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Abstract

The COVID-19 pandemic has demonstrated the critical importance of accurate and timely
epidemic modeling to guide public health responses. Traditional compartmental models such as
SIR and SEIR, while effective in capturing fundamental transmission dynamics, often rely on fixed
parameters and assumptions that may not hold in complex, real-world scenarios. In contrast,
artificial intelligence (Al) offers a data-driven alternative capable of learning from vast and
evolving datasets. This study explores the application of Al techniques specifically deep learning
models such as Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) to forecast
the spread of COVID-19. These models are trained on time-series data including daily case counts,

mobility trends, and government intervention measures.

This study explores the application of artificial intelligence (AI) techniques including machine
learning (ML) and deep learning (DL) to model the spread of COVID-19. By leveraging Al-driven
approaches such as recurrent neural networks (RNNs), long short-term memory (LSTM) models,

and Bidirectional LSTM Model.

The objective of artificial intelligence (Al) research is to develop computer systems capable of
performing tasks using thinking processes similar to those of human beings. Thus, the challenge

lies not only in understanding human thought, but also in its modelling and reproduction.

The use of CNNs and RNNs was an optimal solution given the results obtained in several research
projects. Results demonstrate that Al models can capture nonlinear patterns and temporal
dependencies more effectively than traditional models, enabling improved short-term forecasting
accuracy. Furthermore, we propose a hybrid modeling framework that integrates mechanistic and
deep learning methods to leverage the interpretability of epidemiological models and the predictive
power of Al. The findings underscore the potential of Al to enhance epidemic preparedness and

real-time decision-making during public health crises.

Keywords: COVID-19, SIR-SEIR, epidemic modeling, artificial intelligence, machine learning,
deep learning, LSTM-BiLSTM, predictive analytics, public health
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General introduction

The rapid spread of the COVID-19 pandemic around the world has highlighted the crucial
importance of forecasting and decision support tools for health authorities. Understanding and
anticipating the evolution of an epidemic is a major challenge to limit its health, economic and
social impacts. Traditionally, this task has been based on classical epidemiological models such as
SIR or SEIR, which divide the population into compartments according to health status. However,
these approaches may be limited in the face of the complexity of the real dynamics of an epidemic,
especially when it comes to integrating multiple factors such as population mobility, variability of
behavior, or the heterogeneity of geographical contexts.

In this context, artificial intelligence (Al), particularly machine learning techniques,
offers new perspectives for the modelling of infectious disease spread. Thanks to their ability to
analyze large amounts of heterogeneous data (epidemiological data, mobility data, climate data,
etc.) and extract complex patterns from them, these tools allow the construction of powerful and
adaptive predictive models. Applied to the COVID-19 pandemic, Al has been used in many
projects to predict changes in the number of cases, identify areas at risk, or evaluate the
effectiveness of containment measures.

This work is part of this dynamic by exploring the contributions of artificial intelligence to
modeling the spread of COVID-19. It will analyze existing approaches, understand their
methodological underpinnings, and assess their relevance to the challenges posed by a global
health crisis.

We divided this research topic into 4 chapters:

We discussed it in the first chapter Mathematical modeling of the spread of epidemics
involves using mathematical frameworks and equations to describe how infectious diseases
propagate through populations over time. These models help predict the course of an epidemic,
evaluate intervention strategies, and understand the dynamics of disease transmission.

We discussed it in the chapter 2 moving into Al approaches for modeling epidemics,
specifically deep learning, and recurrent neural networks like LSTM and BiLSTM. These
techniques are data-driven and powerful for modeling time-series data, such as the daily number

of infections, recoveries, or deaths.



In the third chapter we talk about how to build a robust model of an epidemic (COVID-

19), we can take several modeling approaches, depending on our goal (e.g., understanding

transmission vs. forecasting cases) and the data available

Finally in the last chapter we discussed it how to create a real-world application for

epidemic modeling (e.g., COVID-19 tracker + predictor), we need a layered architecture that

includes data ingestion, modeling, prediction, visualization, and deployment

Research questions

As part of the Al modelling of the spread of COVID-19, several research questions

emerge to guide the analysis and evaluation of Al approaches. These questions make it possible to

explore the challenges, performance and implications of predictive models. The following is a

structured list of key issues:

What are the most effective Al algorithms for predicting the spread of COVID-19?
(Comparison between neural networks, agent models, random forests...)

How do hybrid models (combining Al and conventional epidemiology) improve the
accuracy of predictions?

What is the impact of different data sources (mobility, social networks, and clinical data)
on Al model performance?

What’s the role of deep learning, LSTM and BiLSTM for in epidemic predictions?

What are the risks associated with the use of Al in public health (algorithmic bias, data
protection, mass surveillance)?

These questions help structure research around the technical, practical and ethical aspects
of COVID-19 AI modelling, while opening up avenues for future improvements and

applications in public health.

Purpose

The study of artificial intelligence (Al)-driven modeling for COVID-19 propagation serves several

critical purposes in public health, data science, and epidemic preparedness:

Enhancing Predictive Accuracy for Outbreak Management



Traditional epidemiological models (e.g., SIR, SEIR) rely on fixed parameters, whereas Al can
analyze vast, dynamic datasets (mobility patterns, social media, climate, and genomic data) to
improve real-time forecasting.
Machine learning (ML) models can detect nonlinear transmission patterns, helping predict
infection waves, hospitalizations, and deaths more accurately.

e  Optimizing Public Health Interventions
Al can simulate the impact of different policies (lockdowns, mask mandates, vaccination
campaigns) to guide decision-making.
Reinforcement learning and agent-based modeling help identify optimal containment strategies
while minimizing economic and social disruptions.

e Early Detection and Surveillance
Al-powered tools (e.g., natural language processing for social media, computer vision for mask
compliance) enable early outbreak detection before traditional reporting.
Predictive models can flag emerging variants by analyzing viral genomic data and global spread
trends.

e Resource Allocation and Healthcare Planning
Al helps forecast ICU bed demand, ventilator needs, and vaccine distribution to prevent healthcare
system overload.
Reinforcement learning can optimize testing strategies and contact tracing efficiency.
Description

Modeling the Spread of an Epidemic Using Artificial Intelligence: COVIDI19 explores

the application of Al techniques such as machine learning, deep learning, and agent-based
simulations to predict and analyze the transmission dynamics of COVID-19. The subject covers
data-driven modeling, risk assessment, intervention strategies, and real-time outbreak forecasting,
highlighting how Al enhances epidemic response and public health decision-making. Topics
include neural networks, epidemiological models, and the challenges of integrating Al with

traditional disease control methods.



Forecast:

The integration of Artificial Intelligence (AI) in modeling the spread of COVID-19 will
continue to advance, improving epidemic prediction accuracy and real-time response. Future
developments may include:

e Enhanced predictive models using deep learning and hybrid Al-epidemiological
approaches for early outbreak detection.

e Al-driven personalized risk assessment to optimize public health interventions.

o Integration with big data (e.g., mobility patterns, genomic surveillance) for dynamic
transmission tracking.

e Challenges such as data biases, model interpretability, and ethical concerns will require
ongoing research.

Al is expected to play a critical role in future pandemic preparedness, enabling faster,

data-informed decision-making for global health security.



Chapter 1
Mathematical modeling of the
spread of epidemics



Introduction

Mathematical models, visualize how infectious diseases progress to show the likely
outcome of an epidemic and help guide public health interventions. Models use underlying
assumptions or aggregate statistics, along with mathematics, to obtain parameters for different
infectious diseases. Using these parameters, they calculate the effects of different interventions,
such as mass vaccination programs. Modeling may help determine which interventions to avoid

and which to try, or it can predict future growth patterns.
Part1

Communicable diseases and epidemiology

1. Background and importance of modeling the spread of epidemics
1.1 Background of modeling the spread of epidemics

Modern approaches to epidemiological analysis and disease modeling emerged in the late
19th and early 20th centuries. One of the earliest breakthroughs involved mapping cases of cholera
to identify patterns of transmission, leading to the hypothesis that contaminated water played a
central role in spreading the disease. Around the same period, researchers also began to recognize
and model the cyclic behavior of infectious diseases like measles and cholera using discrete-time
models. These initial efforts in spatial and temporal epidemic analysis, combined with
advancements in biology, contributed significantly to understanding how diseases spread. Beyond
the development of vaccines and treatments, infectious disease research aims to mitigate health
threats by uncovering the patterns of disease dynamics across time and space. To support this goal,
numerous analytical and modeling methods have been created, grounded in the idea that disease

transmission is influenced by underlying spatial structures inherent in both human and physical

geography.[1]

Early disease modeling efforts primarily focused on mathematical representations at the
population level, often relying on assumptions of homogeneity. These models typically divided
the host population into distinct compartments, with individuals assumed to interact only within

their immediate surroundings.



One of the most basic and widely known of these models is the SIR model, which was
originally developed for closed populations. While such approaches have been valuable for
estimating the scale of outbreaks, they often overlook the complex spatial and temporal dynamics
that influence disease transmission across different communities factors that are critical for
informing effective public health responses. Traditional non-spatial, population-based models do
not explicitly account for the underlying causes of epidemic spread, limiting their ability to fully

capture the mechanisms driving disease emergence and propagation.[2]

The advancement of computer technology and the growing availability of spatially
referenced disease data have paved the way for more sophisticated modeling approaches. These
tools enable the simulation of large populations and allow researchers to examine the progression
of disease over time and across geographic space. Motivated by the need for more realistic
representations, modern modeling efforts have evolved to include advanced mathematical
frameworks, individual-based statistical models, and simulation-based techniques. Unlike
traditional models, individual-based approaches explicitly account for key factors influencing
disease transmission such as individual behavior, person-to-person interactions, and contact
networks allowing them to more accurately reflect the heterogeneity observed in real-world
outbreaks. These models also integrate data on host locations and movement patterns with detailed
descriptions of infection processes and disease progression, making them powerful tools for
analyzing observed epidemiological patterns and assessing potential intervention strategies. As a
result, a wide range of spatial modeling approaches have been developed, encompassing both
population-level and individual-level perspectives to better understand and predict the spread of

infectious diseases. [3]



1.2 The importance of modeling the spread of epidemics

Epidemiological modeling plays a crucial role in managing public health crises by
enabling experts to anticipate the course of an epidemic, including when it may peak and how
many individuals could be affected. This foresight allows authorities to better prepare for potential
impacts. Models also support the strategic allocation of limited resources such as medical supplies,
hospital capacity, and healthcare personnel by identifying where and when interventions are most

needed.

