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Abstract 

The COVID-19 pandemic has demonstrated the critical importance of accurate and timely 

epidemic modeling to guide public health responses. Traditional compartmental models such as 

SIR and SEIR, while effective in capturing fundamental transmission dynamics, often rely on fixed 

parameters and assumptions that may not hold in complex, real-world scenarios. In contrast, 

artificial intelligence (AI) offers a data-driven alternative capable of learning from vast and 

evolving datasets. This study explores the application of AI techniques specifically deep learning 

models such as Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) to forecast 

the spread of COVID-19. These models are trained on time-series data including daily case counts, 

mobility trends, and government intervention measures. 

This study explores the application of artificial intelligence (AI) techniques including machine 

learning (ML) and deep learning (DL) to model the spread of COVID-19. By leveraging AI-driven 

approaches such as recurrent neural networks (RNNs), long short-term memory (LSTM) models, 

and Bidirectional LSTM Model. 

The objective of artificial intelligence (AI) research is to develop computer systems capable of 

performing tasks using thinking processes similar to those of human beings. Thus, the challenge 

lies not only in understanding human thought, but also in its modelling and reproduction. 

The use of CNNs and RNNs was an optimal solution given the results obtained in several research 

projects. Results demonstrate that AI models can capture nonlinear patterns and temporal 

dependencies more effectively than traditional models, enabling improved short-term forecasting 

accuracy. Furthermore, we propose a hybrid modeling framework that integrates mechanistic and 

deep learning methods to leverage the interpretability of epidemiological models and the predictive 

power of AI. The findings underscore the potential of AI to enhance epidemic preparedness and 

real-time decision-making during public health crises. 

Keywords: COVID-19, SIR-SEIR, epidemic modeling, artificial intelligence, machine learning, 

deep learning, LSTM-BiLSTM, predictive analytics, public health 
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General introduction 

The rapid spread of the COVID-19 pandemic around the world has highlighted the crucial 

importance of forecasting and decision support tools for health authorities. Understanding and 

anticipating the evolution of an epidemic is a major challenge to limit its health, economic and 

social impacts. Traditionally, this task has been based on classical epidemiological models such as 

SIR or SEIR, which divide the population into compartments according to health status. However, 

these approaches may be limited in the face of the complexity of the real dynamics of an epidemic, 

especially when it comes to integrating multiple factors such as population mobility, variability of 

behavior, or the heterogeneity of geographical contexts. 

In this context, artificial intelligence (AI), particularly machine learning techniques, 

offers new perspectives for the modelling of infectious disease spread. Thanks to their ability to 

analyze large amounts of heterogeneous data (epidemiological data, mobility data, climate data, 

etc.) and extract complex patterns from them, these tools allow the construction of powerful and 

adaptive predictive models. Applied to the COVID-19 pandemic, AI has been used in many 

projects to predict changes in the number of cases, identify areas at risk, or evaluate the 

effectiveness of containment measures. 

This work is part of this dynamic by exploring the contributions of artificial intelligence to 

modeling the spread of COVID-19. It will analyze existing approaches, understand their 

methodological underpinnings, and assess their relevance to the challenges posed by a global 

health crisis. 

We divided this research topic into 4 chapters: 

We discussed it in the first chapter Mathematical modeling of the spread of epidemics 

involves using mathematical frameworks and equations to describe how infectious diseases 

propagate through populations over time. These models help predict the course of an epidemic, 

evaluate intervention strategies, and understand the dynamics of disease transmission. 

We discussed it in the chapter 2 moving into AI approaches for modeling epidemics, 

specifically deep learning, and recurrent neural networks like LSTM and BiLSTM. These 

techniques are data-driven and powerful for modeling time-series data, such as the daily number 

of infections, recoveries, or deaths. 
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In the third chapter we talk about how to build a robust model of an epidemic (COVID-

19), we can take several modeling approaches, depending on our goal (e.g., understanding 

transmission vs. forecasting cases) and the data available 

Finally in the last chapter we discussed it how to create a real-world application for 

epidemic modeling (e.g., COVID-19 tracker + predictor), we need a layered architecture that 

includes data ingestion, modeling, prediction, visualization, and deployment 

Research questions 

As part of the AI modelling of the spread of COVID-19, several research questions 

emerge to guide the analysis and evaluation of AI approaches. These questions make it possible to 

explore the challenges, performance and implications of predictive models. The following is a 

structured list of key issues:   

 What are the most effective AI algorithms for predicting the spread of COVID-19? 

(Comparison between neural networks, agent models, random forests...)   

 How do hybrid models (combining AI and conventional epidemiology) improve the 

accuracy of predictions?   

 What is the impact of different data sources (mobility, social networks, and clinical data) 

on AI model performance?   

 What’s the role of deep learning, LSTM and BiLSTM for in epidemic predictions?  

 What are the risks associated with the use of AI in public health (algorithmic bias, data 

protection, mass surveillance)? 

 These questions help structure research around the technical, practical and ethical aspects 

of COVID-19 AI modelling, while opening up avenues for future improvements and 

applications in public health. 

Purpose 

The study of artificial intelligence (AI)-driven modeling for COVID-19 propagation serves several 

critical purposes in public health, data science, and epidemic preparedness: 

  Enhancing Predictive Accuracy for Outbreak Management 
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Traditional epidemiological models (e.g., SIR, SEIR) rely on fixed parameters, whereas AI can 

analyze vast, dynamic datasets (mobility patterns, social media, climate, and genomic data) to 

improve real-time forecasting. 

Machine learning (ML) models can detect nonlinear transmission patterns, helping predict 

infection waves, hospitalizations, and deaths more accurately. 

  Optimizing Public Health Interventions 

AI can simulate the impact of different policies (lockdowns, mask mandates, vaccination 

campaigns) to guide decision-making. 

Reinforcement learning and agent-based modeling help identify optimal containment strategies 

while minimizing economic and social disruptions. 

  Early Detection and Surveillance 

AI-powered tools (e.g., natural language processing for social media, computer vision for mask 

compliance) enable early outbreak detection before traditional reporting. 

Predictive models can flag emerging variants by analyzing viral genomic data and global spread 

trends. 

  Resource Allocation and Healthcare Planning 

AI helps forecast ICU bed demand, ventilator needs, and vaccine distribution to prevent healthcare 

system overload. 

Reinforcement learning can optimize testing strategies and contact tracing efficiency. 

Description 

Modeling the Spread of an Epidemic Using Artificial Intelligence: COVID19 explores 

the application of AI techniques such as machine learning, deep learning, and agent-based 

simulations to predict and analyze the transmission dynamics of COVID-19. The subject covers 

data-driven modeling, risk assessment, intervention strategies, and real-time outbreak forecasting, 

highlighting how AI enhances epidemic response and public health decision-making. Topics 

include neural networks, epidemiological models, and the challenges of integrating AI with 

traditional disease control methods. 
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Forecast:  

The integration of Artificial Intelligence (AI) in modeling the spread of COVID-19 will 

continue to advance, improving epidemic prediction accuracy and real-time response. Future 

developments may include: 

 Enhanced predictive models using deep learning and hybrid AI-epidemiological 

approaches for early outbreak detection. 

 AI-driven personalized risk assessment to optimize public health interventions. 

 Integration with big data (e.g., mobility patterns, genomic surveillance) for dynamic 

transmission tracking. 

 Challenges such as data biases, model interpretability, and ethical concerns will require 

ongoing research. 

AI is expected to play a critical role in future pandemic preparedness, enabling faster, 

data-informed decision-making for global health security. 

 

 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 

Chapter I 
Mathematical modeling of the 

spread of epidemics 
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Introduction 

            Mathematical models, visualize how infectious diseases progress to show the likely 

outcome of an epidemic and help guide public health interventions. Models use underlying 

assumptions or aggregate statistics, along with mathematics, to obtain parameters for different 

infectious diseases. Using these parameters, they calculate the effects of different interventions, 

such as mass vaccination programs. Modeling may help determine which interventions to avoid 

and which to try, or it can predict future growth patterns. 

Part I 

Communicable diseases and epidemiology 

1. Background and importance of modeling the spread of epidemics 

1.1 Background of modeling the spread of epidemics 

               Modern approaches to epidemiological analysis and disease modeling emerged in the late 

19th and early 20th centuries. One of the earliest breakthroughs involved mapping cases of cholera 

to identify patterns of transmission, leading to the hypothesis that contaminated water played a 

central role in spreading the disease. Around the same period, researchers also began to recognize 

and model the cyclic behavior of infectious diseases like measles and cholera using discrete-time 

models. These initial efforts in spatial and temporal epidemic analysis, combined with 

advancements in biology, contributed significantly to understanding how diseases spread. Beyond 

the development of vaccines and treatments, infectious disease research aims to mitigate health 

threats by uncovering the patterns of disease dynamics across time and space. To support this goal, 

numerous analytical and modeling methods have been created, grounded in the idea that disease 

transmission is influenced by underlying spatial structures inherent in both human and physical 

geography.[1] 

            Early disease modeling efforts primarily focused on mathematical representations at the 

population level, often relying on assumptions of homogeneity. These models typically divided 

the host population into distinct compartments, with individuals assumed to interact only within 

their immediate surroundings.  
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One of the most basic and widely known of these models is the SIR model, which was 

originally developed for closed populations. While such approaches have been valuable for 

estimating the scale of outbreaks, they often overlook the complex spatial and temporal dynamics 

that influence disease transmission across different communities factors that are critical for 

informing effective public health responses. Traditional non-spatial, population-based models do 

not explicitly account for the underlying causes of epidemic spread, limiting their ability to fully 

capture the mechanisms driving disease emergence and propagation.[2] 

The advancement of computer technology and the growing availability of spatially 

referenced disease data have paved the way for more sophisticated modeling approaches. These 

tools enable the simulation of large populations and allow researchers to examine the progression 

of disease over time and across geographic space. Motivated by the need for more realistic 

representations, modern modeling efforts have evolved to include advanced mathematical 

frameworks, individual-based statistical models, and simulation-based techniques. Unlike 

traditional models, individual-based approaches explicitly account for key factors influencing 

disease transmission such as individual behavior, person-to-person interactions, and contact 

networks  allowing them to more accurately reflect the heterogeneity observed in real-world 

outbreaks. These models also integrate data on host locations and movement patterns with detailed 

descriptions of infection processes and disease progression, making them powerful tools for 

analyzing observed epidemiological patterns and assessing potential intervention strategies. As a 

result, a wide range of spatial modeling approaches have been developed, encompassing both 

population-level and individual-level perspectives to better understand and predict the spread of 

infectious diseases. [3] 
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1.2 The importance of modeling the spread of epidemics 

             Epidemiological modeling plays a crucial role in managing public health crises by 

enabling experts to anticipate the course of an epidemic, including when it may peak and how 

many individuals could be affected. This foresight allows authorities to better prepare for potential 

impacts. Models also support the strategic allocation of limited resources such as medical supplies, 

hospital capacity, and healthcare personnel by identifying where and when interventions are most 

needed.  

Through simulations, the potential outcomes of public health measures like lockdowns, 

vaccination campaigns, or social distancing can be evaluated before they are implemented, 

minimizing risk and maximizing effectiveness. Moreover, modeling offers a scientific foundation 

for policy decisions, helping to balance health priorities with economic and social considerations. 

