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Abstract  

 Can we develop intelligent strategies specific to NDN networks that outperform traditional 

approaches and optimize the performance of these NDN networks? This question guided the 

course of this dissertation, driven by the inherent limits of the present IP-based Internet 

paradigm and the rising shift toward data-centric architectures. The significance of this 

question derives from the crucial role caching plays in improving latency, bandwidth 

utilization, and scalability in NDN, and the inability of traditional caching techniques to adapt 

to dynamic user behavior. 

This research tested and confirmed several hypotheses: (1) reinforcement learning methods 

can dynamically outperform fixed cache replacement strategies, and (2) combining spatial and 

temporal learning components—specifically CNNs and LSTMs—improves the decision-

making capability of RL-based caching models. 

 

To address these hypotheses, A novel architecture for model free-reinforcement learning was 

proposed based on Dueling DQN, integrating CNN with LSTM that enables spatial pattern 

extraction from content request distributions, while LSTM captures temporal dependencies of 

request trends over time. 
 

This development of an intelligent caching framework led this dissertation, required for the 

Master's degree in Computer Science, proved significant theoretical improvements in 

responsiveness and adaptability to shifting request distributions. These findings provide 

credence to the idea that optimizing cache replacement in NDN systems may be achieved by 

deep reinforcement learning. 

This work remains focused on the fundamental research question throughout, providing a 

clear, concise roadmap that represents the logic and depth of the study. 

Key words: 

Named data networking (NDN), caching, intelligent caching replacement policies, Deep 

reinforcement learning (DRL). 

 

 

 

 

 

 

 

 



 ملخص 

تتفوق على الأساليب التقليدية وتحُسّن أداء هذه الشبكات؟ وجّه    NDNهل يمُكننا تطوير استراتيجيات ذكية خاصة بشبكات  

الإنترنت   بروتوكول  على  القائم  الحالي  الإنترنت  نموذج  في  المتأصلة  بالقيود  مدفوعةً  الأطروحة،  هذه  مسار  السؤال  هذا 

 (IPالمتزايد والتحول  التخزين   (  يلعبه  الذي  الحاسم  الدور  من  السؤال  هذا  أهمية  تنبع  البيانات.  على  المُركّزة  البنى  نحو 

شبكات   في  التوسع  وقابلية  الترددي،  النطاق  واستخدام  الوصول،  زمن  تحسين  في  تقنيات  NDNالمؤقت  قدرة  وعدم   ،

 التخزين المؤقت التقليدية على التكيف مع سلوك المستخدم الديناميكي.

( يمكن لأساليب التعلم المُعزّز أن تتفوق ديناميكيًا على استراتيجيات استبدال ذاكرة 1اختبر هذا البحث وأكد عدة فرضيات: )

و) الثابتة،  المؤقت  والزماني  2التخزين  المكاني  التعلم  مكونات  بين  الجمع  يحُسّن  شبكات    -(  ووحدات    CNNوتحديداً 

LSTM -  .قدرة نماذج التخزين المؤقت القائمة على التعلم المُعزّز على اتخاذ القرارات 

التعلم التعزيزي الحر، استناداً إلى     CNN، تدمج  Dueling DQNلمعالجة هذه الفرضيات، اقترُحت بنية جديدة لنموذج 

التبعيات الزمنية    LSTM، مما يمُكّن من استخراج الأنماط المكانية من توزيعات طلبات المحتوى، بينما تلتقط  LSTMمع  

 لاتجاهات الطلب بمرور الوقت.

في علوم   الماجستير  لنيل درجة  المطلوبة  إثبات هذه الأطروحة،  إلى  المؤقت  للتخزين  التطوير لإطار عمل ذكي  أدى هذا 

الحاسوب، تحسينات نظرية مهمة في الاستجابة والقدرة على التكيف مع توزيعات الطلبات المتغيرة. تعُزز هذه النتائج فكرة  

 من خلال التعلم التعزيزي العميق.  NDNإمكانية تحقيق تحسين استبدال ذاكرة التخزين المؤقت في أنظمة 

 يظل هذا العمل مُركزًا على سؤال البحث الأساسي، مُقدمًا خارطة طريق واضحة وموجزة تمُثل منطق الدراسة وعمقها.

 الكلمات المفتاحية:

المؤقت، سياسات استبدال التخزين المؤقت الذكي، التعلم التعزيزي العميق  (، التخزين NDNشبكات البيانات المسماة )

(DRL .) 

 

 

 

 

 

 

 

 

 

 

 

 



Résumé  

Peut-on développer des stratégies intelligentes spécifiques aux réseaux NDN qui surpassent 

les approches traditionnelles et optimisent la performance de ces réseaux NDN?Cette question 

a guidé cette mémoire , motivée par les limites inhérentes au paradigme actuel de l'Internet 

basé sur IP et la transition croissante vers des architectures centrées sur les données. 

L'importance de cette question découle du rôle crucial de la mise en cache dans l'amélioration 

de la latence, de l'utilisation de la bande passante et de l'évolutivité des réseaux NDN, ainsi 

que de l'incapacité des techniques de mise en cache traditionnelles à s'adapter au 

comportement dynamique des utilisateurs. 

Cette recherche a testé et confirmé plusieurs hypothèses : (1) les méthodes d'apprentissage par 

renforcement peuvent surpasser dynamiquement les stratégies de remplacement de cache 

fixe ; et (2) la combinaison de composants d'apprentissage spatial et temporel, notamment les 

CNN et les LSTM, améliore la capacité de prise de décision des modèles de mise en cache 

basés sur l'apprentissage par renforcement. 

Pour répondre à ces hypothèses, une nouvelle architecture d'apprentissage par renforcement 

sans modèle a été proposée, basée sur le Dueling DQN. Elle intègre les CNN et les LSTM, 

permettant ainsi l'extraction de modèles spatiaux à partir de la distribution des requêtes de 

contenu, tandis que les LSTM capturent les dépendances temporelles des tendances des 

requêtes au fil du temps. 

Le développement d'un framework de mise en cache intelligent a conduit à cette mémoire, 

requise pour le master en informatique, qui a démontré des améliorations théoriques 

significatives en termes de réactivité et d'adaptabilité aux variations de distribution des 

requêtes. Ces résultats confortent l'idée que l'optimisation du remplacement du cache dans les 

systèmes NDN peut être obtenue par apprentissage par renforcement profond. 

Ce travail reste centré sur la question de recherche fondamentale, fournissant une feuille de 

route claire et concise qui illustre la logique et la profondeur de l'étude. 

Mots clés : 

Réseaux de données nommés (NDN), mise en cache, politiques de remplacement du cache 

intelligent, apprentissage par renforcement profond (DRL). 
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General Introduction  

The exponential growth in data traffic alongside the rapid increase in consuming content 

such as in social networking platforms, and  the exploded  use of streaming in recent years, 

has revealed the inadequacies of the existing IP-based Internet structure, particularly 

regarding its mobility, scalability, and content delivery efficiency. A proposed data-centric 

paradigm, Named Data Networking (NDN) ) emerged as promising solution, attempts to fix 

some of these issues, given its distributed content caching system, where data can be cached 

in multiple routers and retrieved from the closest one instead of the original producer, 

enhancing content availability, reducing latency, and minimizing data loss. 

Nevertheless, NDN’s performance relies heavily on its caching policies, particularly on 

the replacement strategies employed at the fill-up point. The traditional approaches like Least 

Recently Used (LRU), Least Frequently Used (LFU), and their updates are based on heuristic 

rules, which most of times fail to adapt to the dynamic nature of network traffic. This results 

in inefficient cache usage and increased response latency. 

To address these challenges, recent research has focused on intelligent caching solutions 

that use machine learning, notably reinforcement learning (RL). Instead of depending on 

static rules, these approaches enable cache replacement decisions to be learnt and optimized 

over time based on observed network behavior. This shift allows for a more adaptable and 

context-aware caching techniques that respond to swings in content popularity, request 

patterns, and network circumstances. 

This dissertation explores the transition from traditional caching strategies to intelligent 

learning based approaches in the context of NDN, starting  by outlining  the underlying limits 

of the IP-based Internet and the NDN architecture, Subsequently, formulate the cache 

replacement problem  as a Marcov decision process (MDP), An intelligent agent may 

dynamically adapt its behavior based on the changing network state and request patterns, and 

explores a set of progressively sophisticated models, starting from Q-Learning and 

progressing to Deep Q-Networks (DQN) and Double DQN (DDQN) highlighting their 

relevance and efficiency  

The final part of the study propose a novel intelligent caching policy based on the dueling 

DQN, where it integrates LSTM and CNN, to further capture spatial and temporal correlation 

in content request patterns. 
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Our results show that this architecture outperforms conventional strategies in terms of 

hit ratio, reduced content retrieval latency, and adaptability to dynamic workloads. The 

integration of CNN enables spatial pattern extraction from content request distributions, while 

LSTM captures temporal dependencies of request trends over time. Enhanced decision-

making by the Dueling DQN agent improves context-sensitive cache replacement decision 

precision. 

1.1 Background  

The U.S. National Science Foundation's Future Internet Architecture Program funds 

five research initiatives, including Named Data Networking (NDN) [2]. It is a paradigm shift 

from old host-centric communication models data-centric Internet architecture [3], which 

marks a substantial transformation in the way networks operate. NDN modifies the semantics 

of the network service so that it retrieves data identified by a provided name instead of 

delivering the packet to a specified destination. This seemingly simple adjustment has far-

reaching consequences for how we design, develop, deploy, and utilize networks and apps. 

NDN's significance stems from its capacity to address issues with scalability, aids in 

bandwidth reduction, eases network congestion [4], lower latency, and improve security by 

protecting data directly rather than access points. NDN incorporates content naming and 

retrieval directly into its design, in contrast to IP networks that need middleware to translate 

application-specific models to network delivery techniques. This removes the inefficiencies 

that come with conventional routing and promotes reliable communication in a variety of 

settings, such as mobile networks and the Internet of Things. 

The foundational ideas of NDN's architecture are named data packets, stateful 

forwarding planes, and hop-by-hop flow balance.  These capabilities enable routers to remove 

unnecessary data exchanges, effectively handle upcoming requests, and store material locally.  

By substituting hierarchical data names for IP addresses, NDN's thin waist allows for smooth 

scaling and mobility support while preserving interoperability with current Internet 

infrastructure. 

NDN allows routers to cache data packets at multiple points in the network. This 

distribution caching mechanism not only improves data access speed [5], but also allows 

future requests for the same content to be served directly from intermediate nodes rather than 

the original source [6].  
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Web caching relies heavily on the cache replacement policy. The high level of sophistication 

in the cache system requires these replacement methods. By removing the item from the 

cache and creating room for the new object, these replacement rules are useful. A cache 

cannot hold the complete requested item due to its limited size. Consequently, we make space 

for new documents by using the cache replacement policy. This is relevant when there are 

already too many objects in the cache and we need to add more. To create space, we must 

remove the item from the cache. When it comes to the web cache, several cache replacement 

rules are crucial [7].  

However the intrinsic restrictions of traditional cache replacement strategies, such 

Least Recently Used (LRU) and Least Frequently Used (LFU), make it difficult for them to 

make the best caching choices in dynamic network situations. These baseline policies 

frequently have trouble adjusting to changing user request patterns, shifting content 

popularity, and shifting network conditions, which leads to less than ideal cache usage and 

decreased performance. As a result, these inefficiencies raise network traffic, decrease cache 

hit rates, and increase latency. 

In order to overcome these obstacles, intelligent and flexible caching techniques that 

can make defensible choices are desperately needed. By utilizing sophisticated methods like 

reinforcement learning, particularly an advanced architecture of dueling deep Quality network 

(duel DQN), caching policies can dynamically adapt to changing network conditions and 

content demands. 

Named Data Networking (NDN) efficiency might be greatly increased by such smart 

rules through better cache management, faster content delivery, lower latency, eventually, 

these developments would allow NDN networks to respond more effectively to user needs 

while guaranteeing scalability and higher performance in a variety of situations. 

1.2 Research problem  

1.2.1 Problem identification: Named Data Networking (NDN) caching techniques now in 

use suffer from serious inefficiencies, such as higher latency and lower cache hit rates. 

Traditional policies like Least Recently Used (LRU) and Least Frequently Used (LFU) are 

unable to dynamically adjust to changing network circumstances, content popularity, and user 

request patterns, which leads to these problems. The user experience and network 

performance are adversely affected by the ensuing inefficient caching choices. 

1.2.2 Problem statement: How can NDN networks' caching decisions be improved using 

deep reinforcement learning approaches to increase cache hit rates, lower latency, and 

improve network performance overall? This research specifically attempts to investigate the 
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use of sophisticated reinforcement learning models, including proposed model based on 

dueling DQ-Networks (Duel DQN), to intelligently modify caching strategies in dynamic 

NDN settings.  

1.3 Objectives  

  This study aims to overcome the drawbacks of conventional caching policies by 

presenting a deep reinforcement learning strategy based on prediction that can make 

intelligent caching choices in complicated and dynamic NDN settings. In order to verify the 

influence of the suggested solution on important performance measures including cache hit 

ratio, latency, server load, and overall network efficiency. The main objective is to build a 

Deep Reinforcement Learning (DRL) model to create and assess an intelligent cache 

replacement policy for Named Data Networking (NDN). In order to maximize performance 

on NDN networks, increase the effectiveness of replacement decisions and optimize cache 

resource use. This strategy seeks to dynamically modify caching decisions based on network 

circumstances and content popularity. 

1.4 Methodology  

  This research adopts a structured analytical and design-based methodology. It begins 

with a critical review of traditional caching replacement strategies used in Named Data 

Networking (NDN), highlighting their limitations in dynamic and data-intensive 

environments. The study then explores intelligent caching approaches grounded in 

reinforcement learning, particularly focusing on Q-Learning, Deep Q-Networks (DQN), and 

Double DQN. Building on these foundations, a novel architecture is proposed that integrates 

the Dueling DQN framework with Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) layers. This hybrid model aims to enhance decision-making at cache 

replacement points by capturing both spatial and temporal patterns in network traffic. 

