of categories like "Projects" and 

"Extracurricular" in the training set. 

 Text Density: Denser text regions making object localization challenging. 

Inference Speed and Efficiency 

 Preprocessing Time: 0.42 ms per image. 

 Inference Time: 14.75 ms per image. 

 Post-processing Time: 1.56 ms per image. 

 Average Loss during Training: 0.028. 

The model achieves real-time performance, making it suitable for deployment in resume 

parsing systems. 

 

 

 

Detection Example: 



75 

 

 

Figure 0.10: Layout Analysis Result 

 

 Faster RCNN Performance 

The Faster R-CNN model, utilizing a ResNet-50 backbone, demonstrated moderate 

performance on the resume dataset. The overall evaluation metrics on the test set are 

summarized below: 

Training summary 

 

Figure 0.11: Faster-RCNN Loss 

Overall Performance Metrics: 
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 Mean Average Precision (mAP@0.5): 0.538 

 Mean Intersection over Union (mean IoU): 0.755 

 Precision: 0.668 

 Recall: 0.620 

 F1-Score: 0.615 

Class-wise Performance Metrics: 

 

Class Precision Recall F1-Score mAP@0.5 

Extracurricular 0.000 0.000 0.000 0.024 

Certifications 0.500 0.100 0.167 0.067 

Contact 0.744 0.811 0.776 0.626 

Education 0.693 0.718 0.705 0.533 

Experience 0.701 0.758 0.728 0.559 

Interests 0.586 0.554 0.569 0.346 

Languages 0.718 0.735 0.726 0.542 

Name 0.957 0.969 0.963 0.931 

Profile 0.758 0.753 0.756 0.595 

Projects 0.667 0.077 0.138 0.067 

Image 0.984 1.000 0.992 0.984 

Resume 0.735 0.881 0.801 0.657 

Skills 0.640 0.707 0.672 0.487 

Overall 0.668 0.620 0.615 0.494 

Table 0.4: Performance Metrics by Class (Faster-RCNN) 
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Figure 0.12: Confusion Matrix (Faster-RCNN) 

 

Figure 0.13: Precision-Recall Curve (Faster-RCNN) 
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Figure 0.14: F1 Per Class (Faster-RCNN) 

Performance Analysis: 

 High-Performing Categories: 
o The "Image" and "Name" categories achieved the highest precision and recall, 

reflecting the model's ability to accurately localize these visually distinct 

fields. 

o "Resume Header" also performed well, benefiting from consistent layout 

patterns. 

 Low-Performing Categories: 
o "Extracurricular" and "Projects" exhibited the lowest performance, with near-

zero recall and F1-scores. These categories likely suffer from: 

 Class Imbalance: Significantly fewer instances in the training set. 

 Visual Complexity: Overlapping textual regions and inconsistent 

formatting. 

 Moderate-Performing Categories: 
o "Certifications," "Interests," and "Skills" achieved moderate results, indicating 

that the model struggled with their diverse layouts. 

Error Analysis: 

 Misclassifications: The confusion matrix further tells us that classes like "Projects" 

and "Extracurricular" are persistently misclassified, either due to being rare in the 

training set or because of resemblance with other text-based classes. 

 False Positives: High accuracy labels such as "Image" and "Name" result in few false 

positives, indicating that the model is highly certain about detecting them. 

 False Negatives: The poor performance of "'Extracurricular"' is due to having a high 

number of false negatives, i.e., the model did not identify such regions for a majority 

of cases. 
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Inference Efficiency: 

 Average Inference Time: The model exhibited moderate inference speed due to the 

computational overhead of region proposal and region-based detection in Faster R-

CNN. 

 Training Stability: Despite the relatively low mAP, the model achieved consistent 

performance without severe overfitting. 

 DETR Performance 

The Detection Transformer (DETR) model, a fully transformer-based object detection model, 

was also evaluated on the resume dataset. However, the model's performance was 

significantly lower than the other tested models. The evaluation metrics on the test set are as 

follows: 

 

Figure 0.15: DETR Loss 

Overall performance measures 

 Mean Average Precision (mAP@0.5): 0.0923 

 Mean Average Precision (mAP@0.5:0.95): 0.0316 

 Precision: 0.0923 

 Recall: 0.0316 

 F1-Score: 0.0427 
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Performance Analysis 

 Poor detection performance: DETR model did a poor job of detection and 

classifying text regions on the resume dataset, evidenced by its extremely low mAP 

and F1-score. 