Through simulations, the potential outcomes of public health measures like lockdowns,
vaccination campaigns, or social distancing can be evaluated before they are implemented,
minimizing risk and maximizing effectiveness. Moreover, modeling offers a scientific foundation
for policy decisions, helping to balance health priorities with economic and social considerations.
It enhances our understanding of disease dynamics, shedding light on critical factors such as
transmission rates, immunity development, and the roles different population groups play in
spreading infections. On a global scale, models can also identify regions at higher risk of future
outbreaks, enabling proactive responses from international health organizations. Overall, they

serve as vital tools for evaluating and refining policies throughout the course of an epidemic.[4]

2. The impact of epidemics on public health and crisis management systems

2.1. The impact on public health

Pandemics cause significant health and economic challenges, especially in low- and
middle-income countries, which often face a greater burden. Beyond the direct health impact, they
disrupt economic activity through fear-driven behavior and restrictive measures like quarantines.
These disruptions reduce productivity and can lead to long-term economic setbacks. In politically
unstable regions, pandemic responses may also heighten tensions, potentially leading to conflict

and weakening trust between governments and citizens.[5]



2.2. The impact on crisis management system

Epidemics severely challenge crisis management systems by overwhelming healthcare
infrastructures, disrupting economies, and testing public trust. They require rapid coordination of
resources, clear communication to counter misinformation, and support for mental health and
social stability. Economic disruptions, including job losses and business closures, demand
emergency aid and recovery planning. Effective responses depend on collaboration across
governments, international organizations, and the private sector. Epidemics also expose
weaknesses in preparedness, emphasizing the need for stronger health systems, surveillance, and

long-term resilience strategies.[6]
3. Challenges of classical models in the face of dynamic epidemics

Classical epidemiological models like the SIR framework face limitations in capturing the
complex dynamics of real-world epidemics. They often assume a homogeneous population and
fixed parameters, overlooking important factors such as individual behavior, geographic
variability, and the emergence of new pathogen strains. These models also tend to focus on short-
term outcomes, ignoring long-term effects like herd immunity or disease resurgence. As a result,
more advanced approaches—such as agent-based, network, and stochastic models—are needed to

better reflect the evolving nature of epidemics.[7]
Part 11

Epidemic modeling

Mathematical modeling
1. Presentation of Classical Epidemiological Models SIR, SEIR,

and their variants
The SIR and SEIR models are foundational frameworks in epidemiology used to analyze
and forecast the spread of infectious diseases within a population. The SIR model categorizes
individuals into three groups: Susceptible (S), who are at risk of infection; Infected (I), who can
transmit the disease; and Recovered (R), who have gained immunity after infection. This model

operates under the assumption of homogeneous mixing, where every individual has an equal
9



probability of contact with others, and it considers a closed population with no births or unrelated

deaths. Once individuals recover, they are assumed to be immune to future infections.

The disease dynamics are modeled using a set of ordinary differential equations (ODEs) that

describe the rate of change in each compartment:

Where B is the transmission rate, y is the recovery rate, and (N) is the total population. The basic

reproduction number (R). Defined as:
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The basic reproduction number, Ro, is defined as the average number of secondary infections

produced by a single infectious individual in a fully susceptible population and is given by:
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Figure 1: Growth of infection and depletion of the susceptible population in an SIR outbreak

Plays a critical role in determining the potential for disease spread. If (Ro > 1), the disease will

spread; if (Ro < 1), the disease will eventually die out.

The SEIR model extends the SIR model by adding an Exposed (E) compartment, which
represents individuals who have been infected but are not yet infectious due to an incubation
period. This model is particularly useful for diseases with a delayed onset of infectiousness, such
as COVID-19. The SEIR model consists of four compartments:

e Susceptible (S)
e Exposed (E)

o Infected (I)

e Recovered (R)

The dynamics are governed by the following equations:
as
= —BSWI
ar
— = BSWI®) -yl
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Various extensions of the classic SIR and SEIR models have been developed to better
reflect real-world disease dynamics. These include models accounting for waning immunity (SIRS
and SEIRS), incorporation of vaccination effects (SIV), age-specific differences in transmission
and recovery, and network-based models that consider heterogeneous contact patterns within
populations. Such adaptations allow for more accurate and nuanced predictions of disease spread

and control measures.
2. Differential equations used, assumptions, and conditions of application

The SIR and SEIR models are mathematical models used to describe the spread of
infectious diseases within a population. These models rely on differential equations to represent
the rate of change in different compartments of the population. Let’s explore the differential

equations used, along with assumptions and conditions of application.

2.1. SIR Model (Susceptible, Infected, Recovered)
The SIR model divides the population into three compartments:
» S: Susceptible individuals (those who are at risk of being infected)
» I: Infected individuals (those who are currently infected and can transmit the disease).

» R: Recovered individuals (those who have recovered and are assumed to have immunity.

& . N

Figure 2: transmission diagram for the SIR model

The basic differential equations governing the SIR model are:
d

S —
== pSI
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This represents the rate at which susceptible individuals get infected. It depends on the
transmission rate (), the number of susceptible individuals (S), and the number of infected

individuals ().
dl
E = ﬂSI - yI
This equation represents the rate of change in the infected population. The first term (BSI) reflects

the number of new infections, while the second term (yI) represents the rate of recovery, where y

is the recovery rate.

This describes the rate of change in the recovered population, with y representing the rate at which
infected individuals recover.
Assumptions
» The total population remains constant, so:
N =S(t) + I(t) + R(t) .
» Individuals are assumed to either be susceptible, infected, or recovered. No individuals
can be reinfec ted or return to a susceptible state (no immunity loss).
» The disease spreads through direct contact between susceptible and infected individuals,
and recovery occurs at a constant rate.
» The transmission rate p and recovery rate y are constant over time.
Conditions of application
» This model assumes no birth or death rates except for those caused by infection (no
external or background mortality).
» The disease has a finite duration of infectivity (people eventually recover).
» 1t is applied when there is no need to account for more complicated epidemiological
factors, such as external interventions or varying susceptibility.
2.2. SEIR Model (Susceptible, Exposed, Infected, Recovered)
The SEIR model is a more advanced extension of the SIR model that incorporates an
"Exposed" (E) compartment, representing individuals who have been infected but are not yet

infectious during a latent period.[8]

13
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The SEIR model divides the population into four compartments:
» S: Susceptible individuals
» E: Exposed individuals (those who have been exposed to the virus but are not yet
infectious)
» I Infected individuals (those who are infectious)

» R: Recovered individuals

The differential equations governing the SEIR model are:

ds
= -pSI

As in the SIR model, this equation represents the rate at which susceptible individuals become

exposed.
dE_
E_ ﬂSI —oFE
This equation represents the rate at which susceptible individuals become exposed (BSI) and the

rate at which exposed individuals become infectious (6E). Here, ¢ is the rate at which exposed

individuals progress to the infectious state.

di
o oE —yI

This equation represents the progression of exposed individuals to the infected state and the

recovery of infected individuals at the rate 7.

The same as in the SIR model, this describes the rate at which infected individuals recover.

14



Assomptions
» S+ E+1+R=N, where N is the total population.
» The latent period is assumed to be constant for all exposed individuals.
» The transmission rate 3, the rate at which exposed individuals become infectious o, and the
recovery rate y are constant.
» The disease spreads through direct contact between susceptible and infected individuals.
» Individuals are assumed to either be susceptible, exposed, infected, or recovered, with no
reinfection and no immunity loss.
Conditions of Application
» This model is more suitable for diseases with a significant latent period between exposure
and becoming infectious (e.g., diseases like COVID-19 and tuberculosis).
» It is appropriate when the exposure period needs to be accounted for separately from the
infectious period.
»  Similar to the SIR model, it assumes constant-rates and does not typically include external

factors like vaccination, varying population sizes, or varying contact rates.

2.3. Key Differences between SIR and SEIR Models
e SIR model: Assumes individuals become infectious immediately after being infected.
e SEIR model: Accounts for an incubation period where individuals are exposed but not yet

infectious.

3. Practical Applications of the Models and Analysis of Their Limitations
3.1. Practical application to the SIR model

The SIR (Susceptible-Infected—Recovered) model serves as a valuable tool for
understanding and managing the spread of infectious diseases in real-world settings. Public health
officials use it to estimate key parameters such as the basic reproduction number ROR 0RO, predict
the peak of an epidemic, and determine how long an outbreak might last. By simulating various
scenarios, the model helps evaluate the potential impact of intervention strategies like vaccination,
quarantine, or social distancing. For example, during the COVID-19 pandemic, the SIR model was

used to forecast case numbers, assess healthcare system capacity, and inform decisions on
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lockdown policies. Its simplicity makes it especially useful in the early stages of an outbreak when

data is limited, offering quick insights to guide public health responses.

Epidemiological models such as SIR and SEIR have found wide-ranging applications
beyond traditional disease modeling. In health, they help analyze influenza outbreaks—Ilike one in
a British boarding school where SIR dynamics revealed a basic reproduction number (Ro) of 3.652
and are used to understand vector-borne diseases like dengue through coupled human-mosquito
models, or to address emerging infectious diseases such as SARS, incorporating super-spreader
effects. In social networks, these models describe the spread of rumors, user behavior, viral
marketing, and even audience applause by simulating contagion-like dynamics of influence. In
informatics, they aid in studying the dissemination of files in peer-to-peer networks and the
propagation of computer viruses, taking into account their stealthy and destructive nature. In
economics and finance, SIR-like models inform rational expectations in public health decision-
making and model financial contagion in interbank systems, illustrating how shocks can cascade
across interconnected institutions and nations. Across all these domains, the models provide
valuable insights into how entities are they viruses, ideas, or financial crises—spread through

populations or networks. [9]
3.2. Practical application to the SEIR model

The SEIR model has been extensively used to analyze and predict the dynamics of
infectious disease outbreaks, particularly those with an incubation or latent period. A notable
example is its application during the COVID-19 pandemic. Governments and public health
agencies around the world used SEIR-based simulations to forecast the spread of the virus,
estimate peak infection periods, and evaluate the impact of interventions such as lockdowns, social
distancing, and vaccination. By incorporating real-time data (such as confirmed cases and recovery
rates), the SEIR model helped policymakers anticipate healthcare demand, allocate medical
resources, and plan timely mitigation strategies. For instance, during the early phases of COVID-
19, the SEIR model allowed researchers to estimate how long it would take for the virus to spread
in a given population and what percentage of individuals might be infected if no measures were

taken. This insight was crucial for designing responsive and targeted public health policies.
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3.3. The limitations of the models

The SIR (Susceptible-Infected-Recovered) and SEIR (Susceptible-Exposed-Infected-
Recovered) models, while widely used for modeling infectious diseases, have several limitations.
They assume a homogeneous population, where everyone has the same likelihood of interacting
with each other, neglecting the variation in social networks, behaviors, and movement patterns that

exist in reality.