The suggested solution is then compared to baseline techniques using key performance 

characteristics such as cache hit ratio, average latency, and network traffic load to determine 

its efficiency and adaptability.  

1.5 Structure of the dissertation  

  My dissertation is organized into 3 chapters: 

General introduction:  This chapter provides an overview of the context, objectives, 

methodology, and structure of this research work, setting the stage for a full examination of 

improving caching decisions in Named Data Networking (NDN) with deep reinforcement 

learning. 
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Chapter one: In this chapter, I look at the beginnings of Named Data Networking (NDN), 

tracing its roots back to Information-Centric Networking (ICN) and explaining why NDN has 

become such an important solution for overcoming the limits of traditional IP-based systems. 

Additionally, this research emphasizes NDN's architectural principles and benefits over 

traditional networking architectures. 

Chapter two: In his chapter I provide an in-depth introduction to machine learning going 

through its types, focusing on the concept and start of reinforcement learning. It explores how 

Markov Decision Processes (MDPs) formalize caching problems. Additionally, it delves into 

intelligent cache replacement policies and outlines the approaches used to model cache 

replacement as a reinforcement learning problem 

Chapter three: This chapter describes the implementation of intelligent caching in NDN 

utilizing advanced deep reinforcement learning, proposing an advanced model based on 

Dueling DQN. The Dueling architecture distinguishes between value and advantage functions 

to properly determine state importance. The updated approach use both (CNN) and (LSTM) 

to detect spatial and temporal patterns in request data to optimize cache decisions. Zipf-

distributed requests and experience replay are used during training to ensure steady learning. 

Evaluation reveals that the suggested model outperforms traditional strategies and standard 

RL-based techniques in terms of cache hit ratio and latency. 
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1. Introduction  

 The Internet has grown dramatically since its start in the 1960s, from a simple 

communication network to a dynamic platform that underlies modern life. Initially developed 

as a point-to-point communication system, the TCP/IP protocol stack allowed the delivery of 

text, audio, and video packets, establishing the groundwork for global connection. Due in 

large part to the exponential rise of user-generated content, content-centric services like 

YouTube, Netflix, Amazon, and social networking platforms, the purpose of the Internet has 

changed over time from sharing resources to distributing and retrieving vast amounts of 

information.[8][9] 

  The classic host-centric IP-based architecture is resilient, but it can't keep up with the 

demand of modern applications. The Internet does not come with strong mobility or security 

capabilities by default, nor was it built to accommodate content distribution models that value 

data above location. These limitations are handled via add-ons or patches, which frequently 

fail to scale properly. 

 Researchers have put up Information-Centric Networking (ICN) [10][11]as a ground-

breaking method of Internet design in order to address these issues. ICN replaces host-centric 

communication with content-centric networking by using unique names instead of IP 

addresses to identify and route data.  This makes it possible for location-independent data 

retrieval, many-to-many communication, and effective in-network caching. Among ICN 

designs, Named Data Networking (NDN) is notable for its capacity to handle large-scale 

information dissemination and revolutionize communication patterns. 

2. The limits of the current Internet architecture 

2.1. The internet's best effort delivery service paradigm does not guarantee speed for 

individual applications.  Apps like email, online access, and file transfers have operated with 

this type of service, but modern apps like live audio and video streaming demand more than 

just the fastest possible performance. 

2.2. Security : [12] 

a) It is difficult to encrypt data that moves over the network by default since the existing 

design does not provide encryption by default.  This implies that sensitive information can be 

intercepted and viewed by unauthorized third parties.   

b) Protecting against cyber-attacks and cybercrimes is challenging due to the absence of 

integrated security methods for data transmission and routing. 
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Absence of access control: To safeguard network resources, the existing design lacks strong 

access control methods.  Security problems including illegal access to servers and private 

information may result from this. 

2.3 Content distribution: 

a) Latency and congestion: The existing design may cause latency and congestion 

problems when content are distributed.  It may take a while for data to get to its destination, 

particularly if it has pass through many routers. 

b) Bandwidth inequality: An equal allocation of bandwidth between users and content 

producers is not guaranteed by the existing design.  When streaming online, this might lead to 

performance problems, particularly when demand is strong. 

c) Content distribution is heavily influenced by Internet service providers (ISPs).  Unfair 

access to content may result from traffic management practices they put in place that 

prioritize some content over others. 

d) Challenges for new content distributors: Due to the way the Internet is now set up, it 

may be challenging for new content distributors to compete with established providers.  This 

may restrict how widely content is distributed online. 

2.4 Scalability of routing: The existing BGP-based routing system is not built to manage 

the rapidly growing number of Internet-connected devices and connections.  The routing 

system is under stress because to exponential expansion in data and traffic, which can cause 

outages and congestion.  It is challenging to control data flows and maximize performance 

when routing is rigid and unadaptable [13]. 

2.5 Interoperability and Fragmentation: The network has been split up into several 

separate groups due to the absence of a common internet architecture, which has made it 

difficult for different services and applications to communicate with one another.  This 

separation impedes innovation and the development of new services by making data transfers 

across systems more difficult.  Therefore, the future of the internet depends on creating a 

more open and interoperable network [14].  

2.6 Data centralization: Concentrating information on certain servers or data centers is 

known as data centralization.  The basic client-server approach involves clients requesting 

data or services from centralized servers.  However, scalability and data availability issues are 

brought on by this concentration. 
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2.7 Inefficient handover: It is possible for there to be delays and service disruptions while 

moving a mobile device between access points.  This may result in problems with connections 

and disruptions to running apps. 

3. Approaches for the Future Internet Architecture 

A result of the above-mentioned issues and the drastic shift in Internet usage is the 

content-oriented network (CCN) strategy. Regardless of the hosts, the goal of this strategy is 

to distribute content. It incorporates caching natively and views named content as the 

network's central component. As a result, a copy of the requested content may be obtained 

from the network's most suitable node, satisfying the requirements for more effective content 

distribution than the existing Internet. Furthermore, mobility is no longer an issue because 

content names serve as identifiers separate from the locators.  Lastly, by including 

cryptographic techniques into the content itself and employing a suitable naming scheme, the 

ICN substitutes a content-based model for the conventional concept of connection security in 

order to satisfy security requirements [15]. 

This section presents -Named data networking approaches to the future internet architecture  

 

 

                                         Figure 1 NDN and the main architecture [16] 

 

4. Vision: A New Narrow Waist  

 The hourglass design of the modern Internet is based on a universal network layer, or IP, 

which provides the bare minimum of functionality required for worldwide interconnection. 

This thin waist facilitated the Internet's rapid expansion by allowing lower and top layer 

technologies to evolve independently. IP, on the other hand, was created to establish a 
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communication network in which packets were identified solely for communication 

endpoints. The Internet is now widely used as a distribution network due to the steady rise of 

e-commerce, digital media, social networking, and smartphone apps. 

            

 

Figure 2 Internet and NDN Hourglass Architectures [17] 

 

5. ICN and CCN : the origins of Named data Networking  

5.1 Information centric network (ICN) 

 The late 2000s saw the emergence of the novel paradigm known as Information-Centric 

Networking (ICN), which shifted the emphasis from host-to-host communication to the 

retrieval of information objects by name in response to the increasing need for scalable and 

effective content distribution over the Internet.  Through significant European and 

international research projects like 4WARD, NetInf, PSIRP, and DONA, key researchers like 

Bengt Ahlgren, Christian Dannewitz, Dirk Kutscher, and Börje Ohlman played crucial roles 

in shaping ICN. The IRTF's Information-Centric Networking Research Group (ICNRG) was 

formally chartered in 2010 and is led by David R. Oran and Dirk Kutscher [18]. For 

applications ranging from online content to IoT and mobile video, ICN systems use name-

based routing, in-network caching, and replication to divorce content from its location and 

enable scalable, reliable, and effective data delivery. 

 Compared to traditional IP networks, ICN offers several benefits.  First, by employing 

content caching at several network tiers, it makes it possible for more effective content 

delivery.  This enhances overall performance and lessens network congestion.  Furthermore, 

by using digital signature techniques to confirm the content's integrity and validity, the ICN 

offers improved security.  But there are issues with the ICN as well.  Considerations such as 

content name management and access control procedures are intricate.  Deployment and 

compatibility work are also necessary when switching from ICN architecture to a 

conventional IP infrastructure.  Although caching speeds up data distribution in information-



Chapter-I-     Named Data Networking  

11 

centric networks, cache placement and administration still present difficulties that need for 

more study. 

 

Figure 3 basic operation of ICN 

5.2 Content centric network (CCN) 

 One of the most popular and significant ICN designs is Content-Centric Networking 

(CCN), which was first presented by Van Jacobson and his group at PARC in 2009.  With the 

intention of resolving a number of issues with the Internet's present architecture, specifically 

those pertaining to data management, security, and device mobility [19]. 

 The hourglass architecture of the existing internet is preserved in CCN, but names rather 

than IP addresses are used to store and retrieve the data.  One of the two primary levels of this 

architecture is the "strategy" layer, which enables the control of network data flows (requests 

and answers).  as well as a "Security" layer to ensure the authenticity, confidentiality, and 

integrity of the data sent between network nodes [20]. 

CCNx is the name of the CCN architecture's current implementation.  Cisco created CCNx to 

expand the CCN concept by includes cutting-edge capabilities like Quality of Service (QoS) 

and mobility support.  Additionally, it can help with the effective dissemination of data 

amongst linked devices in applications like the Internet of Things (IoT) [19] [21].                

6. Named data networking : 

6.1 Introduction : 

The main NDN idea and architecture were outlined in the NDN project paper by L. Zhang 

et al [22].Which also claimed that "NDN is a universal Overlay" similar to IP. NDN is a 

receiver-based, data-centric communication protocol.  In NDN, two distinct packet types are 

used for every communication.  Both of them have names that identify the necessary data, and 
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we call them "Interest" and "Data."  All that is required of the consumer is to include the 

name of the necessary material in an interest packet and send it over the network.  The router 

forwards it to the data producer using the data name.  The data whose name most closely 

matches the requested one is sent back to the customer once the names have been matched.  

Every data packet has a signature to firmly attach the name to the data. 

An NDN packet performs best effort data recovery," just like IP packet delivery .  Data or 

interest packets may be lost during processing.  Therefore, it is the end user's obligation to re-

transmit the interest back to the network if the consumer does not get the necessary data 

following the predicted RTT.  However, NDN packets transmit the data names rather than the 

source and destination, in contrast to IP's location-centric data delivery strategy. 

Even though they are fairly minor design variations, they result in two significant process 

profound changes. First, NDN customers lack the names and addresses needed to deliver data 

packets. The NDN routers take its place by recording every interface that comes in and using 

data from pending interest to return the relevant information to the customer.  

Second, although the interest packet's name directs the forwarding process, similar to how the 

destination address directs the forwarding of an IP packet, the interest may locate a copy of 

the requested data in a nearby router and return the data to the customer, whereas an IP packet 

travels and reaches the destination. 

 

 

Figure 4 Data Networking Architecture (Ndn) Interest/Data Procedure [23] 
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As seen in Fig. 5, NDN came from the Information Centric Networking (ICN) research 

field, which served as the model for several subsequent Internet designs. Researchers have 

recently examined the main characteristics and problems of NDN as the Internet architecture 

of the future (FIA).  The design ideas of NDN have been explored in relation to various FIAs, 

including AKARI, JGN2Plus, FIND, NEBULA, XIA, GENI, 4WARD , FIRE, and others. 

 

 

Figure 5 NDN Timeline [17] 

 

6.2 NDN Architecture : 

6.2.1 The main entities in NDN : 

•  Producer:  

The producer identifies the entity that creates or generates the data. It gives this data a distinct 

name and posts it on the NDN network. The producer can reply to a consumer's request for a 

particular dataset by providing the data linked to that name. 

•  Consumer: 

 In the NDN, the entity that makes the initial request for data is the consumer. Instead of 

referring to IP addresses and specifying the source of the data, the consumer makes an 

"Interest" query using the name of the data they are looking for. NDN routers utilize this 

name to find and send the relevant data to the customer when the request is broadcast over the 

network. 
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• Router:  

NDN routers base their routing decisions on name information.  A router utilizes the request 

name to identify the location of the data when it gets a consumer request.  Likewise, when a 

router gets information from a producer, it determines how to forward that information to 

customers who have submitted matching requests based on the linked name.  In the NDN 

network, routers are crucial for controlling data caching and enabling search and routing.                     

6.3 Packets types in NDN 

Each NDN node consists of three main components: 

• Interest packets: The requesting nodes send these packets in order to request certain data.  

A packet of interest including the name of the desired content is sent by a node when it wants 

to obtain a specific piece of content.  In an attempt to find the relevant data, this packet is sent 

across the network. 

• Data packet: In response to a packet of interest that matches content that it possesses, a 

data-holding node sends a data packet with the requested content.  These data packets can be 

stored in the network for subsequent use and are signed by the content creator to guarantee 

their legitimacy.                                                                

NDN relies on these two kinds of packets as its basic communication mechanism. The 

requesting nodes send packets of interest to request specific data, and the data-holding nodes 

reply by sending matching data packets. 

 

 

 

Figure 6 - The NDN router’s processing for Interest and data packets [24] 

6.4  Key Data Structures in NDN 

• Pending interest table (PIT): All of the concerns that a router has sent but has not yet 

addressed are included in the Pending Interest Table (PIT).  The data name transmitted over 
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the Internet, together with its incoming and outgoing interface(s), is recorded in each PIT 

entry [28].  When a new interest packet arrives, an item is added to the Pending Interest 

Table, which keeps track of unmet interests. It is deleted when the matching data packet 

satisfies it [29]. 