 Inadequate Training Data: Most probably, this poor performance is due to a small 

training dataset. Transformer-based models such as DETR usually need extensive 

training data if they are going to be able fulfill intricate spatial and contextual 

relationships. 

 Complex Layouts: Resumes contain complex layout and dense text regions, which 

were perhaps making it even harder for the DETR model to distinguish among a 

variety of categories. 

 Lack of Pre-training on Document Images: Unlike models pre-trained on natural 

images, DETR may lack pre-training focused specifically on document analysis, 

which would decrease its performance on such an operation. 

Analysis Error 

 High False Negatives: The model did not detect and classify objects consistently, and 

had extremely low recall. 

 Overfitting due to Small Data: The model would have overfit the training set and 

not generalized to the test set due to insufficient size of data. 

 Inconsistent detection regions: The global attention-based architecture of the model 

could be tested by the extremely localized presence of text objects within resumes. 

Why DETR Failed 

The reasons for DETR's poor performance are as follows: 

 Limited Training Data: Transformer-based models such as DETR need a lot of data 

to learn object relationships. 

 No Domain-Specific Pre-training: The model may not have been pre-trained on 

document images, and therefore it is difficult for it to generalize to the resume format. 

 Complex Layouts: Resume pictures possess a mix of text and non-text regions, 

which could be challenging for models primarily trained for natural image detection. 

Conclusion 

The YOLOv11 performed far above Faster R-CNN and DETR on both accuracy and speed. 

Hence, it became our detection model of choice for our final pipeline.  
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4.3.4 OCR 

Based on the OCR technologies reviewed in the State of the Art (Section 3.2), a comparative 

evaluation was conducted to select the most suitable engine for extracting text from the 

Regions of Interest (ROIs) in our image-based documents. The engines evaluated included: 

 Tesseract OCR – Open-source engine by Google (Smith, 2007; Google, 2022) 

 EasyOCR – CRNN-based multilingual engine (JaidedAI, 2021) 

 PaddleOCR – Deep learning-based OCR framework (Baidu, 2022) 

 TrOCR – Transformer-based OCR by Microsoft (Li et al., 2021) 

After empirical testing, Tesseract was ultimately chosen for the production pipeline due to its 

optimal balance between recognition performance and computational efficiency. 

 OCR Evaluation Metric 

Each engine was benchmarked using: 

1) Character Error Rate (CER): Measures the proportion of incorrect characters in the 

predicted text compared to the ground truth. 

  𝐶𝐸𝑅 =
𝑳𝒆𝒗𝒆𝒏𝒔𝒉𝒕𝒆𝒊𝒏 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝑻𝒐𝒕𝒂𝒍 𝑪𝒉𝒂𝒓𝒂𝒄𝒕𝒆𝒓𝒔 𝒊𝒏 𝑮𝒓𝒐𝒖𝒏𝒅 𝑻𝒓𝒖𝒕𝒉
=

𝑺+𝑫+𝑰

𝑁
  

where: 

 S is the number of substitutions, 

 D is the number of deletions, 

 I is the number of insertions, 

 N is the total number of characters in the ground truth text. 

2) Word Error Rate (WER): Measures the proportion of incorrect words, accounting 

for insertions, deletions, and substitutions. 

𝑊𝐸𝑅 =
𝐒 + 𝐃 + 𝐈

𝑁
 

  where: 

 S is the number of substitutions, 

 D is the number of deletions, 

 I is the number of insertions, 

 N is the total number of words in the ground truth text. 

3) Field-level Accuracy: The percentage of correctly extracted field values from the 

OCR output, reflecting how well the recognized text aligns with expected structured 

fields. 

𝑭𝒊𝒆𝒍𝒅 − 𝒍𝒆𝒗𝒆𝒍 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐥𝐲 𝐄𝐱𝐭𝐫𝐚𝐜𝐭𝐞𝐝 𝐅𝐢𝐞𝐥𝐝𝐬

𝐓𝐨𝐭𝐚𝐥 𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐅𝐢𝐞𝐥𝐝𝐬
 × 100 
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where: 

 "Correctly Extracted Fields" refers to the number of fields where the OCR 

output matches the expected value for that field, 

 "Total Number of Fields" refers to the total number of fields that need to be 

extracted. 