It enhances our understanding of disease dynamics, shedding light on critical factors such as 

transmission rates, immunity development, and the roles different population groups play in 

spreading infections. On a global scale, models can also identify regions at higher risk of future 

outbreaks, enabling proactive responses from international health organizations. Overall, they 

serve as vital tools for evaluating and refining policies throughout the course of an epidemic.[4] 

2. The impact of epidemics on public health and crisis management systems 

2.1. The impact on public health 

            Pandemics cause significant health and economic challenges, especially in low- and 

middle-income countries, which often face a greater burden. Beyond the direct health impact, they 

disrupt economic activity through fear-driven behavior and restrictive measures like quarantines. 

These disruptions reduce productivity and can lead to long-term economic setbacks. In politically 

unstable regions, pandemic responses may also heighten tensions, potentially leading to conflict 

and weakening trust between governments and citizens.[5] 
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2.2. The impact on crisis management system 

Epidemics severely challenge crisis management systems by overwhelming healthcare 

infrastructures, disrupting economies, and testing public trust. They require rapid coordination of 

resources, clear communication to counter misinformation, and support for mental health and 

social stability. Economic disruptions, including job losses and business closures, demand 

emergency aid and recovery planning. Effective responses depend on collaboration across 

governments, international organizations, and the private sector. Epidemics also expose 

weaknesses in preparedness, emphasizing the need for stronger health systems, surveillance, and 

long-term resilience strategies.[6]    

3. Challenges of classical models in the face of dynamic epidemics 

           Classical epidemiological models like the SIR framework face limitations in capturing the 

complex dynamics of real-world epidemics. They often assume a homogeneous population and 

fixed parameters, overlooking important factors such as individual behavior, geographic 

variability, and the emergence of new pathogen strains. These models also tend to focus on short-

term outcomes, ignoring long-term effects like herd immunity or disease resurgence. As a result, 

more advanced approaches—such as agent-based, network, and stochastic models—are needed to 

better reflect the evolving nature of epidemics.[7] 

Part II 

Epidemic modeling 

Mathematical modeling 

1. Presentation of Classical Epidemiological Models SIR, SEIR, 

and their variants 

            The SIR and SEIR models are foundational frameworks in epidemiology used to analyze 

and forecast the spread of infectious diseases within a population. The SIR model categorizes 

individuals into three groups: Susceptible (S), who are at risk of infection; Infected (I), who can 

transmit the disease; and Recovered (R), who have gained immunity after infection. This model 

operates under the assumption of homogeneous mixing, where every individual has an equal 
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probability of contact with others, and it considers a closed population with no births or unrelated 

deaths. Once individuals recover, they are assumed to be immune to future infections. 

The disease dynamics are modeled using a set of ordinary differential equations (ODEs) that 

describe the rate of change in each compartment:    

Where 𝜷 is the transmission rate, 𝜸 is the recovery rate, and (N) is the total population. The basic 

reproduction number (R). Defined as: 

 

𝒅𝑹 

𝒅𝒕 
 = 𝜸I(t)                                       

The basic reproduction number, R0, is defined as the average number of secondary infections 

produced by a single infectious individual in a fully susceptible population and is given by: 
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Figure 1: Growth of infection and depletion of the susceptible population in an SIR outbreak 

Plays a critical role in determining the potential for disease spread. If (R0 > 1), the disease will 

spread; if (R0 < 1), the disease will eventually die out. 

The SEIR model extends the SIR model by adding an Exposed (E) compartment, which 

represents individuals who have been infected but are not yet infectious due to an incubation 

period. This model is particularly useful for diseases with a delayed onset of infectiousness, such 

as COVID-19. The SEIR model consists of four compartments: 

 Susceptible (S) 

 Exposed (E) 

 Infected (I) 

 Recovered (R) 

The dynamics are governed by the following equations:  

ௗௌ

ௗ௧ 
 = −𝛽S(t)I(t)                                         

ௗூ

ௗ௧ 
 = 𝛽 S(t)I(t) –𝛾I(t)                                 
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Various extensions of the classic SIR and SEIR models have been developed to better 

reflect real-world disease dynamics. These include models accounting for waning immunity (SIRS 

and SEIRS), incorporation of vaccination effects (SIV), age-specific differences in transmission 

and recovery, and network-based models that consider heterogeneous contact patterns within 

populations. Such adaptations allow for more accurate and nuanced predictions of disease spread 

and control measures. 

2. Differential equations used, assumptions, and conditions of application 

            The SIR and SEIR models are mathematical models used to describe the spread of 

infectious diseases within a population. These models rely on differential equations to represent 

the rate of change in different compartments of the population. Let’s explore the differential 

equations used, along with assumptions and conditions of application. 

 

2.1. SIR Model (Susceptible, Infected, Recovered) 

The SIR model divides the population into three compartments: 

 S: Susceptible individuals (those who are at risk of being infected) 

 I: Infected individuals (those who are currently infected and can transmit the disease). 

 R: Recovered individuals (those who have recovered and are assumed to have immunity. 

 

Figure 2: transmission diagram for the SIR model 

The basic differential equations governing the SIR model are: 

𝒅𝑺

𝒅𝒕 
= -βSI                    
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This represents the rate at which susceptible individuals get infected. It depends on the 

transmission rate (β), the number of susceptible individuals (S), and the number of infected 

individuals (I). 

                                                          
𝒅𝑰

𝒅𝒕 
 = βSI – γI                                

This equation represents the rate of change in the infected population. The first term (βSI) reflects 

the number of new infections, while the second term (γI) represents the rate of recovery, where γ 

is the recovery rate. 

𝒅𝑹

𝒅𝒕 
= γI                

This describes the rate of change in the recovered population, with γ representing the rate at which 

infected individuals recover. 

 Assumptions 

 The total population remains constant, so: 

           N = S(t) + I(t) + R(t) .                               

 Individuals are assumed to either be susceptible, infected, or recovered. No individuals 

can be reinfec ted or return to a susceptible state (no immunity loss). 

 The disease spreads through direct contact between susceptible and infected individuals, 

and recovery occurs at a constant rate. 

 The transmission rate β and recovery rate γ are constant over time. 

Conditions of application 

 This model assumes no birth or death rates except for those caused by infection (no 

external or background mortality). 

 The disease has a finite duration of infectivity (people eventually recover). 

 It is applied when there is no need to account for more complicated epidemiological 

factors, such as external interventions or varying susceptibility. 

2.2. SEIR Model (Susceptible, Exposed, Infected, Recovered) 

           The SEIR model is a more advanced extension of the SIR model that incorporates an 

"Exposed" (E) compartment, representing individuals who have been infected but are not yet 

infectious during a latent period.[8] 
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Figure 3: transmission diagram for the SEIR model 

The SEIR model divides the population into four compartments: 

 S: Susceptible individuals 

 E: Exposed individuals (those who have been exposed to the virus but are not yet 

infectious) 

 I: Infected individuals (those who are infectious) 

 R: Recovered individuals 

 

The differential equations governing the SEIR model are: 

𝒅𝑺

𝒅𝒕 
= -βSI            

As in the SIR model, this equation represents the rate at which susceptible individuals become 

exposed. 

𝒅𝑬

𝒅𝒕 
= βSI – σE          

This equation represents the rate at which susceptible individuals become exposed (βSI) and the 

rate at which exposed individuals become infectious (σE). Here, σ is the rate at which exposed 

individuals progress to the infectious state. 

𝒅𝑰

𝒅𝒕 
= σE – γI            

This equation represents the progression of exposed individuals to the infected state and the 

recovery of infected individuals at the rate γ. 

𝒅𝑹

𝒅𝒕 
 = γI               

The same as in the SIR model, this describes the rate at which infected individuals recover. 
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Assomptions  

 S + E + I + R = N, where N is the total population. 

 The latent period is assumed to be constant for all exposed individuals. 

 The transmission rate β, the rate at which exposed individuals become infectious σ, and the 

recovery rate γ are constant. 

 The disease spreads through direct contact between susceptible and infected individuals. 

 Individuals are assumed to either be susceptible, exposed, infected, or recovered, with no 

reinfection and no immunity loss. 

Conditions of Application 

 This model is more suitable for diseases with a significant latent period between exposure 

and becoming infectious (e.g., diseases like COVID-19 and tuberculosis). 

 It is appropriate when the exposure period needs to be accounted for separately from the 

infectious period. 

   Similar to the SIR model, it assumes constant-rates and does not typically include external 

factors like vaccination, varying population sizes, or varying contact rates. 

2.3. Key Differences between SIR and SEIR Models  

 SIR model: Assumes individuals become infectious immediately after being infected. 

 SEIR model: Accounts for an incubation period where individuals are exposed but not yet 

infectious. 

3. Practical Applications of the Models and Analysis of Their Limitations 

3.1. Practical application to the SIR model 

The SIR (Susceptible–Infected–Recovered) model serves as a valuable tool for 

understanding and managing the spread of infectious diseases in real-world settings. Public health 

officials use it to estimate key parameters such as the basic reproduction number R0R_0R0, predict 

the peak of an epidemic, and determine how long an outbreak might last. By simulating various 

scenarios, the model helps evaluate the potential impact of intervention strategies like vaccination, 

quarantine, or social distancing. For example, during the COVID-19 pandemic, the SIR model was 

used to forecast case numbers, assess healthcare system capacity, and inform decisions on 
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lockdown policies. Its simplicity makes it especially useful in the early stages of an outbreak when 

data is limited, offering quick insights to guide public health responses. 

               Epidemiological models such as SIR and SEIR have found wide-ranging applications 

beyond traditional disease modeling. In health, they help analyze influenza outbreaks—like one in 

a British boarding school where SIR dynamics revealed a basic reproduction number (R₀) of 3.652 

and are used to understand vector-borne diseases like dengue through coupled human-mosquito 

models, or to address emerging infectious diseases such as SARS, incorporating super-spreader 

effects. In social networks, these models describe the spread of rumors, user behavior, viral 

marketing, and even audience applause by simulating contagion-like dynamics of influence. In 

informatics, they aid in studying the dissemination of files in peer-to-peer networks and the 

propagation of computer viruses, taking into account their stealthy and destructive nature. In 

economics and finance, SIR-like models inform rational expectations in public health decision-

making and model financial contagion in interbank systems, illustrating how shocks can cascade 

across interconnected institutions and nations. Across all these domains, the models provide 

valuable insights into how entities are they viruses, ideas, or financial crises—spread through 

populations or networks. [9] 

3.2. Practical application to the SEIR model 

             The SEIR model has been extensively used to analyze and predict the dynamics of 

infectious disease outbreaks, particularly those with an incubation or latent period. A notable 

example is its application during the COVID-19 pandemic. Governments and public health 

agencies around the world used SEIR-based simulations to forecast the spread of the virus, 

estimate peak infection periods, and evaluate the impact of interventions such as lockdowns, social 

distancing, and vaccination. By incorporating real-time data (such as confirmed cases and recovery 

rates), the SEIR model helped policymakers anticipate healthcare demand, allocate medical 

resources, and plan timely mitigation strategies. For instance, during the early phases of COVID-

19, the SEIR model allowed researchers to estimate how long it would take for the virus to spread 

in a given population and what percentage of individuals might be infected if no measures were 

taken. This insight was crucial for designing responsive and targeted public health policies. 
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3.3. The limitations of the models 

            The SIR (Susceptible-Infected-Recovered) and SEIR (Susceptible-Exposed-Infected-

Recovered) models, while widely used for modeling infectious diseases, have several limitations. 