Furthermore, these models generally omit birth and death rates unrelated to the disease and
do not account for external factors such as other diseases or environmental influences. The
transmission dynamics are oversimplified, assuming that the infection spreads uniformly through
contacts, with constant transmission probabilities, ignoring factors like seasonality, vaccination,

or changes in behavior.

Hybrid models and the role of Al in modeling
1. Introduction to Hybrid models

Hybrid System-It is the combination of multiple approaches or techniques to solve
problem. In the realm Al and M1, it often integrates both traditional Machine learning methods and
techniques. In hybrid system is one that combines two or more distinct sub-system, often strengths

of each to achieve optimal performance or functionality [10].

»  Structure: A hybrid system comprises two or more distinct subsystems that interact and
collaborate to achieve a common goal. These subsystems can operate on different principles,
data representations, or computational paradigms.

»  Common Subsystems: Symbolic/Rule-based Systems: Employ domain knowledge
encoded in logical expressions or decision trees. Excellent for interpretability and handling
structured data.

»  Statistical/Probabilistic Models: Analyse data using statistical techniques like Bayesian

networks or linear regression. Good for uncertainty quantification and reasoning under noise.
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Figure 4: Applications of artificial intelligence in public health systems

2. An overview of artificial intelligence in epidemiology

Artificial Intelligence (Al) has become a powerful tool in epidemiology, particularly for
forecasting the spread of infectious diseases. Various types of Al models are employed to predict,
monitor, and manage disease outbreaks, each offering unique strengths. Machine Learning (ML)
models are among the most commonly used, particularly supervised learning techniques like linear
regression, which predict continuous outcomes such as the number of disease cases over time, and
random forests, an ensemble method that aggregates decision trees to improve accuracy. Support
vector machines (SVM) are used to classify data and handle high-dimensional datasets, making

them useful for distinguishing between different disease outcomes.

In cases where labeled data is unavailable, unsupervised learning methods, such as
clustering algorithms (e.g., K-means or DBSCAN), help identify hidden patterns in large datasets,

such as locating disease hotspots or detecting unusual patterns in disease spread [11].

Deep Learning models, such as neural networks, are particularly well-suited for handling
large, complex datasets, including electronic health records, mobility data, and environmental
factors. Recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks,

which are specialized in analyzing time-series data, have proven effective for forecasting future
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disease cases by capturing temporal dependencies in data, such as predicting the trajectory of

disease outbreaks based on past trends.

Convolutional neural networks (CNNs), though originally used for image processing, are
now applied to analyze geographical data and detect disease patterns from satellite imagery or heat
maps, aiding in real-time monitoring and detection. Agent-Based Models (ABMs) simulate
individual interactions within a population, offering a more dynamic and granular approach to
disease spread. These models model individual behaviors and social networks, allowing the
simulation of various policy interventions, such as vaccination campaigns or changes in mobility
patterns, and their impact on disease transmission. Bayesian models, such as Bayesian networks
and Markov Chain Monte Carlo (MCMC) methods, use probabilistic reasoning to account for
uncertainty in disease transmission dynamics. They enable researchers to estimate the likelithood
of different epidemic scenarios, adjust predictions based on new evidence, and model complex

dependencies between variables such as weather, human behavior, and healthcare responses.

The applications of Al in epidemiology are vast. Al-driven models are used for disease
prediction and surveillance, analyzing historical trends and real-time data to predict future
outbreaks, especially in the early stages of new or re-emerging diseases. Real-time forecasting
allows for continuous monitoring of disease spread, with up-to-date predictions that help health
authorities make timely decisions. Outbreak detection is greatly accelerated by Al, which can
identify irregularities in disease patterns that may indicate the onset of an outbreak. Additionally,
resource allocation models optimize the distribution of critical resources like vaccines, medical
staff, and hospital beds, ensuring that interventions are deployed effectively and efficiently based

on predicted disease trends. Ultimately.
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3. Comparison of classical approaches and Al-based approaches

3.1. Accuracy and Efficiency: Comparing Detection Rates and False Positives/Negatives

diverse and new threats due to

learning from large datasets.

Method Accuracy False Positives/Negatives
Traditional Methods
Signature- High accuracy for known malware; | Low false positives for known threats;
Based struggles with zero-day threats and | high false negatives for new or modified
Detection polymorphic malware. malware.
Heuristic Better for unknown malware via | Higher false positives due to broad rules;
Analysis behavior pattern analysis; accuracy | may flag legitimate software as
varies with rules and may need | suspicious.
manual tuning.
Behavioral Effective for real-time malware | Can generate false positives if legit
Monitoring detection; accuracy depends on | programs behave like malware; false
behavior complexity; may miss | negatives if malware uses evasion
subtle threats. techniques.
Al-Based Methods
Machine Supervised learning offers high | Lower false positives/negatives than
Learning accuracy  with  good  data; | traditional methods when well-trained;
unsupervised methods can detect | performance varies with data/model
novel threats; accuracy depends on | quality.
data quality and training.
Deep High accuracy for complex malware | Can  significantly ~ reduce  false
Learning patterns; effective for classifying | positives/negatives by capturing

complex patterns; may still face issues

with evolving or obfuscated malware.

Table 1: comparison of malware detection methods: accuracy and false positives/negatives
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3.2. Computational and Data Needs for Traditional vs. Al Approaches

training and inference; depends heavily on
hardware (e.g., GPUs) due to complex
neural network structures.

Method Computational Needs Data Needs
Traditional Methods

Signature- Low computational overhead; relies on | Needs an up-to-date

Based simple pattern matching. signature database; does not

Detection require large data volumes
for each analysis.

Heuristic Moderate computational needs for rule | Requires historical data to

Analysis evaluation and data analysis. develop and refine rules;
does not need large-scale
real-time data.

Behavioral High computational requirements due to | Needs substantial data from

Monitoring real-time monitoring, data logging, and | monitored  systems  to

complex analysis. effectively detect behavior-
based anomalies.
Al-Based Methods
Machine Significant resources required for training | Requires large volumes of
Learning large datasets; inference is typically less | labeled data for training;
demanding. continuous data collection is

important for maintaining
accuracy.

Deep Learning | Very high computational demands for both | Requires extensive, diverse

datasets to train models
effectively and capture a
range

behaviors.

wide of malware

Table 2: computational and data requirements of malware detection methods

Al-based methods offer superior accuracy and adaptability compared to traditional

approaches, especially for detecting novel and sophisticated threats. However, they come with

higher computational and data requirements. Traditional methods, while generally faster and less

resource-intensive, struggle with new threats and may generate more false positives/negatives.

Combining both approaches can provide a more robust and comprehensive malware analysis

strategy. [12]
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Conclusion:

Mathematical modeling plays a crucial role in understanding and predicting the dynamics
of epidemic spread. Through models such as SIR, SEIR, and their numerous extensions,
researchers can simulate transmission patterns, evaluate intervention strategies, and estimate key
epidemiological parameters. These models serve not only as analytical tools for theoretical
exploration but also as practical frameworks to guide public health decision-making. Despite their
simplifications and assumptions, mathematical models provide valuable insights into complex
biological and social processes underlying disease propagation. As data availability and
computational power continue to grow, integrating models with real-time data and machine
learning techniques will further enhance their predictive accuracy and applicability in managing

future outbreaks.
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II. TA approach and Deep-learning

The objective of artificial intelligence (Al) research is to develop computer systems
capable of performing tasks using thinking processes similar to those of human beings. Thus, the

challenge lies not only in understanding human thought, but also in its modelling and reproduction.

Artificial intelligence (Al) has become a topic of great importance both in the media and
in scientific journals, mainly due to the many achievements that have resulted from it, many of
which are the result of advances in machine learning. Al is based on a learning approach to
replicate, through an application, system or process, part of human intelligence. Examples of
artificial intelligence systems include facial recognition and visual perception. Machine learning
(ML), a subdomain of Al, uses artificial neural networks (ANN) to mimic how humans make
decisions. Machine Learning allows computers to develop learning models autonomously, without
prior programming, based on vast datasets. Just below is Deep Learning (DL), one of the many
approaches to machine learning that has been hugely successful in recent years. The DL is
characterized by deep neural networks capable of performing complex tasks more efficiently and

accurately.

In this chapter, we will discuss the different forms of machine learning as well as the
different types of neural networks. We will begin with a general overview of these concepts, and
then focus on artificial neural networks (ANN), recurrent neural networks (RNN) and

convolutional neural networks (CNN). [13]
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1. Definition of machine learning (Machine Learning)

Machine learning, as a subdomain of artificial intelligence (Al), focuses on creating
systems that can learn and improve their performance based on the data they analyze. Artificial
intelligence and machine learning are often mentioned together, highlighting the close relationship

between these two areas [14].
2. Type of learning

Deep learning algorithms can be divided into two main categories: supervised and unsupervised

learning:

e Supervised learning uses a tagged set of learning data, which means that each sample
data is associated with a label that indicates its class or expected value. There are two
main types of supervised learning models: regression models, which aim to predict
continuous values, and classification models, which seek to assign examples to
predefined discrete categories.

e Unsupervised learning, on the other hand, is learning models from unlabeled data. In this
case, the algorithm must automatically extract structures or groupings in the data without
receiving explicit information about the expected categories. Unsupervised learning is
about discovering intrinsic relationships and organizing data according to their

similarities or underlying motives.

These two types of supervised and unsupervised learning play important roles in the field of deep
learning, offering complementary approaches to extract useful information and perform advanced

data analysis tasks.
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Figure 5: Diagram of the different use cases for a given type of training
3. Deep Learning Definition (DL)

Deep learning (DL) is a class of machine learning (ML) in which information is processed
using hierarchical layers to understand data representations and characteristics at increasing levels

of complexity. Deep learning is also known as hierarchical or structured deep learning.

All deep learning algorithms are based on neural networks (NRT) that share some
fundamental properties. These networks are composed of interconnected neurons and organized
in layers. What distinguishes them is the specific network architecture that is how neurons are

organized, and sometimes the method used for their learning.

Deep learning has led to significant advances in areas such as computer vision, speech
recognition, machine translation and many other areas of Al. The power of deep neural networks
makes it possible to extract complex representations and perform sophisticated tasks by exploiting

hierarchical relationships and latent data characteristics.
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4. Neural Networks
4.1. Biological neuron

Many inventions have been inspired by nature, and artificial neural networks (ANN) are
no exception. They are inspired by the architecture of the human brain and its biological neurons.
The human brain is made up of about 10 billion neurons, and each neuron is connected to about
10,000 other neurons. Biological neurons are composed of cellular bodies containing a nucleus, as
well as many branched extensions called dendrites. They also have a long extension called axon.
At the end of the axon are tiny structures called axon endings, which are connected to dendrites in

other neurons (see Figure 6) [15].

