People’s Democratic Republic of Algeria
Ministry of Higher
Education and Scientific Research

IBN KHALDOUN
UNIVERSITY OF TIARET

Dissertation

Presented to:

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
DEPARTEMENT OF COMPUTER SCIENCE

in order to obtain the degree of:

MASTER
Specialty:
Software engineering
Presented by:
REFIK Youcef Abdelillah

On the theme:

4 . . . N
Implementation of a private messaging

service Peer-to-Peer using WebRTC

technology
- /
Defended publicly on / /2025 in Tiaret in front the jury composed of: :
Mr Kharroubi Sahraoui Tiaret University | Chairman
Mr Dahmani Youcef Tiaret University | Supervisor
Mr Mokhtari Ahmed Tiaret University | Examiner

2024-2025

Acknowledgments

I extend my sincere thanks and deep gratitude to
the esteemed professor, Mr. Dahmani Youcef,
who graciously entrusted me with supervising this
dissertation. He was a beacon of knowledge and
patience and a guiding light throughout the
research process.

He spared no effort or guidance, and his valuable
comments greatly contributed to shaping this
work. May Allah reward him on my behalf with
the best of rewards, elevate his status 1n this life
and the hereafter, and place his contributions in the
scale of his good deeds.

I also extend my heartfelt thanks to everyone who
supported me through guidance or moral
encouragement throughout my academic journey.

To all those who offered a kind word or uplifting
encouragement, I say:

"May Allah protect you and bless your efforts."

All praise is due to Allah, by whose grace good
deeds are completed.

Contents

Chapter 1
Project Foundation and Methodology

INErOAUCTION © ..ottt ettt st et e e b e s bt e s ae e et e et e beesneesaee e 1
BaCKGIOUNdoooiiiiiiiiii e s s 1
IMIOBEVATION. ...ttt b e s b e sa e st e bt e s bt e sbeesatesate et e e b e ebeesmeesneeennean 1
GOAlS Of the PIrOJECt..........ooviiiiiiiiiiiiee et b e bt sttt et e sbeesnee e 1
I 1 1 0 PSR P PP PPPPROPI 1
OULIINE. ..ottt et st e e bt e e s bt e e bb e e sa b e e s beeesabeesabeeeabseesabeeesnbeesabaesnbeesabeeanns 2

Chapter 2

Theoretical background

2.1 Introduction t0 WebRTC...........c.coooiiiiiii e s s 3
2.1.1 What is WEDRTC? ...ttt ettt et e st e st e e st e snee e sanee s 3
2.2 Peer Connection vs. Client-Server Communicationcccocceeeviieniiiiniiienniiieneeeeeenieene 3
2.21 Peer ComMeCtioncoooiiiiiiiiiiiie e e s s 3
2.2.3 Client-Server CommUNICATIONc.oiiiiiiiiiiiiiiee e e s 3
2.3 When a Peer Connection is the Better Solution?coccoviiiiiiiiniiiieee 3
2.4 WebRTC from a developer Perspectiveccooceeriiiiiiiiiniiiinieeniee ettt siee e 4
2.5 WebRTC Related Technologies...............ccoouiiriiiiniiiniiiinieenieeeniee et esree st sreesveeesaeee s 5
2.5.1 Network Address Translation (INAT).........ccoooviiiiiiiiiiiiinie et 6
2.5.2 Session Description Protocol (SDP) ..o 6
2.5.3 Session Traversal Utilities for NAT (STUN)oocooiiiiiiiiieececccee et 7
2.54 Traversal Using Relay around NAT (TURN)ccocoiiiiiiniiiiiieieceieeesree st 8
2.5.5 Interactive Connectivity Establishment (ICE) ..., 9
2.6 WebRTC Main COMPONENLS...........ccoociiiiiiiiiiiiiiiieieeeee et s 10
2.6.1 MediaStream APL............oooiiiiiiie e e 10
2.5.2 RTCPeerConnection APIcc..ccooiiiiiiiiiiiieeeeee et 10
2.6.3 RTCDataChannel AP ..ot 11
2.7 A generic WebRTC application flowccoooiiiiiiiiiini e 11
L O01) 1 T8 11T 1) | RSP PR TR 13

Chapter 3

System Analysis and Design

INEEOAUCTION ...ttt et sb e sttt et e s b e e saeesanesane s b e e neenee 14

3.1

ACTOrS LAdeNtIfICATIONooovveeiiiiieeeeeee et e e e et et b e s e e e s rabb e eees 14

3.2 Functional ReqUITEMENTScccoeiiiiiiiiiiiiiieiiieeiiee et e et ste e ssireesbeesstaeesteessbeeessseesnes 14

33 Non-Functional ReqUIrements.............cccccuviviiiiiiiiiiiiieniiieeiieerieeeseeesteessieeesteeseeesseeessseesnes 14
3.4 Modelling of functional needsccooriiiiiiiiiiiiiie e 15
3.4.1 Introduction to UML in System Designcccociriiiiiiiiiniiiecee e 15
342 DEfiMitiONoeooviiiiiiiii e 15
3.4.3 UML AdVANEAZES:ooouiiiiieiieitieeite ettt e st sit et et et esbeesbeesseesate e b e e beesbeesseesatesanesareenseennes 16
3.4.4 System’s dIAGIAIS.ocoiiiiiiiiiiiie ettt e 17
3.4.5Use case DIABIam @ocooiiiiiiiiiiiiiiieeeeee et e e e 17
3.4.6 Sequence DIagram @occoiiiiiiiiiiiie e e e 20
3.4.7 ACtiVItY DIAGIAIIo.eviiiiiiiiiiiiieeceee e e e s 25
3.4.8 Components DIAGIamcccoiiiiiiiiiiiieiie et 27
3.4.9 Class DIAGIaII:c..oooiiiiiiiiiieie ettt st 29
COMCIUSION ..ottt ettt e et e e s bt e s bt e e s ate e s beeesabeesabeesbbeesabeeebbeesnteesaneeesabeenn 32
Chapter 4

System Implementation.

INErOAUCTION:oiiiiiiiieeee e s e ss e st e ss e s e e smr e e sareesmeeesmreeennnes 33
4.1 Technologies and programming languages used 4.1.1 Web applicationccocce... 33
4.1.2 RESTHUl Web SEIVICESccceeiiiiiiiiiiiiiiieiieieecerte ettt sttt e 33
4.1.3 Authentication USING JWT ..ot s s ae e sbe e 33
4.1.3.1 JWT SEFUCHUTE. ...ttt s e s b e e s e e e sree e sabeesaneesneeesareeenees 33
41,4 SIZNAIR ..o e 36
4I5S ASP INET CORE.......ootiieete ettt ettt ettt et e be e sbe e saeesaeesabesbeebeennes 36
0 B0) DR T o PO PPRPPN: 36
4.1.7 TeChNOLO@Y STACK:cooiiiiiiiiiiee ettt st sa e e s bee e sabe e sbeesateesabeeeaees 37
4.2 Application archit@CtUIe:coocviiiiiiiiiie e e e s 38
4.3 User Interface OVerview()..............cooiiiiiiiiiiiiieee e s s s s 40
4.3.1 Login and Registration Interface.................cccccoooiiiiiiiiiiiie e 40
4.3.2 Dashboard INEErfaceccccooiiiiiiiiiiiieeeeee e e 41
4.3.3 Main Video Conference INterface...............cooceriiriiniiiiiiienieeeeeeeeeeee e 42
4.4 Technical Implementationccoociiiiiiiiiiii e 43
4.4.1 Signaling phase using SignalR Library:...........c.ccccoiiiiiiiiee 43
4.4.2 ‘WebRTCManager’ JavaScript Class OVervieW............ccoccvvivvieiiiiinieennieeniee st eneeesiee e 46
4.5 Tests and Validationcooiiriiiiiiiiiiiee et 49
B.5.T TESE CASES ...ttt ettt et e s bt st st et e bt e bt e s bt e sb et sate st e et e e sbeesneesanesane s bt ereennes 49

4.7 Conclusion
General Conclusion

References...............

Abstract:

This thesis presents the design and implementation of a real-time, peer-to-peer communication service
using Web Real-Time Communication (WebRTC) technology. WebRTC is a powerful open-source
framework that enables direct audio, video, and data exchange between web browsers and mobile
applications without requiring external plugins. With the growing demand for decentralized and low-
latency communication systems, WebRTC offers a modern solution to build secure and scalable
applications.

The project aims to explore the architectural components and protocols involved in
establishing a peer-to-peer connection, including signaling, Session Description Protocol
(SDP), Interactive Connectivity Establishment (ICE), NAT traversal using STUN and TURN
servers, and the use of DTLS-SRTP for encrypted media transmission. A custom web
application was developed with a frontend built in Vanilla JavaScript and a backend
implemented using ASP.NET Core, incorporating a SignalR-based signaling server and a
JWT-based authentication mechanism.

The system supports real-time audio/video calls and screen sharing between authenticated
users, relying solely on peer-to-peer media exchange. The implementation highlights the
challenges of NAT traversal, user discovery, session management, and media stream
handling, while offering a lightweight and responsive user experience.

This work contributes to the field by providing a practical and extensible example of how
WebRTC can be integrated into web-based communication services. The results demonstrate
the effectiveness of WebRTC in building decentralized communication platforms, with
minimal server load and strong end-to-end security.

Chapter 1

Project Foundation
and Methodology

Chapter 1 Project Foundation and Methodology

Introduction :

This chapter provides a background of video conferencing, why it became so important and
how the technology evolved. After this short background, the new emerging standard for
making video conferencing solutions is discussed: WebRTC and the relevance of this research
is described. This is followed by the goals and approach of this thesis and concluded by an
outline of what is discussed in the remainder of this thesis.

Background

Communication has evolved greatly in the last century; from post letters, to communication
via the telephone, to Voice Over Internet Protocol (VOIP) and now Video Conferencing (VC).
Video Conferencing is a conference between two or more different users using
telecommunications to transmit audio and video data. Due to companies expanding
internationally there has been a need to bridge communication distances without traveling.
Video conferencing has evolved rapidly in the last decades and is getting more accessible to
users every day. This is due to the emerging computer and smartphone industry with
continuously improving capabilities and also due to better network connectivity of (mobile)
devices with a built-in camera. Video conferencing is widely supported and available through
many platforms and applications (e.g. Skype, Google Hangouts, Apple Facetime). Video
conferencing either works in a Server-to-Client (S/C) manner, where the video and audio
streams get channeled via a server or Peer-to-Peer (P2P), where video and audio directly get
exchanged between peers without the extra overhead of a centralized server. A P2P browser
protocol that has been getting attention lately and which this thesis will be focusing on, is Web
Real-Time Communication (WebRTC). This is an open-source network protocol for the
browser set up by World Wide Web Consortium (W3C) and the WebRTC group from the
Internet Engineering Task Force (IETF) and allows to transmit video, audio and data between
browsers in P2P without the need to install additional software or plugins.