 Synthetic Data Evaluation: A Controlled Experiment 

I conducted a controlled experiment using a custom synthetic dataset specifically created 

for this study. The synthetic images were generated using text content sourced from 

Wikipedia, selected for its rich and diverse vocabulary as well as complex linguistic 

constructions. 

The purpose of this experiment was to simulate real-world document scenarios while 

maintaining full control over the ground truth, allowing for precise measurement of OCR 

engine performance. The controlled nature of this dataset ensured a fair, consistent, and 

reproducible environment for evaluation. 

All OCR engines under comparison including Tesseract, PaddleOCR, and EasyOCR were 

tested on this dataset. Evaluation was conducted using standard OCR metrics: Word Error 

Rate (WER), Character Error Rate (CER), and Field-level Accuracy (as defined in Section 

3.3.4.1). 

The results of this experiment, including quantitative comparisons and discussion, are 

presented in the next section Table 3. 

OCR Engine Average WER Average CER Accuracy  Average Inference Time (s/image) 

Tesseract 0.0733 0.0299 85.00% 0.8375 

PaddleOCR 0.0563 0.0158 95.50% 6.3008 

EasyOCR 0.1331 0.0321 76.00% 12.6473 

Table 0.5: OCR Performance Metrics on Synthetic Data 

 Discussion: Balancing Accuracy and Efficiency 

The results of the synthetic data evaluation provide critical insights into the strengths and 

limitations of each OCR engine: 

1. PaddleOCR: 
o Demonstrated the best overall accuracy, achieving the lowest WER (0.0563) 

and CER (0.0158), with an accuracy of 95.5%. 

o However, this superior recognition capability comes at the cost of significantly 

slower processing speed (6.3 seconds per image). 

o PaddleOCR is most suitable for applications where recognition accuracy is 

prioritized over processing speed, such as detailed document digitization or 

multilingual text extraction. 
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2. Tesseract: 
o Offers a strong balance between accuracy and efficiency, with a WER of 

0.0733 and a CER of 0.0299, while maintaining a much faster average 

inference time of 0.8375 seconds per image. 

o The high threshold-based accuracy (85.0%) further confirms its reliability, 

making it an excellent choice for large-scale text extraction tasks where speed 

is crucial. 

o Given that the primary language of the resume dataset is English, Tesseract's 

robust English recognition further justifies its selection. 

3. EasyOCR: 
o While relatively straightforward to implement, EasyOCR exhibited the lowest 

performance in terms of accuracy, with the highest WER (0.1331) and CER 

(0.0321). 

o It also demonstrated the slowest inference speed (12.6473 seconds per image), 

making it the least suitable choice for this study’s objectives. 

 Final OCR Engine Selection 

Considering the specific requirements of this study namely, efficient and accurate text 

extraction from English-language resumes Tesseract was selected as the primary OCR 

engine. Its balance of speed and acceptable recognition accuracy aligns well with the large-

scale, real-time nature of the project. 

However, it is important to note that PaddleOCR remains a viable alternative if recognition 

accuracy is prioritized over speed. For future improvements or advanced deployments where 

computational resources are sufficient, PaddleOCR may offer enhanced performance, 

especially for complex or multilingual document analysis. 

 

 Preprocessing Steps Applied Before OCR To The Cropped Images 

To maximize OCR performance, several image preprocessing steps were applied to the 

cropped text regions before feeding them to the OCR engine: 

1. Grayscale Conversion Simplifies the image by removing color information, focusing 

only on intensity, which reduces the dimensionality and simplifies downstream 

processing. 

2. Denoising with Non-Local Means Filtering Utilizes a noise-removal function that 

smoothes equivalent patches all over an image without compromising text edges. This 

works particularly well for the eradication of background noises without 

compromising details of text. 