This complex organization of the human brain has been a source of inspiration for the
development of artificial neural networks, which attempt to reproduce these connections and

neuronal interactions to perform learning and information processing tasks.
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Figure 6: Structure of a biological neuron
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Each neuron receives electrochemical signals from other neurons via its dendrites. If these
inbound signals are strong enough to activate the neuron, it is stimulated and transmits the signal
along its axon, which then relays it to the dendrites of other neurons. These neurons in turn can be

activated, thus prolonging the message transmission process.

Artificial neural networks seek to mimic this process by simulating interactions between

neurons and signal propagation.
4.2. Principle of neural networks (Neural Network)

A neural network is a powerful tool for analyzing the complex relationships between input
and output data. It is based on the principle of learning, where the network adjusts its internal
parameters, called synaptic weights, in order to capture the models and knowledge present in the
data. By learning and optimizing these synaptic weights, the network can generalize and make
accurate predictions on new data. By combining many interconnected neurons and using learning
techniques, neural networks are able to model complex relationships and provide effective

solutions to a variety of problems.
4.3. Functioning of Neural Networks

The functioning of neural networks is based on the distribution of variable values in units
called neurons. These neurons are responsible for combining the information they receive from
each other in order to determine the value of the discrimination coefficient. This ability to discern
depends on the connectivity between neurons, that is, the links between units responsible for
integrating information. Each neuron receives numerical information from its neighboring
neurons, which are weighted by weights representing the strength of the connection. Calculations
are then made in each neuron, and the result of this process is transmitted to the neurons

downstream.

Neural networks use mathematical operations and activation functions to process and

analyze data.
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5. Types of Neural Networks

There are several architectures of neural networks commonly used in practice. Some of the most

popular architectures are:

e Artificial neural networks (ANN)
e Recurrent neural networks (RNN)

e Convolution neural networks (CNN)
5.1. Artificial Neural Networks (ANN)

The forward neural network (feedforward) is one of the simplest forms of ANN. In this
type of network, the data or input moves in a single direction, passing through the input nodes to
reach the output nodes. It can be composed of hidden layers or without hidden layer. The network
simply propagates data linearly across the network, without feedback, usually using an activation
function to introduce non-linearity into the model [16]. This type of network is often used for
classification and prediction tasks, where input data is transformed into a corresponding output

using the weights and activation functions of the network.
5.1.1. Artificial neural network architecture

Neural networks are sophisticated structures of artificial neurons that receive multiple

inputs and generate one or more corresponding outputs (Figure 7).

It consists of*

e Input Layer: is the set of neurons that carries the network input signal, and subsequently
all the neurons in this layer are connected to the next layer.

e Hidden Layer: they can be one or more, this is where the relationships between variables
will be highlighted. Choosing the number of layers and neurons is intuitive and requires
experience from the expert.

e Output layer: represents the result of the neural network, called prediction.

29



Couche dentrée : Couches cachées : Couche de sortie

Entrée 1 _ on A @&
- &3 $ ‘; 22 ‘
_ X {

7 @

% N

Figure 7: The architecture of an artificial neural network

5.1.2. Perceptron

The perceptron is an essential component of artificial neural networks, representing an
artificial neuron model capable of performing a non-linear algebraic function. It acts as a receiver
for one or more inputs, marked xj and each input is individually weighted by wj. The wj weights
determine the relative importance of the different inputs for the final output of the perceptron. The
weighted sum of the inputs is then added to the bj neuron bias and used as an argument for an
activation function f. The use of an activation function introduces non-linearity into the model,

allowing the perceptron to learn complex relationships between inputs and outputs.

When it comes to predicting with a neural network, the data is entered as inputs into the
first layer, and the calculations propagate through all successive layers until they reach the final

outputs. This process is commonly referred to as forward propagation or direct pr
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5.2. Recurrent Neural Networks (RNN)

Unlike forward-propagated neural networks (Feed-Forward Neural Network -FFNN), the
recurrent neural networks (Recurrent Neural Network - RNN) are characterized by the presence
of at least one feedback loop in their connection graph. Over the past 30 years, several types of
RNN have been developed, such as Elman networks, Jordan networks and Echo State Networks.
Recently, one type of RNN has become widely used due to its outstanding performance in various
tasks: Long-Short-Term Memory (LSTM - Long Short-Term Memory) neural networks. LSTMs

play a central role in this thesis. [17]

In this section, we look at the simplest version of RNN proposed by Jeff Elman in 1990.
In this approach, links are added to a multi-layer perceptron (Multi- Layer Perceptron - MLP), so
that one layer of the network receives not only the current output from the previous layer, but also
its own output at the preceding time step. This change has a considerable impact when inputs are
in the form of temporal or spatial sequences, unlike the case where x input vectors are independent

of each other.
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Indeed, the structure of RNN introduces a memory mechanism of previous inputs that
persists in internal states of the network and can influence all future outputs. In theory, this simple
modification makes it possible to approximate with arbitrary precision any function that transforms

an input sequence into a given output sequence, unlike the MLP.

However, it is important to note that RNNs of this type can be particularly difficult to
drive (although recent developments have improved this situation), and without special

precautions, the context usable is generally limited.
These types of RNN include:
5.2.1. Hopfield Networks

Hopfield networks are a type of recurrent neural network used in unsupervised learning
applications and optimization problem solving. The network functions as a nonlinear associative
memory, capable of retrieving and recognizing patterns stored in a data space. The main idea
behind Hopfield networks is to create attractors in the network state space. They are widely used
for tasks such as memory retrieval, pattern classification, optimization problem solving and

dynamic system modeling.
5.2.2. LSTM

Short-term long-term memory (LSTM) cells were proposed by Hochreiter and
Schmidhuber in 1997. They were developed to solve the problem of learning long-term

dependencies in traditional recurrent neural networks (RNN).

LSTM (Long Short Term Memory) is one of the recurrent architectures used in artificial
neural networks. LSTMs are composed of layers of neurons that are connected recursively,
allowing the previous state of a neuron to be used as context to generate an output. LSTM cells
are able to store information over longer time periods, allowing long-term dependencies to be
captured in the data sequences. LSTMs have been very successful in many applications, including

machine translation, text generation and speech recognition.
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The effective formation of recurrent neural networks (RNN) is one of the main challenges
they face. The main problem is the propagation of the gradient through time steps, which leads to
stability and convergence problems during learning. To solve this challenge, several techniques
have been developed, such as adaptive activation function, RNN variants and advanced
optimization techniques. These advances make it possible to effectively train NRNs and

successfully apply them to a wide variety of tasks.
5.2.3. GRU

The GRU (Gated Recurrent Unit) network is a network of recurrent neurons (RNN)
composed of input, hidden and output layers. The input layer consists of neuronal segments
determined by the space dimension of the input characteristics. The output layer is determined by
the size of the desired output space. GRU cells are designed to regulate the flow of information
and control the omission or addition of new information to the network’s internal memory. GRU
cells have gates (gates) that control access to memory and update its contents. The GRU network

is widely used in applications such as machine translation, text generation, and speech recognition.
5.2.4. JANET

The Gated Recurrent Unit (GRU) is a recurring network variant that offers a simplified
architecture by removing some ports from the LSTM. This has led to a new type of network called
JANET, which retains only the memory port and cell memory, resulting in a more general model
that is less demanding in computing power. This simplification of the architecture provides

practical benefits and facilitates the application of these models in different tasks. [18]

The Gated Recurrent Unit (GRU) is a simplification of the LSTM because it does not use

explicit cell states. The GRU uses a single reset port to control the amount of changed information
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in the state cache, making it simpler and more effective in certain situations. This simplifies the

LSTM architecture by avoiding the use of explicit cell states.
5.3. Convolution Neural Networks (CNN)

Convolutional neural networks are designed for signal and image processing, and have
been widely used in the field of computer vision. Convolution layers capture local patterns in the

input data, allowing important features to be extracted and highlighted.

ConvNets have been widely used in areas such as signal processing and image
classification, and are highly effective in object detection, facial recognition, image segmentation,
image classification, etc. Open CV provides advanced tools for image processing and computer
vision. Convolutional neural networks (CNNs) are particularly effective for image processing

because they can detect features at any location.

Learning CNNs involves optimizing parameters, including convolution cores, to
minimize the difference between network outputs and corresponding "ground truth" tags. The use
of CNNs is widespread in various fields, including computer vision, object recognition, medicine,

automotive and mobile applications.
5.3.1. CNN Diapers

CNN is a mathematical construction that generally consists of three types of distinct

layers (or building blocks): convolution, pooling and fully connected layers.

e Fully connected the last layer of a deep network, the classical perception layer, operates
the final discrimination between images to be recognized, for example. The previous layers
build and extract their characteristics.

e Convolution uses a dimension reduction to create a convolution on the input signal.

e Pooling (POOL) dimension reduction by substituting a part of the entries (sub-image) with

a value, usually the maximum.
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5.3.2. The backpropagation algorithm

The backpropagation learning algorithm starts by circulating forward the input data until
it gets an input computed by the network. Then, the calculated output is compared to the known
actual output. The weights are modified so that the error made between the calculated outputs is
minimized at the next iteration. Taking into account the presence of hidden layers, the error is back
propagated backwards to the input layer while changing the weighting. All examples are repeated

until an output error is considered negligible. [19]
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Figure 9: CNN’s diagram

II. LSTM and BiLSTM

1. LSTM

The types of recurrent neural networks (RNN) that have been developed to model and
process sequential data are LSTM (Long Short-Term Memory), BILSTM (Bidirectional LSTM)
and GRU. They were all intended to solve the problem of addiction and forgetting information in

traditional NDR.

Special LSTM doors allow them to access and store information for long periods of time.
In sequential modelling, BILSTM can take into account past and future context through their
unidirectional and bidirectional connections. On the other hand, GRU use a simpler method with

fewer doors, which makes them faster in training and execution.
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In this chapter, we present different metrics: the average, the maximum value (max), the minimum

cost... etc.

The BILSTM and GRU models and the ADAM and SGD optimization techniques are used to

optimize neural network models, including the LSTM and GRU architectures.

Finally we will highlight the evaluation of hyper-parameters such as learning rate, mini-
batch size, number of times and number of hidden layers, is essential to achieve optimal

performance

1.1. Metrics

e [a formule moyenne générale est exprimée mathématiquement en:

Sum of Observations

Average =
Total number of observations

e Determine the maximum value of the quadratic equation:

For example, it can be stated that if the equation has been represented as

ax?+ bx +c
e The formula to find the maximum value will be:
b2
MAX=c-(—)
4a

e The minimum cost using the equation:

b2
MIN =c-(—
(32)
e RMS (Root Mean Square):
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x124+x22+.xn?
XRMS=

When x = of data values.

And n = total number of items.