They assume a homogeneous population, where everyone has the same likelihood of interacting 

with each other, neglecting the variation in social networks, behaviors, and movement patterns that 

exist in reality.  

            Furthermore, these models generally omit birth and death rates unrelated to the disease and 

do not account for external factors such as other diseases or environmental influences. The 

transmission dynamics are oversimplified, assuming that the infection spreads uniformly through 

contacts, with constant transmission probabilities, ignoring factors like seasonality, vaccination, 

or changes in behavior.  

Hybrid models and the role of AI in modeling 

1. Introduction to Hybrid models 

                 Hybrid System-It is the combination of multiple approaches or techniques to solve 

problem. In the realm AI and Ml, it often integrates both traditional Machine learning methods and 

techniques. In hybrid system is one that combines two or more distinct sub-system, often strengths 

of each to achieve optimal performance or functionality [10]. 

 Structure: A hybrid system comprises two or more distinct subsystems that interact and 

collaborate to achieve a common goal. These subsystems can operate on different principles, 

data representations, or computational paradigms. 

 Common Subsystems: Symbolic/Rule-based Systems: Employ domain knowledge 

encoded in logical expressions or decision trees. Excellent for interpretability and handling 

structured data. 

 Statistical/Probabilistic Models: Analyse data using statistical techniques like Bayesian 

networks or linear regression. Good for uncertainty quantification and reasoning under noise. 
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Figure 4: Applications of artificial intelligence in public health systems 

 

2. An overview of artificial intelligence in epidemiology 

                Artificial Intelligence (AI) has become a powerful tool in epidemiology, particularly for 

forecasting the spread of infectious diseases. Various types of AI models are employed to predict, 

monitor, and manage disease outbreaks, each offering unique strengths. Machine Learning (ML) 

models are among the most commonly used, particularly supervised learning techniques like linear 

regression, which predict continuous outcomes such as the number of disease cases over time, and 

random forests, an ensemble method that aggregates decision trees to improve accuracy. Support 

vector machines (SVM) are used to classify data and handle high-dimensional datasets, making 

them useful for distinguishing between different disease outcomes.  

              In cases where labeled data is unavailable, unsupervised learning methods, such as 

clustering algorithms (e.g., K-means or DBSCAN), help identify hidden patterns in large datasets, 

such as locating disease hotspots or detecting unusual patterns in disease spread [11]. 

             Deep Learning models, such as neural networks, are particularly well-suited for handling 

large, complex datasets, including electronic health records, mobility data, and environmental 

factors. Recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks, 

which are specialized in analyzing time-series data, have proven effective for forecasting future 
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disease cases by capturing temporal dependencies in data, such as predicting the trajectory of 

disease outbreaks based on past trends. 

           Convolutional neural networks (CNNs), though originally used for image processing, are 

now applied to analyze geographical data and detect disease patterns from satellite imagery or heat 

maps, aiding in real-time monitoring and detection. Agent-Based Models (ABMs) simulate 

individual interactions within a population, offering a more dynamic and granular approach to 

disease spread. These models model individual behaviors and social networks, allowing the 

simulation of various policy interventions, such as vaccination campaigns or changes in mobility 

patterns, and their impact on disease transmission. Bayesian models, such as Bayesian networks 

and Markov Chain Monte Carlo (MCMC) methods, use probabilistic reasoning to account for 

uncertainty in disease transmission dynamics. They enable researchers to estimate the likelihood 

of different epidemic scenarios, adjust predictions based on new evidence, and model complex 

dependencies between variables such as weather, human behavior, and healthcare responses. 

              The applications of AI in epidemiology are vast. AI-driven models are used for disease 

prediction and surveillance, analyzing historical trends and real-time data to predict future 

outbreaks, especially in the early stages of new or re-emerging diseases. Real-time forecasting 

allows for continuous monitoring of disease spread, with up-to-date predictions that help health 

authorities make timely decisions. Outbreak detection is greatly accelerated by AI, which can 

identify irregularities in disease patterns that may indicate the onset of an outbreak. Additionally, 

resource allocation models optimize the distribution of critical resources like vaccines, medical 

staff, and hospital beds, ensuring that interventions are deployed effectively and efficiently based 

on predicted disease trends. Ultimately. 
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3. Comparison of classical approaches and AI-based approaches 

3.1. Accuracy and Efficiency: Comparing Detection Rates and False Positives/Negatives 

Method Accuracy False Positives/Negatives 

Traditional Methods 

Signature-

Based 

Detection 

High accuracy for known malware; 

struggles with zero-day threats and 

polymorphic malware. 

Low false positives for known threats; 

high false negatives for new or modified 

malware. 

Heuristic 

Analysis 

Better for unknown malware via 

behavior pattern analysis; accuracy 

varies with rules and may need 

manual tuning. 

Higher false positives due to broad rules; 

may flag legitimate software as 

suspicious. 

Behavioral 

Monitoring 

Effective for real-time malware 

detection; accuracy depends on 

behavior complexity; may miss 

subtle threats. 

Can generate false positives if legit 

programs behave like malware; false 

negatives if malware uses evasion 

techniques. 

AI-Based Methods 

Machine 

Learning 

Supervised learning offers high 

accuracy with good data; 

unsupervised methods can detect 

novel threats; accuracy depends on 

data quality and training. 

Lower false positives/negatives than 

traditional methods when well-trained; 

performance varies with data/model 

quality. 

Deep 

Learning 

High accuracy for complex malware 

patterns; effective for classifying 

diverse and new threats due to 

learning from large datasets. 

Can significantly reduce false 

positives/negatives by capturing 

complex patterns; may still face issues 

with evolving or obfuscated malware. 

 

Table 1: comparison of malware detection methods: accuracy and false positives/negatives 
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3.2. Computational and Data Needs for Traditional vs. AI Approaches 

Method Computational Needs Data Needs 
Traditional Methods 

Signature-
Based 
Detection 

Low computational overhead; relies on 
simple pattern matching. 

Needs an up-to-date 
signature database; does not 
require large data volumes 
for each analysis. 

Heuristic 
Analysis 

Moderate computational needs for rule 
evaluation and data analysis. 

Requires historical data to 
develop and refine rules; 
does not need large-scale 
real-time data. 

Behavioral 
Monitoring 

High computational requirements due to 
real-time monitoring, data logging, and 
complex analysis. 

Needs substantial data from 
monitored systems to 
effectively detect behavior-
based anomalies. 

AI-Based Methods 
Machine 
Learning 

Significant resources required for training 
large datasets; inference is typically less 
demanding. 

Requires large volumes of 
labeled data for training; 
continuous data collection is 
important for maintaining 
accuracy. 

Deep Learning Very high computational demands for both 
training and inference; depends heavily on 
hardware (e.g., GPUs) due to complex 
neural network structures. 

Requires extensive, diverse 
datasets to train models 
effectively and capture a 
wide range of malware 
behaviors. 

 

Table 2: computational and data requirements of malware detection methods 

AI-based methods offer superior accuracy and adaptability compared to traditional 

approaches, especially for detecting novel and sophisticated threats. However, they come with 

higher computational and data requirements. Traditional methods, while generally faster and less 

resource-intensive, struggle with new threats and may generate more false positives/negatives. 

Combining both approaches can provide a more robust and comprehensive malware analysis 

strategy. [12] 
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Conclusion: 

          Mathematical modeling plays a crucial role in understanding and predicting the dynamics 

of epidemic spread. Through models such as SIR, SEIR, and their numerous extensions, 

researchers can simulate transmission patterns, evaluate intervention strategies, and estimate key 

epidemiological parameters. These models serve not only as analytical tools for theoretical 

exploration but also as practical frameworks to guide public health decision-making. Despite their 

simplifications and assumptions, mathematical models provide valuable insights into complex 

biological and social processes underlying disease propagation. As data availability and 

computational power continue to grow, integrating models with real-time data and machine 

learning techniques will further enhance their predictive accuracy and applicability in managing 

future outbreaks. 
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II. IA approach and Deep-learning 

The objective of artificial intelligence (AI) research is to develop computer systems 

capable of performing tasks using thinking processes similar to those of human beings. Thus, the 

challenge lies not only in understanding human thought, but also in its modelling and reproduction. 

Artificial intelligence (AI) has become a topic of great importance both in the media and 

in scientific journals, mainly due to the many achievements that have resulted from it, many of 

which are the result of advances in machine learning. AI is based on a learning approach to 

replicate, through an application, system or process, part of human intelligence. Examples of 

artificial intelligence systems include facial recognition and visual perception. Machine learning 

(ML), a subdomain of AI, uses artificial neural networks (ANN) to mimic how humans make 

decisions. Machine Learning allows computers to develop learning models autonomously, without 

prior programming, based on vast datasets. Just below is Deep Learning (DL), one of the many 

approaches to machine learning that has been hugely successful in recent years. The DL is 

characterized by deep neural networks capable of performing complex tasks more efficiently and 

accurately. 

In this chapter, we will discuss the different forms of machine learning as well as the 

different types of neural networks. We will begin with a general overview of these concepts, and 

then focus on artificial neural networks (ANN), recurrent neural networks (RNN) and 

convolutional neural networks (CNN). [13] 
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1. Definition of machine learning (Machine Learning) 

Machine learning, as a subdomain of artificial intelligence (AI), focuses on creating 

systems that can learn and improve their performance based on the data they analyze. Artificial 

intelligence and machine learning are often mentioned together, highlighting the close relationship 

between these two areas [14]. 

2. Type of learning 

Deep learning algorithms can be divided into two main categories: supervised and unsupervised 

learning: 

 Supervised learning uses a tagged set of learning data, which means that each sample 

data is associated with a label that indicates its class or expected value. There are two 

main types of supervised learning models: regression models, which aim to predict 

continuous values, and classification models, which seek to assign examples to 

predefined discrete categories. 

 Unsupervised learning, on the other hand, is learning models from unlabeled data. In this 

case, the algorithm must automatically extract structures or groupings in the data without 

receiving explicit information about the expected categories. Unsupervised learning is 

about discovering intrinsic relationships and organizing data according to their 

similarities or underlying motives. 

These two types of supervised and unsupervised learning play important roles in the field of deep 

learning, offering complementary approaches to extract useful information and perform advanced 

data analysis tasks. 
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Figure 5: Diagram of the different use cases for a given type of training 

3.  Deep Learning Definition (DL) 

Deep learning (DL) is a class of machine learning (ML) in which information is processed 

using hierarchical layers to understand data representations and characteristics at increasing levels 

of complexity. Deep learning is also known as hierarchical or structured deep learning. 

All deep learning algorithms are based on neural networks (NRT) that share some 

fundamental properties. These networks are composed of interconnected neurons and organized 

in layers. What distinguishes them is the specific network architecture that is how neurons are 

organized, and sometimes the method used for their learning. 

Deep learning has led to significant advances in areas such as computer vision, speech 

recognition, machine translation and many other areas of AI. The power of deep neural networks 

makes it possible to extract complex representations and perform sophisticated tasks by exploiting 

hierarchical relationships and latent data characteristics. 
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4.  Neural Networks 

4.1. Biological neuron 

Many inventions have been inspired by nature, and artificial neural networks (ANN) are 

no exception. They are inspired by the architecture of the human brain and its biological neurons. 