Motivation

Before WebRTC was introduced, real-time communications were only available to bigger
companies or via extra browser plugins like Adobe Flash. WebRTC makes it really easy for
application developers to develop their own video chatting applications because it exposes a
very high-level Application Programing Interface (API). This makes it really approachable for
developers, without the need to understand how the underlying protocols work.

In this thesis, a real time connection between peers using WEBRTC is created, and its video
chatting capabilities is going to be analyzed, and compared with the client/server’s protocols
to get a better grasp on how WebRTC performs. The main goal of this thesis is establishing a
service of communication using this technology and providing the full documentation of the
implementation.

Goals of the Project
The main research question for this thesis is:

“How to implement the WebRTC protocol in a web-based application and delivering a
complete documentation of the process?”

This main question is answered through these sub questions:

Chapter 1 Project Foundation and Methodology

Q1 What is WebRTC and what architecture it uses?

Q2 What are its main components?

Q3 What the difference between peer-to-peer and Client/Server architectures?
Q4 How does WebRTC work under the hood?

QS How to implement the WebRTC technology?

Q6 What are the advantages that WebRTC did bring and the problems it solved?

Method

The Method to resolve the issues discussed in section 1-3 is detailed below:

1. First the WebRTC protocol is described, and the peer-to-peer architecture is explained.

2. WebRTC is then described in more details, covering its different components.

3. The underlying protocols of WebRTC are mentioned and how they work with each
other is explained.

4. An experimental implementation of WebRTC is done with a step-by-step guide and
explanation.

5. The advantages and performance of WebRTC and potential downsides are discussed.

Outline

An in-depth analysis of WebRTC is given in chapter 2 where the requirements are discussed,
how WebRTC’s underlying protocols work is explained, and how to setup a WebRTC call is
shown in details. In Chapter 3, a thorough description of the web application's design is
provided, accompanied by code snippets that guide the reader through the implementation
steps, thereby concretizing many of the technical concepts introduced earlier.

Chapter 2

Theoretical background

Chapter 11 Theoretical background

2.1 Introduction to WebRTC
2.1.1 Whatis WebRTC?

Web Real-Time Communication (WebRTC) is a free, open-source project that enables real-
time communication of video, audio, and data between peers directly in web browsers
without requiring additional plugins or software. It is designed to facilitate peer-to-peer (P2P)
connections, allowing two browsers to communicate directly with each other in peer-to-peer
(figure 2-1b), which is unlike most browser communication, which flows through a server
(figure 2-1a), allowing for low-latency and high-performance communication over the
internet. [1]

WebRTC was first introduced and made open source by Google in May 2011 [2], but not
available for the masses till late 2012 in the most recent version of Google Chrome.

M = M rF = 3 ™ 3
S0 W o
L
(a) Server-to-Client (b) Peer-to-Peer

Figure 2-1: Difference between Server to Client and Peer to Peer communication

Firstly, a comparison between peer-to-peer and server-to-client architectures should be made
in order to understand WebRTC technology very well.

2.2 Peer Connection vs. Client-Server Communication

2.2.1 Peer Connection

Peer connection refers to a direct communication link between two devices over the internet
without relying on a central server for data transfer once the connection is established.
WebRTC uses a combination of technologies such as ICE (Interactive Connectivity
Establishment), STUN (Session Traversal Utilities for NAT), and TURN (Traversal Using
Relays around NAT) to overcome network limitations and establish a stable peer-to-peer
connection. [3]

2.2.3 Client-Server Communication

Traditional client-server communication involves a centralized server that facilitates data
transfer between clients. This architecture is commonly used in applications such as HTTP-

based websites and cloud-based services.

2.3 When a Peer Connection is The Better Solution?

As demonstrated in (Table 2-1), Peer-to-peer connections are preferable when low latency and
direct data exchange are crucial.

Chapter 11 Theoretical background

Criteria Peer-to-Peer (WebRTC) Client-Server

Latency Ultra-low (direct path). Typically, Higher due to server hops.
<100ms for media streams. Often 200-500ms in VoIP

systems.

Scalability Limited by NAT traversal overhead. Centralized scaling (O(1) per
Each peer maintains O(n) connections | client). Cloud servers handle
in mesh topologies. load balancing.

NAT/Firewall Requires ICE/STUN/TURN. Fails No NAT issues (clients connect

Traversal under symmetric NATs without outward to the server).

TURN relays.

Privacy End-to-end encrypted (DTLS-SRTP). | Server decrypts/inspects traffic
No intermediary data storage. (e.g., TLS termination).

Server Load Minimal (only signaling). Media/data | High (server processes all
bypasses servers. traffic). Bandwidth costs grow

linearly.

Use Case Fit Video conferencing (e.g., Mass broadcasting (e.g.,
GoogleMeet), Netflix), centralized apps.

IoT (low-latency). Struggles with >10

peers.
Hybrid TURN relays introduce client-server | Edge computing can reduce
Potential dependencies. latency (e.g., CDNs).

Table 2-1: A comparison between peer-to-peer and client/server architectures.

2.4 WebRTC from a developer perspective

To set up a WebRTC application, a connection must first be established between browsers.
Since WebRTC operates as a peer-to-peer communication technology, it does not provide a
built-in signaling mechanism. Instead, developers can choose any method to exchange
signaling data—such as an HTTP server, WebSocket, a tweet or even with a pigeon like old
times. This exchange process, known as signaling, involves sending session-related
information from one client to another to initiate the peer-to-peer connection. This information
is conveyed using the Session Description Protocol (SDP), typically implemented in JavaScript
(see Section 2.5.2), which describes the supported media formats and capabilities of each
endpoint.

One of the most crucial pieces of information exchanged during this process is the client’s
public IP address. In order for one browser to receive a connection from another, each must
know the other's public IP. However, this can be challenging because clients are often behind
firewalls or Network Address Translators (NATs) (see Section 2.5.1), which obscure their
public IP addresses. To address this, a STUN server (see Section 2.5.3) is commonly used to
help clients discover their public IP and identify the type of NAT they are using. In some
cases, particularly with Symmetric NAT, obtaining this information becomes more difficult.
When this occurs, a TURN server (see Section 2.5.4) is used as a fallback solution. Without

Chapter 11 Theoretical background

delving into the implementation details—since this lies outside the scope of the thesis—it is
important to note that if a STUN server fails to retrieve the client's public IP, a TURN server
can relay media traffic between peers.

After the SDP messages are exchanged, the peers begin sharing ICE candidates (see Section
2.5.5). These candidates provide the network details required to determine the most efficient
route for a direct connection.

In summary, the workflow begins with the client discovering its public IP using a STUN or
TURN server. The client then generates an SDP offer and sends it to a peer via an external
signaling method. If the offer is accepted, the peer replies with an SDP response. Following
this exchange, both peers share ICE candidates to establish the best possible network path for
the peer-to-peer connection.

Figures 2-2 explain the architecture of WebRTC in detail.

Signaling Server

@4—1&d:a@

TURN Server TURN Server

:Eg: :ﬁ: «—>
fNAT Peer

\

STUN Server STUN Server

NAT

Figure 2-2: A WebRTC architecture with a signaling server, NAT, STUN server, and TURN
Server.

2.5 WebRTC Related Technologies

The WebRTC standard is built on several different existing technologies and standards to allow
users to establish reliable and secure peer-to-peer connections to exchange live media. These
are primarily the Session Description Protocol (SDP), Interactive Connectivity Establishment

Chapter 11 Theoretical background

(ICE), Session Traversal Utilities for NAT (STUN), and Traversal Using Relay NAT (TURN).
The WebRTC standard specifies how and when to use the technologies mentioned above and
how they relate to the API. WebRTC also requires the use of a signaling service to exchange
information between the peers that wish to establish a connection, however, this is intentionally
left out of the standard to allow for developers to use whichever method and technologies they
prefer.

This allows for additional functionality to be moved to the signaling service such as
authentication and keeping track of the available STUN and TURN servers the peers can use.
What follows is a description of relevant technologies that is required to understand WebRTC
and the underlying problem that merits implementing WebRTC, and finally how they come
together to actually solve this problem.

2.5.1 Network Address Translation (NAT)

NAT is a router function that modifies the network address in an IP header and is often used to
route traffic from local networks to the public network. A NAT is installed at the gateway to
the public backbone network, where all addresses are globally unique. A translation matrix is
stored by the NAT, linking internal IP addresses to an external one. Since translation happens
on the gateway where that NAT is configured, the end points that are located behind this NAT
do not know which address they can be reached with from the public network. This becomes a
problem for peer-to-peer applications where both peers need to find out the address of the other
peer to be able to start communication. A NAT that is configured as dynamic has a pool of
public IP addresses but can reassign the mapping it has between local IP addresses and public
IP addresses. If the NAT cannot route traffic for an internal host because it currently has no
public IP addresses available, it responds with an ICMP "Destination Unreachable" message.
When a public IP address that has been mapped to a local IP address has not been used for a
timeout duration, the NAT deletes this mapping, allowing the public IP address to be reassigned
to another device on the local network. The standard and most frequently implemented
configuration is Network Address/Port Translator (NAPT), or Port Address Translator (PAT).
Using this configuration, multiple local IP addresses can use the same public IP address
simultaneously by utilizing different ports. This is achieved by mapping the local IP address
that wants to initiate communication to a public IP address and port. In summary, there are two
ways this mapping can be done.

NAT behaviors were originally defined in RFC 4787 [12], and the description is derived from
that document.

2.5.2 Session Description Protocol (SDP)

The Session Description Protocol (SDP) [9] is used by WebRTC to exchange information
regarding the session that the peers wish to establish. This session is negotiated between the
peers to try to establish the various forms of media, encodings, transport protocols, and more.
The anatomy of an SDP message consists of several lines of text, where the type consists of a
single case-sensitive character and the value is text, where the structure is dependent on the
type. Each SDP message has several required and optional type-value pairs. The required types
are the following:

* v: The protocol version used in the SDP message.

* 0: The originator and the identifier of the session.

Chapter 11 Theoretical background

* s: The session’s name.
» t: The time the session should be active, specified as a start and stop time.