Standard deviation:

n

> — jz:f = 1(xi - %7

e Variance is calculated as:

s?=
e Kurtosis formula:
Y(xi—x)*
K- =
ns
e Peak-to-Peak value:
MAX—MIN
P= =
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e Peak factor equation:

MAX
P] = (m)z

e Peak factor equation:
M = Mean (abs(x))

e Impulse Factor:

|

e (learance Factor:
P
Fc= (=)2
&)
1.2. Definition of Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber (1997) introduced short-term long-term memory cells

(LSTMs) to learn long-term dependencies [20].

The most common recurrent architectures in artificial neural networks are LSTM (long-

term memory). Like other recurrent networks, it consists of layers of connected neurons.

LSTMs can solve the gradient problem and manage long-term dependencies, which distinguishes
them from other recurring architectures. When learning deep neural networks, LSTMs avoid the

problem of gradient disappearance or explosion.

Information is stored in cells or memory blocks in LSTMs. The internal state of the
network is maintained and updated by these LSTM computing units. This allows LSTMs to store

information over long time sequences and make predictions based on previous information.
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The use of doors, such as oblivion, entry and exit doors, which regulate the flow of
information through the cell is an important feature of LSTMs. These doors allow LSTMs to

control the information that is transmitted, forgotten or stored on exit [21].

Memory blocks are a set of repeatedly connected blocks that make up an LSTM layer.
These blocks can be considered as different memory chips in a digital computer. Each year one or
more memory cells. Repeatedly connected and equipped with three multiplicative units - the input,
output and oblivion gates - that provide continuous analogues for writing, reading and resetting

operations for cells [22].
1.3. The architecture of an LSTM model
1.3.1. LSTM Weights

A memory cell in an LSTM architecture has weight parameters for input, output and
internal state. These parameters allow to weight the different information and to build the

internal state of the cell according to the steps of the input time.

e Input weights are used to weight the current time step entry. They determine the relative
importance of each element of the entry for the memory cell.

e Output weights are used to weight the output of the last time step. They control the
influence of the previous output on the current output of the memory cell.

e The internal state is an intermediate state that is used in the calculation of the output for
the current time step. It is built according to current input, previous internal state and
input weights. This internal state allows the memory cell to store information over long

time sequences and maintain a long-term memory [23].
1.3.2. LSTM Doors (Gated)

An LSTM cell consists of three main doors: the Forget Gate, the Input Gate and the Output Gate.

Each door is responsible for regulating the flow of information through the cell.

e The forgetting door determines which information is important to forget from the cell. It
takes into account the previous hidden state and the current entry to decide which

information is relevant and should be retained.
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e The front door controls new information to be added to the hidden state. It looks at the
current entry and the previous hidden state to determine what new information should be
included.

e The exit door decides which part of the hidden state should be exposed to the LSTM’s
exit. This output can be used to make a prediction or as an input for the next steps in the

model.

Forget Gate

Input Gate Output Gate

Figure 10: LSTM doors

The main structure of LSTM networks consists of an input layer, one or more hidden
layers and an output slice. Let {x1, x2,...,t} the input sequence of an LSTM, where xt Represents
a vector introducing the dimension of the feature to the time step t-th-th. The number of neurons
in the input layer is equal to the number in the function space. The most important component of
the LSTM structure is the memory cell. The state of the memory cell Ct 1 interacts with the
intermediate ht 1 output and the input to update the internal state vector according to the outputs,
the previous time step and the inputs of the current time phase. In addition, the memory cell also
defines an input node, an input port, and an output port to maintain and adjust the state of this cell.

The calculation process is described in equations.
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Figure 11: LSTM architecture.
ft= Wgxe + Vrhe—1 + byf)
it =(Wixt + Vihet + bi)
Ct = tanh(Wcext + Vche1 + be)
Ce=ft* Ce1 +ie* Ct
ot = (Woxe + Voht-1 + bo)
ht = ot * tanh(Ct)

Xt € Rdand h: € Rk are the inputs and outputs of the LSTM unit. i, € Rk, f. € Rk, 0, € Rk vectors
activation of the front door, forget the door and exit door, respectively. All parameters 1W € Rkxd
V € Rkxd h € Rk, have parameters that can be learned and it is the multiplication by element by,

represents the sigmoid activation function.
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2. Bidirectional LSTM Model

The basic LSTM network considers only the previous context of the data without future
context. Given that time series sensor data has strong temporal dependencies, processing of this
data is insufficient. In order to design the time information of future and past contexts, a
bidirectional LSTM structure is built. This structure processes the sequence data in both the front
and back paths with two hidden layers, then the forward and backward time information will be

introduced into the same output layer. The structure of the BILSTM network is illustrated in Figure

12. Outputs @

Inputs

Figure 12: Basic structure of a BILSTM model

2.1. What is Bi-LSTM and how it works:
To understand Bi-LSTM, let’s break down its components and functionality:

e LSTM (Long Short-Term Memory): LSTM is a type of RNN designed to overcome the
limitations of traditional RNNs in capturing long-term dependencies in sequential data. It
introduces memory cells and gating mechanisms to selectively retain and forget
information over time. LSTMs have an internal memory state that can store information
for long durations, allowing them to capture dependencies that may span across many time

steps.
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e Bidirectional Processing: Unlike traditional RNNs that process input sequences in only one
direction (either forward or backward), Bi-LSTM processes the sequence in both directions
simultaneously. It consists of two LSTM layers: one processing the sequence in the forward
direction and the other in the backward direction. Each layer maintains its own hidden
states and memory cells.

e Forward Pass: During the forward pass, the input sequence is fed into the forward LSTM
layer from the first time step to the last. At each time step, the forward LSTM computes its
hidden state and updates its memory cell based on the current input and the previous hidden
state and memory cell.

e Backward Pass: Simultaneously, the input sequence is also fed into the backward LSTM
layer in reverse order, from the last time step to the first. Similar to the forward pass, the
backward LSTM computes its hidden state and updates its memory cell based on the
current input and the previous hidden state and memory cell.

e Combining forward and Backward States: Once the forward and backward passes are
complete, the hidden states from both LSTM layers are combined at each time step. This
combination can be as simple as concatenating the hidden states or applying some other

transformation.

The benefit of Bi-LSTM is that it captures not only the context that comes before a
specific time step (as in traditional RNNs) but also the context that follows. By considering both

past and future information, Bi-LSTM can capture richer dependencies in the input sequence.
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Figure 13: BILSTM model showing the input and output layers

2.2. BiLSTM architecture

Let’s break down each component of the architecture

Input Sequence: The input sequence is a sequence of data points, such as words in a
sentence or characters in a text. Each data point is typically represented as a vector or
embedded representation.

Embedding: The input sequence is often transformed into dense vector representations
called embedding. Embedding capture the semantic meaning of the data points and provide
a more compact and meaningful representation for the subsequent layers.

Bi-LSTM: The Bi-LSTM layer is the core component of the architecture. It consists of
two LSTM layers: one processing the input sequence in the forward direction and the other
in the backward direction. Each LSTM layer has it is own set of settings.

Output: The output of the Bi-LSTM layer is the combination of the hidden states from
both the forward and backward LSTM layers at each time step. The specific combination
method can vary, such as concatenating the hidden states or applying a different

transformation.
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The Bi-LSTM layer processes the input sequence in both forward and backward
directions simultaneously. During the forward pass, the LSTM layer captures information from
the past (previous time steps), while during the backward pass, it captures information from the
future (following time steps). This bidirectional processing allows the model to effectively

capture long-term dependencies in the input sequence.

The output of the Bi-LSTM layer can be used for various purposes depending on the
specific task. For example, in text classification, the output may be passed through a fully
connected layer followed by a soft-max activation to obtain class probabilities. In sequence
labeling tasks like named entity recognition, the output may be directly used to predict the label

for each input token.

The architecture of a Bi-LSTM can be further extended or modified based on the
specific requirements of the task. Additional layers, such as fully connected layers or attention
mechanisms, can be added on top of the Bi-LSTM layer to further enhance the model’s

capabilities and performance.
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Figure 14: BiLSTM architecture
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Conclusion

The use of CNNs and RNNs was an optimal solution given the results obtained in several

research projects.

This chapter is a state of the art on concepts related to the issue addressed in this thesis
and its design. It has been divided into two parts. In the first, we quickly went over some definitions
and clarifications regarding smart home. In the second chapter, we approached deep learning with

some detail, to show its architectures that we have chosen for our application.

In the following chapter, we review the work carried out in the context of the problem

addressed which is the prediction of energy consumption in a smart home.
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Chapter 111
Modeling Approach



1. Introduction

In this chapter, two different approaches will be examined for modeling data
related to COVID-19-an enhanced SIR model and a deep-learning BiLSTM model. In this
enhancement, the SIR model goes beyond the classical epidemiological framework by
introducing infection and recovery rates that vary with time in a manner that reflects real-
world conditions, wherein public health interventions and improved treatment change these
parameters over time. The LSTM approach, on the other hand, is data-driven and capable
of identifying more complex patterns in epidemiological time series without the need for
any explicit mathematical formulation of the disease dynamics. Therefore, looking at both
mechanistic and machine learning approaches will help us put together some
complementary knowledge of the pandemic progression and lay down the foundation for

more trustworthy epidemic forecasting.

2. Dataset

The dataset serves as a chronicle of COVID-19 cases reported from different
countries, spanning across the globe. It has slightly over 32,000 entries, with each entry
detailing critical data points on confirmed cases, deaths, recoveries, and active cases. The
data is organized on a day-by-day basis starting on January 22, 2020, allowing for an in-
depth chronological tracking of the evolution of the pandemic in different countries. For
every country covered in the dataset, the information captures how the situation unfolded

over time, reflecting the varying severity and timelines of COVID-19 outbreaks.

This extensive collection tracks not only the cumulative counts but also reflects the
dynamic changes in the status of the pandemic concerning active cases; the mortality rates
into their recovery rates vary from period to period. The dataset provides individual nations
with the knowledge base to assess their responses to the crisis, how transmission patterns
have changed over time across countries, and how public health interventions may or may

not have shaped the pandemic.
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Having an all-embracing data set from almost every corner of the world and over
all time frames, it becomes a vital resource for researchers and analysts and policymakers
who are trying to investigate trends, compare outbreaks from region to region, gauge the
success of their mitigation strategies, or model future behavior of infectious diseases. Such

depth and width make it strong to perform many analyses related to COVID.

3. SIR model
SIR (Susceptible-Infected-Removed) model which was developed by Ronald

Ross, William Hamer, and others in early 20th century. It consists of a system of three
coupled, non-linear ordinary differential equations, which does not possess an explicit
formula solution. It is however straightforward to extract a great deal of information about
the solutions using simple tools from calculus. The following simple model shows us how
it is used in laying theoretical foundation for public health interventions, including several

cornerstones that required such a model to discover [24].