• Forwarding information base (FIB): A transport table called the Forwarding Information 

Base associates interfaces with ingredient names.  Similar to IP, forwarding information bases 

are utilized to deliver interest packets based on the longest prefix match [30].  A name-prefix 

based transport protocol populates the Forwarding Information base, which may have a 

distinct output mediator for every prefix. 

• Content store (CS): The Content Store is a cache that saves preprocessed data packets 

when they are reordered.  The Content Store serves as a temporary store for data packets 

received by the router and can be delayed to satisfy future needs because an NDN packet has 

significance regardless of its source or redirection.  Although the replacement approach has 

been employed recently, it is decided and may differ by the router. 

6.5 Communication in NDN : 

 In NDN, communication is driven by the receiving end, often known as the data 

consumer.  A consumer sends out an Interest packet with a name that specifies the requested 

material in order to receive it. A customer may ask for /parc/videos/WidgetA.mpg, for 

instance.  After remembering the interface from which the request originates, a router uses its 

Forwarding Information Base (FIB), which is filled with information from a name-based 

routing protocol, to forward the Interest packet. When the Interest reaches a node with the 

requested data, it sends back a Data packet containing the name and content of the data, as 

well as a signature by the producer's key .The path that was established by the Interest packet 

is traced back to the customer by this Data packet.  It should be noted that neither the Interest 

nor the Data packets contain any host or interface addresses (such as IP addresses); instead, 

the Interest packets' names are used to route them to the data producers, and the Interests' state 

information at each router hop determines how the Data packets are returned  

For a while, ND routers keep both data and interests.  Only the first Interest is transmitted 

upstream in the direction of the data source when many Interests for the same data are 

received from downstream.  The Interest is then saved by the router in the Pending Interest 

Table (PIT), where each entry includes the Interest's name and a list of interfaces from which 

the corresponding Interests were obtained. The router transmits the data to every interface 

specified in the PIT entry after locating the corresponding PIT entry when the data packet 

arrives.  After deleting the relevant PIT item, the router stores the data in the Content Store, 
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which is essentially its buffer memory that is governed by a cache replacement policy.  

Though in the opposite direction, data follows the same course as the interest that requested it. 

Hop-by-hop flow balance is achieved when one Data fulfills one Interest each hop. 

The router can store an NDN data packet to meet possible future requests since it has 

significance regardless of its origin or destination.  This allows NDN to automatically support 

a number of features without the need for additional infrastructure, such as multicast (many 

users requesting the same data simultaneously), mobility (users requesting data from different 

locations), delay-tolerant networking (users with intermittent connectivity), and content 

distribution (many users requesting the same data at different times). 

Let's take the example of a customer watching a streaming movie while driving. After 

making a data request, the customer could switch to a different local network.  The data is 

cached along the way, but it will eventually arrive at the previous place and be discarded.  The 

disruption will be minor since the consumer will probably retrieve the data from a nearby 

cache when it retransmits the interest.  Data cached near users enhances packet delivery 

efficiency and lessens reliance on a specific data source that might malfunction as a result of 

errors or intrusions. 

 

 

Figure 7 Communication process in an NDN node [27] 
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6.6 NDN vs IP  

6.6.1 Benchmarking between PI and NDN 

 

Functionality IP architecture  NDN architecture  

Communication 
Based on host addresses (where to send) Based on the names of the bare contents 

(what to send) 

Routing  
By destination address Par nom de contenu 

Security  
By secure channel (TLS, IP Sec, etc.) By signed content (digital signature, etc.) 

Caching  
By proxy or CDN By router 

Mobility  
By address redirection (Mobile IP, etc.) By reexpression of interest 

Multicast  
By specific protocol (IGMP, PIM, etc.) By selective distribution 

Latency  
Depends on distance and number of 

jumps 

Depends on the popularity and location of the 

data 

Debit 
Depends on bandwidth and congestion 

control 

Depends on data availability and congestion 

control 

Packet Loss 

 

Can be caused by transmission errors or 

congestion 

May be caused by unrelated interests or 

interests 

6.6.2 The advantages of NDN over IP networks 

• By offering quicker streaming, shorter buffering periods, and a better user experience, 

NDN can increase the effectiveness of content delivery. 

• Potential advantages of using NDN in healthcare settings include enhancing the speed at 

which medical personnel can get data, maintaining confidentiality, and safely managing vast 

volumes of patient data. 

• By concentrating on content rather than location, NDN can assist alleviate network 

congestion.  Named Data Networking (NDN) lessens the strain on certain network paths by 

more effectively spreading popular material across several nodes. 

• By facilitating quicker access to frequently requested material, lowering latency, and 

enhancing network performance generally, caching is essential to enhancing the NDN user 

experience. 



Chapter-I-     Named Data Networking  

18 

• The data security mechanism of NDN eliminates the need for software and physical 

isolation and secures communication channels, guaranteeing the security of all data generated 

during its lifespan. 

• NDN eliminates the requirement to set up networks with IP addresses by sending data and 

packets of interest using application layer names.  When there are several linked devices, this 

simplicity is very helpful. 

6.7 The main features in NDN 

• Naming: Named data objects (NDOs) are used by NDNs to represent a variety of material, 

including photos, videos, web pages, and more.  Often hierarchical, naming enables distinct 

content identification. 

• Name-based routing: Name-based routing, which uses content names rather than host 

addresses to route content requests, is a feature of NDNs.  High responsiveness in the case of 

abrupt network changes is made possible by this. 

• Caching: One of the main components of the NDN strategy is data caching within network 

nodes.  This lowers server loads and response times, which enhances the performance of 

content delivery. 

• Content Security: In NDN networks, priority is given to ensuring the authenticity and 

integrity of content. This is done in part by digitally signing the matches between names and 

content to ensure data security. 

• Decentralization of information: NDNs make better use of network resources and enable 

more effective content distribution by concentrating on the content itself rather than where it 

is located on the internet. 

• Improved network efficiency: As user bandwidth needs rise, NDN design seeks to 

enhance network scalability, efficiency, and content delivery.  These features outline the NDN 

architecture's fundamentals and show how this paradigm aims to get beyond the drawbacks of 

the existing Internet model.  To do this, it prioritizes caching, security, and content. 

6.8  Names: 

NDN names are opaque to the network, meaning that routers are aware of the boundaries 

between components in a name but not its meaning.  As a result, naming schemes can change 

independently of the network and each application can select the one that best suits its 

requirements. 

A movie created by PARC may have the name/parc/videos/WidgetA.mpg, where the '/' 

denotes a boundary between name components (it is not part of the name). This is an example 
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of how NDN design assumes hierarchically organized names.  Applications may effectively 

depict the relationships between data points by using this hierarchical structure.  Segment 3 of 

version 1 of the video, for instance, may be called /parc/videos/WidgetA.mpg/1/3.Routing 

may also be scaled thanks to the hierarchy. 

Although routing on flat names may theoretically be feasible, aggregation is made 

possible by the hierarchical structure of IP addresses, which is crucial for scaling to the 

current routing system. Conventions agreed upon by data producers and consumers, such as 

name conventions signaling versioning and segmentation, can provide the common structures 

required to enable programs to work over NDN names. Name conventions are network-

invisible and application-specific. 

Global uniqueness is not a requirement for names, but it is necessary to retrieve data 

internationally.  Names meant for local communication could rely mostly on local context and 

only need local broadcasting or local routing to locate relevant information. 

Customers must be able to deterministically create the name for a requested piece of data 

without having seen the name or data before in order to obtain dynamically produced data.  

Either (1) consumers can get data based on incomplete names, or (2) deterministic algorithms 

enable producers and consumers to arrive at the same name based on data that is available to 

both.  A data packet with the name /parc/videos/WidgetA.mpg/1/1 might be returned to the 

user, for instance, if they request /parc/videos/WidgetA.mpg. Using the information provided 

by the initial data packet and the naming scheme decided upon by the producer and consumer 

apps, the consumer may then request and define further segments. 

The naming system is the most crucial component of the NDN architecture and is still 

being researched; specifically, it is currently unclear how to establish and assign top level 

names.  Not all naming issues must be resolved right away, though; because names are 

opaque to the network and rely on applications, the design and development of the NDN 

architecture can—and should—occur concurrently with our investigation into name structure, 

name discovery, and namespace navigation within the framework of application development. 

Here are some specifics on the NDN naming: 

a) Hierarchy: NDN names can be layered within one another to create a tree structure since 

they are hierarchical.  A directory structure can be used to arrange names, with higher 

directory names holding files and subdirectories. 

b) Tree structure: NDN names are derived from a tree structure, in which each node 

denotes a name element.  Information about the material, like its kind, publisher, 

publishing date and time, and location, might be included in the name. 
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c) Names in NDN are unique, meaning that a resource may be uniquely identified by its 

name.  By employing version IDs, data editors may guarantee that each version of the 

data has a distinct name. 

d) Users can obtain certain portions or versions of a piece of data instead of the complete 

thing by utilizing segment and version designations in the data names.  This can 

increase content delivery via NDN networks' dependability and efficiency.           

6.9 Routing and forwarding  

In the present "IP" structure, four issues have been resolved: mobility, "NAT" traversal, 

accessible report management, and space enervation.  The aforementioned four issues with 

the "IP" structure are eliminated by "NDN's routes and forwards."  Routing can be done in the 

same manner as "IP" routing nowadays [28].  The title prefaces that a router announces 

instead of "IP" precede the data that the router is ready to serve. This declaration is 

transmitted via a routing protocol.  Every router constructs its "FIB" based on the routing 

proclamations it has received.  It is possible to adapt conservative routing systems like 

"OSPF" and "BGP" to route based on name prefaces [29].  Names are handled by routers as 

an impenetrable module order.  They only match the "Content Name" from a pack 

"component-wise" in terms of preface length against the "FIB." 

In the "FIB," for example, /work/update/info.pdf may compete with both /work/update 

and /work.  The fact is that "NDN" inherits the ability to implement multipath routing.  To 

prevent circles, "IP" routing admits just one optimal path.  Because the name and an 

accidental nonce can effectively identify and eliminate duplicates, it means that "NDN" 

interest cannot loop in an advantageous way. Since they follow the opposite path of benefits, 

data do not circle.  By doing this, the "NDN router" may use the many boundaries to raise an 

issue without worrying about the loops.  The first piece of information that is returned will 

allay the worry and be gathered locally.  Duplicates received later will not be accepted.  The 

routing security mechanism of the "NDN" has been significantly enhanced. first, which has 

routing posts, protects them from being fooled or tampered with.  Second, multiple pathways 

routing prevents preface overthrow. In the meanwhile, routers can detect irregularities caused 

by preface takeover and try to retrieve the data in other ways.  Third, the "NDN" 

communications may actually only be sent regarding records.  Directing malicious packages 

to a certain mark is challenging since it simply cannot be communicated to many different 

kinds. 
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6.10 Caching  

In NDNs, caching is the practice of locally storing the most requested named data to 

provide faster access to it later.  The first thing a network router does when it receives a 

request for specified data is determine if it already has that data in its local cache.  If so, the 

router can reply to the request straight from its cache, which lowers network load and 

delay.The Forwarding Information Base (FIB) and Pending Interest Table (PIT), which are 

crucial elements of query routing and processing in NDNs, are intimately associated with 

caching.  Usually, factors including data size, request frequency, and cache management 

guidelines are taken into consideration while deciding whether to cache named data. 

Entries in the PIT table, which lists pending requests of interest for that data, are 

frequently linked to cached data.  The node can additionally update the PIT table in 

accordance with the cached named data, resolving any outstanding queries of interest.  The 

FIB table, which keeps track of routing information to decide how data packets should be sent 

to their destination, also has an impact on caching. 

The FIB table's entries show the further steps to take in order to get to the nodes that can 

supply the needed data.  As a result, the node can update the FIB table to forward future 

requests either to its own cache or to other network nodes that are storing the required data 

when a particular piece of data is cached. 

Additionally, by decreasing the chance of data loss from outages or connection problems, 

caching contributes to increased network resilience.  As a result, caching in NDN networks is 

essential for enhancing network dependability, efficiency, and performance. 

The following four metrics are typically used to measure cache performance: hit ratio, 

content retrieval delay (the total amount of time that passes between the time a content 

request is generated and the time that the consumer receives it), and average number of hops 

traversed (the number of hops required to locate and retrieve a requested piece of content is 

also measured to gauze how well the content is distributed across the network).  

Dissemination speed is another helpful cache performance parameter that quantifies the 

amount of time needed to distribute material all the way to the network edge.  

The cache decision policy specifies whether or not to cache the data packet at the 

intermediate nodes.  Two key concerns for a successful caching algorithm are: where should 

content be cached?  What material has to be replaced first?  Therefore, we divided caching 

systems into two general categories: cache replacement (deciding whether to store content on 

the router) and cache placement (deciding whether to place content on the network). 
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Figure 8   Classification of different caching strategies 

  

6.11 Cache placement 

The NDN architecture includes a cache placement mechanism called Leave Copy 

Everywhere.  In LCE, a data packet is cached by each router that sits between the producer (or 

provider) and the consumer. This technique's high cache redundancy, which is achieved by 

having the identical item cached across numerous nodes, lowers the system's total cached 

content variety. Two popular cache placement strategies to reduce cache redundancy are 

Leaving Copies with Probability (LCProb) and Leaving Copies with Uniform Probability 

(LCUniP).  LCProb employs caching probability 1/ (number of hops) for caching content on 

the router, whereas LCUniP employs uniform probability [30]. The cache variety of the whole 

network will be improved and content download latency will be reduced by storing popular 

content on the network edge, which will maximize the utility of cached information across the 

system.  Reducing cache redundancy and increasing cache diversity also requires an efficient 

router coordination strategy. 