The human brain is made up of about 10 billion neurons, and each neuron is connected to about 

10,000 other neurons. Biological neurons are composed of cellular bodies containing a nucleus, as 

well as many branched extensions called dendrites. They also have a long extension called axon. 

At the end of the axon are tiny structures called axon endings, which are connected to dendrites in 

other neurons (see Figure 6) [15]. 

This complex organization of the human brain has been a source of inspiration for the 

development of artificial neural networks, which attempt to reproduce these connections and 

neuronal interactions to perform learning and information processing tasks. 

 

 

 

 

Figure 6: Structure of a biological neuron 
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Each neuron receives electrochemical signals from other neurons via its dendrites. If these 

inbound signals are strong enough to activate the neuron, it is stimulated and transmits the signal 

along its axon, which then relays it to the dendrites of other neurons. These neurons in turn can be 

activated, thus prolonging the message transmission process. 

Artificial neural networks seek to mimic this process by simulating interactions between 

neurons and signal propagation. 

4.2. Principle of neural networks (Neural Network) 

A neural network is a powerful tool for analyzing the complex relationships between input 

and output data. It is based on the principle of learning, where the network adjusts its internal 

parameters, called synaptic weights, in order to capture the models and knowledge present in the 

data. By learning and optimizing these synaptic weights, the network can generalize and make 

accurate predictions on new data. By combining many interconnected neurons and using learning 

techniques, neural networks are able to model complex relationships and provide effective 

solutions to a variety of problems. 

4.3. Functioning of Neural Networks 

The functioning of neural networks is based on the distribution of variable values in units 

called neurons. These neurons are responsible for combining the information they receive from 

each other in order to determine the value of the discrimination coefficient. This ability to discern 

depends on the connectivity between neurons, that is, the links between units responsible for 

integrating information. Each neuron receives numerical information from its neighboring 

neurons, which are weighted by weights representing the strength of the connection. Calculations 

are then made in each neuron, and the result of this process is transmitted to the neurons 

downstream. 

Neural networks use mathematical operations and activation functions to process and 

analyze data. 

 

 



29 
 

5. Types of Neural Networks 

There are several architectures of neural networks commonly used in practice. Some of the most 

popular architectures are: 

 Artificial neural networks (ANN) 

 Recurrent neural networks (RNN) 

  Convolution neural networks (CNN) 

5.1. Artificial Neural Networks (ANN) 

The forward neural network (feedforward) is one of the simplest forms of ANN. In this 

type of network, the data or input moves in a single direction, passing through the input nodes to 

reach the output nodes. It can be composed of hidden layers or without hidden layer. The network 

simply propagates data linearly across the network, without feedback, usually using an activation 

function to introduce non-linearity into the model [16]. This type of network is often used for 

classification and prediction tasks, where input data is transformed into a corresponding output 

using the weights and activation functions of the network. 

5.1.1. Artificial neural network architecture 

Neural networks are sophisticated structures of artificial neurons that receive multiple 

inputs and generate one or more corresponding outputs (Figure 7). 

It consists of: 

 Input Layer: is the set of neurons that carries the network input signal, and subsequently 

all the neurons in this layer are connected to the next layer. 

 Hidden Layer: they can be one or more, this is where the relationships between variables 

will be highlighted. Choosing the number of layers and neurons is intuitive and requires 

experience from the expert. 

 Output layer: represents the result of the neural network, called prediction. 
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Figure 7: The architecture of an artificial neural network 

5.1.2. Perceptron 

The perceptron is an essential component of artificial neural networks, representing an 

artificial neuron model capable of performing a non-linear algebraic function. It acts as a receiver 

for one or more inputs, marked xj and each input is individually weighted by wj. The wj weights 

determine the relative importance of the different inputs for the final output of the perceptron. The 

weighted sum of the inputs is then added to the bj neuron bias and used as an argument for an 

activation function f. The use of an activation function introduces non-linearity into the model, 

allowing the perceptron to learn complex relationships between inputs and outputs. 

When it comes to predicting with a neural network, the data is entered as inputs into the 

first layer, and the calculations propagate through all successive layers until they reach the final 

outputs. This process is commonly referred to as forward propagation or direct pr 
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Figure 8 : La structure d’un neurone artificiel 

5.2. Recurrent Neural Networks (RNN) 

Unlike forward-propagated neural networks (Feed-Forward Neural Network -FFNN), the 

recurrent neural networks (Recurrent Neural Network - RNN) are characterized by the presence 

of at least one feedback loop in their connection graph. Over the past 30 years, several types of 

RNN have been developed, such as Elman networks, Jordan networks and Echo State Networks. 

Recently, one type of RNN has become widely used due to its outstanding performance in various 

tasks: Long-Short-Term Memory (LSTM - Long Short-Term Memory) neural networks. LSTMs 

play a central role in this thesis. [17] 

In this section, we look at the simplest version of RNN proposed by Jeff Elman in 1990. 

In this approach, links are added to a multi-layer perceptron (Multi- Layer Perceptron - MLP), so 

that one layer of the network receives not only the current output from the previous layer, but also 

its own output at the preceding time step. This change has a considerable impact when inputs are 

in the form of temporal or spatial sequences, unlike the case where x input vectors are independent 

of each other. 
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 Indeed, the structure of RNN introduces a memory mechanism of previous inputs that 

persists in internal states of the network and can influence all future outputs. In theory, this simple 

modification makes it possible to approximate with arbitrary precision any function that transforms 

an input sequence into a given output sequence, unlike the MLP.  

However, it is important to note that RNNs of this type can be particularly difficult to 

drive (although recent developments have improved this situation), and without special 

precautions, the context usable is generally limited. 

These types of RNN include: 

5.2.1. Hopfield Networks 

Hopfield networks are a type of recurrent neural network used in unsupervised learning 

applications and optimization problem solving. The network functions as a nonlinear associative 

memory, capable of retrieving and recognizing patterns stored in a data space. The main idea 

behind Hopfield networks is to create attractors in the network state space. They are widely used 

for tasks such as memory retrieval, pattern classification, optimization problem solving and 

dynamic system modeling. 

5.2.2. LSTM 

Short-term long-term memory (LSTM) cells were proposed by Hochreiter and 

Schmidhuber in 1997. They were developed to solve the problem of learning long-term 

dependencies in traditional recurrent neural networks (RNN). 

LSTM (Long Short Term Memory) is one of the recurrent architectures used in artificial 

neural networks. LSTMs are composed of layers of neurons that are connected recursively, 

allowing the previous state of a neuron to be used as context to generate an output. LSTM cells 

are able to store information over longer time periods, allowing long-term dependencies to be 

captured in the data sequences. LSTMs have been very successful in many applications, including 

machine translation, text generation and speech recognition. 
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The effective formation of recurrent neural networks (RNN) is one of the main challenges 

they face. The main problem is the propagation of the gradient through time steps, which leads to 

stability and convergence problems during learning. To solve this challenge, several techniques 

have been developed, such as adaptive activation function, RNN variants and advanced 

optimization techniques. These advances make it possible to effectively train NRNs and 

successfully apply them to a wide variety of tasks. 

5.2.3. GRU 

The GRU (Gated Recurrent Unit) network is a network of recurrent neurons (RNN) 

composed of input, hidden and output layers. The input layer consists of neuronal segments 

determined by the space dimension of the input characteristics. The output layer is determined by 

the size of the desired output space. GRU cells are designed to regulate the flow of information 

and control the omission or addition of new information to the network’s internal memory. GRU 

cells have gates (gates) that control access to memory and update its contents. The GRU network 

is widely used in applications such as machine translation, text generation, and speech recognition. 

5.2.4. JANET 

The Gated Recurrent Unit (GRU) is a recurring network variant that offers a simplified 

architecture by removing some ports from the LSTM. This has led to a new type of network called 

JANET, which retains only the memory port and cell memory, resulting in a more general model 

that is less demanding in computing power. This simplification of the architecture provides 

practical benefits and facilitates the application of these models in different tasks. [18] 

The Gated Recurrent Unit (GRU) is a simplification of the LSTM because it does not use 

explicit cell states. The GRU uses a single reset port to control the amount of changed information 
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in the state cache, making it simpler and more effective in certain situations. This simplifies the 

LSTM architecture by avoiding the use of explicit cell states. 

5.3. Convolution Neural Networks (CNN) 

Convolutional neural networks are designed for signal and image processing, and have 

been widely used in the field of computer vision. Convolution layers capture local patterns in the 

input data, allowing important features to be extracted and highlighted. 

 ConvNets have been widely used in areas such as signal processing and image 

classification, and are highly effective in object detection, facial recognition, image segmentation, 

image classification, etc. Open CV provides advanced tools for image processing and computer 

vision. Convolutional neural networks (CNNs) are particularly effective for image processing 

because they can detect features at any location.  

Learning CNNs involves optimizing parameters, including convolution cores, to 

minimize the difference between network outputs and corresponding "ground truth" tags. The use 

of CNNs is widespread in various fields, including computer vision, object recognition, medicine, 

automotive and mobile applications. 

5.3.1. CNN Diapers 

CNN is a mathematical construction that generally consists of three types of distinct 

layers (or building blocks): convolution, pooling and fully connected layers. 

 Fully connected the last layer of a deep network, the classical perception layer, operates 

the final discrimination between images to be recognized, for example. The previous layers 

build and extract their characteristics. 

 Convolution uses a dimension reduction to create a convolution on the input signal. 

 Pooling (POOL) dimension reduction by substituting a part of the entries (sub-image) with 

a value, usually the maximum. 
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5.3.2. The backpropagation algorithm 

The backpropagation learning algorithm starts by circulating forward the input data until 

it gets an input computed by the network. Then, the calculated output is compared to the known 

actual output. The weights are modified so that the error made between the calculated outputs is 

minimized at the next iteration. Taking into account the presence of hidden layers, the error is back 

propagated backwards to the input layer while changing the weighting. All examples are repeated 

until an output error is considered negligible. [19] 

 

Figure 9: CNN’s diagram 

 

II. LSTM and BiLSTM 

1. LSTM 

The types of recurrent neural networks (RNN) that have been developed to model and 

process sequential data are LSTM (Long Short-Term Memory), BILSTM (Bidirectional LSTM) 

and GRU. They were all intended to solve the problem of addiction and forgetting information in 

traditional NDR. 

Special LSTM doors allow them to access and store information for long periods of time. 

In sequential modelling, BILSTM can take into account past and future context through their 

unidirectional and bidirectional connections. On the other hand, GRU use a simpler method with 

fewer doors, which makes them faster in training and execution. 



36 
 

In this chapter, we present different metrics: the average, the maximum value (max), the minimum 

cost... etc. 

The BILSTM and GRU models and the ADAM and SGD optimization techniques are used to 

optimize neural network models, including the LSTM and GRU architectures. 

Finally we will highlight the evaluation of hyper-parameters such as learning rate, mini-

batch size, number of times and number of hidden layers, is essential to achieve optimal 

performance 

1.1. Metrics 

 La formule moyenne générale est exprimée mathématiquement en: 

 

 Average =                                                                     

 
  Determine the maximum value of the quadratic equation: 

For example, it can be stated that if the equation has been represented as                                            

                                                         𝑎𝑥2 + 𝑏𝑥 + 𝑐              

 The formula to find the maximum value will be: 

 

                                    MAX = c - ( 
௕మ

ସ௔
 )           

  The minimum cost using the equation: 

 

                                   MIN = c - ( 
௕మ

ସ௔
 )              

  RMS (Root Mean Square): 

Sum of Observations 

Total number of observations 
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When x = of data values. 