3. Resizing Crops to Improve Small Font Recognition Crops containing small fonts 

were resized (upscale) to increase the size of characters, thus making them easier to 

recognize. Resizing was done while preserving the aspect ratio to avoid geometric 

distortions. 
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4.3.5 Qualitative Evaluation 

In addition to the detection performance and OCR metrics, a qualitative evaluation of the 

pipeline was performed. By visually inspecting a subset of resumes processed by the system, 

it was found that the pipeline consistently extracted key fields, including Name, Email, and 

Education, with high accuracy when the resumes were well-structured. However, minor 

errors were observed in cases with poor scan quality, unusual fonts, or complex layouts 

like Work Experience sections with dense text blocks. Despite these challenges, the system 

showed promise for handling typical resume formats and could reliably extract key data for 

most cases. 

The combination of robust detection from YOLOv11, efficient text extraction from 

Tesseract OCR, and post-processing rules provided a functional and reliable pipeline for 

structured data extraction. 

While no exact Full Extraction Accuracy or Partial Extraction metrics were calculated in 

this study, the system’s effectiveness was supported by the promising detection and OCR 

results, along with qualitative insights. 

 

4.3.6 Result Visualizations 

Sample qualitative results are provided below: 

 Bounding boxes drawn over fields like Name, Education, Work Experience … 
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Image 1: Layout Analysis Example 

 Extracted text shown next to the detected boxes 

 Post-processed output organized in a structured JSON-like format 
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Image 2: OCR resutl Example 
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4.3.7 Summary of Findings 

 YOLOv11 + Tesseract combination provided a strong balance of speed and 

accuracy. 

 Fine-tuning Tesseract preprocessing (thresholding, resizing) significantly improved 

OCR performance. 

 Post-processing helped standardize extracted fields (e.g., cleaning phone numbers, 

standardizing degree names). 

 The main challenges remained in handling highly non-standard CV templates or very 

low-quality scans. 

4.3.8 Web Application: Interactive Resume Processing with Streamlit 

To facilitate users working with the resume information extraction pipeline, a Streamlit-based 

web application has been created. Streamlit is a lightweight yet strong Python rapid 

application development framework for creating interactive web apps. The application 

supports multi-batch processing for resumes and includes advanced filtering capabilities so 

users are able to exclude extractions by certain criteria (skills, education, experience, etc.). 

The interactive interface makes it far more usable and accessible, and it is a feasible option 

for everyday use. 

 Architecture and Workflow 

The web application is designed using a client-server architecture, where the client interacts 

with a graphical interface, and the server hosts the backend processing logic. The primary 

workflow of the application is as follows: 

1. User Interface (Frontend) 
o Users can upload one or multiple resume images in formats such as JPG, 

PNG, or PDF. 

o A clean and intuitive layout is provided, with buttons for uploading images, 

starting the processing task, and applying filters. 

o A sidebar allows users to define filtering criteria, such as searching for 

resumes containing specific skills (e.g., "Python", "Machine Learning"), 

educational qualifications, or work experience. 

2. Backend Processing (Resume Information Extraction Pipeline) 
o Upon receiving the uploaded files, the application triggers the resume 

processing pipeline for each document in batch mode: 

 Detection: Each image is processed using the YOLOv11 model, which 

identifies key sections (e.g., Name, Education, Skills). 

 Text Extraction: Detected fields are cropped and processed using 

Tesseract OCR for text recognition. 

 Post-Processing: Extracted text is cleaned, parsed, and structured 

according to predefined categories. 

o The extracted information from all resumes is stored in a structured format 

(JSON or DataFrame). 

3. Filtering Functionality 
o Users can dynamically filter the processed resumes using various criteria: 

 Skills: Display resumes containing specific skills (e.g., "Python", 

"Project Management"). 
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 Education: Filter resumes based on academic degrees (e.g., "Master's 

Degree", "Bachelor's Degree"). 

 Experience: Search for resumes with a specified number of years of 

experience. 

 Certifications: Identify resumes with specific certifications (e.g., 

"AWS Certified Solutions Architect"). 

o The filtering process is fast and responsive, enabling real-time exploration of 

the extracted data. 

4. Output Display and Download 
o The extracted and filtered resume information is displayed in a structured 

format (JSON or tabular view). 

o Users can directly download the processed data as a CSV or JSON file for 

further use. 

 

 Streamlit Application Design 

The Streamlit application was designed with a modular structure to enhance usability and 

flexibility: 

 File Uploader: Allows users to upload one or multiple resume images (JPG, PNG, 

PDF). 