6.12 Cache replacement  

Least Recently Used (LRU) is a popular cache override strategy that works well and raises 

the likelihood of a cache hit by temporarily storing the most recent data.  Least frequently 

utilized (LFU), which removes the least utilized stuff first, is another crucial cache 

replacement policy. The content's arrival on the router and its replacement can be used to 

determine when to make a caching choice.  Content can be relocated one level upstream in the 

cache hierarchy for caching, but it shouldn't be deleted from the cache for improved network 

performance.  Less popular and low-priority material is replaced first in cache replacement, 

which is divided into two categories: content popularity and content prioritization. 
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7. Conclusion  

The internet's original architecture, which was not intended to handle the rapid growth in 

usage and information, is the cause of its current issues and challenges.  The researchers 

suggest a new ICN Internet architecture as a result. 

One particular use of ICN that is thought to be a potential strategy for communication 

networks in the future is NDN.  The goal of this next-generation network is to enhance 

internet data transmission.  NDN places more emphasis on content-based communication than 

IP addresses, in contrast to the present Internet, which is based on IP addresses and is 

primarily intended to transport data between two hosts. 
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1. Introduction 

Efficient cache management is critical for improving system performance, especially in 

contexts with limited memory resources and variable data access patterns. Cache replacement 

policies play an important role in choosing which data items should be kept in the cache and 

which should be evicted when new data arrives and the cache is full. 

Traditionally, a number of cache replacement methods have been created, each based on a 

different criterion, such as recent access, frequency of usage, object size, or a mix of these. 

Traditional policies such as Least Recently Used (LRU), Least Frequently Used (LFU), First-

In-First-Out (FIFO), and size-based techniques are all intended to increase cache hit rates 

while minimizing latency within the limits of limited capacity. While these techniques have 

shown to be useful in a variety of contexts, their static nature limits their capacity to adapt to 

changing access patterns and complicated workloads. 

In recent years, intelligent cache replacement strategies have emerged, ushering in a new 

cache management paradigm. These current solutions, which use improvements in machine 

learning and data-driven optimization, allow caches to dynamically adapt to changing data 

access habits and system needs. Intelligent policies can use predictive analytics, 

reinforcement learning, and hybrid models that learn from past access patterns to make better 

replacement decisions. As a result, intelligent cache replacement algorithms have shown 

significant improvements in cache efficiency, hit ratios, and overall system responsiveness, 

particularly in complex or large-scale computing systems. This chapter examines both 

standard and intelligent cache replacement policies, emphasizing their concepts, strengths, 

and the advances brought forth by intelligent techniques. 

2. Traditional cache replacement policies  

Caching performance in NDN networks depends on two factors: content placement method 

and replacement policy. In this context, we highlight this part for Enhancing Caching 

Performance in Named Data Networking that has been proposed or enhanced to increase 

overall network performance. There are three sorts of data replacement policies: those based 

on popularity, those based on recency, and those that take into account both [47, 48].  

3. The Least frequently used (LFU): 

It was suggested that NDN networks adopt the LFU policy. The premise behind this policy is 

that content that is frequently requested may shortly be requested again. In order to make 

room for new content, the method entails removing the least popular items from the cache. 
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However, even if not specifically requested, very popular content may persist in the CS, 

creating a problem known as "aging phenomenon" or "cache pollution." To address this 

problem and improve the performance of the entire network, a number of LFU variations 

have been proposed, such as LFU-aging, LFU with dynamic aging, and Window-LFU 

[49,52]. 

LFU-Aging [37] is an extension of LFU. This policy minimizes cache pollution, which is the 

cache of popular content that is no longer accessed. LFU-Aging uses a threshold; if the value 

of all counters is above this threshold, they will all be halved. In [51], authors proposed 

(LFUda) LFU with dynamic aging , as an enhancement to LFU-Aging to mitigate the risk of 

cache pollution. 

4. The Least Recently Used (LRU): 

LRU (Least Recently Used) is a cache replacement algorithm that works by replacing data 

that hasn't been accessed for a long time. The main idea behind LRU is to assume that data 

that has been accessed recently is more likely to be accessed again in the near future. The 

LRU algorithm maintains an ordered list of data based on its last access, so that the least 

recently used data is replaced first when new data needs to be cached. LRU is widely used 

because of its simplicity and ability to exploit the temporal locality of data accesses [53]. 

5. The Least Recently/Frequently Used (LRFU): 

The LRFU strategy for NDN networks combines LRU and LFU strategies, as presented in 

[54]. At full capacity, LRFU chooses the data with the lowest CRF (combined recency 

frequency) value for eviction. The experimental results showed that the LRFU replacement 

policy had a 3.36% higher hit rate than the LRU and 5.78% higher hit rate than the priority-

FIFO replacement strategy [52]. 

6. The Window LFU (WLFU): 

It was originally implemented for web caching in [55]. The WLFU Cache Override Policy, is 

an enhancement on the LFU algorithm that takes into account the timing and popularity of 

cached objects.  Here are some crucial points about the WLFU replacement policy. 

WLFU keeps a sliding window of the most recent requests and utilizes the LFU algorithm to 

replace objects in the cache based on their popularity inside that window.  When numerous 

items have similar popularity, the LRU algorithm is used to determine which object should be 

replaced.  By adjusting the window size suitably, this override policy can effectively balance 
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the benefits of temporality and popularity, improving cache success rates.  Thus, WLFU 

combines the temporality and popularity of object accesses, potentially leading to better 

performance than existing cache replacement techniques. 

7.The Two-Queue (2Q): 

The two-queue (2Q) replacement policy was introduced in [56]. This caching strategy seeks 

to improve the LRU policy by adhering to the principle that when a content really requires 

caching, it should regularly receive periodic requests, particularly after a large number of 

accesses in a short period of time. As a result, the 2Q policy oversees a FIFO queue and two 

LRU lists. In actual applications, the 2Q method  

8.The adaptive replacement cache (ARC) policy: 

The adaptive replacement cache (ARC) policy [57] improves LRU performance by managing 

two LRU lists of variable sizes: T1 for data retrieved once and T2 for data retrieved on a 

minimum of two occasions. Additionally, ARC only saves the names of recently evicted data 

from both lists, not its contents..  It makes use of two extra LRU lists: B1 for managing 

content newly removed from the T1 cache and B2 for handling content recently removed 

from the T2 cache. The results demonstrate that ARC has a 4% greater hit rate than the LRU 

replacement policy [52]. 

9. Intelligent cache replacement policies  

9.1.General introduction to Machine Learning and Deep Learning 

9.1.1. Machine learning : 

Machine learning (ML) is a subfield of artificial intelligence (AI) that seeks to enable 

machines and machines to learn like humans, execute tasks independently, and improve their 

performance and accuracy as they gain experience and exposed new data. Four types of 

machine learning tasks can be described: 

• Supervised learning: Trains models on labeled data to predict or classify new, unseen 

data. 

• Unsupervised learning: Finds patterns or groups in unlabeled data, like clustering or 

dimensionality reduction. 

• Semi supervised learning: uses both labeled and unlabeled data, making it helpful when 

labeling data is costly or time-consuming 
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• Reinforcement learning: Learns through trial and error to maximize rewards, ideal for 

decision-making tasks. 

These four task types have significantly improved when working with high-dimensional data, 

including time series, pictures, and videos, primarily because to the recent advancements in 

deep learning. 

Deep learning is gaining popularity due to three complementary factors: increased 

computational power from GPUs, methodological breakthroughs [46], and a growing 

ecosystem of software and datasets. 

9.1.2. Deep Learning: 

Deep learning originated as a model of neural processing in biological brains.  Deep learning 

may not align with current neurobiology knowledge [44], but there are some parallels, such as 

convolutional layers inspired by the animal visual cortex [45] 

An artificial neural network, often known as a neural network, is, in its most basic form, a 

function  f: X →Y  parameterized with θ that accepts x ∈ X as input and returns y∈ Y as 

output (X and Y depend on the application): 

𝒚 = 𝒇 (𝒙 ;  𝜽 ) 

Inside a deep neural network, information passes from the input layer, which receives raw 

data such as photos, text, or audio, through a number of hidden layers composed of linked 

artificial neurons.  Each neuron processes its inputs by adding learnt weights and biases, 

passes the result via an activation function to induce non-linearity, then transmits the output to 

the following layer. 

As input progresses further into the network, each hidden layer extracts more abstract 

features; for example, in picture recognition, early layers may identify edges, while deeper 

layers recognize forms and objects.  During training, the network creates predictions, 

compares them to the real responses with a loss function, and then adjusts its internal weights 

via back propagation to reduce mistakes.  This repeated approach allows the network to 

improve its knowledge and increase accuracy over time.  Deep learning's layered design and 

capacity to learn directly from raw data have led to advancements in domains including 

computer vision, speech recognition, and natural language processing, making it a cornerstone 

of current artificial intelligence. 
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Figure 9 deep neural network [62] 

9.1.3. Reinforcement learning  

9.1.3.1. Introduction 

The field of machine learning known as reinforcement learning focuses on teaching agents to 

behave in unfamiliar situations by using reward signals.  Through repeated action selection, 

an agent must learn to optimize cumulative rewards from the environment.  The issue turns 

into a recurring decision-making difficulty.  After assessing the environment's present 

condition, the agent acts.  Following the action, the environment gives the agent a reward and 

a new state.  Until a terminating event occurs, this procedure is repeated as in (figure).  The 

best course of action, such as maximizing the reward from the environment at each step, must 

be learned by the agent. Markov Decision Processes (MDPs) are commonly utilized to give a 

mathematical framework for describing the situation in order to formalize the reinforcement 

learning environment [35]. 

MDPs are a way to formalize decision-making processes in which an agent learns to behave 

in a way that maximizes reward through repeated interactions with the environment.  The 

agent must repeatedly choose what to do in an MDP. 

An MDP is defined as the set of states the environment can be in S, the set of actions the 

agent can do A, and the transition function P(s'| s,a): S x S x A→ ℝ, where s,s' ϵ S and a ϵ A is 

the reward function R(s,a): S x A → ℝ, where s ϵ S and a ϵ A, and a discount factor with 0 < 

γ< 1. The transition function represents the probability of transitioning from one state to 

another if the agent takes some action. The reward function returns a scalar reward value for 

doing an activity in the current environment.            
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One significant property of MDPs is their adherence to the Markov Property.  According to 

the Markov Property, the future state of an environment purely depends on the current state. 

When the present state is known, previous states have no effect on future states or rewards.  

This assumption is usually correct, but it is occasionally violated. 

To further understand MDPs, consider the following scenario. During time steps  

t = 0,1,2,..., the agent observes a state st S from the environment, takes an action at A, obtains 

a reward rt R, and moves to the next state st+1 depending on the transition probability.  This 

can be written as a sequence of occurrences. 

𝒔𝟎, 𝒂𝟎, 𝒓𝟎;  𝒔𝟏, 𝒂𝟏, 𝒓𝟏 

The agent's purpose is to maximize the cumulative reward of this set of actions or∑t rt.  To 

accomplish this, the agent needs to learn a policy function π(s): S→A This informs the agent 

on the appropriate action to take based on the environment’s state. The function is written 

sometimes π(a| s): S x A→ℝ which defines a function that tells the agent the probability it 

should take action given its current state.                                         

𝝅(𝒂| 𝒔) =  𝑷𝒓 (𝒂𝒄𝒕𝒊𝒐𝒏 =  𝒂| 𝒔𝒕𝒂𝒕𝒆 = 𝒔) 

However, solving for this policy function is difficult for a number of reasons.  Often, certain 

aspects of the MDP remain unknown.  The transition function P(s’| s,a) is often stochastic and 

not completely defined.  After performing an action in state s, it is not always predictable 

which state the environment will end up in.  This normally follows a random process with 

unknown probabilities.  The reward function, R(s,a), might be either partially known or 

stochastic.  The agent is unaware of the reward it will receive from the environment upon 

taking an action. The unknown aspects of the MDP make determining the appropriate policy 

problematic.  Because these aspects of the MDP are unknown, determining the best policy is 

impossible.  Instead, approaches must be utilized to try to learn the optimal policy through 

interaction with the environment. 

Solving a stochastic MDP can be divided into two types.  The first group involves model-

based approaches.  To solve the MDP, these algorithms attempt to directly learn the transition 

function P(s'| s,a) and the reward function R(s,a).  Model-free approaches aim to identify a 

policy in an unknown environment rather than learning a model of it. 
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Figure10 standard architecture of RL 

 

9.1.3.2 Reinforcement learning approaches: 

9.1.3.2.1 Model-based Learning : 

Model-based learning is a method of RL in which an agent employs previously acquired 

knowledge to execute tasks, where the agent will have a complete description of the 

environment (transition probability “dynamics of the environment). This method is 

distinguished primarily by the employment of a model that describes the dynamics of the 

environment, i.e. how the agent's actions influence the state of the environment and the 

rewards it can get.  This sort of learning is classified into two major categories:  

9.1.3.2.1.1 Learn the Model and Given Model [58]. 

a) Learn the model: 

The agent in many real-world scenarios is initially unaware of how the environment 

functions, meaning it is unaware of the rules governing state transitions or the rewards it will 

receive for taking actions. In this case, the agent must learn the model by interacting with the 

environment, observing what happens when it takes actions, and gradually building an 

internal representation (a model) of the environment’s dynamics. 

b) Given model: 

Occasionally, the environment’s dynamics are already known or provided to the agent. This 

indicates that the agent has access to a given model-a complete description of how actions 

lead to new states and rewards. With this information, the agent can directly plan the best 
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actions without needing to learn the model from scratch. This is typical in simulated 

environments, classical control problems, or games where the rules are fully specified. 

c) Model-free: 

A model-free approach is one that does not estimate the transition probability distribution (or 

reward function) associated with the Markov decision process (MDP),[31] which represents 

the issue to be solved in RL.  The transition probability distribution (or transition model) and 

the reward function are commonly referred to as the environment's "model" (or MDP), thus 

being named "model-free".  A model-free RL method can be compared to a "explicit" trial-

and-error approach. In other way It’s when the agent does not know the model dynamics of its 

environment (transition probability). 

d) Policy based  

The agent directly learns the policy that determines the actions to be taken in each state 

without going through an explicit estimation of the values of the states or actions. They 

primarily use Monte Carlo techniques to estimate gradients in politics from trajectories of 

complete episodes. 

e) Value based  

In this approach, the agent learns to value actions in terms of value, usually represented by an 

action-value function (s,) and it is divided into two sub branches: 

• On policy: are algorithms that use the agent's current policy to make decisions and to update 

its knowledge of the environment by learning from the actions selected by it. This means that 

the agent follows their current policy to explore the environment and to learn from these 

experiences. A common example of an on-policy algorithm is Sarsa using Time Difference 

Learning (TD). 