And n = total number of items. 

 

 

  Standard deviation: 

 

                                           𝝈 =     

  Variance is calculated as: 

                                          𝑠ଶ =    ට
∑(௫௜ି௫)మ

௡ିଵ
 

 Kurtosis formula: 

  

                                           K =  
∑(௫௜ି௫)ర

௡௦ర  

 Peak-to-Peak value: 

 

                            P =   
ெ஺௑ିெூே

ଶ
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  Peak factor equation: 

                             P1 = (
ெ஺௑

ெூே
)ଶ 

  Peak factor equation: 

                             M = Mean (abs(x)) 

  Impulse Factor: 

                                   Fi = 
௉

ெ
 

  Clearance Factor: 

                                   Fc =  (
௉

ெ
)ଶ  

1.2. Definition of Long Short-Term Memory (LSTM) 

Hochreiter and Schmidhuber (1997) introduced short-term long-term memory cells 

(LSTMs) to learn long-term dependencies [20]. 

The most common recurrent architectures in artificial neural networks are LSTM (long-

term memory). Like other recurrent networks, it consists of layers of connected neurons. 

LSTMs can solve the gradient problem and manage long-term dependencies, which distinguishes 

them from other recurring architectures. When learning deep neural networks, LSTMs avoid the 

problem of gradient disappearance or explosion. 

Information is stored in cells or memory blocks in LSTMs. The internal state of the 

network is maintained and updated by these LSTM computing units. This allows LSTMs to store 

information over long time sequences and make predictions based on previous information. 
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The use of doors, such as oblivion, entry and exit doors, which regulate the flow of 

information through the cell is an important feature of LSTMs. These doors allow LSTMs to 

control the information that is transmitted, forgotten or stored on exit [21]. 

Memory blocks are a set of repeatedly connected blocks that make up an LSTM layer. 

These blocks can be considered as different memory chips in a digital computer. Each year one or 

more memory cells. Repeatedly connected and equipped with three multiplicative units - the input, 

output and oblivion gates - that provide continuous analogues for writing, reading and resetting 

operations for cells [22]. 

1.3. The architecture of an LSTM model 

1.3.1. LSTM Weights 

A memory cell in an LSTM architecture has weight parameters for input, output and 

internal state. These parameters allow to weight the different information and to build the 

internal state of the cell according to the steps of the input time. 

 Input weights are used to weight the current time step entry. They determine the relative 

importance of each element of the entry for the memory cell. 

 Output weights are used to weight the output of the last time step. They control the 

influence of the previous output on the current output of the memory cell. 

 The internal state is an intermediate state that is used in the calculation of the output for 

the current time step. It is built according to current input, previous internal state and 

input weights. This internal state allows the memory cell to store information over long 

time sequences and maintain a long-term memory [23]. 

1.3.2. LSTM Doors (Gated) 

An LSTM cell consists of three main doors: the Forget Gate, the Input Gate and the Output Gate. 

Each door is responsible for regulating the flow of information through the cell. 

 The forgetting door determines which information is important to forget from the cell. It 

takes into account the previous hidden state and the current entry to decide which 

information is relevant and should be retained. 
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 The front door controls new information to be added to the hidden state. It looks at the 

current entry and the previous hidden state to determine what new information should be 

included. 

 The exit door decides which part of the hidden state should be exposed to the LSTM’s 

exit. This output can be used to make a prediction or as an input for the next steps in the 

model. 

 

 

     

Figure 10: LSTM doors 

The main structure of LSTM networks consists of an input layer, one or more hidden 

layers and an output slice. Let {x1, x2,...,t} the input sequence of an LSTM, where xt Represents 

a vector introducing the dimension of the feature to the time step t-th-th. The number of neurons 

in the input layer is equal to the number in the function space. The most important component of 

the LSTM structure is the memory cell. The state of the memory cell Ct 1 interacts with the 

intermediate ht 1 output and the input to update the internal state vector according to the outputs, 

the previous time step and the inputs of the current time phase. In addition, the memory cell also 

defines an input node, an input port, and an output port to maintain and adjust the state of this cell. 

The calculation process is described in equations. 
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Figure 11: LSTM architecture. 

𝑓𝑡 = (𝑊𝑓𝑥𝑡 + 𝑉𝑓ℎ𝑡−1 + 𝑏𝑓) 
 
𝑖𝑡 = (𝑊𝑖𝑥𝑡 + 𝑉𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑥𝑡 + 𝑉𝑐ℎ𝑡−1 + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̂𝑡 

𝑜𝑡 = (𝑊𝑜𝑥𝑡 + 𝑉𝑜ℎ𝑡−1 + 𝑏𝑜)  

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

𝑥𝑡 ∈ 𝑅𝑑 and ℎ𝑡 ∈ 𝑅𝑘 are the inputs and outputs of the LSTM unit. 𝑖𝑡 ∈ 𝑅𝑘, 𝑓𝑡 ∈ 𝑅𝑘, 𝑜𝑡 ∈ 𝑅𝑘 vectors 

activation of the front door, forget the door and exit door, respectively. All parameters l𝑊 ∈ 𝑅𝑘×𝑑 

𝑉 ∈ 𝑅𝑘×𝑑 𝑏 ∈ 𝑅𝑘, have parameters that can be learned and it is the multiplication by element by, σ 

represents the sigmoid activation function. 
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2. Bidirectional LSTM Model 

The basic LSTM network considers only the previous context of the data without future 

context. Given that time series sensor data has strong temporal dependencies, processing of this 

data is insufficient. In order to design the time information of future and past contexts, a 

bidirectional LSTM structure is built. This structure processes the sequence data in both the front 

and back paths with two hidden layers, then the forward and backward time information will be 

introduced into the same output layer. The structure of the BILSTM network is illustrated in Figure 

12. 

 

 

 

 

 

Figure 12: Basic structure of a BiLSTM model 

2.1. What is Bi-LSTM and how it works: 

To understand Bi-LSTM, let’s break down its components and functionality: 

 LSTM (Long Short-Term Memory): LSTM is a type of RNN designed to overcome the 

limitations of traditional RNNs in capturing long-term dependencies in sequential data. It 

introduces memory cells and gating mechanisms to selectively retain and forget 

information over time. LSTMs have an internal memory state that can store information 

for long durations, allowing them to capture dependencies that may span across many time 

steps. 
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 Bidirectional Processing: Unlike traditional RNNs that process input sequences in only one 

direction (either forward or backward), Bi-LSTM processes the sequence in both directions 

simultaneously. It consists of two LSTM layers: one processing the sequence in the forward 

direction and the other in the backward direction. Each layer maintains its own hidden 

states and memory cells. 

 Forward Pass: During the forward pass, the input sequence is fed into the forward LSTM 

layer from the first time step to the last. At each time step, the forward LSTM computes its 

hidden state and updates its memory cell based on the current input and the previous hidden 

state and memory cell. 

 Backward Pass: Simultaneously, the input sequence is also fed into the backward LSTM 

layer in reverse order, from the last time step to the first. Similar to the forward pass, the 

backward LSTM computes its hidden state and updates its memory cell based on the 

current input and the previous hidden state and memory cell. 

 Combining forward and Backward States: Once the forward and backward passes are 

complete, the hidden states from both LSTM layers are combined at each time step. This 

combination can be as simple as concatenating the hidden states or applying some other 

transformation. 

The benefit of Bi-LSTM is that it captures not only the context that comes before a 

specific time step (as in traditional RNNs) but also the context that follows. By considering both 

past and future information, Bi-LSTM can capture richer dependencies in the input sequence. 
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Figure 13: BiLSTM model showing the input and output layers 

2.2. BiLSTM architecture 

Let’s break down each component of the architecture 

 Input Sequence: The input sequence is a sequence of data points, such as words in a 

sentence or characters in a text. Each data point is typically represented as a vector or 

embedded representation. 

 Embedding: The input sequence is often transformed into dense vector representations 

called embedding. Embedding capture the semantic meaning of the data points and provide 

a more compact and meaningful representation for the subsequent layers. 

 Bi-LSTM: The Bi-LSTM layer is the core component of the architecture. It consists of 

two LSTM layers: one processing the input sequence in the forward direction and the other 

in the backward direction. Each LSTM layer has it is own set of settings. 

 Output: The output of the Bi-LSTM layer is the combination of the hidden states from 

both the forward and backward LSTM layers at each time step. The specific combination 

method can vary, such as concatenating the hidden states or applying a different 

transformation. 
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The Bi-LSTM layer processes the input sequence in both forward and backward 

directions simultaneously. During the forward pass, the LSTM layer captures information from 

the past (previous time steps), while during the backward pass, it captures information from the 

future (following time steps). This bidirectional processing allows the model to effectively 

capture long-term dependencies in the input sequence. 

The output of the Bi-LSTM layer can be used for various purposes depending on the 

specific task. For example, in text classification, the output may be passed through a fully 

connected layer followed by a soft-max activation to obtain class probabilities. In sequence 

labeling tasks like named entity recognition, the output may be directly used to predict the label 

for each input token. 

The architecture of a Bi-LSTM can be further extended or modified based on the 

specific requirements of the task. Additional layers, such as fully connected layers or attention 

mechanisms, can be added on top of the Bi-LSTM layer to further enhance the model’s 

capabilities and performance. 

 

Figure 14: BiLSTM architecture 
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Conclusion 

The use of CNNs and RNNs was an optimal solution given the results obtained in several 

research projects. 

This chapter is a state of the art on concepts related to the issue addressed in this thesis 

and its design. It has been divided into two parts. In the first, we quickly went over some definitions 

and clarifications regarding smart home. In the second chapter, we approached deep learning with 

some detail, to show its architectures that we have chosen for our application. 

In the following chapter, we review the work carried out in the context of the problem 

addressed which is the prediction of energy consumption in a smart home. 

 

 

 

 

 



 
 

 

 

 

 

 

 
Chapter III 

Modeling Approach 
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1. Introduction 

In this chapter, two different approaches will be examined for modeling data 

related to COVID-19-an enhanced SIR model and a deep-learning BiLSTM model. In this 

enhancement, the SIR model goes beyond the classical epidemiological framework by 

introducing infection and recovery rates that vary with time in a manner that reflects real-

world conditions, wherein public health interventions and improved treatment change these 

parameters over time. The LSTM approach, on the other hand, is data-driven and capable 

of identifying more complex patterns in epidemiological time series without the need for 

any explicit mathematical formulation of the disease dynamics. Therefore, looking at both 

mechanistic and machine learning approaches will help us put together some 

complementary knowledge of the pandemic progression and lay down the foundation for 

more trustworthy epidemic forecasting. 

 

2. Dataset 

The dataset serves as a chronicle of COVID-19 cases reported from different 

countries, spanning across the globe. It has slightly over 32,000 entries, with each entry 

detailing critical data points on confirmed cases, deaths, recoveries, and active cases. The 

data is organized on a day-by-day basis starting on January 22, 2020, allowing for an in-

depth chronological tracking of the evolution of the pandemic in different countries. For 

every country covered in the dataset, the information captures how the situation unfolded 

over time, reflecting the varying severity and timelines of COVID-19 outbreaks. 