In WebRTC, the SDP is used in conjunction with the Session Initiation Protocol (SIP) [15]
using the Offer-Answer model. [16] The Offer-Answer model entails that the peers who wish
to establish a session have one peer (initiator) who generates an offer describing the session
they wish to establish, the receiving peer (respondent) receives the offer and generates their
answer, and sends it to the initiator

Figure 2.4 illustrates a sample SDP offer.

v=0

o=- 4385423089851900022 0 IN IP4 0.0.0.0

§=-

t=0 0

a=ice-options:trickle

a=group:BUNDLE video0 applicationi

m=video 9 UDP/TLS/RTP/SAVPF 96

c=IN IP4 0.0.0.0

a=setup:actpass

a=ice-ufrag:1sJx+7d6hsCyL8K628/KbgcqMqizaZqy
a=ice-pwd:zFUTJmx6hlnr/JRAQ2b3w0tan88XERD3

a=rtcp-mux

a=rtcp-rsize

a=sendrecv

a=rtpmap:96 H264/90000

a=rtcp-fb:96 nack pli

a=framerate:30

a=fmtp:96 packetization-mode=1;profile-level-id=42E01F;sprop-paraseter-sets=Z00AKeKQDVBE/LNVEBAQUABt3QAZvEWABS1q,a048gh==
a=ssrc: 3776670536 msid:user33449427610host-c94bSdb webrtctransceiveril
a=s5rc: 3776670536 cname:user3344942761Chost-c94bSdb

a=nid:videol

a=fingerprint:sha-256 AE:1C:59:19:00:7B:C2:1C:85:95:0C:6C:8C:14:E8:67:A4:7D:D0:AE:90:5D:8F :BB:D7:5B:95:49:03:6E:94:8F
m=application 0 UDP/DTLS/SCTP webrtc-datachannel

c=IN 1P4 0.0.0.0

a=getup:actpass

a=ice-ufrag:1sJx+7d6hsCyLBK628/KbgcqMqizalqy
a=ice-pwd:zFUTJmx6hlinr/JRAQ2b3w0t=a88XERD3

a=bundle-only

a=mid:applicationl

a=sctp-port: 5000

a=fingerprint:sha-256 AE:1C:59:19:00:7B:C2:1C:85:95:0C:6C:8C:14:E8:67:A4:7D:D0:AE:90:5D:8F :BB:D7:5B:95:49:03:6E:94:8F

Figure 2.4: An example WebRTC SDP Offer Message

2.5.3 Session Traversal Utilities for NAT (STUN)

STUN enables an endpoint to determine the public-facing IP and port that the NAT is using as
a mapping for the endpoint's actual IP and port. Furthermore, it is often used to check
connectivity between endpoints, and it is also used as a keep-alive to maintain the bindings that
a NAT has created to ensure that a binding stays alive as long as needed without the need for
re-establishing the connection The STUN protocol functions via binding request and response

Chapter 11 Theoretical background

messages, where the request asks the server to return a binding response. When the request
passes a NAT, the NAT creates a mapping and forwards the packet with the mapping as the
source of the packet to the STUN server. The binding response from the STUN server includes
an attribute called "mapped-address", and the server sets the "mapped address" attribute as the
source of the incoming packet. When the originator receives the STUN binding response, it
learns the address that the NAT has mapped its local address to through reading the "mapped-
address" attribute. Keep-alive is practical because dynamic NATs will remove a mapping as
soon as they think it is not being used, so it can be reused by another connection. Therefore, a
STUN server must make sure that this mapping is not removed until connectivity checks are
completed. A simple diagram describing the STUN binding request and response can be seen
in Figure 2.5.

Binding Request

<
€

A
g

Binding Response
. Mapped address: 10.32.12.129:2020

AN

175.21.32.129:1337 STUN SERVEF

Figure 2.5: An example of the STUN binding request and response.

STUN is run using UDP, however it can also be implemented with the Transmission Control
Protocol (TCP) and Transport Layer Security (TLS), which allows for additional security to
be implemented.

2.5.4 Traversal Using Relay around NAT (TURN)

A TURN (Traversal Using Relays around NAT) server is a network relay mechanism defined
in RFC 5766 (and updated by subsequent RFCs) to facilitate communication between devices
behind restrictive NATs (e.g., symmetric NATs) or firewalls. It acts as an intermediary when
direct peer-to-peer (P2P) connections are impossible, ensuring connectivity for real-time
applications like VoIP, WebRTC, and video conferencing. [17]

Some network conditions require a TURN server instead of STUN, like Symmetric NATSs,
when some NAT types assign different public IPs and ports for each connection, preventing
direct peer communication, or firewall restrictions: Corporate or institutional firewalls may
block direct peer connections, necessitating a relay server.

Figure 2.6 details how the addresses are allocated using the TURN server.

Chapter 11 Theoretical background

TURN SERVER
10.12.43.12
Alice

M

Allocate Request

Bob

S L

Allocate Success Response ¢ Allocated Port 1337
Relay Address: 10.12.43.12:1337 e :

»
»

L T

Allocate Request

1K

AN P 3 ¢
el 202.1 Allocate Success Response

Relay Address: 10.12.43.12:2021

Nisvsvivivabsvivevinesvsobinssvve

Exchange Rﬁlay Address Signaling Exchange §c1ay Address

e ettt
vioBosesveve

Media
Source: 10.12.43.12:1337
Destination: Bob's NAT Mapped Address

vedia
Source: Alice's NAT Mapped Address
pestination: 10.12.43.12:2021

' .
Media : Media

source: 10.12.43.12:2021 - Source: BOD'S NAT Mapped Address
Destination: Alice's NAT Mapped Address . Destination:10.12.43.12:1337

A
&

Figure 2.6: Allocating addresses in a TURN server and relaying media through it.

2.5.5 Interactive Connectivity Establishment (ICE)

Interactive Connectivity Establishment (ICE) is a framework used to establish a connection by
selecting the best possible network path between peers [18]. It is a technique used in computer
networking to find ways for two computers to talk to each other as directly as possible in peer-
to-peer networking.

candidate:2116 1 udp 659136 10.85.129.66 65396 typ host generation 0

Figure 2.7: Example ICE Candidate, with the type host with a priority of 659136.

Chapter 11 Theoretical background

2.6 WebRTC Main Components

2.6.1 MediaStream API

The MediaStream API in WebRTC handles the acquisition of media content, such as audio and
video, from a user's device. For example, audio is captured via the microphone, and video is
sourced from the camera. MediaStream manages both the input (media collected from local
hardware) and the output, which refers to transmitting the stream to remote peers. A common
way to initiate a media stream in the browser is by using the getUserMedia() method. This API
prompts the user for permission to access their camera and microphone. [4]

If access is granted, the browser can retrieve audio, video, or screen-sharing streams,
represented by a positive response (e.g., a return value of 1). If the user denies access, the
method returns a negative outcome, preventing stream capture. [5]

MediaStream

MediaStreamTrack: video MediaStreamTrack: audio

Left channel

Right channel

Figure 2-8: Visualization of a MediaStream Object. [33]

2.5.2 RTCPeerConnection API

In WebRTC, the RTCPeerConnection component is used to establish a direct connection
between browsers. It also helps set the connection from the signaling phase to a stable state.
The WebRTC system is mainly built on three parts: audio, video, and transport. [6]

The audio part handles things like echo cancellation and noise reduction. It includes codecs
such as iISAC and iLBC, where iSAC is mainly used for streaming audio. This codec was
originally created by Global IP Solutions in 2011 and was added to WebRTC to improve audio
quality.

The video part manages the video stream and uses the VP8 codec. VP8 was developed by On2
Technologies in 2008 and is supported by all major browsers. It helps improve video quality
and reduces issues like audio and video delay (jitter).

The transport part uses a protocol called SRTP (Secure Real-Time Protocol), which handles the
secure delivery of media streams.

WebRTC also offers a getStats() API that developers can use to collect statistics from the client
side. This API is useful for monitoring the performance of WebRTC applications. It provides
data in four main categories [7]: sender media capture statistics, sender RTP statistics, receiver
RTP statistics, and Receiver media statistics

10

Chapter 11 Theoretical background

2.6.3 RTCDataChannel API

Data streams in WebRTC are exchanged in both directions from the clients. This exchange is
done through the RTCDataChannel mechanism. Using RTCDataChannel, the delivery status
of the message can be known. Text messaging and file sharing are done using
RTCDataChannel. By this, there would be low latency. 8]

2.7 A Generic WebRTC application flow

With a MediaStream (Section 2.6.1), the client can start sending the stream using the WebRTC
API. To create a new real-time connection, we use the primary interface in the WebRTC API,
which is RTCPeerConnection (Section 2.6.2). This interface allows the application to start the
procedure to connect with a peer, given that some pre-conditions are met (as described in
section 2.4).

To begin using the RTCPeerConnection object, it must first be created. The MediaStream
Tracks that have been collected with the Media Stream API can be attached with the help of
the RTCPeerConnection.addTrack() method. The attached media tracks will be sent to the
remote peer when the full exchange of information and agreement is done. To start the
exchange with a remote peer, an SDP must be generated and sent. The application's signaling
layer should manage to send and receive SDPs. The RTCPeerConnection.createOffer() method
can be used to generate this information. The SDP can then be attached to the
RTCPeerConnection object with a method called RTCPeerConnection.setLocalDescription(),
and this method will also trigger the ICE Negotiation phase, which is the second phase.

In the ICE Negotiation phase, the PeerConnection ICE agent will start to create ICE candidates.
Usually, a STUN server is needed to traverse networks behind firewalls. i.e., if a client is behind
a NAT. The ICE agent will reach out to STUN servers and receive a Server Reflex ICE
candidate back. In some cases where STUN is not enough, as mentioned earlier in section 2.4,
a TURN server can be used to relay the stream in order to overcome more complex network
topologies. When both the initializing phase and the ICE negotiation phase are done, the SDP
and all the ICE Candidates must be delivered to the remote peer. This part of a WebRTC
application is referred to as “signaling” and is up to the developer to figure out and implement,
as it is not a part of the WebRTC API.

When the remote peer has received the SDP offer from the other peer, the remote peer will go
through pretty much the same phase as the other peer did. The remote peer will create its
RTCPeerConnection object because the RTCPeerConnection object will have all the
information about the session and will represent an association with the other peer. The remote
peer will attach the incoming SDP to its RTCPeerConnection object and at the same time create
an answer (with RTCPeerConnection.createAnswer() method) which will generate an SDP to
send back. [13]

When both peers have received each other’s SDP information and the ICE servers have
completed the agreement of ICE candidates, a peer-to-peer connection is fully established.
Now, both peers can receive each other’s MediaTracks by adding MediaTracks to the
RTCPeerConnection object with the RTCPeerConnection.addTrack method. [14]

A detailed flow of a peer-to-peer connection setup described above can be seen in Figure 2-9.