• Off  policy: are algorithms that conversely use a different policy than the agent's, allowing 

for more informed decisions to be made and more diverse behavioral data to be collected in 

order to update their knowledge of the environment. This means that the agent follows a 

different policy than the one it uses to explore the environment. A common example of an 

off-policy algorithm is Q-learning. 

This section focuses on model-free algorithms, which are more relevant to the problem at 

hand.  In model-free approaches, policies are learned to maximize cumulative reward.  The 



Chapter-II-     AI-based Cache replacement polices  

33 

value function of a policy dictates how much reward will be obtained for all subsequent time 

steps.  This can be officially spelled as:  

 

It represents the expected reward from following policy starting in state s. Reinforcement 

learning seeks to identify a policy that maximizes the value function for all states. 

9.1.4 Markov decision process: 

9.1.4.1 Definition  

Also known as a stochastic dynamic program or stochastic control issue is a model for 

making sequential decisions when the consequences are unknown [31]. 

MDPs originated in operations research in the 1950s [32][33] and have subsequently garnered 

attention in a range of sectors, including ecology, economics, healthcare, telecommunications, 

and reinforcement learning. [34] Reinforcement learning uses the MDP framework to 

simulate the interaction between a learning agent and its environment.  In this paradigm, 

interactions are defined by states, actions, and rewards.  The MDP framework is intended to 

give a simpler depiction of important aspects of AI difficulties.  These aspects include 

comprehending cause and effect, managing uncertainty and no determinism, and pursuing 

defined goals. 

The term "Markov decision process" is derived from the Russian mathematician Andrey 

Markov's concept of Markov chains. The "Markov" in "Markov decision process" refers to 

the underlying structure of state transitions that still follow the Markov property. The process 

is called a "decision process" because it entails making decisions that influence these state 

transitions. 

 

 

Figure 11  illustration of an MDP. 
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9.1.4.2 The Markov property: 

The Markov property is a key notion in probability theory and stochastic processes that 

expresses the idea of "memory lessness ". It clarifies: If the agent is present in the current 

state s1, performs an action a1 and move to the state s2, then the state transition from s1 to s2 

only depends on the current state and future action and states do not depend on past actions, 

rewards, or states." 

Orin another words, according to the Markov Property, the present state transition is 

independent of any previous action or state.  Thus, MDP is an RL issue with the Markov 

property.  In a chess game, for example, the players only need to remember the current state 

and not previous actions or states.                 

9.1.5 Return: 

Since the goal is to maximize the reward over all time steps using an optimal policy – i.e., 

the expected return – we also need a way to calculate this value. Naively, we could define this 

reward using the sum of the sequence of rewards: 

𝑹(𝝉) = 𝒓𝟎 + 𝒓𝟏 + ⋯ + 𝒓𝑻 

 

However, for some tasks where the agent continuously undertakes actions without an end-

state, this approach will fail because the sum of all rewards will tend to infinity when R(τ) = 

∞. This would prevent the agent from distinguishing actions that produce larger rewards more 

quickly. 

That's why we're introducing a factor of γ discount (0 ≤ γ ≤ 1) that is used to weight the 

importance of future rewards versus immediate rewards.  

The total expected return is then calculated as follows: 

𝑹(𝝉) = 𝒕 = 𝟎∑∞𝜸𝒕𝒓𝒕 

• When γ is close to 0, more importance to immediate rewards than future rewards. 

• When γ close to 1, more importance to future rewards than immediate rewards. 

• γ = 0 → agent not learn, γ =1 → agent won’t stop learning. 

 If the agent knew the precise sequence of rewards they would get, no additional 

calculations would be necessary. However, the values of the rewards at each stage depend on 

both the state of the environment and the action chosen by the agent. For this reason, we 

define an action value function that helps us approximate the values of specific state-action 

pairs. 
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9.1.6 Value function: 

Is also called state value function it shows the importance of existing in that state. It gives 

information about how well the situation and action are and how much reward an agent can 

expect. A reward represents the immediate signal for each good and bad action, whereas a 

value function specifies the good state and action for the future. The value function depends 

on the reward as, without reward, there could be no value. The purpose of estimating values is 

to achieve more rewards. 

• The state value function Vπ(s): It estimates the expected return based on state s while 

always following policy π. 

𝒗𝝅(𝒔) =  𝑬𝝅[𝑹𝒕|𝒔𝒕 = 𝒔]  =  𝑬𝝅[𝒕 = 𝟎∑∞𝜸𝒕𝑹𝒕 + 𝟏 ∣ 𝒔𝟎 = 𝒔] 

• Actin value function Qπ(s,a): IT estimates the expected return starting from state  s, by taking 

action a, and then always following policy π. 

𝑸𝝅(𝒔, 𝒂) = 𝑬𝝅[𝑹𝒕 ∣ 𝒔𝟎 = 𝒔, 𝒂𝟎 = 𝒂] 

9.1.7 Optimal value function:            

The optimal value function V*(s) yields the maximum value compared to all the other value 

functions. 

𝑽 ∗ (𝒔)  =  𝒎𝒂𝒙𝝅 𝒗𝝅(𝒔) 

 

9.1.8 Cache Replacement Policy as a Markov Decision process: 

The cache replacement policy can be modeled as a Markov Decision Process (MDP).  

This research models the MDP agent as an algorithm that determines which cache elements 

should be evicted when full. The problem of cache replacement lends itself well to treatment 

as a Markov Decision Process. Caching involves retrieving a set of data items from their 

original source. As various pieces of data are requested, some of them are saved in the cache 

for later use. However, once the cache is filled, certain items must be removed. When the 

cache is full and a new data request is received, it must continually decide which item to 

discard. This type of recurring decision process is precisely what MDPs are intended to 

mathematically represent. The agent in this Markov decision process acts as an internal cache 

agent, deciding which elements to preserve and which to remove. 

The Markov Assumption must also be true for an issue to be a good fit for modeling as a 

Markov Decision Process.  The cache's current state is determined only by its contents.  The 

cache's current state is unaffected by its prior contents.  Furthermore, the cache's present state 

is unaffected by the previous data items that it removed.  Thus, the Markov property is true 
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for cache replacement policy.  This demonstrates once more how obviously well-suited this 

situation is to be an MDP. 

State: The possible states that the cache can be in are represented by the state space S of the 

MDP. 

Action: At each cache miss, the agent must pick an action—typically, which content item to 

evict to make way for the new one. 

Reward: A reward is given to the agent (for instance, a cache hit results in a positive reward, 

but a miss results in a zero or negative reward).  The goal is to maximize the predicted 

cumulative reward over time, which is frequently achieved by lowering latency or increasing 

the cache hit ratio. 

This Markov decision process has a stochastic and uncertain transition function,       P(s’| 

s,a).  The shift from one cache state to the next is determined by next pieces of data requested 

in the data access pattern.  When one item of data is removed from the cache, the next piece 

of data takes its place, resulting in a succession of fresh data requests.  The state is determined 

by the next set of data requested and used.  This cannot be predicted ahead of time, hence this 

MDP is not fully known. 

The discount factor in this MDP is set to be close to one. The series of data accesses is 

typically long and each reward is not unduly dependent on each individual action taken. By 

selecting a greater value, the model gives long-term cumulative rewards higher priority than 

short-term rewards.  Selecting a high γ is optimal in this scenario since optimizing the long-

term hit ratio is crucial.  

9.1.9 Applicability of reinforcement learning: 

Reinforcement learning is a nearly ideal solution for the cache replacement policy 

problem. First, as discussed in the previous chapter, the issue can be represented as an MDP. 

Cache replacement policy's MDP is intended to be partially known. This suggests that the 

majority of the MDP is known, but the transition function P(s’|s,a) is stochastic and not 

entirely known.  Direct optimization approaches cannot be used due to unknown variables.  

Learning a policy requires regular interactions with the environment.  Reinforcement learning 

is specifically developed to solve this type of difficulty. 

Second, the cache replacement policy can be simulated and executed multiple times.  Current 

state-of-the-art reinforcement learning methods remain relatively sample inefficient.  This 

means that they require viewing interacting with an environment a huge number of times in 

order to achieve appropriate policies. Current algorithms are only effective after millions of 

games [36].  For the cache problem, data is accessed millions of times per day via caches or 
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databases across the internet.  There are numerous data access traces with hundreds of 

requests available to simulate cache issues. It is even possible to create purely synthetic data 

that mimics the access patterns of real data. Reinforcement learning algorithms can interact 

with the cache environment and effectively learn policies.  This capacity to run many training 

steps enables state-of-the-art reinforcement learning algorithms to be used in this setting. 

9.1.10 Components of reinforcement learning in the context of NDN   

Agent: 

The agent is an intelligent decision-making entity that is often implemented as a 

reinforcement learning (RL) model that is in charge of controlling a network node's cache or 

router.  Its primary job is to observe the current state of the cache and network environment, 

choose actions (such as which content to cache or evict), and learn over time to optimize 

cache performance depending on feedback from the environment [41]. 

Environment (E):  

The environment depicts the NDN network cache system in which the RL agent operates. 

It contains cache storage, incoming content requests, and network state.  The environment 

responds to the agent's caching and replacement activities by modifying the cache state and 

giving performance feedback such as reward or penalties. 

State(S):  

It represents the current content of the cache at any given time.  

Action (A): 

Regarding cache management, actions are the potential decisions the RL agent may make. 

This covers prefetching tactics, which content to cache, and which cached content to remove 

or replace. 

Reward(R): 

The environment gives the agent a reward signal following each action.  This reward 

measures the action's immediate cost or benefit, such as a decrease in retrieval latency, an 

increase in cache hit ratio, or a savings in network bandwidth.  The agent's objective is to 

optimize cache performance by gradually increasing the cumulative reward over time. 

Policy (π): 

A policy defines the agent’s behavior in an environment. The policy tells the agent what 

action to perform in each state. 
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• Deterministic policy : 

 tells the agent to perform one particular action in a state ,denoted by a = π (s)  

• Stochastic policy: 

• A stochastic policy does not map a state directly to one particular action; instead, it 

maps the state to a probability distribution over an action space denoted by 

𝜋(𝒂 | 𝒔)  =  𝑷[𝑨𝒕 = 𝒂 | 𝑺𝒕 =  𝒔]. 

Episode (trajectory) 

by (𝜏), this agent-environment interaction, or in another way the path the agent takes from 

initial state until the final state called an episode. 

• Episodic tasks: The tasks that has a final (terminal) state.  

• Continuous tasks: The tasks that doesn’t have a terminal state.  

Termination condition  

Some caching tasks may have predetermined episodes, like after processing a given 

amount of requests or as a fixed time intervals, which signal the end of an interaction 

sequence.  This enables the agent to assess performance across several episodes and adjust its 

policy accordingly. 

9.1.11 Quality Learning(Q-Learning) 

Q-learning is a popular model-free reinforcement learning algorithm based on the 

Bellman equation. The core concept of Q-Learning is to learn a policy that tells an agent what 

action to take under what conditions.  The algorithm learns a Q-function, known as 

as 𝑄(𝑠, 𝑎), that estimates the total reward an agent can anticipate to get after taking action an 

in state s and following the optimal policy.  The purpose of Q-Learning is to discover the 

optimal Q-function, 𝑄 ∗ (𝑠, 𝑎), which reflects the maximum cumulative reward possible from 

every state-action pair. 

9.1.11.1 Value function 

The Q value function, denoted 𝑄(𝑠, 𝑎), represents the value of a state-action pair. It is 

defined as the expected cumulative value of future rewards when the agent is in a state s and 

chooses an action a. 

9.1.11.2 Bellman equation  

Richard Bellman, a mathematician, devised this equation in 1957 as a method for making 

optimum decisions via recursion that guides the iterative update of Q-values in Q-learning, 

balancing current rewards against predicted future rewards in order to learn optimum 

decision-making strategies over time.                   
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𝑸(𝒔, 𝒂) ← 𝑸(𝒔, 𝒂) + 𝜶[𝒓 + 𝜸𝒂′𝒎𝒂𝒙𝑸(𝒔′, 𝒂′) − 𝑸(𝒔, 𝒂)] 

 

Where: 

• 𝑄(𝑠, 𝑎) is the current estimate of the Q-value  for state-action pair (𝑠, 𝑎) . 

• 𝑟 is the reward reicived after taking and action a in 𝑠𝑡𝑎𝑡𝑒 𝑠 . 

• 𝑠’ is the next state after action 𝑎 . 

• 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) is the highest Q-value over all possible 𝑎𝑐𝑡𝑖𝑜𝑛𝑠  𝑎’ in the next 𝑠𝑡𝑎𝑡𝑒 𝑠’ . 

• 𝛼 ∈ (0,1] is the learning 𝑟𝑎𝑡𝑒 . 

• 𝛾 ∈ [1] is the discount factor that determines the value of future rewards in comparison to 

new rewards. 

9.1.12 Q-table 

A Q-table or matrix is created while performing the Q-learning. The table follows the 

state and action pair, 𝑖. 𝑒. , [𝑠, 𝑎], and initializes the values to zero. After each action, the table 

is updated, and the q-values are stored within the table. 