This extensive collection tracks not only the cumulative counts but also reflects the 

dynamic changes in the status of the pandemic concerning active cases; the mortality rates 

into their recovery rates vary from period to period. The dataset provides individual nations 

with the knowledge base to assess their responses to the crisis, how transmission patterns 

have changed over time across countries, and how public health interventions may or may 

not have shaped the pandemic. 
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Having an all-embracing data set from almost every corner of the world and over 

all time frames, it becomes a vital resource for researchers and analysts and policymakers 

who are trying to investigate trends, compare outbreaks from region to region, gauge the 

success of their mitigation strategies, or model future behavior of infectious diseases. Such 

depth and width make it strong to perform many analyses related to COVID. 

 

 

3. SIR model 

SIR (Susceptible-Infected-Removed) model which was developed by Ronald 

Ross, William Hamer, and others in early 20th century. It consists of a system of three 

coupled, non-linear ordinary differential equations, which does not possess an explicit 

formula solution. It is however straightforward to extract a great deal of information about 

the solutions using simple tools from calculus. The following simple model shows us how 

it is used in laying theoretical foundation for public health interventions, including several 

cornerstones that required such a model to discover [24]. 

 
3.1. Initial Conditions 

For the SIR model to function effectively, it is essential to set the initial conditions 

for the three primary compartments: susceptible, infected, and recovered individuals. 

These initial values represent the state of the population at the onset of the simulation, and 

they directly influence how the disease spreads throughout the population. There are two 

primary ways to determine these initial values: through user inputs or by extracting values 

from the latest available data. 

• User Input: When it comes to inputting their own initial conditions into the 

model, users are not disappointed. This becomes a direct means of customizing the 

simulation to each user’s individual scenario or dataset. They can even begin by directly 

entering completely real observation numbers, such as the number of infected, 

recovered, and susceptible individuals, and make it more realistic to users, thus 

improving accuracy.  
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• Default Extraction from Latest Data: If the user does not directly input the initial 

conditions for the run, the model will automatically extract them from the most recent 

available data. This data-driven approach makes sure that the model is reflective of the 

present state of the epidemic, without requiring the manual input of values from the user. 

 

3.1.1. Loss Function and Optimization 

A critical step in the training and optimization of the enhanced SIR model involves 

comparison of predictions made by the model with real-world data- in this case, smoothed 

infection and recovery data. This step allows for model parameter adjustment and 

refinement to achieve better accuracy. For this purpose, we designed a weighted mean 

squared error (MSE) loss function that gives a quantitative measure of the deviation of the 

model’s predictions against the real observed data. The optimization of the model 

parameters is expected to minimize this loss function. 

 

3.1.2. Weighted Mean Squared Error (MSE) Loss Function 

• The mean squared error or MSE loss function is the standard way to calculate the 

difference between the predicted and actual values in regression problems. For our 

model in this context, it will represent the square of differences between the predicted 

numbers of infected individuals I and recovered individuals R, and the actual data points 

[25]. 

                              

𝑀𝑆𝐸 =
1

𝑛
෍(𝑦௣௥௘ௗ(𝑡௜) − 𝑦௧௥௨௘(𝑡௜))ଶ

௡

௜ୀଵ
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• Thus, our model incorporates a weighted form of MSE that pays more attention to 

the more current data because more recent incidence and recovery trends should be 

deemed the most relevant for understanding the current dynamics as well as future 

patterns of the disease. In other words, it ensures more weightage to recent changes in 

infection and recovery rates, which is significant while predicting future scenarios [26]. 

Weight MSE =
1

𝑛
෍ 𝑤௜. (𝑦௣௥௘ௗ − 𝑦௧௥௨௘(𝑡௜))ଶ

௡

௜ୀଵ

 

 

Where w is the weight assigned to each data point, which can vary with. 

Specifically, we assign higher weights to recent data points by using an exponentially 

decaying weight function:

𝑤 =
exp (

𝑖
𝑛

)

exp (1)
 

 

Here (i) represents the index of the data point, and n is the total number of data points. This 

formula ensures that the most recent points are given more influence in the loss calculation, 

allowing the model to better reflect the latest trends in infection and recovery. 

By giving more weight on recent data, the model here is thus able to react faster 

to changes in the epidemic’s journey, which is valuable in unpredictable and fast-changing 

scenarios such as the COVID-19 period. 
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3.1.3. Optimization of Model Parameters 

The subsequent significant phase in the training of SIR models is the optimization of 

parameters, which implies finding the optimal values of the model parameters, resulting in 

the minimization of loss function [27]. These parameters include: 

 βmax: The maximum infection rate, representing the highest possible rate of 

infection. 

 βmin: The minimum infection rate, reflecting how interventions (such as social 

distancing or vaccination) reduce transmission over time. 

 γmax: The maximum recovery rate, representing the highest possible rate of recovery. 

 γmin: The minimum recovery rate, which accounts for the possibility that recovery 

rates might slow down over time. 

 Half-life: A parameter that controls the rate at which the infection rate decreases 

and the recovery rate increases over time due to interventions (like vaccines or better 

treatment options). 

Due to the complex, nonlinear nature of the model, the Differential Evolution 

algorithm was selected for optimization. This evolutionary algorithm is particularly useful 

where the model poses many parameters or is highly nonlinear, particularly because it does 

not require the model to be differentiable or even continuous. 

 

3.1.4. Differential Evolution Algorithm 

This technique is a global optimization one that mimics processes of natural 

evolution. Iteratively, it exposes a population of candidate solutions (sets of parameters) 

to the crossover, mutation, and selection operations for improvement. The basic steps of 

the Differential Evolution algorithm are: 
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 Initialization: A random population of parameter sets (candidate solutions) is 

generated. 

 Mutation: For each individual in the population, new candidate solutions are 

created by combining the current individual with others in the population. The mutation 

introduces diversity into the population. 

 Crossover: The mutated solutions are combined with the 

original solutions to create new individuals. This process promotes exploration 

of the parameter space. 

 Selection: The best-performing solutions (those that minimize the loss function) 

are kept, and the rest are discarded. 

By using Differential Evolution, we ensure that the algorithm effectively explores 

a wide range of possible parameter values and converges to the optimal set of parameters 

for the model. 

3.2. Simulation and Prediction 

After the optimization of model parameters, the next step involves simulating the 

dynamics of the SIR model to predict the progression of the disease over time. 

The system of ordinary differential equations (ODEs) that defines the SIR model is solved 

numerically using the solve ivp function from the SciPy library. This method provides a 

flexible and efficient way to integrate initial value problems for ODEs over a specified time 

interval [28]. 

The simulation is carried out using the optimized parameters obtained from the 

Differential Evolution algorithm, allowing us to forecast the evolution of the following 

compartments: 

• Susceptible (S): These are those individuals who are not infected, however, could 

become infected. A susceptible individual may become infected or remain susceptible. 

As the virus spreads from its source or new sources occur, more individuals will become 

infected, thus the susceptible population will increase for a period of time (surge 

period)[29]. 
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• Infected (I): These are those individuals who have already been infected by the 

virus and can transmit it to those individuals who are susceptible. An infected individual 

may remain infected, and can be removed from the infected population to recover or die 

[30]. 

• Recovered (R): These are those individuals who have recovered from the virus and 

are assumed to be immune, Rm(t) or have died [31]. 

 

 

Figure 15: SIR model 

The system evolves to the SIR model’s differential equations: 

𝑑𝑠

𝑑𝑡
= −𝛽

𝑆𝐼

𝑁
 

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

Where: 

• β(t) is the time-dependent infection rate. 

• γ(t) is the time-dependent recovery rate. 

• N is the total population. 
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3.2.1. Comparison with Actual Data 

After solving the model over the desired time horizon, the predicted values of 

infected and recovered individuals are compared against the actual reported epidemiological 

data. 

    To ensure a fair comparison: 

• The model’s outputs are smoothed to match the smoothing applied to the real-world 

data. 

• Both predicted and observed curves are aligned based on initial conditions and 

timescales. 

The quality of the model’s predictions is evaluated using statistical measures, such 

as the R2 score, which quantifies how well the predicted curve matches the actual observed 

curve. A higher R2 value indicates a better fit between the model and reality. 

By comparing the simulated dynamics with real data, we assess the effectiveness of the 

optimized model in capturing the trends of infection spread and recovery in the population. 

 

3.3. Results and Analysis 

Completing the optimization and simulation phases, the model’s projections were 

compared to epidemiological data from the real world for performance evaluation and 

insight extraction. 
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3.3.1. Visualization of Predictions 

The results are visualized by plotting both the actual reported data and the model’s 

predicted values over time: 

• Actual infections and recoveries are represented as transparent scatter points, 

reflecting the real- world recorded cases. 

• Model predictions are shown as bold continuous lines, representing the expected 

evolution of infections and recoveries based on the SIR model. 

• A shaded region around the prediction line, covering 10%, is included to 

illustrate a basic confidence interval and highlight the model’s uncertainty margins. 

This visualization allows a direct, intuitive comparison between the observed dynamics and 

the model’s forecasts. 

 

3.3.2. Model Evaluation: R2 Score 

The model’s predictive accuracy is quantitatively assessed using the coefficient of 

determination (R2 score) [32]. This metric evaluates how well the model predictions align 

with the actual data: 

• High R2 values (closer to 1) It is suggested that the model represents most of 

the variability observed in data [32]. 

• Separate R2 scores The peak day values for infected and recovered individuals 

permit an estimation of the two epidemic trends CrossRef, thus forming a 

complementary outcome.[32]. 

An R2 value close to 1 for both infected and recovered populations indicates a 

strong model fit and reliable simulation performance. 
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3.3.3. Key Extracted Metrics 

In addition to prediction accuracy, important epidemiological parameters were 

extracted from the fitted model: 

• Initial and final infection rates (β0 and βf): Reflect how transmission dynamics 

evolved due to interventions and behavioral changes. 

• Initial and final recovery rates (γ0 and γf): Indicate improvements in 

recovery over time, possibly due to medical advances. 

• Basic reproduction number (R0): 

- R0 at the start of the simulation gives an estimate of the disease’s contagiousness 

without intervention. 

- R0 at the end reflects the impact of interventions and natural disease dynamics. 

• Estimated half-life of interventions: Measures the speed at which interventions 

(e.g., vaccination, restrictions) effectively reduce transmission rates. 

These metrics provide deep insights into the epidemic behavior and the effectiveness of control 

measures over time. 

The enhanced SIR model provides a more realistic simulation of epidemic 

dynamics by allowing infection and recovery rates to vary over time. The use of weighted 

loss functions and differential evolution optimization improved the model’s ability to match 

real-world data. Extracted epidemiological metrics give deeper insights into the 

effectiveness of public health measures and the natural course of the epidemic. This 

approach can be further extended to forecast future trends or evaluate different intervention 

strategies. 
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4. Deep learning model LSTM 

4.1. Dataset and Feature Engineering 

This model applies the same dataset on COVID-19, as earlier analyzed, 

encompassing daily records from various countries. However, compared to the earlier method, 

the deep learning approach incorporates a wider set of features in order to capture diverse 

dimensions of the pandemic’s progress: 

• Core Features: confirmed cases, deaths, recovered cases, and active cases 

• Rate of Change Features: new confirmed cases, new deaths, and new recovered 

cases 

• Derived Metrics: mortality rate and recovery rate. 