 Batch Processing: Supports concurrent processing of multiple resumes, significantly 

improving workflow efficiency. 

 Sidebar Controls: 
o Filter criteria for selecting specific skills, education, experience, or 

certifications. 

o Real-time search functionality for immediate feedback. 

 Extraction Results Display: 
o Processed resumes are displayed in a structured tabular format, making it easy 

to view, filter, and analyze extracted information. 

o The table is automatically updated based on applied filters. 

 Download Option: 
o Allows users to download the extracted data (either raw or filtered) as a CSV 

or JSON file. 

 Technical Implementation 

 Programming Language: Python (Streamlit framework). 

 Backend Framework: PyTorch for YOLOv11 and Tesseract for OCR. 

 Batch Processing Logic: Implemented using Python’s multiprocessing and 

concurrent.futures modules for efficient parallel processing. 

 Filtering Mechanism: 
o Extracted text is stored in a Pandas DataFrame, enabling fast filtering using 

Pandas query syntax. 

o Users can filter by any detected field (e.g., Skills, Education, Experience) 

using regular expressions or keyword matching. 

 Preprocessing: Uploaded images are automatically resized, denoised, and normalized 

before processing, ensuring consistent performance. 
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 Deployment Environment: The application was initially developed and tested 

locally, but is designed for easy deployment on cloud platforms (e.g., Heroku, AWS, 

Azure) for scalable use. 

 User Experience 

The multi-batch and filter-enabled web application provides a seamless user experience: 

 Multi-Document Processing: Users can upload multiple resumes at once and process 

them in a single batch, saving time and effort. 

 Interactive Filtering: Real-time filtering allows users to focus on specific 

qualifications, skills, or experiences of interest. 

 Instant Feedback: The processed resumes and filtered results are displayed 

immediately without page reloads, offering a smooth and responsive experience. 

 Scalable Design: The architecture can be easily extended to handle larger document 

batches without significant performance loss. 

4.3.9 Training Module for Custom Document Types 

An additional feature in the web application allows users to train a custom object detection 

model directly. Users can upload their dataset (images and annotations) and initiate the 

training process. This provides a user-friendly way for non-technical users to adapt the 

pipeline to any document type without modifying the code. 

 Future Improvements 

 Enhanced Filtering: Adding advanced query capabilities, such as AND/OR 

conditions for multiple criteria. 

 Security Enhancements: Implementing user authentication and file encryption to 

secure uploaded documents. 

 Dynamic Field Detection: Allowing users to customize the detection categories 

based on their requirements. 

 Advanced Visualization: Providing graphical insights into the extracted information 

(e.g., skill distribution across resumes). 

By integrating this web application, the proposed pipeline becomes a complete, scalable, and 

accessible solution for automated resume parsing, suitable for HR professionals, recruiters, 

and organizations seeking efficient document processing. 



90 

 

 

 

 



91 

 

 

 

Image 3: Wet App Screen shots 

4.3.10  Hardware and Software Environment 

This section outlines the hardware and software configuration used throughout the 

development and experimentation phases of this study. All model training, inference, and 

evaluations including object detection, optical character recognition (OCR), and related post-

processing were conducted in a consistent computing environment to ensure reliability and 

reproducibility of results. The selected tools and frameworks were chosen for their 

robustness, ease of integration, and alignment with the project’s performance requirements. 

Hardware: 

 CPU: Intel Core i5-6 generation 

 GPU: P100 (Kaggle GPU) 

 RAM: 16 GB (Kaggle) 
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Software: 

 Programming Language: Python 3.10 

 Deep Learning Frameworks: PyTorch 2.0 (for Faster R-CNN) 

 Object Detection Toolkits: YOLOv11 (Ultralytics PyTorch implementation), Faster 

R-CNN (PyTorch implementation) 

 OCR Engine: Tesseract 5.3.0 (via pytesseract Python package) 

 Annotation Tool: Roboflow 

 Other Libraries: OpenCV, Albumentations (for augmentations), NumPy, Matplotlib 

 Post-processing: Custom post-processing scripts for object detection and OCR output 

Training Setup: 

 The experiments were conducted on Kaggle Notebooks, utilizing the free limited 

GPU resources provided by the platform. No cloud computing resources were used 

beyond Kaggle. 