The RL agent uses this Q-table as a reference table to select the best action based on the Q-

values. 

We can imagine Q-table as a memory of what the agent learned from experience 

9.1.13 Structure of Q-table: 

• Rows represent 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑆). 

• Columns represent all possible 𝑎𝑐𝑡𝑖𝑜𝑛(𝐴). 

• Each entry in the table represents the Q-value for a state-action pair. 

  The update of Q-values is done using a mathematical equation that takes into account 

the current Q value, the immediate reward received, and the maximum Q value for the next 

state. This equation iteratively refines the Q values throughout the learning process, helping 

the agent make more informed decisions over time. Essentially, the update aims to balance 

immediate rewards with expected future rewards, guiding the agent in learning optimal 

strategies for navigating their environment.  

9.1.14 Q-Learning Algorithm  

9.1.14.1 Model the cache replacement as a Markov decision process (MDP): 

• State: Represents the current cache state, including which contents are cached, their 

popularity, age, retrieval time, and other pertinent features. 
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• Action: 𝐴 =  {𝑎₁, 𝑎₂, . . . ., 𝑎𝑛 }  When new content comes and the cache is full, the action is 

to decide which cached items to be replaced. Alternatively, in certain configurations: whether 

to cache the new item or not 

• Reward: After taking an action (eviction), the system receives a reward, typically based on 

cache hit/miss, retrieval time, or network efficiency. A common reward is +1 for a cache hit 

and 0 (or negative) for a miss 

• Episodes: A sequence of actions that ends when the agent reaches a terminal state. 

9.1.14.2 Initialization:  the agent starts with initializing of Q table, where Q-values 𝑄(𝑠, 𝑎) 

are typically initialized to zero. 

If state space is way too long we use (DQN). 

9.1.14.3 Training Loop: 

For each new request: 

• Observe the current cache state  

• Action selection is done by using ε-greedy strategy pick the best-known action (evict item 

with highest Q-value, 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎)), (exploitation) with probability 1 − 𝜖, or a random 

action with probability 𝜀, to encourage exploration. 

• From the cache, replace the selected content with the new one. 

• Receive reward. 

• Updating the Q value using the Q function formula. 

• 𝒔 𝒔’ 

• End the episode when a terminal state is reached. 

9.1.14.4 Convergence to optimal policy: 

 As the agent interacts with its environment, it improves its Q-values; gradually 

determining which cache replacement actions maximize long-term cache hit rates or 

minimizes retrieval latency. 

 The policy is optimum when the Q-values stabilize and the agent consistently makes the 

best eviction decisions for each state [59]. 
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                                                  Figure 12 Q-Learning circle  

9.1.14.5  Dilemma Exploration vs exploitation:  

The exploration-exploitation dilemma (or explore-exploit tradeoff) is a key problem in 

decision-making and reinforcement learning.  It describes the conflict between the two 

strategies:  

9.1.14.6  Exploration: Choosing the best-known option based on current knowledge to 

maximize immediate reward. 

9.1.14.7  Exploitation: Trying new or less-known options to gather more information, which 

may lead to better long-term outcomes but can result in short-term losses 

9.1.14.8  The Exploration-exploitation dilemma: is the challenge of balancing the use of 

existing knowledge to maximize immediate rewards (exploitation) against the desire to obtain 

new information which could enhance future decisions (exploration). This tradeoff is 

fundamental to reinforcement learning and many real-world adaptive systems. 

9.1.14.9 ϵ-greedy strategy 

An ϵ-greedy strategy is commonly used to handle this. With probability ϵ, a random 

action is chosen (exploration), whereas with probability 1−ϵ, the action with the highest Q-

value is chosen (exploitation).  The value of ϵ often decreases over time, allowing for more 

exploration at first and more exploitation as the algorithm learns more about the environment. 

9.1.14.10 Q-learning Limitation: 

Although Q-learning is a powerful reinforcement learning algorithm, it has some 

drawbacks that prevent it from being effective in increasingly complicated environments. 
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• Scalability issues: 

 Traditional Q-Learning uses a Q table in which each state-action pair is assigned a Q value.  

As the state space grows, particularly in continuous or high-dimensional environments, the Q 

table becomes problematic, resulting in memory inefficiency and a poor learning rate. 

• Discrete state and action spaces: 

Q-Learning performs best in contexts where states and actions are discrete and finite. 

However, many real-world issues contain continuous state and action spaces, which 

traditional Q-Learning cannot successfully manage without discretizing these spaces, 

resulting in knowledge loss and poor strategies. 

 To address these issues, one alternate strategy is to mix Q-learning and deep neural 

networks.  This approach is known as Deep Q-Learning (DQL).  DQL's neural networks 

approximate the Q value for each pair of states and actions. 

 

9.1.15 Deep Q-Network: 

In 2013, Deep Mind published the Deep Q-Network (DQN) method and the article that 

presents it: "Playing Atari with Deep Reinforcement Learning", DQN is designed to learn 

how to play Atari games.  This is a significant advancement in the field of reinforcement 

learning, paving the door for future improvements in this area.  In reinforcement learning, the 

term "deep Q-network" refers to the combination of a deep neural network and the Q-learning 

method [38]. 

The neural network receives the input state and generates the Q values for all possible actions. 

The following figure illustrates the difference between Q-learning and deep Q-learning in the 

evaluation of the Q-value 

 

       Figure 13 Q-learning and deep Q-learning in the evaluation of the Q value [37]. 
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In reality, this algorithm uses two deep neural networks (DNNs) to stabilize the learning 

process [39]. 

• The first is called the main neural network , represented by the weight vector 𝜃, and it is 

used to estimate Q values for the current state s and action a: 𝑄(𝑠, 𝑎;  𝜃) in real time. 

• The second is the target neural network, parameterized by the weight vector 𝜃’, and it 

will have exactly the same architecture as the main network, but it will be used to estimate the 

Q values of the next state and action. 

 All learning takes place in the main network. The target network remains frozen (its 

parameters remain unchanged) for a few iterations, and then the weights of the main network 

are copied to the target network, thus transferring the knowledge learned from one to the 

other. This makes the estimates produced by the target network more accurate after copying. 

 

Figure 14 main network and target network 

9.1.15.1 Bellman's equation and the loss function for the DQN algorithm: 

9.1.15.2 The equation for updating the Q value in the main network: 

𝐐(𝐬, 𝐚;  𝛉)  𝐐(𝐬, 𝐚;  𝛉)  +  𝛂 (𝐫 +  𝛄 𝐦𝐚𝐱𝐚′𝐐(𝐬′, 𝐚′;  𝛉′)  −  𝐐(𝐬, 𝐚;  𝛉 )) 

Where: 

• 𝑄(𝑠, 𝑎;  𝜃) Represents the estimated Q value for state "𝑠", action "𝑎", and neural network 

parameters "𝜃".. 

• 𝑟 is the reward reicived after taking and action a in 𝑠𝑡𝑎𝑡𝑒 𝑠 . 

• 𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′;  𝜃′) Represents the maximum expected Q value for the next state " 𝑠′ " and 

all possible actions " 𝑎’ ", estimated by the target network with the parameters " 𝜃′ ". 

• 𝛼 ∈ (0,1] is the learning rate . 

• 𝛾 is the discount factor that determines the value of future rewards in comparison to now 

rewards. 
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• 𝑄(𝑠, 𝑎;  𝜃) Represents the current Q-value of the current action-state, estimated by the 

main network with the "𝜃" parameters. 

9.1.15.3 Loss function 

In order to train a neural network, we need a loss (or cost) function, which is defined as the 

squared difference between the two sides of the Bellman equation, in the case of the DQN 

algorithm: 

𝑳 (𝜽)  =  [(𝒓 +  𝜸 𝒎𝒂𝒙𝒂′𝑸(𝒔′, 𝒂′;  𝜽′)  − 𝑸(𝒔, 𝒂;  𝜽 ))𝟐 ] 

 This is the function that we will minimize using gradient descent, which can be computed 

automatically using a deep learning library such as TensorFlow or PyTorch. Then the function 

of updating the weights: 

𝜵𝜽𝑳(𝜽)  [(𝒓 +  𝜸 𝒎𝒂𝒙𝒂′𝑸(𝒔′, 𝒂′;  𝜽′) −  𝑸(𝒔, 𝒂;  𝜽 )) 𝜵𝜽 𝑸(𝒔, 𝒂;  𝜽 )] 

9.1.15.4 Target Network: 

The target network is a copy of the Q network, which is used to approximate the Q 

function. 

The target network maintains a separate weight vector, the target network weights are not 

updated with each iteration. Instead, they are copied periodically from the evaluation network, 

creating a time lag between the two networks. 

 Choosing a separate target network makes divergence unlikely because it adds a delay 

between when the primary network Q value is updated and when the target Q values are 

updated. This means that the target network uses the same weights to estimate the target 

values for a certain period of time, often referred to as a freeze period. 

 The target network plays a crucial role in providing stable target Q values to guide the 

training of the main network. 

9.1.15.5 Experience replay: 

 Multiple experiences are collected and stored in a replay buffer within the DQN.  The deep 

neural network is updated using a random sampling of the experiences in the buffer [40]. 

After a certain number of episodes, a random sampling of experiences (batch) from the replay 

buffer is used to update the current parameters.  After a set number of prediction steps, the 

prediction network's parameters are copied to the target network. 

 The DQN agent uses a replay buffer to store past experiences. Each experience is a tuple 

(state, action, reward, next state) see in (figure) representing a unique transition from one state 

to another. Replay memory stores these experiences for later sampling by providing a diverse 

data source and allowing the agent to learn from past experiences repeatedly and efficiency  



Chapter-II-     AI-based Cache replacement polices  

45 

 

Figure 15 Replay buffer                           

 

Figure 16 A data flow for a DQN with a replay buffer and a target network [42] 

9.1.16 Double Deep Q-Learning: 

 A key drawback of the DQN algorithm is its tendency to overestimate Q-values, causing 

the agent to expect higher rewards than it will really receive.  This overestimation happens 

because the online network is employed for both action selection and evaluation, and the 

update equation is based on a possibly overestimated maximum Q-value. [43] 

To address this, Double DQN utilizes two networks: one to choose the action and another to 

evaluate it, considerably lowering overestimation bias and increasing value estimation 

accuracy. 

9.1.16.1 The principle of the Double DQN algorithm: 

 The main neural network decides which of all the next best actions is available, and then 

the target neural network evaluates that action to find out its Q value. This technique solves 

the problem of overestimation in DQN 

In a simple way the main network picks the best action, but does not take its Q value. Instead 

the target network through that action selection its picks a Q value. 
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9.1.17 Difference between DQN and DDQN: 

9.1.17.1 DQN(Deep Q-Network): 

• The update of the Q function in the Deep Q-learning network is based on Bellman's 

equation for Q values: 

𝑸(𝒔, 𝒂;  𝜽)  ←  𝑸(𝒔, 𝒂;  𝜽)  +  𝜶 (𝒓 +  𝜸 𝒎𝒂𝒙_𝒂′ 𝑸(𝒔′, 𝒂′;  𝜽′)  −  𝑸(𝒔, 𝒂;  𝜽)) 

• Updating the network weights in the DQN is done by minimizing a loss function that 

measures the difference between the predicted Q values and the target values. The target 

values are calculated using Bellman's equation: 

𝒀 =    ( 𝒓 +   𝜸  𝒎𝒂𝒙𝒂’ 𝑸(𝒔′, 𝒂′;  𝜽′)) 

And the loss function is: 

𝑳 (𝜽)  =  [(𝒓 +  𝜸 𝒎𝒂𝒙𝒂′𝑸(𝒔′, 𝒂′;  𝜽′)  −  𝑸(𝒔, 𝒂;  𝜽)𝟐)] 

The gradient update is : 

𝜵𝜽𝑳(𝜽)  𝑬[(𝒓 +  𝜸 𝒎𝒂𝒙𝒂′𝑸(𝒔′, 𝒂′;  𝜽′) −  𝑸(𝒔, 𝒂;  𝜽 )) 𝜵𝜽 𝑸(𝒔, 𝒂;  𝜽 )] 

Using stochastic gradient descent (or variants like Adam), the network parameters are updated 

to minimize this loss: 

𝜽 ← 𝜽 − 𝜶𝜵𝜽𝑳(𝜽) 

9.1.17.2 DDQN:  Updating Q values in Double Q-Learning uses two Q networks, denoted 

𝑄1 𝑎𝑛𝑑 𝜃1: for main network  

𝑄2 𝑎𝑛𝑑 𝜃2: for target network  

• The update of the Q values is based on the following equation: 

𝑸𝟏(𝒔, 𝒂) ← 𝑸𝟏(𝒔, 𝒂) + 𝜶[𝒓 + 𝜸𝑸𝟐(𝒔’, 𝒂𝒓𝒈 𝒎𝒂𝒙𝒂 𝑸𝟏(𝒔’, 𝒂 ; 𝜽𝟏); 𝜽𝟐) − 𝑸𝟏(𝒔, 𝒂)] 

• The loss function in the DQN double algorithm: 

    𝑳 (𝜽 ) =   𝑬 [(𝒓 +  𝜸 𝑸𝟐 (𝒔’ , 𝒂𝒓𝒈 𝒎𝒂𝒙𝒂(𝒔’, 𝒂 ;  𝜽_𝟏  ). 𝜽_𝟐)  −  𝑸(𝒔, 𝒂;  𝜽 ))𝟐] 

 The value Q for action a in the state s 

• the immediate reward r plus the expected future reward, discounted by the discount factor 

• 𝑄1(𝑠, 𝑎; 𝜃1) is the value Q predicted by the main net for action a in the 𝑠𝑡𝑎𝑡𝑒 𝑠. 