3.1. Initial Conditions

For the SIR model to function effectively, it is essential to set the initial conditions
for the three primary compartments: susceptible, infected, and recovered individuals.
These initial values represent the state of the population at the onset of the simulation, and
they directly influence how the disease spreads throughout the population. There are two
primary ways to determine these initial values: through user inputs or by extracting values

from the latest available data.

- User Input: When it comes to inputting their own initial conditions into the
model, users are not disappointed. This becomes a direct means of customizing the
simulation to each user’s individual scenario or dataset. They can even begin by directly
entering completely real observation numbers, such as the number of infected,
recovered, and susceptible individuals, and make it more realistic to users, thus

improving accuracy.
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- Default Extraction from Latest Data: If the user does not directly input the initial
conditions for the run, the model will automatically extract them from the most recent
available data. This data-driven approach makes sure that the model is reflective of the

present state of the epidemic, without requiring the manual input of values from the user.

3.1.1. Loss Function and Optimization

A critical step in the training and optimization of the enhanced SIR model involves
comparison of predictions made by the model with real-world data- in this case, smoothed
infection and recovery data. This step allows for model parameter adjustment and
refinement to achieve better accuracy. For this purpose, we designed a weighted mean
squared error (MSE) loss function that gives a quantitative measure of the deviation of the
model’s predictions against the real observed data. The optimization of the model

parameters is expected to minimize this loss function.

3.1.2. Weighted Mean Squared Error (MSE) Loss Function

- The mean squared error or MSE loss function is the standard way to calculate the
difference between the predicted and actual values in regression problems. For our
model in this context, it will represent the square of differences between the predicted
numbers of infected individuals I and recovered individuals R, and the actual data points

[25].

n
1
MSE = Ez(ypred(ti) — Verue ()2
i=1
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«  Thus, our model incorporates a weighted form of MSE that pays more attention to
the more current data because more recent incidence and recovery trends should be
deemed the most relevant for understanding the current dynamics as well as future
patterns of the disease. In other words, it ensures more weightage to recent changes in

infection and recovery rates, which is significant while predicting future scenarios [26].
1 n
. _ 2
Welght MSE = Ez Wi. (Ypred — Ytrue (ti))
i=1

Where w is the weight assigned to each data point, which can vary with.

Specifically, we assign higher weights to recent data points by using an exponentially

decaying weight function:

[
. exp ()
exp (1)

Here (i) represents the index of the data point, and 7 is the total number of data points. This
formula ensures that the most recent points are given more influence in the loss calculation,

allowing the model to better reflect the latest trends in infection and recovery.

By giving more weight on recent data, the model here is thus able to react faster
to changes in the epidemic’s journey, which is valuable in unpredictable and fast-changing

scenarios such as the COVID-19 period.
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3.1.3. Optimization of Model Parameters

The subsequent significant phase in the training of SIR models is the optimization of
parameters, which implies finding the optimal values of the model parameters, resulting in

the minimization of loss function [27]. These parameters include:

® fumax: The maximum infection rate, representing the highest possible rate of

infection.

®  fumin: The minimum infection rate, reflecting how interventions (such as social

distancing or vaccination) reduce transmission over time.

®  Ymax: The maximum recovery rate, representing the highest possible rate of recovery.

®  Ymin: The minimum recovery rate, which accounts for the possibility that recovery

rates might slow down over time.

e Half-life: A parameter that controls the rate at which the infection rate decreases
and the recovery rate increases over time due to interventions (like vaccines or better

treatment options).

Due to the complex, nonlinear nature of the model, the Differential Evolution
algorithm was selected for optimization. This evolutionary algorithm is particularly useful
where the model poses many parameters or is highly nonlinear, particularly because it does

not require the model to be differentiable or even continuous.

3.1.4. Differential Evolution Algorithm

This technique is a global optimization one that mimics processes of natural
evolution. Iteratively, it exposes a population of candidate solutions (sets of parameters)
to the crossover, mutation, and selection operations for improvement. The basic steps of

the Differential Evolution algorithm are:
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o Initialization: A random population of parameter sets (candidate solutions) is

generated.

e Mutation: For each individual in the population, new candidate solutions are
created by combining the current individual with others in the population. The mutation

introduces diversity into the population.

e Crossover: The mutated solutions are combined with the

original solutions to create new individuals. This process promotes exploration

of the parameter space.

e  Selection: The best-performing solutions (those that minimize the loss function)

are kept, and the rest are discarded.

By using Differential Evolution, we ensure that the algorithm effectively explores
a wide range of possible parameter values and converges to the optimal set of parameters
for the model.

3.2. Simulation and Prediction

After the optimization of model parameters, the next step involves simulating the

dynamics of the SIR model to predict the progression of the disease over time.

The system of ordinary differential equations (ODESs) that defines the SIR model is solved
numerically using the solve ivp function from the SciPy library. This method provides a
flexible and efficient way to integrate initial value problems for ODEs over a specified time

interval [28].

The simulation is carried out using the optimized parameters obtained from the
Differential Evolution algorithm, allowing us to forecast the evolution of the following

compartments:

= Susceptible (S): These are those individuals who are not infected, however, could
become infected. A susceptible individual may become infected or remain susceptible.
As the virus spreads from its source or new sources occur, more individuals will become
infected, thus the susceptible population will increase for a period of time (surge

period)[29].
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- Infected (I): These are those individuals who have already been infected by the
virus and can transmit it to those individuals who are susceptible. An infected individual
may remain infected, and can be removed from the infected population to recover or die

[30].

- Recovered (R): These are those individuals who have recovered from the virus and

are assumed to be immune, Rm(t) or have died [31].

BIS VI
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Figure 15: SIR model

The system evolves to the SIR model’s differential equations:

ds SI

dat PN

dl SI .
dt_ﬁN 4

Where:
- B(?) is the time-dependent infection rate.
- 9(?) is the time-dependent recovery rate.

- N is the total population.
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3.2.1. Comparison with Actual Data

After solving the model over the desired time horizon, the predicted values of
infected and recovered individuals are compared against the actual reported epidemiological
data.

To ensure a fair comparison:

- The model’s outputs are smoothed to match the smoothing applied to the real-world

data.

- Both predicted and observed curves are aligned based on initial conditions and

timescales.

The quality of the model’s predictions is evaluated using statistical measures, such
as the R? score, which quantifies how well the predicted curve matches the actual observed

curve. A higher R? value indicates a better fit between the model and reality.

By comparing the simulated dynamics with real data, we assess the effectiveness of the

optimized model in capturing the trends of infection spread and recovery in the population.

3.3. Results and Analysis

Completing the optimization and simulation phases, the model’s projections were
compared to epidemiological data from the real world for performance evaluation and

insight extraction.
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3.3.1. Visualization of Predictions

The results are visualized by plotting both the actual reported data and the model’s

predicted values over time:

- Actual infections and recoveries are represented as transparent scatter points,

reflecting the real- world recorded cases.

- Model predictions are shown as bold continuous lines, representing the expected

evolution of infections and recoveries based on the SIR model.

- A shaded region around the prediction line, covering 10%, is included to

illustrate a basic confidence interval and highlight the model’s uncertainty margins.

This visualization allows a direct, intuitive comparison between the observed dynamics and

the model’s forecasts.

3.3.2. Model Evaluation: R2 Score

The model’s predictive accuracy is quantitatively assessed using the coefficient of
determination (R? score) [32]. This metric evaluates how well the model predictions align

with the actual data:

- High R? values (closer to 1) It is suggested that the model represents most of

the variability observed in data [32].

- Separate R’ scores The peak day values for infected and recovered individuals
permit an estimation of the two epidemic trends CrossRef, thus forming a

complementary outcome.[32].

An R? value close to 1 for both infected and recovered populations indicates a

strong model fit and reliable simulation performance.
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3.3.3. Key Extracted Metrics

In addition to prediction accuracy, important epidemiological parameters were

extracted from the fitted model:

- Initial and final infection rates (o and fy): Reflect how transmission dynamics

evolved due to interventions and behavioral changes.

- Initial and final recovery rates (yo and yy): Indicate improvements in

recovery over time, possibly due to medical advances.
- Basic reproduction number (Ro):

- Ro at the start of the simulation gives an estimate of the disease’s contagiousness

without intervention.

- Ro at the end reflects the impact of interventions and natural disease dynamics.

- Estimated half-life of interventions: Measures the speed at which interventions

(e.g., vaccination, restrictions) effectively reduce transmission rates.

These metrics provide deep insights into the epidemic behavior and the effectiveness of control

measures over time.

The enhanced SIR model provides a more realistic simulation of epidemic
dynamics by allowing infection and recovery rates to vary over time. The use of weighted
loss functions and differential evolution optimization improved the model’s ability to match
real-world data. Extracted epidemiological metrics give deeper insights into the
effectiveness of public health measures and the natural course of the epidemic. This
approach can be further extended to forecast future trends or evaluate different intervention

strategies.
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4. Deep learning model LSTM
4.1. Dataset and Feature Engineering

This model applies the same dataset on COVID-19, as earlier analyzed,
encompassing daily records from various countries. However, compared to the earlier method,

the deep learning approach incorporates a wider set of features in order to capture diverse

dimensions of the pandemic’s progress:
- Core Features: confirmed cases, deaths, recovered cases, and active cases

- Rate of Change Features: new confirmed cases, new deaths, and new recovered

cases
- Derived Metrics: mortality rate and recovery rate.

The new feature set enables the model to learn from many indicators at once, thereby
maximizing the possibility of capturing complex relationships that have not been modeled by
conventional epidemiology approaches. Addition of first-order derivatives (i.e., daily
changes) and proportional metrics enhances the model’s capability of detecting trends and
patterns in the data.

4.2. Data Preprocessing
4.2.1. Feature Scaling

Keeping in mind data normalization for each feature by means of the
MinMaxScaler transformation applied to the training data before entering the neural
network, this procedure ensures that all features are on a comparable scale (ranging from 0

to 1) which is an important aspect while training a neural network because:
- Prevents features with larger magnitudes from dominating the learning process
- Improves convergence speed during optimization.

- Enhances numerical stability throughout the training process.
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4.2.2. Sequence Creation

The temporal nature of epidemiological data requires specialized handling [33].
The model transforms the time series data into supervised learning format through the

following steps:

e Sequence Formation: For each time point, a sequence of previous

observations (sequence length = 21 days) is assembled to serve as input features.

e Multi-step Output: Rather than predicting just one day ahead, the model is

designed to forecast a full week (7 days) of active cases simultaneously.

e Sliding Window Approach: The sequences are created using a sliding window

technique, where each sequence is offset by one day from the previous.