11

Chapter 11 Theoretical background

= PeerICE &= Peer = Signaling Server || Remote Peer = Remote Peer ICE
collect local stream
(getUserMedia))
create
RTCPeerConnection
Attach streams to
| RTCPeerConnection
generate SDP
(createOffer)
setLocalDescription
I\ with SDP M X
Start Gathering|ICE send Offerto | ||, onReceiveOffer
- remote Peer J ’1
|ﬁg;gﬁ;g§g§5 3) collect local stream |
onlceCandidate | (getUserMedia)
[create
RTCPeerConnection
Attach sfreams to
RTCPeerConnection
selRemateDescriplion
generate SDP
(createAnswer)
sefLocalDescription
| with SDP)
. Send Answer to
[onReceiveAnswer H Peor]: \CE server croalos
0 1| ICE Candidates
FetRemoteDescription] onlcaCandidate

Figure 2-9: Workflow for Setting Up a WebRTC Peer-to-Peer Connection.

12

Chapter 11 Theoretical background

Conclusion:

In this chapter, a complete, detailed study on WebRTC and how this technology works is done,
with an in-depth analysis and explanation of WebRTC’s underlying protocols, and a discussion
about the requirements needed was made. In chapter 3, a full study on designing a WebRTC-
based web application is delivered to concretize all the theoretical explanations.

13

Chapter 3

System Analysis and Design

Chapter 111 System Analysis and Design

Introduction :

This chapter presents the detailed system analyses and design process of the WebRTC-based
video conferencing application. It identifies the key actors, specifies the functional and non-
functional requirements and outlines the system architecture, component interactions through
UML diagrams.

3.1

Actors Identification

Actors are external entities interacting with your system. In the application, the actors are:

3.2

3.3

3.3.1

User or Client: it’s the one who accesses the web application to initiate or receive
video/audio calls.

Signaling Server: A server facilitating the exchange of signaling data (e.g., SDP, ICE
candidates) necessary for establishing peer-to-peer connections.

WebRTC Peer Connection: represented as an abstract actor like the browser or the
application component that handles the media/data peer connection.

STUN/TURN Servers: External servers that assist with NAT traversal and relay media
if needed.

Functional Requirements

Functional requirements describe what the system should do. The functional
requirements to which our application meets are as follows:

The system shall allow users to register/or log in using a stateless authentication
(stateless) thanks to JWT to access the various features.

The system shall display a list of online users available for connection.

The system shall allow a user to initiate a WebRTC call by selecting a peer.

The system shall allow users to accept or reject incoming connection offers.

The system shall exchange SDP offers/answers and ICE candidates between peers.
The system shall initiate a direct media stream (audio/video) after connection
establishment.

The system shall disconnect the session upon user request or network interruption.

Non-Functional Requirements

The non-functional requirements define the quality attributes and constraints that the
WebRTC-based web application must meet:

Security

The application must ensure secure authentication of users by implementing JSON Web
Tokens (JWT).

All signaling communication between clients and the signaling server must occur over
secure WebSocket (WSS) connections to protect against man-in-the-middle attacks.

Media streams must be encrypted using Secure Real-Time Transport Protocol (SRTP)
to guarantee the confidentiality and integrity of transmitted audio and video data.

14

Chapter 111 System Analysis and Design

3.3.2

3.3.3

3.34

3.35

Interface Ergonomics

The application must provide a simple, intuitive, and user-friendly interface to enhance
usability.

The interface design must be ergonomic, minimizing user effort in navigation and
operation.

Common user actions, such as initiating or answering calls, must require no more than
two clicks.

Compatibility

The application must be fully compatible with all major modern web browsers,
including Google Chrome, Mozilla Firefox, and Microsoft Edge.

It must also support access from various device types, including desktop computers,
laptops, tablets, and smartphones, ensuring a consistent user experience across
platforms.

Availability and Scalability

The application must achieve a minimum service availability of 99.99% to ensure
continuous access.

The system must support a minimum of 10 concurrent signaling users without
degradation of service quality.

Performance

The application must respond to user actions within milliseconds to provide a seamless
experience.

Establishing a WebRTC connection between two peers, from offer creation to media
stream activation, must be completed in less than 2 seconds under normal network
conditions.

The application must efficiently manage resource usage, minimizing server CPU and
memory consumption, to maintain responsiveness even under load.

3.4 Modelling of functional needs
3.4.1 Introduction to UML in System Design

Given the defined objectives of the project, the system will be modular and must maintain
extensibility for future enhancements. As a result, adopting UML as standardized modeling
language is critical to ensure design clarity and streamline communication.

3.4.2 Definition

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system. UML provides a
standard way to write a system’s blueprints, including conceptual components such as business

15

Chapter 111 System Analysis and Design

processes and system functions, as well as concrete elements like programming language
classes, database schemas, and reusable software components. [18]

3.4.3 UML advantages:

UML modeling offers several key benefits, making it indispensable in software and systems
engineering: [19]

1. Universality

e Widely recognized by designers and developers worldwide, ensuring a common
language for cross-team and cross-border collaboration.

2. Industry Adoption

e Used by major enterprises (e.g., IBM, Boeing, Siemens) to model systems of
varying scales and complexities, proving its scalability and robustness.

3. Standardized Notation

e Provides a unified set of diagrams (e.g., class, sequence, use case) that reduce
ambiguity and improve consistency in documentation.

4. Clarity & Readability

e Visual representations simplify complex system structures, making them
accessible to both technical and non-technical stakeholders.

5. Error Reduction

e FEarly visualization of system logic helps identify design flaws before
implementation, lowering development costs and risks.

6. Domain Agnosticism

e Applicable beyond IT (e.g., business processes, healthcare workflows,
industrial systems), supporting interdisciplinary projects.

7. Tool Support

e Supported by powerful tools (e.g., Enterprise Architect, Lucidchart, StarUML)
that enable code generation, reverse engineering, and automated
documentation.

8. Lifecycle Coverage

e Supports all phases of development—from requirements analysis (use cases) to
deployment (component diagrams)—ensuring continuity.

9. Flexibility

e Compatible with agile methodologies and can be adapted to specific project
needs (e.g., lightweight UML for startups).

16

Chapter 111 System Analysis and Design

10. Educational Value

e Serves as a foundational teaching tool in computer science curricula, bridging
theory and practical design.

3.4.4 System’s diagrams

For requirements modeling, we use the following UML diagrams: use case diagrams, sequence
diagrams, class diagrams, and component diagrams. For this purpose, we have selected
StarUML as our modeling software.

StarUML is an open-source software modeling tool that supports UML (Unified Modeling
Language) standards. It provides a versatile environment for creating UML diagrams, including
use case, class, sequence, component, and deployment diagrams. StarUML facilitates model-
driven development with features such as code generation, reverse engineering, and
extensibility through plugins. [20]

3.4.5 Use case Diagram:

In the Unified Modeling Language (UML), a use case diagram can summarize the details of
your system's users (also known as actors) and their interactions with the system. To build one,
you'll use a set of specialized symbols and connectors. An effective use case diagram can help
your team discuss and represent: [21]

e Scenarios in which your system or application interacts with people, organizations, or
external systems

e Goals that your system or application helps those entities (known as actors) achieve

e The scope of your system.

Below, it is the Use case Diagram of the system:

17

Chapter 111

System Analysis and Design

User

\

WebRTC application

=
:
.
.
1

- «include»
ROGISIBN e ccmmmne csssimsinsic Authenticate)

«include» Jae2™”

«include»f

Initiate a call
«extend»
<G

<-..

-7 «extend»

«extend» -~

Refuse call

Update User name

Figure 3-1: Use Case Diagram of the WebRTC application

The following use case diagram illustrates the functional interactions between the user and
the WebRTC-based web application. The goal of this diagram is to capture and organize the
key functionalities that the system must support from the user’s perspective.

18

Chapter 111 System Analysis and Design

Actor:

User: The only actor represented in this use case diagram is the end user, who interacts with
the application through the web interface.

Use Cases

1.

Register

This use case allows new users to create an account within the application. It includes
the Authenticate use case to verify and securely store user credentials. The Register use
case may also trigger the Display Error use case if any errors arise during the
registration process, like an invalid input or network errors.

Login
Existing users authenticate themselves by logging into the system. Similar to
registration, it includes the Authenticate use case to validate the provided credentials
and extends the Display Error use case in case of incorrect login attempts or service
failure.

Authenticate (<<include>>)

This is a common functionality included by both the Register and Login use cases. It
handles the actual process of checking user credentials (with JWT-based authentication)
and either granting access or denying it.

Display Error (<<extend>>)

This use case represents the system’s behavior when an error occurs during various
operations. It is conditionally triggered by other use cases such as Register, Login, and
Initiate Call.

Access Participant List

This use case allows the user to view a real-time list of currently available participants,
which is a prerequisite for initiating a peer-to-peer call.

Initiate Call

The user can start a WebRTC call after selecting a participant from the list. This use
case includes the ‘Access Participant List’ functionality and may also extend the
‘Display Error’ use case if issues such as network failure or participant unavailability
occur.

Receive Call

This use case models the scenario where a user is the recipient of an incoming WebRTC
call. When another user initiates a call, the system sends a prompt to the recipient,
asking whether to ‘accept’ or ‘reject the call’.

End Call

This use case enables the user to terminate an active call session at any time.

19

Chapter 111 System Analysis and Design

9. Update Display Name

This optional use case lets users update their display name, which is used to identify
participants in the application interface.

10. Disconnect
This use case represents the user intentionally or unintentionally leaving the
application. It involves removing the user from the participant list.

3.4.6 Sequence Diagram:

A sequence diagram is a type of UML diagram that depicts the order of interactions between
participants in a system. It is an interaction diagram that illustrates how operations are carried
out and includes objects, links, and messages. [22]

Sequence diagrams are particularly useful in modeling the logic of complex operations,
functions, or procedures by showing the sequence of messages exchanged between objects.
They play a decisive role in both the design phase, to validate system architecture and
behavior, and in the documentation phase, to provide clear insights into system interactions.

In this section, we present some sequence diagrams of our system:
Scenario 1: WebRTC SDP and ICE Candidate Exchange.

The sequence diagram presented illustrates the process of establishing a peer-to-peer
connection between two entities using Web Real-Time Communication (WebRTC). This
process involves the exchange of Session Description Protocol (SDP) messages and
Interactive Connectivity Establishment (ICE) candidates to negotiate and establish a direct
media path between peers.