• 𝑄2(𝑠’, 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎 𝑄1(𝑠’, 𝑎 ; 𝜃1). 𝜃2) is the target Q value, calculated from the second 

network and using the maximum action according to the predictions of the first network, in 

the following 𝑠𝑡𝑎𝑡𝑒 𝑠′. 
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• E: represents the mathematical expectation, i.e. the average over a set of experiment 

samples. 

The updates in the DQN and the Double DQN consist of adjusting the neural network weights 

by minimizing a loss function, but with a key difference in the calculation of the target values, 

which allows the Double DQN to reduce the overvaluation of the values 

Updates to the weights: 𝜽 ← 𝜽 − 𝜶𝜵𝜽[𝒀 − 𝑸(𝒔, 𝒂; 𝜽) 

 𝜽 ←  𝜽 −  𝜶 𝜵𝜽 [(𝒓 +  𝜸𝑸𝟐 (𝒔’ , 𝒂𝒓𝒈 𝒎𝒂𝒙𝒂 𝑸𝟏(𝒔’ , 𝒂 ;  𝜽 𝟏 ) ;  𝜽 𝟐)  −  (𝒔, 𝒂;  𝜽)] 

   𝒀 𝒊𝒔 𝑸 𝒕𝒂𝒓𝒈𝒆𝒕  (𝒓 + 𝜸𝑸𝟐(𝒔’ , 𝒂𝒓𝒈 𝒎𝒂𝒙𝒂 𝑸𝟏(𝒔’ , 𝒂 ;  𝜽 𝟏 ) ;  𝜽 𝟐) 

9.1.18 Double DQN Algorithm 

This algorithm has been shown to function effectively with huge state spaces, making it 

suitable for solving cache replacement policies [40]. 

• Initialization: 

Main network: This network will learn which cache items to evict, initialized with random 

weights. 

Target network: A copy of the main network, updated periodically. 

Replay buffer: a queue to stores past experiences (cache states, actions, rewards, next state). 

• Data collection: 

The agent interacts with the caching environment, which receives requests for data items 

based on a Zipf distribution. 

At each time step, the agent chooses a cache replacement action based on an exploration 

strategy (epsilon-greedy), observes the reward (cache hit or miss), and determines the new 

cache state. 

The replay memory will store the transition (current cache state, action taken, reward 

received, and next cache state). 

• Mini batch sampling :    

At regular intervals, the agent selects a random subset of transitions, called mini-batches, 

from the replay memory to update the core network settings. 

• Q target calculation: 

For each transition in the mini-batch, calculate the Q target as follows: 

a) Uses the mainnet to estimate the value of the optimal action for the new state. 

b) Uses the mainnet to select the optimal action for the new state.  

c) Uses the target network (a frozen copy of the mainnet) to estimate the value of this action. 
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• Loss function calculation  

• Weight update: 

a) Uses an optimization algorithm such as stochastic gradient descent to update mainnet 

weights. 

b) Periodically updates the target network weights by copying the primary network weights. 

• Repeat steps 2 through 6 for a fixed number of iterations or until convergence is reached. 

• Evaluation  

 Periodically evaluate the agent's performance by testing the learnt cache replacement 

policy without exploration (i.e., greedy decisions) to measure cache hit ratio and overall 

efficiency. 

• Termination: 

Stops training when desired performance is achieved or when the predefined number of 

iterations is completed.  

9.1.19 Conclusion 

This chapter gave a full review of cache replacement techniques in Named Data 

Networking (NDN), starting with standard policies and progressing to intelligent, learning-

based methods. Initially, we looked at traditional caching strategies like LRU and LFU, 

which, despite their simplicity and minimal computational overhead, struggle to adapt to 

dynamic and content-centric network environments like NDN. 

To address these challenges, we developed intelligent cache replacement methods based 

on reinforcement learning. The problem was initially formulated as a Markov Decision 

Process (MDP), which allowed cache decision-making to be modeled as a sequential, state-

dependent optimization process. Q-Learning, a foundational method in this domain, provided 

a simple but effective framework for learning optimum policies through trial-and-error 

interactions. 

Building on this, Deep Q-Networks (DQN) were used to handle enormous state spaces by 

approximating Q-values with neural networks.  DQN enhanced scalability and learning 

capabilities, but it suffered from Q-value overestimation.  This was significantly addressed by 

Double DQN, which divides action selection and assessment between two networks, resulting 

in more accurate and stable learning. 
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1. Introduction: 

This chapter discusses the design and implementation of intelligent caching methods in 

Named Data Networking (NDN) utilizing advanced deep reinforcement learning techniques. 

Building on the theoretical foundations discussed in the previous chapter, we now move on to 

the practical implementation of these models, with especially focused on the Dueling Deep Q-

Network (Dueling DQN) and the proposed enhanced architecture, which includes 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) units. 

The Dueling DQN framework refines the estimate of action values by dividing the Q-

function into two different components: the state-value function and the advantage function. 

This design allows the agent to learn which states are valuable regardless of specific actions, 

which is especially beneficial in caching situations where certain actions have little effect on 

the overall system state. 

To improve the model's ability to capture complex patterns in data requests, we propose 

an advanced Dueling DQN architecture that combines CNN layers for extracting spatial 

characteristics from the content request history with LSTM layers for learning temporal 

dependencies. This enhaced architecture  is intended to dynamically adapt to changing content 

popularity and user behavior, resulting in more informed and efficient cache replacement 

decisions. 

We describe the system design, which includes the network architecture, input and output 

representations, and hyperparameter settings. The training process adopts a Zipf-distributed 

request pattern to simulate realistic content access behavior in NDN. A replay buffer is 

utilized to save state transitions, while mini-batch sampling is used to provide steady learning. 

Finally, we provide the evaluation results, which compare the performance of the 

proposed enhaced model to baseline techniques such as classic cache replacement strategies 

and standard reinforcement learning strategies. Key performance characteristics such as cache 

hit ratio and latency, are examined to verify the proposed model's usefulness in optimizing 

caching decisions in an NDN environment. 

 

Our approach, detailed in the following section, aligns perfectly with this context. In 

simpler terms, it is designed based on the aforementioned notion, aiming to further enhance 

the caching performance and overall improve the network performance. 
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2. Theoretical background: 

2.1 Duel DQN(DDQN) 

The Dueling DQN architecture was developed by Ziyu Wang, Tom Schaul, Matteo 

Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas. This architecture was 

presented in their research paper titled "Dueling Network Architectures for Deep 

Reinforcement Learning," published in 2016. 

The proposed network architecture under the name dueling architecture, This approach 

distinguishes between state values and state-dependent action advantages. The dueling 

architecture is made up of two streams that represent the value and advantage functions, 

whereas sharing convolutional feature learning module [60]. 

 

Figure17 A popular single stream Q-network (top) and the dueling Q-network (bottom) 

The dueling network has two streams. 

The two streams are gathered using an aggregating layer to estimate the state-action value 

function Q, as shown in the Figure above. This dueling network is a single Q network with 

two streams, replacing the common one-stream Q network in existing algorithms, such as 

Deep Q-Networks (DQN; Mnih et al., 2015). Without any additional supervision, the dueling 

network automatically generates separate estimates of the state value function and advantage 

function. 
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2.2 Dueling architecture: 

The dueling  architecture may intuitively learns which states are valuable (or not), without 

needing to learn the impact for every action for every state. This is especially helpful in states 

where its actions do not affect the environment in any relevant way [60]. 

In dueling architecture, the action-value function 𝑄(𝑠, 𝑎) is decomposed into two parts: 

• The value of state 𝑉(𝑠) represents how valuable the 𝑠𝑡𝑎𝑡𝑒 𝑠 is, regardless of the chosen 

action. 

• The advantage of each action 𝐴(𝑠, 𝑎) represents how much better the action a is compared to 

the average of the actions in the 𝑠𝑡𝑎𝑡𝑒 𝑠. 

Similar to the original DQNs, the dueling network's lowest layers are convolutional (Mnih 

et al., 2015). However, utilize two sequences (or streams) of fully connected layers rather than 

one series of convolutional layers made up of single layers. The streams are designed in a way 

that allows them to provide distinct estimates of the value and advantage functions. 

Ultimately, a single output function is generated by combining the two streams. 

As in (Mnih et al., 2015), the output of the network is a set of Q values, one for each 

action. 

The dueling network can be trained using any of the numerous known techniques, 

including DDQN or Q-learning  , because its output is a Q function. Furthermore, it can take 

advantage of any enhancements to these algorithms, such as enhanced intrinsic motivation, 

better exploration rules, replay memories, and so forth. 

Very careful design is needed for the module that outputs a Q estimate by combining the 

two streams of completely connected layers. 

From the expressions for advantage 𝑄(𝑠, 𝑎)  =  𝑉 (𝑠)  +  𝐴(𝑠, 𝑎) and state value 𝑉(𝑠) =

 𝐸(𝑠)[𝑄(𝑠, 𝑎)] it follows that 𝐸 [𝐴(𝑠, 𝑎)]  =  0. Moreover, for a deterministic policy, 𝑎 ∗ =

 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠, 𝑎’), it follows that 𝑄(𝑠, 𝑎)  =  𝑉(𝑠) and hence 𝐴(𝑠, 𝑎)  =  0. 

 In previous figure, we have a dueling network with two streams of completely connected 

layers. One stream produces a 𝑠𝑐𝑎𝑙𝑎𝑟 𝑉 (𝑠; 𝜃, 𝛽), while the other stream produces 

𝑎 |𝐴| dimensional 𝑣𝑒𝑐𝑡𝑜𝑟 𝐴(𝑠, 𝑎;  𝜃, 𝛼). Here, θ stands for the convolutional layer parameters, 

and α and β for the two streams of fully-connected layers. 

We could be tempted to build the aggregating module in the manner shown below using the 

concept of advantage:  
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Q(s,a; θ, α, β) =V(s; θ ,β )+A(s, a; θ ,α ) 

Keep in mind that this expression is applicable to every occurrence of (𝑠, 𝑎); in other 

words, we must replicate the scalar, (𝑠; 𝜃, 𝛽 ), |𝐴| times in order to represent the equation 

above in matrix form. 

We must remember that 𝑄(𝑠, 𝑎;  𝜃, 𝛼, 𝛽) is only a parameterized estimate of the true Q-

function.  Furthermore, it would be wrong to claim that 𝐴(𝑠, 𝑎;  𝜃, 𝛼) offers a reasonable 

estimate of the advantage function or that 𝑉(𝑠; 𝜃, 𝛽) is a good estimator of the state-value 

function. 

The equation above is unidentifiable in the sense that given Q, we cannot retrieve V and A 

uniquely. To demonstrate, add a constant to 𝑉 (𝑠; 𝜃, 𝛽)  and subtract the same constant 

from(𝑠, 𝑎;  𝜃, 𝛼). This constant cancels out, giving in the same Q value. This lack of 

identifiability is reflected in poor practical performance when using this equation directly. 

To overcome the issue of identifiability, we can make the advantage function estimator have 

no (zero)advantage at the chosen action. That is, we let the last module of the network 

implement the forward mapping.  

𝑄(𝑠, 𝑎;  𝜃, 𝛼, 𝛽)  =  𝑉(𝑠;  𝜃 , 𝛽 ) + ( 𝐴(𝑠, 𝑎;  𝜃 , 𝛼 ) −  𝑎𝑟𝑔𝑚𝑎𝑥_𝑎′ 𝐴(𝑠, 𝑎’;  𝜃 , 𝛼 )) 

For 

𝒂 ∗=  𝒂𝒓𝒈𝒎𝒂𝒙𝒂 𝑨𝑸(𝒔, 𝒂′;  𝜽, 𝜶, 𝜷) =  𝒂𝒓𝒈𝒎𝒂𝒙 𝑨(𝒔, 𝒂;  𝜽, 𝜶),  

we get 

𝑸(𝒔, 𝒂 ∗;  𝜽, 𝜶, 𝜷)  =  𝑽(𝒔;  𝜽, 𝜷). 

The stream 𝑉(𝑠;  𝜃, 𝛽) provides an estimates the value function, whereas the other stream  

produce an estimates the advantage function. 

 An alternative module replaces the max operator with an average: 

𝑸(𝒔, 𝒂;  𝜽, 𝜶, 𝜷)  =  𝑽(𝒔;  𝜽 , 𝜷 ) + ( 𝑨(𝒔, 𝒂;  𝜽 , 𝜶 ) −
𝟏

|𝑨|
∑ 𝑨(𝒔, 𝒂’;  𝜽 , 𝜶 ))                           

  On the one hand, this loses the original semantics of V and A because they are now 

off-target by a constant, but on the other hand, it improves the optimization's stability: with 

(9) the advantages only need to change as fast as the mean, rather than having to compensate 

for any change in the optimal action's advantage in (8). Also tested a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 version of 

equation (8), but it produced identical results as the simpler module of equation (9). 
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  Note that, while subtracting the mean in equation (9) improves identifiability, it has no 

effect on the relative rank of the A (and hence Q) values, keeping any greedy or greedy policy 

based on Q values from equation (7). When acting, it is sufficient to evaluate the advantage 

stream before making decisions. 

  It is critical to note that equation (9) is seen and implemented as part of the network, 

rather than as a separate algorithmic step. Dueling designs, like typical Q networks (e.g., 

Mnih et al.'s deep Q-network), may be trained using simply back propagation. The 

estimations 𝑉(𝑠;  𝜃, 𝛽) and 𝐴(𝑠, 𝑎;  𝜃, 𝛼) are computed automatically, with no further 

supervision or algorithmic modifications. 

2.3 Convolutional Neural Network (CNN): 

CNN is a feed forward neural network (FNN) that includes an input layer, an output layer, 

and hidden layer, these hidden layers are represented by convolutional layers combined with 

pooling layer. The primary concept behind CNNs for numeric data involves applying 

convolution to local temporal windows of the input data, which enables the network to 

capture temporal patterns and dependencies within the data. CNNs perform well in 

recognizing capturing both local and global patterns in time series data, making them suitable 

for various like time series forecasting, anomaly detection, and other signal processing tasks. 