The new feature set enables the model to learn from many indicators at once, thereby 

maximizing the possibility of capturing complex relationships that have not been modeled by 

conventional epidemiology approaches. Addition of first-order derivatives (i.e., daily 

changes) and proportional metrics enhances the model’s capability of detecting trends and 

patterns in the data. 

4.2. Data Preprocessing 

4.2.1. Feature Scaling 

Keeping in mind data normalization for each feature by means of the 

MinMaxScaler transformation applied to the training data before entering the neural 

network, this procedure ensures that all features are on a comparable scale (ranging from 0 

to 1) which is an important aspect while training a neural network because: 

• Prevents features with larger magnitudes from dominating the learning process 

• Improves convergence speed during optimization. 

• Enhances numerical stability throughout the training process. 
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4.2.2. Sequence Creation 

The temporal nature of epidemiological data requires specialized handling [33]. 

The model transforms the time series data into supervised learning format through the 

following steps: 

 Sequence Formation: For each time point, a sequence of previous 

observations (sequence length = 21 days) is assembled to serve as input features. 

 Multi-step Output: Rather than predicting just one day ahead, the model is 

designed to forecast a full week (7 days) of active cases simultaneously. 

 Sliding Window Approach: The sequences are created using a sliding window 

technique, where each sequence is offset by one day from the previous. 

The chosen sequence length of 21 days (3 weeks) represents a balance between 

capturing sufficient historical context and maintaining a practical number of training 

samples. This window size is particularly suitable for COVID-19 data as it encompasses 

approximately two typical incubation periods [33]. 

 

                   𝑋 = {𝑥௧ି௦௘௤೗೐೙೒೟೓ାଵ;𝑥௧ି௦௘௤೗೐೙೒೟೓ାଶ,…,𝑥௧}

𝑦 = {𝑦௧ାଵ,𝑦௧ାଶ,…,𝑦௧ା௙௢௥௘௖௔௦௧_௛௢௥௜௭௢௡} 

 
Where 

 X represents the input sequence of feature vectors 

 y represents the target sequence of active cases 

 𝒔𝒆𝒒𝒍𝒆𝒏𝒈𝒕𝒉 = 21 (days) 

 𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕_𝒉𝒐𝒓𝒊𝒛𝒐𝒏 = 7 (days) 
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4.3. Model Architecture: 

4.3.1. Bidirectional LSTM Network 

The core of the prediction system is a bidirectional LSTM (BiLSTM) neural 

network. Unlike standard LSTMs that only process sequences in forward direction, 

bidirectional LSTMs process data in both directions, offering several advantages: 

• Complete Temporal Context: By processing sequences in both directions, the 

model can capture dependencies that might be more apparent when considering future-

to-past relationships in addition to past-to-future ones. 

• Enhanced Feature Extraction: BiLSTMs often extract more meaningful 

features from time series data by considering the full context surrounding each time 

point. 

 

4.3.2. Layer Configuration 

The model employs a carefully designed architecture with multiple specialized layers: 

 First BiLSTM Layer: 128 units with sequence return, incorporating L2 
regularization (0.001) to prevent overfitting 

 Dropout Layer (30%): Randomly deactivates 30% of neurons during training 
to improve generalization 

 Second BiLSTM Layer: 64 units without sequence return, creating a condensed 
representation 

 Dropout Layer (30%): Additional regularization to prevent co-adaptation of 
features 

 Dense Layer: 32 units with ReLU activation for non-linear feature transformation 

 Dropout Layer (20%): Final regularization layer 

 Output Layer: Dense layer with 7 units (one for each day in the forecast horizon) 
without activation function for regression output 

This progressive narrowing of layer dimensions (from 128 to 64 to 32 to 7) 

creates a funnel-like architecture that gradually distills complex temporal patterns into 

focused predictions. 
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Figure 16: LSTM model architecture 

 

The mathematical formulation of a BiLSTM cell can be expressed as: 

ℎሬ⃗ ௧ =  𝐿𝑆𝑇𝑀ሬሬሬሬሬሬሬሬሬሬሬ⃗  ൫𝑥௧, ℎ௧ିଵ
ሬሬሬሬሬሬሬሬ⃗ ൯ 

ℎ⃖ሬ௧ =  𝐿𝑆𝑇𝑀ሬ⃖ሬሬሬሬሬሬሬሬሬሬ(𝑥௧ , ℎ௧ାଵ
ሬ⃖ሬሬሬሬሬሬሬ) 

ℎ௧ = [ℎሬ⃗ ௧; ℎ⃖ሬ௧] 

 

Where: 

ℎሬ⃗ ௧ is the forward hidden state at time t 

ℎ⃖ሬ௧   is the backward hidden state at time t 

ℎ௧ is the concatenated bidirectional state 
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4.4. Training Strategy 

4.4.1. Optimization Algorithm 

The Adam model optimizer has been developed based to bring the best of both 

worlds based on the incentives of AdaGrad and RMSProp optimizers. Due to Adam’s 

capability of adaptive learning rate, it is most productive in deep learning applications 

dealing with large parameter spaces. The initial learning rate is 0.001, which balances the 

speed of convergence and stability during training [34]. 

The update rule for Adam optimization can be summarized as: 

 

 

𝑚௧ =  𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧ 

 

𝑣௧ =  𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ)𝑔௧
ଶ 

 

𝑚ෝ௧ =  
𝑣௧

1 − 𝛽ଵ
௧ 

 

𝑣ො௧ =  
𝑣௧

1 − 𝛽ଶ
௧ 

 

𝜃௧ାଵ =  𝜃௧ −
𝜂

ඥ𝑣ො௧ + 𝜖
𝑚ෝ௧
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Where: 

 𝑔௧ is the gradient at time t 

 𝑚௧ is the first moment estimate 

 𝑣௧ is the second moment estimate 

 

 β1 and β2 are decay rates for the moment estimates 

 η is the learning rate 

 ϵ is a small constant for numerical stability 

 

4.4.2. Loss Function 

The Mean Squared Error (MSE), which is the optimization objective, penalizes the 

squared difference between corresponding predicted and true values directly. The loss 

function suits regression problems and imposes a larger weight on larger errors, which helps 

in accurate predictions for significant outbreaks. 

 

              𝑀𝑆𝐸 =
ଵ

௡
∑ (𝑦௣௥௘ௗ,௜ − 𝑦௧௥௨௘,௜)ଶ௡

௜ୀଵ  

 

4.4.3. Training Process Enhancement 

Several techniques are employed to improve training efficiency and model performance: 

 Early Stopping: Training automatically terminates if validation loss fails to 

improve for 15 consecutive epochs, preventing overfitting and unnecessary computation. 

 Learning Rate Reduction: The learning rate is reduced by 50% after 5 

epochs without improvement, allowing for more precise optimization as training 

progresses. 
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 Best Model Preservation: The model state with the lowest validation loss is 

automatically restored at the end of training. 

The learning rate reduction follows the formula: 

𝜂௡௘௪  =  𝜂௢௟ௗ  ×  𝑓𝑎𝑐𝑡𝑜𝑟     When plateau is detected  

Where factor = 0.5 in this implementation. 

4.4.4. Training Configuration 

The model training process uses the following hyper parameters: 

• Epochs: Maximum of 100 iterations through the entire dataset 

• Batch Size: 32 samples processed before each parameter update 

• Validation Split: 20% of data reserved for validation (performance monitoring) 

The batch size of 32 represents a compromise between training speed and gradient 

estimate quality, while the generous maximum epoch allowance ensures the model has 

sufficient opportunity to converge, even with early stopping in place. 
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4.5. Model Evaluation 

4.5.1. Performance Metrics 

The model’s performance is evaluated using multiple complementary metrics: 

1. Root Mean Square Error (RMSE): Measures the standard deviation of 

prediction errors. 

 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
෍(𝑦௣௥௘ௗ,௜ − 𝑦௧௥௨௘,௜)

ଶ

௡

௜ୀଵ

 

 

2. Normalized RMSE: Expresses the RMSE as a percentage of the maximum 

observed value, facilitating intuitive interpretation of error magnitude [35]. 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max (𝑦௧௥௨௘)
× 100% 

 

These metrics provide a general measure of accuracy, with the normalized metric giving an 

intuitive context of the magnitude of errors with respect to the scale of the data. 

 

4.5.2. Visualization 

Training progress is visualized through a learning curve plot that displays both 

training and validation loss across epochs. This visualization: 

• Allows for monitoring of convergence behavior 

• Identifies potential overfitting (divergence between training and validation curves) 

• Highlights the epoch with minimum validation loss (optimal model state) 
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The use of logarithmic scale for the y-axis enables better visualization of loss 

improvements across orders of magnitude, making subtle improvements in later epochs 

more apparent. 

5. Comparison with SIR Model 

While the SIR model offers a mechanistic understanding of disease dynamics 

with interpretable parameters (β, γ, R0), the deep learning approach provides complementary 

strengths: 

• Flexibility: Automatically captures complex patterns without requiring 

explicit mathematical formulation 

• Feature Utilization: Incorporates multiple data features beyond just case counts 

• Multi-step Forecasting: Directly outputs predictions for multiple future time 

points simultaneously 

• Adaptability: Can potentially adapt to changing dynamics without explicit re-

parameterization 

The deep learning model excels at capturing complex, potentially non-linear 

relationships in the data that might be difficult to express in closed-form equations. 

However, it sacrifices some interpretability compared to the SIR approach. 
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The key differences can be summarized in the following comparison table: 

 

Table 3: Comparison between SIR and Deep Learning approaches 

 

 

 

 

Aspect SIR Model Deep Learning Model 

Mathematical 

Foundation 
Differential equations Neural network architecture 

Interpretability 
High  (epidemiological  

parameters) 
Lower (black-box approach) 

Feature 

Requirements 
Minimal (case counts) Multiple features leveraged 

Adaptation to 

Changes 

Requires re-

parameterization 
Can learn changing patterns 

Prediction Horizon Flexible simulation Fixed output window (7 days) 

Computational 

Cost 
Lower Higher (training) 
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6. Conclusion 

Our study has shown the importance of relying on both systematic and data-driven 

modeling approaches in studying COVID-19. An improved SIR model with time-

dependent parameters can capture the time evolution of disease dynamics while 

maintaining interpretability via epidemiological measures like reproduction numbers. The 

BiLSTM deep learning method considers multiple features to generate accurate multi-step 

forecasts, thus bypassing the need for transmission dynamics to be mathematically 

formulated. Although the SIR model is more interpretable, deep learning better accounts 

for complicated, non-linear relationships present within the data. Hence, these two 

approaches are complementary and help in understanding pandemic pathways and 

determining the best interventions, thereby exemplifying the necessity for diversified 

modeling approaches in epidemiology and public health response. 



 

 

 

 

 

 

 

 

Chapter IV 

Application Architecture and 

Implementation 
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1. Introduction 

The COVID-19 pandemic must be understood and anticipated as much as possible 

to make fair decisions. The prediction and analysis framework of the application is 

designed to hold a key to studying real-time data, producing forecasts, and comparing 

results through several models. By selecting a country, one can immediately access the 

country’s key statistics, including total confirmed cases, total deaths, total recoveries, and 

active cases. These values are fetched and presented in interactive graphs that are intuitive 

and provide a snapshot of the current position. 