- SDP Offer/Answer Exchange:

Initiator Peer: Begins the connection by generating an SDP offer (SDP contains media
configuration details).

Signaling Server: relays the SDP offer to the Receiver Peer.

Receiver Peer: after receiving the offer, generates an SDP answer that aligns with the offered
parameters and sends it back through the signaling server.

- ICE Candidate Gathering and Exchange

Peer ICE Components: Both peers initiate the ICE gathering process to discover potential
network paths.

Candidate Exchange: As ICE candidates are found, each peer sends them to the other via the
signaling server.

This sequence ensures that both peers agree on the media parameters and establish a reliable
and efficient communication channel.

20

Chapter 111 System Analysis and Design

WebRTC SDP and ICE Candidate Exchange Sequence

Yeer ICE ‘ Initiator Peer Signaling Server ‘ ‘ Receiver Peer Remote ICE |

Generate SDP (Offer) |

Send Offer to Receiver

Deliver Offer

h 4

Generate SDP (Answer)

H, Send Answer to Initiator

X

H Deliver Answer !
N

= ICE Gathering Phase I=

| Start Gathering ICE

Create ICE Candidates :

New ICE Canddate

Send ICE Candidate

» |

Forward ICE Candidate

>

 Start Gathering ICE

Cd

Create ICE Candidates

.

JenEonigte |

_ Send ICE Candidate

_ Forward ICE Candidate

%eer ICE Initiator Peer Signaling Server ‘ ‘ Receiver Peer Remote ICE.

Figure 3-2: Sequence Diagram of WebRTC SDP and ICE Candidate Exchange Process

21

Chapter 111 System Analysis and Design

Scenario 2: Call Initiation and Response.

The sequence diagram illustrates the user interaction in initiating a peer-to-peer WebRTC call
and the handling of the response. It captures the behavior between two actors: the Peer
(initiator) and the Remote Peer (receiver).

The interaction begins when the initiator peer selects a remote peer from the available
participants list and clicks the "Start Call" button which triggers a notification prompt on the
receiving end about a call request.

The diagram then models two alternate outcomes:

o If the remote peer accepts the call, he clicks the "Accept" button. A response
message indicating acceptance is sent back to the initiating peer, and they prepare
themselves for connection setup.

o If the remote peer rejects the call, he clicks the "Reject" button. A rejection
notification is sent to the initiating peer, who then receives a message such as "Call
Rejected" in his interface.

The diagram is important as it captures the interactive behavior and the user's decision-
making logic in this WebRTC-based application.

22

Chapter 111 System Analysis and Design

Peer RemotePeer

Click "Call" button

<«

Send Call Request
>

Display prompt "Accept or Reject?"

alt / [User accepts the call]

< Send Call Accepted Notification

Proceed to start SDP/ICE exchange

Proceed to start SDP/ICE exchange

< Send Call Rejected Notification

Display “Call Declined"

«)

Peer RemotePeer

Figure 3-3: Sequence diagram of Call Initiation and Response in WebRTC application.

Scenario 3: User’s registration & login.

The sequence diagram illustrates the user registration process in the WebRTC application,
which includes JWT-based authentication. The only actor involved is the Peer, representing
the end user. The peer interacts with the application interface by providing a name, email, and
password, then submitting a registration request.

23

Chapter 111 System Analysis and Design

The Ul sends the data to the backend web application. The system verifies whether the
chosen name or email is already associated with an existing account by querying the user
management component.

The diagram then models two alternate outcomes:

e If the name or email is already in use, the system responds with an error, and the Ul
displays appropriate feedback to the user.

e If the input is valid, the system proceeds to securely store the new user’s data, and a
JWT (JSON Web Token) is then generated by the authentication module to represent
the authenticated user session. This token is returned to the client, enabling the peer to
access authenticated features of the application.

Peer u Web App User Manager Auth Module

Fill in name, email, password

v

Click "Register"

v

POST /register {name, email, password}

L4

isUsernameOrEmailTaken(name, email)

v

alt / [Username or Email already exists)

, Show error “Useame or Email already taken®
~

New user allowed)

createUser(name, email, hash(password))

success
{
generate]WT(userld) <!
WT Tok
I Toen
. Return token and success
., Redirect to main page / show welcome
Peer ' ' : ;
Ul Web App User Manager ' | Auth Module

Figure 3-4 : Sequence Diagram of the registration flow in the WebRTC app.

24

Chapter 111 System Analysis and Design

3.4.7 Activity Diagram

Activity Diagram is a type of behavioral diagram in the Unified Modeling Language (UML)
that represents the dynamic aspects of a system by modeling the flow of control from one
activity to another. Activity diagrams are used to show how a process or workflow works step
by step. They are helpful for explaining business logic, user actions, or system operations.
These diagrams include elements like actions, decisions, and parallel steps, which help
visualize how tasks are carried out, where choices are made, and how different parts of a
system run at the same time or come back together. [23]

Key Characteristics:
o Nodes: Represent activities (actions), decisions, forks, joins, and object nodes.
o Edges: Represent control and object flows between nodes.

o Swim lanes: Organize activities into categories (e.g., roles, departments) to show
responsibility.

e Concurrency: Fork and join nodes depict parallel execution.

Activity diagram for the WebRTC app will model the flow from registration/login to call
lifecycle. It includes registration/login validation, JWT issuance, listing participants,
initiating/receiving/rejecting/accepting calls, and ending calls. No logout or session refresh
logic is required. If a peer is busy, the system does not notify others; calls simply do not go
through. No time limits on call prompts.

25

Chapter 111 System Analysis and Design

M

| Open Application |

¢—m<;Registered?;f/yes—¢
| Input Name, Email, Password [Input Email and Password ‘\
yes j\/ Name or Email Exists?/\,;‘i ig:\"Credentials Valid? /*xis
Create Account \: Display Login Error | \: Generate JWT ‘\

| Display Error ’\
é Generate JWT | é
| Enter Dashboard 2\

—

| Display Available Participants |

Call Flow/

& yes Initiate Call?\",nc' ¢

| Select Peer | | Wait for Incoming Call |

oy v

[Send Call Request ‘\ | Show Incoming Call Prompt |
I&(;ée” Busy? *:?no—¢ r\no /_/ User Accepts?\:\ﬁes

\: No Response | | Show Incoming Call Prompt on Peer | Reject Call | | Establish Connection |

no -~ \.yes Vi ¢ B\
é I *\Pee'A‘:cePt“,»'!_“] é | Start Media Streaming |

|: Notify Caller of Rejection || Establish Connection :\
i [Incan |

| start Media Streaming | Vli
| ‘ ~
l | User Clicks 'End Call'
[Incan
l [Terminate Connection \
| User Clicks 'End Call' |
| Terminate Connection “\
Y

v

| Return to Dashboard .j

&

Figure 3-5: Activity Diagram of User Registration, Authentication, and Call Lifecycle in the
WebRTC Application.

26

Chapter 111

System Analysis and Design

3.4.8 Components Diagram

A Component Diagram is a type of structural diagram in UML that represents how software
components are organized and how they depend on each other within a system. It captures
high-level, reusable elements such as executables, libraries, modules, and files, showing how
they interact through clearly defined interfaces. This diagram offers a static view of a
system’s implementation, highlighting principles like modularity, encapsulation, and
reusability in software design. [24]

Key Elements:

Components: Represented as rectangles with the «component» stereotype, depicting

reusable and replaceable modules.

Interfaces: Shown as lollipop (provided interface) or socket (required interface)
symbols, defining contracts between components.

Dependencies: Arrows indicating that one component relies on another.
Ports: Explicit interaction points for components.

Connectors: Links between components, often through interfaces.

The component diagram in Figure 3-6 illustrates the high-level modular architecture of the
backend system for a WebRTC-based communication application. It highlights the major
components, their responsibilities, and the interactions among them through provided and
required interfaces.

Components Overview

SignalR Hub Component (WebRTCHub).
e Serves as the entry point for all WebRTC signaling messages.

e Exposes interfaces for managing peer connections (e.g., Offer, Answer, ICE
exchange).

e Requires the Authentication Component for token validation.
Authentication Component (AuthService).

e Handles login, token issuance (JWT), and token validation.

e Provides services to both the WebRTCHub and any future HTTP endpoints.
User Repository Component (UserRepository).

e Abstracts access to the user data in persistent storage.

e Required by the AuthService to validate credentials or retrieve user
information.

Data Storage.

e A database that stores user credentials.

27

Chapter 111 System Analysis and Design

e Accessed exclusively by the UserRepository.
e C(Client (External System).
e Represents browser clients or applications interacting with the backend.

e Communicates with the WebRTCHub over a WebSocket connection using
SignalR.

«external»
WebRTC Client

+Signaling connection

A4
«component»
WebRTC Hub

Ll
'

+Validate JWTI

\v4
«component»
Authentication Service

+Fetch user

AV
«component»
User Repository

+Read & write user data

\/
«database»
User Database

Figure 3-6: Component Diagram of the Backend Architecture for the WebRTC Application.

28

Chapter 111 System Analysis and Design

3.4.9 Class Diagram:

A Class Diagram is a structural diagram in the Unified Modeling Language (UML) that
depicts the static structure of a system by showing classes, their attributes, operations
(methods), and the relationships among them. It serves as a blueprint for software design,
illustrating object-oriented concepts such as inheritance, association, aggregation,
composition, and dependency. Class diagrams are fundamental in object-oriented analysis
and design (OOAD) for visualizing, specifying, and documenting system architecture. [25]

Key Elements:

e Classes: Represented as rectangles divided into compartments for the class name,
attributes, and methods.

o Relationships: Include associations (with multiplicities), generalizations
(inheritance), dependencies, aggregations, and compositions.

o Interfaces & Abstract Classes: Used to define contracts and polymorphism.

The class diagram in Figure X represents the backend structure of the WebRTC-based
application, focusing on authentication, user management, and real-time communication via
the signaling server. The diagram strictly focuses on backend classes, as no frontend logic or
signaling protocol details (such as SDP or ICE) are illustrated here.

1.WebRTCHub

The WebRTCHub class is responsible for managing real-time communication between
clients. It facilitates signaling by relaying offers, answers, and ICE candidates. Internally, it
maintains a ConcurrentDictionary<string, string™> named _participants to map active
connection identifiers to user names, enabling the system to track connected peers during
communication sessions.

2. AuthService

The AuthService encapsulates the logic required to authenticate users and issue JWT (JSON
Web Token) tokens. It verifies user credentials and generates secure access tokens that clients
use to authenticate WebSocket connections.