4.4 Discussion 

This section provides a critical analysis of the experimental results. It discusses the strengths, 

challenges, and limitations of the proposed resume information extraction pipeline and 

suggests possible future improvements. 

4.4.1 Strengths of the Proposed Pipeline 

 High Detection Accuracy: The YOLOv11 model demonstrated excellent capability 

in localizing key fields across a wide variety of resumes, achieving high precision, 

recall, and mAP scores even on unseen templates. This confirms YOLOv11's strong 

generalization ability when trained with diverse annotated examples. 

 Efficiency and Scalability: Thanks to YOLOv11’s lightweight architecture and fast 

inference time (~28 ms per image), the pipeline is well-suited for real-world 

applications that require processing thousands of resumes in a short time. 

 Robust OCR Performance: Despite the varying text styles and fonts, Tesseract 

OCR, coupled with appropriate pre-processing, yielded low character and word error 

rates, enabling reliable extraction of textual information from detected fields. 

 Effective Post-processing: Post-processing steps (such as regular expression 

cleaning, normalization of contact details, and keyword-based organization) played a 

crucial role in converting noisy raw OCR output into structured, machine-readable 

data formats. 

4.4.2 Challenges Encountered 

 Low-Quality Scans and Noisy Inputs: OCR performance dropped significantly on 

resumes with poor resolution, heavy background noise, or faded text, leading to 

character-level mistakes that sometimes affected critical fields like phone numbers 

and emails. 

 Creative Resume Layouts: Highly customized or artistic CV designs, with non-

standard field placements or decorative fonts, confused the detection model, leading 

to missed detections or incorrect field associations. 
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 Limited Training Annotations: Although the manually created dataset was 

substantial (~2300 annotated images), certain field types (like Certifications or Skills) 

were underrepresented compared to core sections like Education and Work 

Experience, potentially causing slight detection bias. 

 Handwritten Elements: In rare cases where handwritten notes were present on 

resumes (e.g., corrections, manual signatures), both detection and OCR stages 

struggled, as handwritten text is notably harder to recognize using standard Tesseract 

OCR. 

4.4.3 Lessons Learned 

 Importance of Diverse Data: Annotating a wide variety of resume styles 

significantly improved the model’s generalization. Greater template diversity during 

training reduces the risk of overfitting to specific document designs. 

 Preprocessing Matters: Techniques such as skew correction, and noise removal 

substantially enhanced OCR quality, showing that pre-processing is as critical as 

model choice. 

 Model Selection Justification: The experiments validated that YOLO-based 

architectures are preferable over two-stage detectors like Faster R-CNN for tasks 

where real-time performance and layout complexity are important factors. 

4.4.4 Limitations 

 Dependency on OCR Quality: The pipeline’s final output quality is heavily reliant 

on OCR success. Any OCR mistakes (e.g., in names or emails) can significantly 

impact downstream systems like applicant tracking or contact databases. 

 Fixed Field Detection: The detection model was trained on specific fields. If a 

resume contains new, unseen sections (e.g., “Volunteer Experience” or “Awards”), 

the current model would not detect them without additional training. 

 Domain Adaptability: While the pipeline is effective for English-language resumes, 

its performance on resumes in other languages was not evaluated, and would likely 

require retraining and adjustments. 

4.4.5 Potential Improvements and Future Work 

 Advanced OCR Models 
 Semi-supervised Learning for Detection: Leveraging semi-supervised learning 

techniques could reduce the manual annotation burden by allowing the model to learn 

from partially labeled or unlabeled resume images. 

 Multilingual Support: Expanding the pipeline to handle resumes in different 

languages would make the solution more globally applicable. 

In conclusion, the proposed resume information extraction pipeline demonstrated strong 

performance and practicality, yet certain challenges related to scan quality, layout diversity, 

and OCR robustness remain. Addressing these limitations will be critical for deploying the 

system at scale in diverse and dynamic real-world environments. 
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4.5 Chapter Summary 

This chapter offered a comprehensive description of the proposed pipeline for extracting 

structured data from scanned resumes. 