The chosen sequence length of 21 days (3 weeks) represents a balance between
capturing sufficient historical context and maintaining a practical number of training
samples. This window size is particularly suitable for COVID-19 data as it encompasses

approximately two typical incubation periods [33].

y = {.Vt+1,.Vt+2,...,.Vt+forecast_horizon}

Where
. X represents the input sequence of feature vectors
. y represents the target sequence of active cases

i S€qiength = 21 (days)

. forecast_horizon =7 (days)
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4.3. Model Architecture:
4.3.1. Bidirectional LSTM Network

The core of the prediction system is a bidirectional LSTM (BiLSTM) neural
network. Unlike standard LSTMs that only process sequences in forward direction,

bidirectional LSTMs process data in both directions, offering several advantages:

- Complete Temporal Context: By processing sequences in both directions, the
model can capture dependencies that might be more apparent when considering future-

to-past relationships in addition to past-to-future ones.

- Enhanced Feature Extraction: BiLSTMs often extract more meaningful
features from time series data by considering the full context surrounding each time

point.

4.3.2. Layer Configuration

The model employs a carefully designed architecture with multiple specialized layers:

> First BILSTM Layer: 128 units with sequence return, incorporating L2
regularization (0.001) to prevent overfitting

> Dropout Layer (30%): Randomly deactivates 30% of neurons during training
to improve generalization

> Second BiLSTM Layer: 64 units without sequence return, creating a condensed
representation

> Dropout Layer (30%): Additional regularization to prevent co-adaptation of
features

> Dense Layer: 32 units with ReLU activation for non-linear feature transformation
> Dropout Layer (20%): Final regularization layer

> Output Layer: Dense layer with 7 units (one for each day in the forecast horizon)
without activation function for regression output

This progressive narrowing of layer dimensions (from 128 to 64 to 32 to 7)
creates a funnel-like architecture that gradually distills complex temporal patterns into

focused predictions.
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COVID-19 Prediction: Bidirectional LSTM Architecture

Input Data Features

Core Features Rate of Change Features Derived Metrics
Confirmed, Deaths, Recovered, Active New Confirmed, New Deaths, New Recovered Mortality Rate, Recovery Rate
v A
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Figure 16: LSTM model architecture

The mathematical formulation of a BILSTM cell can be expressed as:

he = LSTM (x4, he_y)

Et = LSTM(x¢, heyq)

hy = [ﬁt; Et]

Where:
7 . . .
h; is the forward hidden state at time ¢

h; is the backward hidden state at time ¢

h; is the concatenated bidirectional state
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4.4. Training Strategy
4.4.1. Optimization Algorithm

The Adam model optimizer has been developed based to bring the best of both
worlds based on the incentives of AdaGrad and RMSProp optimizers. Due to Adam’s
capability of adaptive learning rate, it is most productive in deep learning applications
dealing with large parameter spaces. The initial learning rate is 0.001, which balances the
speed of convergence and stability during training [34].

The update rule for Adam optimization can be summarized as:

my = fime_ + (11— B1)ge

Ve = PV + (1 — ﬁz)gtz

~ V¢
mt_
1_ t
1
~ Ut
’U:
C1-p
n ~
Ope1 = 0 — 5+ my
U + €
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Where:

. J: 1s the gradient at time ¢

. m, is the first moment estimate

. v; 1s the second moment estimate

. B1 and B2 are decay rates for the moment estimates
. n is the learning rate

. € is a small constant for numerical stability

4.4.2. L.oss Function

The Mean Squared Error (MSE), which is the optimization objective, penalizes the
squared difference between corresponding predicted and true values directly. The loss
function suits regression problems and imposes a larger weight on larger errors, which helps

in accurate predictions for significant outbreaks.

1
MSE = ZZ?:1(ypred,i - :Vtrue,i)z

4.4.3. Training Process Enhancement

Several techniques are employed to improve training efficiency and model performance:

« Early Stopping: Training automatically terminates if validation loss fails to

improve for 15 consecutive epochs, preventing overfitting and unnecessary computation.

e Learning Rate Reduction: The learning rate is reduced by 50% after 5
epochs without improvement, allowing for more precise optimization as training

progresses.
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. Best Model Preservation: The model state with the lowest validation loss is

automatically restored at the end of training.

The learning rate reduction follows the formula:
Nnew = MNoiwa X factor  When plateau is detected

Where factor = 0.5 in this implementation.
4.4.4. Training Configuration
The model training process uses the following hyper parameters:
- Epochs: Maximum of 100 iterations through the entire dataset
- Batch Size: 32 samples processed before each parameter update
- Validation Split: 20% of data reserved for validation (performance monitoring)

The batch size of 32 represents a compromise between training speed and gradient
estimate quality, while the generous maximum epoch allowance ensures the model has

sufficient opportunity to converge, even with early stopping in place.
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4.5. Model Evaluation
4.5.1. Performance Metrics

The model’s performance is evaluated using multiple complementary metrics:

1.  Root Mean Square Error (RMSE): Measures the standard deviation of

prediction errors.

n
1
RMSE = ;z(ypred,i - ytrue,i)z
i=1

2. Normalized RMSE: Expresses the RMSE as a percentage of the maximum

observed value, facilitating intuitive interpretation of error magnitude [35].

RMSE
NRMSE = ————— x 100%
max (ytrue)

These metrics provide a general measure of accuracy, with the normalized metric giving an

intuitive context of the magnitude of errors with respect to the scale of the data.

4.5.2. Visualization

Training progress is visualized through a learning curve plot that displays both

training and validation loss across epochs. This visualization:
- Allows for monitoring of convergence behavior
- Identifies potential overfitting (divergence between training and validation curves)

- Highlights the epoch with minimum validation loss (optimal model state)
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The use of logarithmic scale for the y-axis enables better visualization of loss
improvements across orders of magnitude, making subtle improvements in later epochs

more apparent.

5. Comparison with SIR Model

While the SIR model offers a mechanistic understanding of disease dynamics
with interpretable parameters (5, y, Ro), the deep learning approach provides complementary

strengths:

- Flexibility: Automatically captures complex patterns without requiring

explicit mathematical formulation
- Feature Utilization: Incorporates multiple data features beyond just case counts

- Multi-step Forecasting: Directly outputs predictions for multiple future time

points simultaneously

- Adaptability: Can potentially adapt to changing dynamics without explicit re-

parameterization

The deep learning model excels at capturing complex, potentially non-linear
relationships in the data that might be difficult to express in closed-form equations.

However, it sacrifices some interpretability compared to the SIR approach.
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The key differences can be summarized in the following comparison table:

Aspect SIR Model Deep Learning Model
Mathematical ) ) ) )
) Differential equations Neural network architecture
Foundation
. High (epidemiological
Interpretability Lower (black-box approach)
parameters)
Feature o ]
Minimal (case counts) Multiple features leveraged
Requirements
Adaptation to Requires re- )
o Can learn changing patterns
Changes parameterization

Prediction Horizon

Flexible simulation

Fixed output window (7 days)

Computational

Cost

Lower

Higher (training)

Table 3: Comparison between SIR and Deep Learning approaches
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6. Conclusion

Our study has shown the importance of relying on both systematic and data-driven
modeling approaches in studying COVID-19. An improved SIR model with time-
dependent parameters can capture the time evolution of disease dynamics while
maintaining interpretability via epidemiological measures like reproduction numbers. The
BiLSTM deep learning method considers multiple features to generate accurate multi-step
forecasts, thus bypassing the need for transmission dynamics to be mathematically
formulated. Although the SIR model is more interpretable, deep learning better accounts
for complicated, non-linear relationships present within the data. Hence, these two
approaches are complementary and help in understanding pandemic pathways and
determining the best interventions, thereby exemplifying the necessity for diversified

modeling approaches in epidemiology and public health response.
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Chapter 1V

Application Architecture and

Implementation



1. Introduction

The COVID-19 pandemic must be understood and anticipated as much as possible
to make fair decisions. The prediction and analysis framework of the application is
designed to hold a key to studying real-time data, producing forecasts, and comparing
results through several models. By selecting a country, one can immediately access the
country’s key statistics, including total confirmed cases, total deaths, total recoveries, and
active cases. These values are fetched and presented in interactive graphs that are intuitive

and provide a snapshot of the current position.

2. Application Overview

The COVID-19 Analysis and Prediction Dashboard is an interactive application
making extensive crawling and detailed analytics accessible to the end-user on demand. A
user can study historical COVID-19 data for some countries to understand the past trends
and present scenarios. With such a tool, trends can be drawn with cases, deaths, and
recoveries through beautiful charts and diagrams. All kinds of forecasting can be done by
exposing the user to advanced hybrid modeling of what could come next. Users will be
able to tweak prediction parameters and visualization modes through the interface to give
their analysis the look they want. All predictions can be downloaded for further analysis or

reporting.

2.1. Sidebar Controls

The discontinuous panel contains all the controls to effectively manage analysis
parameters. The dropdown lets a user zoom in on their country of interest. The
display/input option for population data ensures the modeling considers demographic
context. A date selection calendar allows users to specify time frames for their analysis.
Custom SIR input parameter specifications allow for scenario testing and hypothesis

approaches.
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2.2. Data overview

Upon the application’s launch, users are placed right into an intuitive interface that
allows them to select a country of interest and enter data relevant for prediction in
COVID-19. Once a country has already been selected, the application, in return, obtains
its current population data so that the analysis can be tracked. It then accesses a large dataset
of COVID-19 information and starts working on it. Based on all of this information, the
application casts dynamic and interactive plots that display key stats: total confirmed
COVID-19 cases, total deaths, total recoveries, and the number of active cases. This
visualization goes a long way toward helping the users comprehend the impact of the
pandemic within the entertained country. This population data, alongside current COVID
statistics, ensures an Analyze trend, compare results from country to country, and thereby
render their own decisions from the presented data. The application’s purpose is to explain

the COVID-19 overview crisply and depictively for every selected region (Figure 3).

Settings COVI D'lg

Select Country

Analysis and Prediction Dashboard
his application analyzes COVID-19 data using advanced hybrid modeling (SIR epidemiological model + Deep Le g) to predict future cases, deaths, and recoveries for selected countries with high accuracy.

Afghanistan v

Total Deaths

27,532 546 7,660
4658 A 241,50

COVID-19 Data for Afghanistan

COVID-19 Cumulative Cases for Afghani

Use custom SIR values?
== Confirmed
" w—Deaths
= Recovered
Active

Number of Cases

\

Figure 17: Data overview page
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2.3. Get prediction

Moreover, scrolling down in the application brings about two buttons, each linked
to a different pre- diction approach, letting users choose between the classical

epidemiological model and a deep learning- based model. In detail:

-« SIR model button: Clicking the SIR model button will set the application to
make predictions using the Susceptible-Infected-Recovered SIR model. Once the
computations are finished, a plot is displayed with the historical data and the predicted
trend from a given date. Thus, the results are presented visually and numerically,

providing an insight into how the virus is expected to spread (Figure 4).