3. UserRepository

The UserRepository class abstracts data access logic for the user domain. It exposes methods
for common operations such as adding and retrieving user records. While a direct association
with AuthService is modeled, its relationship to the User class is captured as a dependency.
This is because the repository's methods utilize User objects as parameters or return type.
without retaining direct ownership of them.

4. User

The User class is a data model representing application users. It defines key properties,
including Name, Email, and PasswordHash. These attributes are required for user
registration, authentication, and authorization processes.

29

Chapter 111 System Analysis and Design

5. Persistence and Application Context

Only user data and authentication tokens are persisted in the backend storage. The active
participant list within the WebRTCHub is transient and maintained entirely in memory using
a thread-safe dictionary structure.

Relationship Overview

e WebRTCHub — AuthService: Modelled as a direct association; WebRTCHub uses
AuthService to authenticate incoming connections.

o AuthService — UserRepository: Direct association, indicating delegation of
persistence-related tasks.

o UserRepository - - > User: Dependency relationship; User is used as a method
parameter or return type, but not composed within the repository.

Below is the class diagram of the software:

30

Chapter 111

WebRTCHub

- Participants: ConcurrentDictionary

+Task Join(string userName)

+Task SendOffer(string receiverld, object offer)

+Task SendAnswer(string receiverld, object answer)

+Task SendlceCandidate(string receiverld, object candidate)
+Task OnDisconnectedAsync(Exception?)

System Analysis and Design

+Calls

UserRepository

+User? GetUserByEmail(string email)
+yoid AddUser(User user)
+hool UserExists(string email)

....
....
"

"
....
-

dependencyj

Via
Dependency | . ces
Injection
AuthService User
+Generate JWT token for ;
, : : — -8tring Name
+hool Register(string name, string email, string password) ttng Emai
+8tring? Login(string emall, string password) tting PasswordHash
+string GenerateJwiToken(User user)
o

Figure 3-7 : Class Diagram of Backend Components for WebRTC App

31

Chapter 111 System Analysis and Design

Conclusion

This chapter provided a comprehensive analysis of the WebRTC-based application’s
requirements, and it translated it to a set of UML diagrams, including use case, sequence,
activity, component, and class diagrams. Which offers a clear understanding of the functional
and structural design of the system where the interactions between the system components
and users were modeled and explained. In the next chapter, we transition to the
implementation phase, detailing how the designed architecture is realized in practice.

32

Chapter 4

System Implementation.

Chapter IV System Analysis and Design

Introduction:

This chapter presents the implementation process of the WebRTC-based video conferencing
application. It outlines the selected technology stack, describes the development steps taken to
realize the system, and discusses the challenges encountered throughout the process. Building
upon the analysis and design models presented in the previous chapter.
This phase translates theoretical models into functional software components that form the core
of the application.

We will see first how a modern web application must be structured. Afterwards, we will detail
the technologies used by this WebRTC-based video conferencing application. finally, we will
focus on the source code (implementation).

4.1 Technologies and programming languages used.

4.1.1 Web application.

A web application is software that runs in a web browser and uses client-side or server-side
logic to provide interactive features over the internet. While it usually follows a client-server

model, modern web apps can also use peer-to-peer technologies like WebRTC to let users
communicate directly without always going through a server. [26]

4.1.2 RESTful web services

RESTful web services are stateless, client-server-based software systems that conform to the
principles of Representational State Transfer (REST). They use standard HTTP methods (GET,
POST, PUT, DELETE) to expose resources identified by URIs and allow uniform, scalable,
and interoperable communication between distributed components. [27]

4.1.3 Authentication using JWT

JSON Web Token (JWT) is an open standard that defines a compact and self-contained way
for securely transmitting information between parties as a JSON object. This information can
be verified and trusted because it is digitally signed. JWTs can be signed using a secret (with
the HMAC algorithm) or a public/private key pair using RSA or ECDSA. [28]

4.1.3.1 JWT Structure

JWT is a character string with three main parts: the head (header), the payload (payload) and
signature and separated by points (.) As indicated below. [29]

Header Payload Signature

aaaaaa . bbbbbb . cccccc

Figure 4.1: Structure of JWT

33

Chapter IV System Analysis and Design

Header: It contains information on how signature must be calculated, and

generally has the following format:

{

"algorithm'": "HS256",

"type': "JWT"

3

Generally, it is made up of two parts: the type of token which is the JWT and the
signature algorithm used as: HMAC SHA256 or RSA.

Then, this JSON is base64url encoded to form the first part of the JWT.

Payload: It is the data stored in the JWT. We can also have other useful
charges

predefined which are not compulsory but recommended for good practices
Like: ISS (the issuer), exp (the time of expiration, sub (the subject), aud (audience)
and others.

A simple example of Payload can be:

{

"sub": "1234567890",

"name": "Refik Youcef",

“email”: “Youcef@example.com”,

"admin": true

3
The payload is also base64url encoded to form the second part of the JWT.

Signature: The signature is used to check if the message has not been altered along the
way and it is coded using a private key to ensure that the issuer is the one he pretends
to be.

The final encoded token looks similar to this:
eyJhbGceiO1JIUzIINiIsInR5c¢CI6IkpXVCJ9.eyJzdWIiOilxMjMONTY 30Dk
wliwibmFtZSI161kpvaG4gRGI1lliwiaWF0IjoxNTE2MjMSMDIyfQ.SfIKxwR
JISMeKKF2QT4fwpMelJf36P Ok6yJV_adQsswSc

One of the best-known uses in JWT is authorization that goes hand in hand with
authentication and has a scenario like this:

34

Chapter IV

Modern Token-Based Auth

Browser

System Analysis and Design

POST /authenticate
username=...&password=...

Server

HTTP 200 OK
{token: ... JWT...'}

GET /api/user

Authorization: Bearer ...JWT...

I

Figure 4.1: Authentication based on JWT.

HTTP 200 OK
{ name: “foo”}

validat
token

35

Chapter IV System Analysis and Design

4.1.4 SignalR

SignalR is a real-time communication library in ASP.NET that facilitates bidirectional
communication between a server and multiple clients [30]. It is commonly used for signaling
in WebRTC applications, where it helps establish connections by exchanging SDP offers,
answers, and ICE candidates. SignalR supports multiple transport mechanisms:

e WebSockets: the preferred transport for real-time communication.
e Server-Sent Events (SSE): a fallback for streaming events from server to client.

e Long Polling: a legacy fallback where the client continuously requests updates from the
server.

SignalR simplifies WebRTC signaling by managing real-time message exchange between peers
and servers.

4.1.5 ASP .NET CORE

ASP.NET Core is an open-source, cross-platform framework developed by Microsoft for
building modern, cloud-based, and internet-connected applications, such as web apps, loT
apps, and mobile backends. It is a redesign of the original ASP.NET framework, offering
improved performance, modularity, and support for containerized environments. ASP.NET
Core supports multiple platforms, including Windows, macOS, and Linux, and integrates
seamlessly with modern development workflows and tools. [31]

4.1.6 SQL Server

Microsoft SQL Server is a relational database management system (RDBMS) designed for
storing, retrieving, and managing structured data. It offers a secure, scalable, and reliable
platform suitable for building enterprise-level data-driven applications. [34]

Below in figure 4.2 a representation of the entire technology stack used in this application.

36

Chapter IV

System Analysis and Design

4.1.7 Technology Stack:

i)

L e e -

System’s Database

a

Authentication & Security

Web application in Browser with
HTML 5, CSS 3, Vanilla JS ES6+.

C# ASP .NET CORE 9, Restful API.
EF Core Library for ORM

C# NET SignalR Library (WebSockets).

RDBMS SQL Server.

JWT for authorization and HS256 for PasswordHashing

Figure 4.2: An overview of the technology stack.

37

Chapter IV System Analysis and Design

4.2 Application architecture:

The application is a peer-to-peer WebRTC app that requires a backend server to handle
signaling, as well as user registration and login, secured using JWT authentication.
The backend is built with ASP.NET Core 8, exposing RESTful APIs (/register, /login) and
hosting a SignalR Hub (/webrtcHub) to relay signaling messages (SDP oftfers/answers and ICE
candidates) over WebSockets.

It communicates with a SQL Server database using Entity Framework Core for data
persistence.

On the frontend, the app uses HTML, CSS, and JavaScript, with separate templates auth.html
(for login/register), dashboard.html (launch interface), and index.html (main call interface).
WebRTC functionality is handled by a custom ‘WebRTCManager’ class in JavaScript which
manages media capture, peer connections, and signaling interaction.

Peers connect directly using ‘RTCPeerConnection’ and exchange media streams. For NAT
traversal, the browsers interact with STUN/TURN servers to establish a connection path, acting
as ICE servers when direct connections aren't possible.

The architecture separates concerns between signaling, authentication, media transmission, and
database persistence, resulting in a clean, maintainable, and scalable design.
Below is a figure representing the entire architecture.

The accompanying diagram in next figure visually reinforces this explanation by clearly
outlining the interaction flow between the frontend, backend, database, and peer browsers,
while also showing the supporting role of STUN/TURN servers in NAT traversal.

38

Chapter IV System Analysis and Design

]

Back-end Server ORM EF Core
[ASP.NET Care 8) '
Restiu| APjs + SignaiRHub
& JWT auth
with roules:
= POST flogin
= POST /register
= MapHub(*/wabrtcHub')

SignalR over WebSockets HTTP

Front-end
(HTML, CSS, JavaScript)
with 2 templates:
= Auth.btmi for logging &
registration,
~ Dashboard, html for Is unching the
applicstion.
- Index. html for the maln Interface
of the spplication.
And WebRTCManager class
for handling WebRTC APls

)

getUserMedia()
WebRTC (RTCPeerConnection)
SDP (Offer/Answer), ICE Candidates

Remote Peer Browser
SignalR Connaction + WebRTC «
Muytiix Trgks re
ICE server
interaction for NAT
traversal

Figure 4.3: The application architecture.

SQL SERVER
Database

STUN/TURN
Server

39

Chapter IV System Analysis and Design

4.3 User Interface Overview.

4.3.1 Login and Registration Interface.

This screen allows users to securely access the application. The login form requires an email
and password, while the registration form collects the user's name, email, and password to
create a new account. Both interfaces interact with the backend via HTTP requests and use
JWT for authentication upon successful login.

Login to Start

Password

Login

Don't have an account? Register

Figure 4.4: Login Interface

40

Chapter IV System Analysis and Design

Register

Password

Confirm Password

Register

Already have an account? Login

Figure 4.5: Registration Interface

4.3.2 Dashboard Interface

This screen serves as a simple launch point after a successful login. The user is greeted and
given two options: proceed to open the main application interface or log out. It provides a clear
transition between authentication and active use of the WebRTC features.