The major findings and contributions are listed as follows: 

 Pipeline Description: The chapter outlined the whole end-to-end pipeline, detailing 

all the components—from resume image collection, pre-processing, field detection 

via YOLOv11, text extraction via Tesseract OCR, up to final post-processing for 

structured output generation. 

 Dataset Preparation: There were significant manual efforts which were put into 

creating a good quality annotated dataset of about 2300 resume images. This served to 

train the detection model adequately and allow it to perform well even for various 

resume templates and formats. 

 Model Selection and Evaluation: Faster R-CNN, YOLOv11 and DETR were 

compared, and YOLOv11 is utilized since it offered better detection and real-time 

detection. Measures such as precision, recall, and mean Average Precision (mAP) 

proved the performance of the model. 

 Results Analysis: Large-scale experiments showed strong detection and extraction 

even for moderately harsh conditions (e.g., light-level noise, heterogeneous 

configurations). The pipeline proved sensitive, however, to radical layout extremes 

and input quality. 

 Discussion of Findings: The weaknesses, strengths, and boundaries of the proposed 

system were examined critically. Key takeaways highlighted the importance of mixed 

training data, the supreme importance of image pre-processing for OCR success, and 

the need for potential future evolution such as multilingual support and increased 

integration of OCR. 

In conclusion, this chapter demonstrated that the designed pipeline provides a practical and 

scalable solution for automatic resume information extraction. Despite some remaining 

challenges, the experimental results indicate strong potential for real-world deployment in 

human resources (HR) automation systems and beyond. 
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5 Conclusion and Future Work 

The objective of this project was to develop a smart pipeline which would be able to extract 

structured data from scanned resumes (CVs), a process of increasing relevance for today's 

hiring processes. The project kicked off with identification of resumes and preparation of an 

accurate dataset of resumes, for which supervised learning required manual annotation. 

Though there were no pre-existing annotations, a high-quality labeled dataset was prepared 

with the help of Roboflow platform, which turned out to be a strong foundation for training 

and testing. 

The two object detection models, YOLO and Faster R-CNN among others, were tested for 

detection of relevant segments from resumes. YOLOv11 was used as the primary detection 

model based on comparison experiments since it had faster execution and more accurate 

detection, making it more suited for real-world application. Detection was followed by 

Tesseract OCR for extraction of content from detected segments, with custom post-

processing for assurance of structured and usable extracted content. 

The experimental results confirmed the efficiency of the proposed pipeline. The system 

demonstrated the ability to precisely extract and identify important resume fields, such as 

names, contact information, education, and experience, regardless of layout, fonts, and image 

variability. Furthermore, deep learning-based detection with OCR and structured post-

processing were also confirmed to be an effective solution for handling issues with resume 

digitization. 

Overall, the pipeline developed is an important leap for human resource management toward 

automating resume screening. It also holds great promise for decreasing human labor, 

streamlining the efficiency of screening candidates, and facilitating more data-driven hiring. 

5.1 Limitations 

While the pipeline created proved effective at demonstrating ability to extract and identify 

structured data from scanned resumes, a number of weaknesses were also encountered during 

experimentation and actual field trials. 

 Dataset boundaries 

The test and training dataset included around 2,300 annotated images of resumes. 

While adequate for a proof of concept, a limitation of generalization for the model 

exists if the model were to be exposed to resumes from other parts of the world, 

industries, or nonstandard formats. 

 Quality and effort of annotation 

The manual process of annotating, which was done via Roboflow, took a lot of time 

and was a little inconsistent. Since detection model performance is so sensitive to 

annotation accuracy, any deviation of bounding box placement could affect model 

performance. 

 Detection Model Challenges: 

While YOLOv11's performance outperformed that of Faster R-CNN and the others, 

there were still detection errors. Resumes with extremely dense content, atypical 
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structuring, or graphically sophisticated layout (e.g., graphical resumes) would at 

times lead to detection failures or erroneous bounding boxes. 

 OCR Limitations: 

Though Tesseract OCR was powerful, it had problems with poorer-quality scans, 

handwriting, or very stylized fonts. In addition, OCR issues like character confusion 

sometimes carried over even into post-processing, which would need further cleaning 

or even manual editing. 

 Post-Processing Complexity 

Post-processing rules were specifically customized for language and format of 

resumes within the dataset. Redefining or introducing post-processing logic would be 

required for expanding the pipeline to parse more than a single language (resumes that 

are non-English), different templates, or any other type of documents. 