SIR Model Predictions for Algeria
8ok Historical Active
=~ Historical Deaths
= Historical Recovered
SIR Active Prediction
* = SIR Deaths Prediction
= » SIR Recovered Prediction
=== Prediction Start

6.0K

Number of Cases

20K

1.0K

Figure 18: The SIR model prediction

- Deep learning model button: The deep learning button triggers the prediction
using a trained Long Short-Term Memory neural network. Setting a country and
specifying a date range in the sidebar, the model makes forecasts for active cases, deaths,

and recoveries.
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The predictions are then displayed as numerical values and plotted as time series

for users to visualize the projected evolution of the pandemic (Figure 5).

Number of Cases

8.0K -

7.0K -

6.0K -

4.0K -

3.0K -

Deep Learning Predictions for Algeria

Figure 19: the deep learning model prediction
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2.4. Comparison between the results of the models

The application, after generating and displaying the prediction results, has an
entire section devoted to comparing the two models with each other. There are two ways

in which this comparison format is presented:

- Graphical comparison: The application now draws comparative plots for each
major category, namely active cases, deaths, and recoveries. These plots are colored side
by side with predictions from the SIR model to the LSTM model so that users can easily

see the differences and similarities in the forecasted trends (Figure 6,Figure 7,Figure8)

Complete Model Comparison

Real Data vs Model Predictions - Algeria
Active Cases Comparison Deaths Comparison

= Real Data - - | |
== SIR Model P eesesssssss=e=
++++ Deep Leaming ........

w Real Data
== SIR Model
++++ Deep Leaming

Figure 20: Graphical comparison Active cases &deaths

74



Total Confirmed Cases Comparison

Figure 21: Graphical of confirmed cases comparison

Recovered Cases Comparison

Figure 22: Graphical of Recovered cases comparison
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- Textual comparison: If some users find it difficult to interpret graphical data,
the application also provides them with a textual summary of the differences. This
explanation looks at the key dissimilarities between the models’ predictions in a concise

manner, going over the implications depicted in the graphical format (Figure 9).

Prediction Summary Report

Current vs Predicted Comparison

Current Active Cases Current Deaths Current Recovered
2,496 811 8,078
Avg Predicted Active Avg Predicted Deaths Avg Predicted Recovered

1,974 759 3,801

Growth Rate Analysis

Active Growth Rate Deaths Growth Rate Recovery Growth Rate

-20.88% -6.40% -52.94%

Figure 23: Textual comparison

2.5. Interactive Report Generation

Finally, the application generates a comprehensive report summarizing the selected
country’s COVID- 19 data and the corresponding predictions. This report includes key
forecasted values such as predicted active cases, predicted deaths, and predicted recoveries.
It also provides an analysis indicating whether each of these values is expected to increase
or decrease over time. The report presents the results for both the SIR model and the deep
learning (LSTM) model, allowing for a side-by-side comparison. Additionally, the
application offers the option to download the full report for offline viewing or further

analysis (Figure 10).
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Key Findings

e Current Active Cases: 19,326
e Current Deaths: 546

e Current Recovered: 7,660

Projections by July 18, 2020

e Predicted Active Cases: 13,147 (Growth: -31.97%)
e Predicted Deaths: 670 (Growth: 22.88%)
e Predicted Recovered: 4,567 (Growth: -40.37%)

Model Predictions Comparison
SIR Model:

e Active: 1,034
e Deaths: 800
e Recovered: 5,554

R,: 1.00
Deep Learning Model:

e Active: 25,260
e Deaths: 541
e Recovered: 3,581

Model Agreement

e Active Cases Difference: 24,226
e Deaths Difference: 259

e Recovered Difference: 1,972

Figure 24: The final report
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3. Technologies Used

All that was used in making the app was deep data science at its best stacked with
web technologies in a way that ensures these components are robust while they apparently

present a user-friendly interface.

3.1. Core Framework

Streamlit is a Python library used to build web applications with hardly any code.
With this frame- work, Ul components and widgets and state management are handled in
the most elegant way possible. The framework also provides tools for interactive data
visualization, which brings the analysis to much more alive form for users. Consequently,
quick build and deployment of applications germinate, and the iterations or improvements

can keep flowing.

\" 4
Streamlit

Figure 25: Streamlit

3.2. Data Processing and Analysis

- Pandas: The application uses Pandas to manipulate and analyze the data in Python,
in con- junction with the DataFrame operations which work well with time series. This
library will allow cleaning and transforming the data into forms required for modeling
with use cases that may also include aggregation and grouping operations to pull up

inferred knowledge from unwieldy sets of data.

m|pandas

Figure 26: Pandas
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- NumPy: Provides numerical array computing support, with fast array operations
managing data processing. Its mathematical functionalities allow complicated
calculations required for epidemiological simulation. Random number generation in

the library supports the simulation to quantify prediction uncertainty.

PS¢

L
g5 NumPy
Figure 27: NumPy

-« SciPy: The Basis library contributes scientific computing capabilities, with its
being outfitted with a differential equation solver for implementing the SIR model. It
also has a nice differential evolution function for global optimization when fitting
parameters. Further integration and optimization utilities contribute in favor of an

application-oriented analysis.

Figure 28: SciPy
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3.3. Deep learning

- TensorFlow and Keras: With the very application backbone in deep learning,
LSTM networks would be implemented to capture temporal information in pandemic
data. These frameworks school you in model training and evaluation through strong
optimization methods. Their means of controlling regularization stop overfitting and

promote good generalization of the model.

§ |.‘ Tensor

Figure 29: TensorFlow

«  Scikit-learn: provides essential machine learning tools, such as data
preprocessing features with MinMaxScaler to normalize input data. It allows for the
implementation of meta-models by means of Ridge regression in ensemble approaches.
Other features include performance metrics to evaluate the prediction accuracy and

reliability of the models.

‘ﬁeafm

Figure 30: Scikit-learn

80



3.4 Visualization

- Matplotlib: serves as a core plotting library where all visualizations are first
created by figure and axes management. Design and styling options exist for various
types of plots to ensure clarity and in formativeness. It supports the rendering of static

visualizations, which serve as visual elements in the dashboard.
matpl:tlib

Figure 31: Matplotlib

« Seaborn: offers data visualization with an enhanced decorative touch that
beautifies plot information. Color palette management by this library ensures the
production of pretty and meaningful visuals. Its statistical visualization supports the

transmission of complex relationships into comprehensible stories within the data.

\-—msea born

Figure 32: Seaborn
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4. Future Enhancements

Potential improvements for future application releases would include some
main fields for development. Enhancements in modeling would mean considering more
complex and suitable compartmental models like SEIR and SEIDR that allow for
additional disease states. To improve the transmission modeling, mobility data would have
to be considered, which allows us to include population movement patterns. The models
should also be fed with vaccination data so that immunization campaigns’ impacts could
be considered. External factors could also be fed into the system for a better estimation,
including weather and policy interventions. On the technical side, the focus could be directed
towards cloud deployment to allow wider accessibility across the globe. A database as
an integration would allow faster data access and more efficient storage. Development
of API would enable programmatic access for integration into other systems. Automatic
refreshing of data from authoritative sources would ensure that analysis is rendered with
the most recent information available. User experience- wise, multi-country comparison
features would help in gauging relative progression of the pandemic. Variable-based custom
alert settings would monitor for when critical changes hit the metrics. User accounts
would nurture configurations for frequent analysis. Optimization for a mobile user interface
would foster multi-platform accessibility. Other analytical capabilities could locate
regional hotspots identifying areas of concern. It could also analyze the effectiveness of

interventions.
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5. Conclusion

The COVID-19 Analysis and Prediction Dashboard showcase the strengths that
can arise from harmonizing traditional epidemiological modeling with advanced machine
learning algorithms. Essentially, through the implementation of an improved SIR model
together with deep learning forecasts, the application makes a deeper, more accurate
prediction that considers the fact that disease dynamics change with the passage of time.
Using the Streamlit framework, developers have been able to rapidly build an interactive
user interface that brings elaborated modeling to the layman. An array of visualization
options and customizations exist for dissecting the historical data in great detail-as well as

the forecast
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This strategic application hence becomes an asset in comprehending the unfolding
of pandemics and could find its way into the form of modifications for surveillances of other

infectious diseases or any challenge that relates to public health.

General conclusion

The COVID-19 pandemic underscored the critical role of Artificial Intelligence
(Al) in epidemic modeling, offering unprecedented capabilities in forecasting,
containment, and policy optimization. Al-driven models have revolutionized traditional
epidemiological approaches by integrating, real-time data streams, machine learning (ML),

and deep learning (DL) to enhance accuracy and adaptability in predicting disease spread.

Al models such as PandemicLLM, developed by Johns Hopkins and Duke universities,
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outperformed conventional forecasting methods by incorporating diverse data types
demographics, genomic surveillance, public health policies, and epidemiological trends to

predict infection surges and hospitalization rates weeks in advance .

Large language models (LLMs) and generative Al enabled dynamic reasoning, adapting to

emerging variants and policy changes, which traditional statistical models struggled with

Al-powered tools SEIR models facilitated early outbreak detection by analyzing open

source data, mobility patterns, and environmental factors (e.g., temperature, humidity).

Al assisted in evaluating the effectiveness of lockdowns, mask mandates, and vaccine
distribution strategies. For instance, multi-linear regression models correlated COVID-19

spread with climatic conditions, aiding seasonal preparedness.

Predictive analytics helped hospitals allocate resources by forecasting ICU demand and

mortality risks using clinical markers like CRP, LDH, and D-dimer levels.

Data Limitations: Early pandemic models suffered from biased or incomplete data,

affecting reliability.

Privacy Concerns: Al’s reliance on personal data (e.g., contact tracing apps) raised issues

about surveillance and individual freedoms.

Interpretability: Many Al models operate as "black boxes," limiting transparency for

policymakers.

Global AI Surveillance Networks: Collaborative platforms could enable real-time, cross-

border epidemic monitoring.

Integration with Genomic Sequencing: Al can predict variant dominance, as seen in a
University of Florida study that identified 11 COVID-19 variants 10 weeks before official
CDC classification.

Ethical Frameworks: Balancing Al efficacy with privacy rights and equity remains a
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priority for future pandemic responses.
Final Remarks:

Al has proven indispensable in modeling COVID-19, transforming reactive public
health measures into proactive, data-driven strategies. While challenges persist, the fusion
of Al with epidemiology promises a more resilient global health infrastructure, capable of
mitigating future pandemics with greater speed and precision. Continued advancements in
explainable Al, international data-sharing, and ethical governance will be pivotal in

harnessing this potential.
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