41

Chapter IV System Analysis and Design

Welcome to the WebRTC Dashboard

You Logged in succesfully

Ready to start video calling?

Open WebRTC App Logout

Figure 4.6: The Dashboard Interface

4.3.3 Main Video Conference Interface

This is the core interface where the peer-to-peer video call takes place. It displays all available
users and allows receiving and sending call requests in real time. Once in a call, users have
essential controls such as toggling the microphone and camera, and leaving the call.

Figure 4.7: Main Video Conference Interface.

42

Chapter IV System Analysis and Design

4.4 Technical Implementation

4.4.1 Signaling phase using SignalR Library:

In this WebRTC application, SignalR acts as the signaling mechanism that facilitates the
exchange of signaling data (offers, answers, and ICE candidates) between peers. It also handles
user presence management (who is online, who joined or left).

In short version, SignalR simply helps peers find and connect to each other before WebRTC
media flow begins from peer-to-peer.

A central component in this system is the “WebRTCHub’ class. This class inherits from Hub
and acts as the real-time message broker between clients. Each method in this hub facilitates a
specific step in the connection process, from joining the session to sharing signaling messages
and handling disconnections.

Hub Methods:
1. “Join” method

This method allows a user to join the system with a unique username. When this method
is called:

e The user is added to an in-memory user list.
e Their connection ID is mapped to the username.

e The server then updates all connected clients with the new list of participants.

public async Task Join()

var userName = Context.User?.Claims?
JFirstOrDefault(c => c.Type == JwtRegisteredClaimNames.Name)?.Value ?? “Unknown";

_participants[Context.ConnectionId] = userName;

await Clients.Others.SendAsync("“UserArrived”, Context.ConnectionId, userName);
Lcipants”, _participants);

Figure 4.8: the ‘JOIN’ method

43

Chapter IV System Analysis and Design
2. ‘SendOffer’ method.

This method is used when one user initiates a call to another. The offer parameter contains

the WebRTC session description (SDP offer), and ‘targetConnectionld’ specifies which
client should receive it.

The method sends this offer to the target user so they can decide whether to accept the call.

o060

public async Task SendOffer(string
targetConnectionlId, string offer)

{

awalit
Clients.Client(targetConnectionld).SendAsync("Re
ceiveOffer", Context.Connectionld, offer);

}

Figure 4.9: The ‘SendOffer’ method

3. ‘SendAnswer’ method.

After a user receives an offer and decides to accept the call, they respond with an SDP

answer. This method sends that answer back to the original caller using their connection
ID.

000

public async Task SendAnswer(string targetConnectionId, string answer)

{

await Clients.Client(targetConnectionId)
.SendAsync("RecetveAnswer”, Context.Connectionld, answer)

Figure 4.10: The “SendAnswer’ method.

44

Chapter IV System Analysis and Design

4. ‘SendlIceCandidate’ method

ICE candidates are shared to help find the best path for communication between peers. This
method sends an ICE candidate from one peer to another during the connection setup.

000

public async Task SendIceCandidate(string targetConnectionld, string candidate)

{

await Clients.Client(targetConnectionld)
.SendAsync("ReceivelceCandidate”, Context.Connectionld
, candidate);

Figure 4.11: The ‘SendIceCandidate’ method.

5. ‘OnDisconnect’ method.

When a client disconnects, this method is triggered automatically. It removes the user
from the internal list and informs the other clients so they can update their participant lists
accordingly.

@
public override async Task OnDisconnectedAsync(Exception exception)

{

if (_users.TryRemove(Context.ConnectionId, out var username))

{

await Clients.All.SendAsync(“UserListUpdated”, _users.Values)

}

await base.OnDisconnectedAsync(exception);

Figure 4.12: The ‘OnDisconnect’ method.

45

Chapter IV System Analysis and Design

4.4.2 ‘WebRTCManager’ JavaScript Class Overview

The ‘WebRTCManager’ class acts as the central controller for managing real-time
communication and user interactions in the frontend of the WebRTC application.
It handles three core responsibilities: media device access, peer-to-peer connection setup, and
SignalR-based signaling.

e Upon initialization, the class verifies the presence of a valid JWT token.

00

checkTokenAndAutoJdoin() {
const token = localStorage.getltem("“token")
if (!token) {
window. location.href = "auth.html";
return;

}

const payload = this.parseldwt(token);

if (!payload || !payload.name) {
window. location.href = "auth.html”
return;

}

this.mainContainer.style.display =

this.initializeMedia().then(() => {
this.initializeSignalR(token);
this.connectToSignalR();

Figure 4.13: Verification of authorized JWT.

46

Chapter IV System Analysis and Design

e The class then accesses the user's camera and microphone using ‘getUserMedia’
function by first verifying their availability and the compatibility of the browser used.

® e

async initializeMedia() {
Eny i
if (!navigator.mediaDevices ||
'navigator.mediaDevices.getUserMedia) {
throw new Error(“"getUserMedia 1is
supported in this browser.");

}

this.localStream = await
navigator.mediaDevices.getUserMedia({

video: =
audio:

})s;

this.localVideo.srcObject =
this.localStream;
} catch (error) {
console.error("Error accessing media
devices:", error);
}
}

Figure 4.14: Media Device Access (Camera & Microphone).

47

Chapter IV System Analysis and Design

e After that, the class creates an RTCPeerConnection, adds local tracks, and sets up event
handlers for ICE and remote streams.

Note that we are using a STUN server from Google.

oo o

createPeerConnection(connectionId) {
const peerConnection = new
RTCPeerConnection({
iceServers: [{ urls:
'stun:stun.l.google.com:19302" }]
});

if (!this.localStream) {
console.error("Local media
titalized.");

return -
}

this.localStream.getTracks().forEach(track
=> peerConnection.addTrack(track,
this.localStream));

peerConnection.ontrack = event => {

this.addRemoteVideo(connectionld,
event.streams[0]);

)

peerConnection.onicecandidate = event => {
if (event.candidate) {

this.signalRConnection. invoke("SendIceCandidat
', connectionld, event.candidate);
}
};

return peerConnection;

Figure 4.15: Peer-to-Peer Connection Setup.

48

Chapter IV System Analysis and Design

4.5 Tests and Validation
4.5.1 Test Cases

a. Peer Connection Call Test:

Two users opened the app in Microsoft Edge and Chrome. Caller initiated a call; callee
accepted. Result: Video and audio were exchanged successfully.

Result: £4 Pass (Media stream established)

Note: The tests run on Chrome (Version 136.0.7103.114) & Microsoft Edge (Version
136.0.3240.64).

b. JWT Token Verification Test

Tried login & register endpoint to determine if the result is a valid JWT by sending HTTP
requests with POSTMAN using the REST endpoints of the application and verifying result
with jwt.io website by decoding it.

Result:
- Sending a POST request to the /login endpoint.

i https://192.168.163.169:5001//api/Auth/login

https://192.168.163.169:5001//api/Auth/login

Authorization Head 8) Body

none form-data x-www-form-urlencoded @ raw binary

Figure 4.16

49

Chapter IV System Analysis and Design

- The result was a 200 Code Response (OK) and the result was a coded token.

“token":

Figure 4.17

- After decoding it using jwt.io website this result was obtained.

DECODED HEADER

JSON CLAIMS TABLE

"alg": "HS256",
"typ": "JWT"

DECODED PAYLOAD

JSON CLAIMS TABLE

L

"youcef@test.com”,

"Youcef",
1747483668,
"GraduationProjectAPI",
"GraduationProjectClient"”

Figure 4.18

Pass (JWT is valid & Access is granted).

50

Chapter IV System Analysis and Design

c. Media Access Denial Test:

Blocked the camera/mic in browser. Result: App showed appropriate error.
In this test we blocked the access to the camera/mic by accessing them first from a different
bowser which results in their unavailability in the experiential browser.
Result:

Error message appears in console log tab in the browser and it prevents user from
initializing calls.

v Error accessing media devices: NotReadableError: webrtc-manager.js:94
Device in use '

initializeMedia @ webrtc-manager.js:94

Figure 4.19

Pass (Browser denies call initiating & Error is shown).

d. Connection Handling Test:

When a user closed the tab, the other users should be updated and video broadcast will stop.
Result: Pass.

4.6 Future Work

Despite achieving the primary objective of enabling real-time peer-to-peer communication
using WebRTC and SignalR, and adding authentication with JWT tokens, the current
implementation can benefit from more features.

a. Call History Logs.

The application does not maintain any history of call, and there is no record of call start/end
times, participants, or durations. This limits post-session analysis and user tracking
functionalities commonly found in other common communication platforms.

b. Dedicated Meeting Rooms.

The app lacks the concept of virtual "rooms" or session IDs for organizing calls.
All users are visible in a shared space without any form of meeting segregation, which
restricts scalability for concurrent conversations and does not support invite-only sessions.

c. User Privacy

Currently, all connected users are visible to each other. There are no visibility controls, so
user can reach and be reached by anyone which undermines the confidentiality experience.

51

Chapter IV System Analysis and Design

d. Screen Sharing Capability

The system only supports audio and video streaming between peers. Screen sharing is an
essential feature in collaborative and educational contexts; which limits how applicable is
the system among others in the same environment.

4.7 Conclusion

The goal of this chapter was to clarify the software architecture by explaining the
implementation steps of the development process with some UI screenshots to showcase and
backend aspects to explain.

52

Chapter IV System Analysis and Design

General Conclusion

This graduation project is about implementing a WebRTC-based service application for the
goal of understanding how its protocols function and how they interact with each other, and
learning the system design principles and improving my knowledge about software
architecture by practicing what I learned in the past five years in the computer science class.

I was motivated the most by the opportunity to apply my academic learning in a practical
manner, like the object oriented paradigm, software engineering and design using UML,
security encryption and authentication, and some UI/UX principle that I’'m really bad at,
while also exploring new technologies that I hadn’t used before, like .NET ecosystem
libraries (e.g. SignalR for real time communication and Entity Framework for Object
Relational Mapping) which made a technical challenge for me so I think this will help me
grow as a developer.

In the end, the project was a technical and personal milestone, it helped me reflect my skills
and learn new ones, and it grow my interest more in real-time communication-based
software.

53

References

Reference

Webography
[1] Google WebRTC Overview.

Available: https://webrtc.org/ .

[2] H. Alvestrand. (2011, May) Google release of WebRTC source code.
Available : https://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html.