 Lack of end-to-end automation 

Although the system is able to automatically detect and extract, it currently does not 

possess an intelligent checking mechanism. For instance, incorrect fields (such as 

extracting an address into a field for a name) are currently not automatically indicated, 

and human checking would still need to be done for mission-critical operations. 

 Computational Efficiency 

While YOLOv11 detection itself is fast enough for deployment, total detection, OCR, 

and post-processing inference together are a bottleneck for handling extremely large 

batches of resumes on less-than-top-of-the-line hardware. 

5.2 Future Work 

Based on recent achievements, several approaches can be taken to enhance the performance, 

scalability, and reliability of the pipeline: 

1. Expansion and augmentation of the dataset 

Having a larger, more diverse dataset with multiple resume templates, languages, and 

regional formats would further increase generalizability of the model. Incorporating 

multilingual resumes, handwritten CVs, and non-standard formats would make the system far 

more versatile and production-capable. 

2. Developing Annotation Strategies 

The use of semi-automatic annotation tools or active learning techniques would accelerate 

annotation without loss of quality. In addition, using data augmentation techniques such as 

rotation, scaling, and addition of noise would duplicate real-world variation and increase 

model robustness. 

3. Refining detection models 

Although YOLOv11 performed well, more recent models such as YOLOv8, DETR 

(DEtectionTRansformer), or specifically tuned hybrid models would potentially provide even 

greater accuracy, particularly for more complex or densely populated documents. Model 

ensembling techniques would also be worth considering for combining strength from 

multiple detectors. 
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4. Adopting End-to-End Doc Understanding Models 

Future works could explore end-to-end deep learning models simultaneously doing layout 

analysis and information extraction, for instance, LayoutLM, Donut, or DocFormer. These 

remove detection and OCR discrimination, yielding more coherent and context-sensitive 

extraction. 

5. Improving OCR Accuracy 

Replacing Tesseract with newer versions of the OCR engine (such as EasyOCR, TrOCR) or 

with an OCR model fine-tuned on resume documents can largely reduce errors at a character 

level. Another approach would be using language models by incorporating OCR for 

automatic error correction post-recognition. 

6. Post-Processing and Validation using Intelligence 

The inclusion of a rule-based check module, statistical checking, or even machine learning 

classifiers would be able to detect anomalies (like digits within name fields) and correct or 

alert automatically. This would minimize human intervention further. 

7. Scalability and Deployment: 

Cloud platform or API service deployment optimization would support large-scale processing 

of documents. Inclusion of parallelism into batch processing, memory optimizations, and 

GPU acceleration would prepare the system for use by enterprises. 

8. Generalizing to Other Types of Documents 

The developed pipeline is extendable for use with other types of comparable documents such 

as cover letters, application forms, or certificates by training the system using domain-

specific data. The applicability scope of the system would then become greater than for 

resumes alone. 

9. Scalability and Customization: The current system can be extended to support more 

document types by leveraging the training module. Future work may focus on enhancing this 

training feature, providing pre-trained model templates for different document categories 

(invoices, medical reports, etc.) and offering advanced training options (e.g., hyperparameter 

tuning). 

5.3 Summary 

We've provided a comprehensive explanation of the pipeline for scanning resumes and 

extracting structured data throughout this research. The chapter has begun with an 

introduction of the pipeline architecture, with prime aspects such as dataset preparation, 

model selection, training processes, integration with the use of OCR, and post-processing 

techniques. 

Experiments proved that YOLOv11 with Tesseract OCR and smart post-processing worked 

adequately for extraction of key fields of information, and detection from resumes. 

Comparative performance showed that YOLO-based models outperformed Faster R-CNN for 

this use case with better speed and detection accuracy for document detection tasks. 
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Despite the favorable results, there are several issues, particularly with regards to errors with 

OCR, variations in format of resumes, and generalizability of performance for new 

documents. These were addressed by proposing potential improvements and future research 

directions. 

Overall, the constructed pipeline is a robust and effective platform for automatic resume 

parsing. It significantly reduces labor, enhances accuracy, and provides a solid platform for 

future enhancement and extension to greater general document comprehension tasks. 
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