 

2. Application Overview 

The COVID-19 Analysis and Prediction Dashboard is an interactive application 

making extensive crawling and detailed analytics accessible to the end-user on demand. A 

user can study historical COVID-19 data for some countries to understand the past trends 

and present scenarios. With such a tool, trends can be drawn with cases, deaths, and 

recoveries through beautiful charts and diagrams. All kinds of forecasting can be done by 

exposing the user to advanced hybrid modeling of what could come next. Users will be 

able to tweak prediction parameters and visualization modes through the interface to give 

their analysis the look they want. All predictions can be downloaded for further analysis or 

reporting. 

 

2.1. Sidebar Controls 

The discontinuous panel contains all the controls to effectively manage analysis 

parameters. The dropdown lets a user zoom in on their country of interest. The 

display/input option for population data ensures the modeling considers demographic 

context. A date selection calendar allows users to specify time frames for their analysis. 

Custom SIR input parameter specifications allow for scenario testing and hypothesis 

approaches. 
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2.2. Data overview 

Upon the application’s launch, users are placed right into an intuitive interface that 

allows them to select a country of interest and enter data relevant for prediction in 

COVID-19. Once a country has already been selected, the application, in return, obtains 

its current population data so that the analysis can be tracked. It then accesses a large dataset 

of COVID-19 information and starts working on it. Based on all of this information, the 

application casts dynamic and interactive plots that display key stats: total confirmed 

COVID-19 cases, total deaths, total recoveries, and the number of active cases. This 

visualization goes a long way toward helping the users comprehend the impact of the 

pandemic within the entertained country. This population data, alongside current COVID 

statistics, ensures an Analyze trend, compare results from country to country, and thereby 

render their own decisions from the presented data. The application’s purpose is to explain 

the COVID-19 overview crisply and depictively for every selected region (Figure 3). 

 

  

Figure 17: Data overview page 
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2.3. Get prediction 

Moreover, scrolling down in the application brings about two buttons, each linked 

to a different pre- diction approach, letting users choose between the classical 

epidemiological model and a deep learning- based model. In detail: 

• SIR model button: Clicking the SIR model button will set the application to 

make predictions using the Susceptible-Infected-Recovered SIR model. Once the 

computations are finished, a plot is displayed with the historical data and the predicted 

trend from a given date. Thus, the results are presented visually and numerically, 

providing an insight into how the virus is expected to spread (Figure 4). 

 

Figure 18: The SIR model prediction 

 

• Deep learning model button: The deep learning button triggers the prediction 

using a trained Long Short-Term Memory neural network. Setting a country and 

specifying a date range in the sidebar, the model makes forecasts for active cases, deaths, 

and recoveries.  
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The predictions are then displayed as numerical values and plotted as time series 

for users to visualize the projected evolution of the pandemic (Figure 5). 

 

 

 

Figure 19: the deep learning model prediction 
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2.4. Comparison between the results of the models 

The application, after generating and displaying the prediction results, has an 

entire section devoted to comparing the two models with each other. There are two ways 

in which this comparison format is presented: 

• Graphical comparison: The application now draws comparative plots for each 

major category, namely active cases, deaths, and recoveries. These plots are colored side 

by side with predictions from the SIR model to the LSTM model so that users can easily 

see the differences and similarities in the forecasted trends (Figure 6,Figure 7,Figure8) 

 

 

Figure 20: Graphical comparison Active cases &deaths  
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Figure 2 1 : Graphical of confirmed cases comparison 

  

 

 

Figure 22: Graphical of  Recovered cases comparison 
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• Textual comparison: If some users find it difficult to interpret graphical data, 

the application also provides them with a textual summary of the differences. This 

explanation looks at the key dissimilarities between the models’ predictions in a concise 

manner, going over the implications depicted in the graphical format (Figure 9). 

 

Figure 23: Textual comparison 

 

2.5. Interactive Report Generation 

 

Finally, the application generates a comprehensive report summarizing the selected 

country’s COVID- 19 data and the corresponding predictions. This report includes key 

forecasted values such as predicted active cases, predicted deaths, and predicted recoveries. 

It also provides an analysis indicating whether each of these values is expected to increase 

or decrease over time. The report presents the results for both the SIR model and the deep 

learning (LSTM) model, allowing for a side-by-side comparison. Additionally, the 

application offers the option to download the full report for offline viewing or further 

analysis (Figure 10). 
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Figure 24: The final report 
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3. Technologies Used 

All that was used in making the app was deep data science at its best stacked with 

web technologies in a way that ensures these components are robust while they apparently 

present a user-friendly interface. 

 

3.1. Core Framework 

Streamlit is a Python library used to build web applications with hardly any code. 

With this frame- work, UI components and widgets and state management are handled in 

the most elegant way possible. The framework also provides tools for interactive data 

visualization, which brings the analysis to much more alive form for users. Consequently, 

quick build and deployment of applications germinate, and the iterations or improvements 

can keep flowing. 

 

Figure 25: Streamlit 

 

3.2. Data Processing and Analysis 

• Pandas: The application uses Pandas to manipulate and analyze the data in Python, 

in con- junction with the DataFrame operations which work well with time series. This 

library will allow cleaning and transforming the data into forms required for modeling 

with use cases that may also include aggregation and grouping operations to pull up 

inferred knowledge from unwieldy sets of data. 

 

Figure 26: Pandas 
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• NumPy: Provides numerical array computing support, with fast array operations 

managing data processing. Its mathematical functionalities allow complicated 

calculations required for epidemiological simulation. Random number generation in 

the library supports the simulation to quantify prediction uncertainty. 

 

Figure 27: NumPy 

 

• SciPy: The Basis library contributes scientific computing capabilities, with its 

being outfitted with a differential equation solver for implementing the SIR model. It 

also has a nice differential evolution function for global optimization when fitting 

parameters. Further integration and optimization utilities contribute in favor of an 

application-oriented analysis. 

 

 

 

 
 

Figure 28: SciPy 
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3.3. Deep learning 

• TensorFlow and Keras: With the very application backbone in deep learning, 

LSTM networks would be implemented to capture temporal information in pandemic 

data. These frameworks school you in model training and evaluation through strong 

optimization methods. Their means of controlling regularization stop overfitting and 

promote good generalization of the model. 

 

Figure 29: TensorFlow 

 

• Scikit-learn: provides essential machine learning tools, such as data 

preprocessing features with MinMaxScaler to normalize input data. It allows for the 

implementation of meta-models by means of Ridge regression in ensemble approaches. 

Other features include performance metrics to evaluate the prediction accuracy and 

reliability of the models. 

 

Figure 30: Scikit-learn 
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3.4    Visualization 

• Matplotlib: serves as a core plotting library where all visualizations are first 

created by figure and axes management. Design and styling options exist for various 

types of plots to ensure clarity and in formativeness. It supports the rendering of static 

visualizations, which serve as visual elements in the dashboard. 

 

 

 

         Figure 31: Matplotlib 

 
 

• Seaborn: offers data visualization with an enhanced decorative touch that 

beautifies plot information. Color palette management by this library ensures the 

production of pretty and meaningful visuals. Its statistical visualization supports the 

transmission of complex relationships into comprehensible stories within the data. 

 

Figure 32: Seaborn 
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4. Future Enhancements 

Potential improvements for future application releases would include some 

main fields for development. Enhancements in modeling would mean considering more 

complex and suitable compartmental models like SEIR and SEIDR that allow for 

additional disease states. To improve the transmission modeling, mobility data would have 

to be considered, which allows us to include population movement patterns. The models 

should also be fed with vaccination data so that immunization campaigns’ impacts could 

be considered. External factors could also be fed into the system for a better estimation, 

including weather and policy interventions. On the technical side, the focus could be directed 

towards cloud deployment to allow wider accessibility across the globe. A database as 

an integration would allow faster data access and more efficient storage. Development 

of API would enable programmatic access for integration into other systems. Automatic 

refreshing of data from authoritative sources would ensure that analysis is rendered with 

the most recent information available. User experience- wise, multi-country comparison 

features would help in gauging relative progression of the pandemic. Variable-based custom 

alert settings would monitor for when critical changes hit the metrics. User accounts 

would nurture configurations for frequent analysis. Optimization for a mobile user interface 

would foster multi-platform accessibility. Other analytical capabilities could locate 

regional hotspots identifying areas of concern. It could also analyze the effectiveness of 

interventions. 
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5. Conclusion 

The COVID-19 Analysis and Prediction Dashboard showcase the strengths that 

can arise from harmonizing traditional epidemiological modeling with advanced machine 

learning algorithms. Essentially, through the implementation of an improved SIR model 

together with deep learning forecasts, the application makes a deeper, more accurate 

prediction that considers the fact that disease dynamics change with the passage of time. 

Using the Streamlit framework, developers have been able to rapidly build an interactive 

user interface that brings elaborated modeling to the layman. An array of visualization 

options and customizations exist for dissecting the historical data in great detail-as well as 

the forecast
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This strategic application hence becomes an asset in comprehending the unfolding 

of pandemics and could find its way into the form of modifications for surveillances of other 

infectious diseases or any challenge that relates to public health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General conclusion 

The COVID-19 pandemic underscored the critical role of Artificial Intelligence 

(AI) in epidemic modeling, offering unprecedented capabilities in forecasting, 

containment, and policy optimization. AI-driven models have revolutionized traditional 

epidemiological approaches by integrating, real-time data streams, machine learning (ML), 

and deep learning (DL) to enhance accuracy and adaptability in predicting disease spread.   

AI models such as PandemicLLM, developed by Johns Hopkins and Duke universities, 
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outperformed conventional forecasting methods by incorporating diverse data types 

demographics, genomic surveillance, public health policies, and epidemiological trends to 

predict infection surges and hospitalization rates weeks in advance .   

Large language models (LLMs) and generative AI enabled dynamic reasoning, adapting to 

emerging variants and policy changes, which traditional statistical models struggled with 

AI-powered tools SEIR models facilitated early outbreak detection by analyzing open 

source data, mobility patterns, and environmental factors (e.g., temperature, humidity).   

AI assisted in evaluating the effectiveness of lockdowns, mask mandates, and vaccine 

distribution strategies. For instance, multi-linear regression models correlated COVID-19 

spread with climatic conditions, aiding seasonal preparedness.   

Predictive analytics helped hospitals allocate resources by forecasting ICU demand and 

mortality risks using clinical markers like CRP, LDH, and D-dimer levels.   

Data Limitations: Early pandemic models suffered from biased or incomplete data, 

affecting reliability.   

Privacy Concerns: AI’s reliance on personal data (e.g., contact tracing apps) raised issues 

about surveillance and individual freedoms.   

Interpretability: Many AI models operate as "black boxes," limiting transparency for 

policymakers.   

 

 

Global AI Surveillance Networks: Collaborative platforms could enable real-time, cross-

border epidemic monitoring.   

Integration with Genomic Sequencing: AI can predict variant dominance, as seen in a 

University of Florida study that identified 11 COVID-19 variants 10 weeks before official 

CDC classification.   

Ethical Frameworks: Balancing AI efficacy with privacy rights and equity remains a 
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priority for future pandemic responses.   

Final Remarks:   

AI has proven indispensable in modeling COVID-19, transforming reactive public 

health measures into proactive, data-driven strategies. While challenges persist, the fusion 

of AI with epidemiology promises a more resilient global health infrastructure, capable of 

mitigating future pandemics with greater speed and precision. Continued advancements in 

explainable AI, international data-sharing, and ethical governance will be pivotal in 

harnessing this potential.   
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