[3[Peer-To-Peer Networks: Features, Pros, and Cons - Spiceworks.

Available : https://www.spiceworks.com/tech/networking/articles/what-is-peer-to-peer/.

[4] “Getting Started with WebRTC - HTMLS5 Rocks,” HTMLS5 Rocks - A resource for open
web HTMLS developers.

Available : http://www.html5rocks.com/en/tutorials/webrtc/basics/.

[5] “MediaStream API,” Mozilla Developer Network.
Available : https://developer.mozilla.org/en-US/docs/Web/API/Media Streams API.

[6] “RTCPeerConnection,” Mozilla Developer Network.

Available : https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection.

[7] L. L. Singh Varun, “Basics of WebRTC getStats() API — callstats.io.”

Available : http://www.callstats.i0/2015/07/06/basics-webrtc-getstats-api/

[8] “WebRTC data channels: WebRTC data channels for high performance data exchange -
HTMLS5 Rocks,” HTMLS5 Rocks - A resource for open web HTMLS5 developers.

Available : http://www.htmlSrocks.com/en/tutorials/webrtc/datachannels/

[9] “SDP : Session Description Protocol,” RFC4566.

Available: https://datatracker.ietf. org/doc/html/rfc4566.

[10] “RTCIceCandidate,” MDN Web Docs.
Available : https://developer.mozilla.org/en-US/docs/Web/API/RTClIceCandidate.

[11] “WebRTC connectivity,” MDN Web Docs.
Available : https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity.

[12] “RFC 4787 Network Address Translation (NAT) Behavioural Requirements for Unicast
UDP.

Available : https://www.rfc-editor.org/rfc/rfc4787

[13] “RTCPeerConnection.createAnswer(),” MDN Web Docs.

Available : https://developer.mozilla.org/en-
US/docs/Web/API/RTCPeerConnection/create Answer

53

https://webrtc.org/
https://www.spiceworks.com/tech/networking/articles/what-is-peer-to-peer/
https://developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API
https://developer.mozilla.org/en-US/docs/Web/API/RTCIceCandidate
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createAnswer
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createAnswer

Reference

[14] “Signaling and video calling,” MDN Web Docs.

Available: https://developer.mozilla.org/en
US/docs/Web/API/WebRTC_API/Signaling_and_video_calling

[15] “SIP: Session Initiation Protocol”. Rfc3261, June 2002.

Available: https://datatracker.ietf.org/ doc/html/rfc3261

[16] “An Offer/Answer Model with the Session Description Protocol (SDP)”. Rfc3264, June
2002.

Available: https://datatracker.ietf.org/doc/html/rfc3264

[17] “Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN)” RFC 5766.

Available : https://datatracker.ietf.org/doc/html/rfc5766

[18] Object Management Group (OMG). (2017). Unified Modeling Language™ (UML®)
Version 2.5.1.

Available: https://www.omg.org/spec/UML/2.5.1/

[19] "UML in Practice" by Petre, 2013, IEEE Pape

Available : https://ieeexplore.ieee.org/document/6606618

[20] StarUML. (2023). StarUML Documentation.

Available : https://staruml.io

[21] UML Use Case Diagram Tutorial | Lucidchart

Available : https://www.lucidchart.com/pages/uml-use-case-diagram

[22] UML for Developing Knowledge Management Systems. By Anthony J. Rhem.

Available: https://www.routledee.com/UML-for-Developing-Knowledge-Management-
Systems/Rhem/p/book/9780429209024.

[23] Object Management Group (OMG). (2017). Unified Modeling Language (UML),
Version 2.5.1. OMG Document Number formal/2017-12-05.

Available : https://www.omg.org/spec/UML/2.5.1/

[28] Introduction to JSON Web Tokens.

Available: https://jwt.io/introduction

[29] JSON Web Token (JWT) RFC 7519.

Available : https://datatracker.ietf.org/doc/html/rfc7519

[30] "ASP.NET Core SignalR," Microsoft Learn.

Available: https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction

54

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc5766
https://www.omg.org/spec/UML/2.5.1/
https://staruml.io/
https://www.omg.org/spec/UML/2.5.1/
https://jwt.io/introduction
https://datatracker.ietf.org/doc/html/rfc7519
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction

Reference

[31] Microsoft. (n.d.). Introduction to ASP.NET Core.

Available : https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-

core

[33] Visualization of a MediaStream Object.

Available: https://dev.w3.org/2011/webrtc/editor/getusermedia-20120813.html.
[34] Microsoft. (n.d.). SQL Server documentation. Microsoft Learn.

Available: https://learn.microsoft.com/en-us/sql/sql-server/

55

https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core

Reference

Bibliography

[24] Larman, C. (2005). “Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development” (3rd ed.). Prentice Hall.

[25] Booch, G., Rumbaugh, J., & Jacobson, 1. (2005). The Unified Modeling Language User
Guide (2nd ed.). Addison-Wesley Professional.

[26] Sommerville, 1. (2016). Software Engineering (10th ed.). Pearson.

[27] Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures (Doctoral dissertation, University of California, Irvine).

[32] Coronel, C., & Morris, S. (2015). Database Systems: Design, Implementation, &
Management (11th ed.). Cengage Learning.

56

Reference

List of Figures :
Figure 2-1: Difference between Server to Client & Peer-to-Peer Communication

Table 2-1: A comparison between peer-to-peer and client/server architectures.

Figure 2-2: A WebRTC architecture with a signaling server, NAT, STUN server, and TURN
server.

Figure 2.4: An example WebRTC SDP Offer Message

Figure 2.5: An example of the STUN binding request and response.

Figure 2.6: Allocating addresses in a TURN server and relaying media through it.
Figure 2.7: Example ICE Candidate, with the type host with a priority of 659136.
Figure 2-8: Visualization of a MediaStream Object.

Figure 2-9: Workflow for Setting Up a WebRTC Peer-to-Peer Connection.

Figure 3-1: Use Case Diagram of the WebRTC application

Figure 3-2: Sequence Diagram of WebRTC SDP and ICE Candidate Exchange Process
Figure 3-3: Sequence diagram of Call Initiation and Response in WebRTC application.
Figure 3-4 : Sequence Diagram of the registration flow in the WebRTC app.

Figure 3-5: Activity Diagram of User Registration, Authentication, and Call Lifecycle in the
WebRTC Application.

Figure 3-6: Component Diagram of the Backend Architecture for the WebRTC Application.
Figure 3-7 : Class Diagram of Backend Components for WebRTC App
Figure 4.1: Structure of JWT

Figure 4.1.1: Authentication based on JWT

Figure 4.2: An overview of the technology stack.

Figure 4.3: The application architecture

Figure 4.4: Login Interface

Figure 4.5: Registration Interface

Figure 4.6: The Dashboard Interface

Figure 4.7: Main Video Conference Interface.

Figure 4.8: the ‘JOIN’ method

Figure 4.9: The ‘SendOffer’ method

Figure 4.10: The “SendAnswer’ method

Figure 4.11: The ‘SendIceCandidate’ method.

57

Reference

Figure 4.12: The ‘OnDisconnect’ method

Figure 4.13: Verification of authorized JWT.

Figure 4.14: Media Device Access (Camera & Microphone).
Figure 4.15: Peer-to-Peer Connection Setup.

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

58

Reference

List of Acronyms :

e VOIP - Voice Over Internet Protocol
Technology that allows voice communication over the Internet.

e VC — Video Conferencing
Real-time video communication between two or more users over a network.

o API — Application Programming Interface
A set of rules and tools that allows software applications to communicate with each other.

e RTC — Real-Time Communication
Technology enabling live audio, video, and data transfer between peers.

o W3C — World Wide Web Consortium
An international community that develops open web standards.

o IETF — Internet Engineering Task Force
An organization that develops and promotes internet standards, including those used in
WebRTC.

o S/C — Server-to-Client
Communication flow from the server to the client in a network architecture.

e P2P — Peer-to-Peer
A decentralized network model where each device (peer) can act as both a client and a server.

o ICE — Interactive Connectivity Establishment
A framework used in WebRTC to find the best path to connect two peers through NATs and
firewalls.

e NAT — Network Address Translation
A method that remaps one IP address space into another, commonly used in routers to share a
single IP.

e STUN — Session Traversal Utilities for NAT
A protocol used to discover the public IP and port assigned by a NAT device.

e TURN — Traversal Using Relays around NAT
A protocol that relays media through a server when direct P2P is blocked by NAT/firewalls.

e SDP — Session Description Protocol
A format for describing multimedia communication sessions, used in WebRTC signaling.

e HTTP — Hyper Text Transfer Protocol
The protocol used by the World Wide Web to transfer and display web pages.

o SRTP — Secure Real-time Transport Protocol
A protocol for encrypting and securing RTP streams in real-time communication.

59

Reference

e DTLS — Datagram Transport Layer Security
A protocol that provides encryption for datagram-based protocols like SRTP.

o NAPT — Network Address/Port Translation
A type of NAT that maps multiple private IPs using different port numbers to a single public
IP.

o PAT — Port Address Translation
Another name for NAPT, focusing on the port number remapping aspect.

e RFC — Request for Comments
Documents that describe standards and protocols for the Internet and software systems.

e iSAC codec — Internet Speech Audio Codec
A wideband audio codec developed by Google, used for high-quality voice.

e iLBC codec — Internet Low Bitrate Codec
An audio codec designed for robust speech transmission over unreliable networks.

e VP8 codec — Video Compression Format
A free video codec developed by Google, commonly used in WebRTC for video streaming.

o UML — Unified Modeling Language
A standardized modeling language used in software engineering to visualize system design.

o IT — Information Technology
The use of computers and networks to store, retrieve, and transmit information.

o JWT —JSON Web Token
A compact, URL-safe means of representing claims to be transferred between two parties
(commonly used for authentication).

e ASP (.NET) — Active Server Pages (NET Framework)
A web framework developed by Microsoft for building web applications and APIs.

o EF (EF Core) — Entity Framework Core
A lightweight, extensible, and cross-platform version of Microsoft’s ORM (Object-Relational
Mapper) for .NET.

o REST APIs — Representational State Transfer APIs
Web services that follow REST principles, enabling interaction with resources using HTTP

methods.

e HS256 — HMAC using SHA-256
A cryptographic algorithm used to sign JWTs (HMAC with SHA-256 hash function).

e RDMS - (Relational) Database Management System
A system for managing relational databases, using tables with rows and columns.

60

Reference

e HTML — Hyper Text Markup Language
The standard language used to create and structure content on the web.

e CSS — Cascading Style Sheets
A stylesheet language used to describe the visual appearance of HTML elements.

61