Even with their popularity and proved efficiency, CNNs designed for numeric data still 

struggle with issues such as missing data, as well as long-term dependencies. The 

development of more resilient and effective CNN designs has been the focus of recent 

research advancements. Examples of these include the WaveNet and Temporal Convolutional 

Network (TCN) models, it has produced encouraging results in a variety of 

applications.beside numerical data CNNs have been used to several data formats, including 

text and graphs, displaying their versatility and adaptability and promise to boost deep 

learning [63, 65]. 

CNNs are a strong tool for processing many types of data, and their continuing 

development and optimization have the potential to enhance the area of artificial intelligence 

and its applications in diverse domains [37]. 
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Figure 18 convolutional neural network (CNN) 

A typical CNN will include the following layers: input, convolution, ReLU, pooling, 

flattening  and fully connected layer. 

 

• Input: the input layer is where the data is fed into the network, each is represented as 

a grid of pixel values, and this layer is responsible for passing this information to the 

subsequent layers. Its represented as a matrix of pixels. 

• Convolutional: convolutional layers scan the input data using filters (kernels) known 

as a feature detector to detect patterns, It requires a few components, which are input data, a 

filter and a feature map. These layers utilize filters to smooth input signals and create feature 

maps for a dataset. These maps are activated using convolution with a kernel over the dataset. 

• Relu(Activation function-using layer): a layer that uses  the previous layer's output 

to activate its own output, also known as a rectified linear unit layer. RELU adds non-linearity 

to the network in a unique way. 

• Polling: also known as down sampling, does dimensionality reduction, which reduces 

the amount of parameters in the input. The pooling process, like the convolutional layer, 

sweeps a filter across the whole input; however, this filter has no weights. Instead, the kernel 

uses an aggregation function on the values in the receptive field to populate the output array. 

While the pooling layer loses a lot of information, it also provides some benefits to the CNN. 

They assist to minimize complexity, increase efficiency, and lessen the danger of overfitting. 

 

• Flattening: Once the feature has been extracted, the data is converted into a vector 

and passed through fully connected layers for classification. 
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• Fully connected layer: This layer may be called the "output" layer, it provides the 

final prediction using a Softmax function for classification tasks. 

2.4 Long Short Term Memory (LSTM): 

LSTM, a form of recurrent neural networks (RNN), is a popular deep learning technique [65]. 

have many interconnected layers, although interactions between the four levels differ. The 

LSTM model has memory cells, which are controlled by gates. There are three different sorts 

of entry gates (input gate, output gate, and forget gate). These gates are used to alter data in an 

LSTM, a fixed amount of training data can be saved in the memory module.  Cell state 

memory enables LSTM to recollect long-term dependencies [63]. Cell state memory is the 

memory unit that enables LSTM to recall long-term dependencies. There are three major 

types of gates: the forget gate, the input gate, and the output gate [66].  

The memory cell remembers values across various time periods. The three gates accept and 

reject information that passes through the cell. The forget gate in Figure determines which 

information will be remembered from the previous cell state (Ct−1). This choice is made 

using the sigmoid activation function (σ). This sigmoid's output is f(t). If the output value is 1, 

the data is entered into the model; otherwise, if its 0, the data will not be passed through it this 

sigmoid's input is the current input (xt) and the prior hidden state (ht-1). The input gate 

decides what novel information will be stored in the current cell state Ct [64]. 

 

Figure 19 long short term memory (LSTM) [64] 

 

• Hidden State An LSTM layer’s output, known as the hidden state, is utilized as input 

in the next layer. To indicate how much of each piece should be sent, the sigmoid layer 

produces values between 0 and 1. The Tanh layer generates new state-enhancing vectors [63].      

                                   

ℎ𝑡 =  𝑜𝑡  ·  𝑡𝑎𝑛ℎ(𝑐𝑡) 
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• Forget gate: The information that is no longer useful in the cell state is removed with the 

forget gate. Two inputs x_t (input at the particular time) and h_t-1 (previous cell output) are 

fed to the gate and multiplied with weight matrices followed by the addition of bias. The 

resultant is passed through an activation function which gives a binary output. If for a 

particular cell state, the output is 0, the piece of information is forgotten and for output 1, the 

information is retained for future use. 

𝑓𝑡  =  𝜎 (𝑊𝑓  ·  [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑓 ) 

• Input gate: Decides which new information should be added to the cell state. 

𝑖𝑡  =  𝜎 (𝑊𝑖  ·  [ℎ𝑡 − 1, 𝑥𝑇]  +  𝑏𝐼) 

• Output gate:   Determines what information from the current cell state should be outputted. 

𝑜𝑇  =  𝜎 (𝑊𝑂  ·  [ℎ𝑇 − 1, 𝑥𝑇]  +  𝑏𝑂) 

2.5 Proposed Model  

This part provides a detailed description of the proposed model and algorithm, as well as a 

discussion of the research process that led to its development. 

 

 

 

                  Figure 20 the proposed advanced duel DQN MODEL Architecture  

 

2.6 Problem identification: 

While Dueling Deep Q-Networks (Dueling DQN) have been shown to improve the 

stability and performance of reinforcement learning agents by decoupling the estimation of 

state values and action advantages, this architecture has significant limitations when used for 

cache replacement in dynamic networking environments such as Named Data Networking 

(NDN). Specifically, the Dueling DQN architecture lacks the capacity to detect temporal 
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relationships in content request patterns, which is critical for making informed caching 

decisions. 

In real-world situations, user requests do not occur at random but rather follow temporal 

trends—some content becomes popular for short periods of time (temporal locality), while 

others stay commonly requested throughout time. The Dueling DQN, which processes each 

state individually, inherently lacks memory and cannot distinguish time-dependent behaviors. 

As a result, it may struggle to generalize across changing access patterns and cannot fully 

exploit the sequential structure of cache request streams. 

To address these challenges, we add long-short term memory (LSTM) layer to the 

designed architecture, the LSTM is especially added to represent long-term temporal 

correlations in in sequential data. By integrating LSTM with the Dueling DQN, the model has 

the capacity to remember and learn from previous request patterns, which improves its 

knowledge of when certain content is likely to be reused. This temporal modeling capacity 

improves the agent's policy, allowing it to make more precise and adaptable cache 

replacement decisions. 

 

The resulting hybrid model, CNN-LSTM + Dueling DQN, uses CNN for local feature 

extraction (e.g., spatial patterns in content features) and LSTM for temporal pattern 

recognition, making it more suited to the complex, time-varying needs of real-world NDN 

caching systems.  

2.7 research methodology 

As noted the proposed hybrid architecture aims to improve the performance of duel DQN 

that removes content based on certain features from the cache when it rich the fill up point in 

order to make room for the new data. This architecture leverage the strengths of both the 

convolutional neural network (CNN) and long-short term memory (LSTM) while combined 

within the duel architecture to address the challenge of cache replacement in named data 

networking (NDN). This model is designed to capture both spatial and temporal dependencies 

in content request patterns and make a solid and adaptive replacement decisions in dynamic 

environment. Content request sequences are generated according to a Zipf distribution as a 

reference model to represent the pattern of the consumer’s requests [68]. 
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2.8 Zipf distribution  

Many studies from past year suggests that Zipf’s distribution  accurately represent the 

request frequency of contents, in several scenarios such as  web,video on demand (VoD), and 

user generate content (UGC) in intermediate routers, in terms of cache dimensions and hit 

ration.  ISPs employ caching to swiftly provide the users' request for web content by copying 

and storing frequently requested files "near" consumers on the network.  However, the 

success of caching is strongly reliant on Zipf's law [68]. 

Zipf's law says that the frequency of a word in a corpus of natural language utterances is 

inversely proportional to its rank in the frequency table (i.e., the smaller the rank, the greater 

the request frequency).so the most frequent word will appear approximately twice as often as 

the second most frequent word, and three times as often as the third most frequent word. For 

example in the brown corpus of American English text, the word “The” is the most 

common(7% of all words), followed by “of” (3,5%) and then “and”(2.8%), etc [40]. Zipf's 

parameter, α, has a significant impact on how well the network caches content. The 

probability of requesting the content with rank i can be written as follows, assuming that M 

represents the content catalog cordiality and 1 ≤ i ≤ M represents the rank of the i-th most 

popular content. 

The probability of requesting the content with rank i expressed as: 

𝑷(𝑿 = 𝒊) =  
𝟏/𝒊𝒂

∑ 𝟏/𝒋𝒂
 =  

𝟏/𝒊𝒂

𝑪
 

• M the total number of unique contents (catalog size). 

With 𝑪 = ∑ 𝟏/𝒋𝒂, the normalization constant to make sure the total probability sums 

to 1. The skewness of content requests, which is controlled by α, has a significant impact on 

how well caching methods work. User requests become more focused on the most popular 

contents as α rises. For instance, when α = 1.2, around 2500 products in a catalog of 100,000 

items represent 95% of all requests. However, this quantity drastically decreases to barely 700 

items as α rises to 1.4. This shows that caching efficacy is significantly impacted by even 

small changes in α. A larger α indicates a more skewed distribution, meaning that less content 

is required in cache to fulfill most user requests. As a result, Zipf's law provides a basis for 

modeling and assessing cache replacement tactics in contemporary content-centric networks 

in addition to supporting the need for caching in intermediate routers [71]. 
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2.9 Hyperparameter tuning 

In the implementation of the proposed CNN-LSTM integrated with the duel architecture, 

crucial hyper parameters were carefuly selected and tuned to ensure an optimal performance 

in the context of intelligent cache replacement in named data networking (NDN),the learning 

rate was set to 0,001, allowing the optimizer to update weights with a balanced pace of 

convergence. We used the Adam optimizer, known for its adaptive learning capabilities. A 

batch size of 64. the model was trained over 1000 episode, the zipf distribution is chosen to be 

1, The batch size for each update is 10. 

Three convolutional layers are used with 32, 64and 128 filters  in sequence, utilizing 

kernel 3x3, which captures local spatial correlations among content request features. Also, the 

LSTM component has 1units with 2 hidden layers, allowing it to capture longer temporal 

dependencies in the request sequences. A 0, 2 dropout rate was used after the LSTM layer to 

overfitting, by randomly turning off some of the neurons during training. In this case, the 

other the ReLU activation function was used in the CNN layers for non-linearity as well as for 

minimizing the residual gradient flow to the CNN layers while, in the LSTM, tanh was used 

to output sequential dependencies within bounded outputs. The outputted Q values were 

calculated through the dueling architecture which separates the estimate of state value from 

the action-advantage estimations. 

A buffer of size 10000 was utilized to stabilize learning and enhance generalization, 

enabling the agent to learn from previously stored transitions drawn from random samples. A 

target network was updated at a slower rate to decouple the target Q-value computation from 

the online learning updates. An epsilon greedy exploration-exploitation mechanism was 

employed for managing the trade-off, where it decayed from 1 to 0, 01 throughout the period.  

All hyper-parameters were experimentally fine-tuned using validation-based performance 

analysis, with a focus on cache hit ratio, convergence stability, and latency reduction. This 

tuning approach considerably improved the model's capacity to respond to dynamic content 

request patterns while also increasing cache efficiency. 

2.10 Proposed dueling DQN Model  

In the research we present an intelligent cache replacement strategy for Named data 

networking (NDN), the strategy is based on a Dueling Deep Q-network where content 

requests are generated using Zipf distribution to accurately reflect real-world content 

popularity in which a small subset of content  is requested more frequently than the rest. Our 

model processes recent request histories by encoding each item as a one-hot vector and 
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stacking the latest requests into a matrix. This matrix is fed into three 1D Convolutional 

Neural Network (CNN) layers, where convolutional filters slide along the item dimension to 

extract local patterns—such as repeated requests or frequent item co-occurrences. The feature 

maps from each layer undergo ReLU activation and max pooling to highlight key features and 

reducing dimensionality. The CNN stack collects abstract spatial characteristics, resulting in 

compressed key access patterns. 

The spatially compressed output is reshaped and fed into an LSTM network, which 

processes the CNN-derived vectors one step at a time.  At each step, the LSTM changes its 

hidden and cell states using gating mechanisms that regulate the flow of incoming input, 

retained memory, and output.  For instance, the CNN can recall a rapid rise in demand for a 

certain item by changing the internal state of the LSTM, while discarding irrelevant input.  As 

the sequence proceeds, the LSTM learns about short-term variations and long-term patterns, 

such as progressive rises in item popularity or periodic demand cycles. 

The LSTM's final hidden state captures the temporal dynamics of the whole sequence, 

providing a high-level summary for decision-making. This representation is sent into the 

DQN's dueling streams, which individually assess the state value and advantage of a 

prospective action. These components are combined to provide Q-values that inform cache 

replacement decisions. This architecture separates between value and advantage stream, 

where Stability and robustness are enhanced, especially when various actions provide 

comparable results. By utilizing reinforcement learning in conjunction with an experience 

replay buffer, which stores previous transitions, and enables training on diverse, uncorrelated 

samples. 

Our system learns to dynamically modify its cache replacement strategy by combining 

CNN-based spatial pattern recognition, LSTM-based temporal learning, and the battling DQN 

architecture. It is particularly well-suited for content-centric networks such as NDN as it 

efficiently optimizes cache hit rates in non-uniform and time-varying request contexts. 

 

 

 

 

 



Chapter-III-     Modeling and interpretation   

62 

2.11 Experimental Results and Analysis 

Here, 

2.11.1 Evaluation Metrics 

Evaluation measures are used to assess NDN-based caching and networking performance 

[72]. According to the relevant research, the most essential measures have been established 

and utilized to assess the quality of caching performance. This work considers the following 

performance measures: 

• Cache hit ratio (content hit ratio): The core parameter for evaluating NDN cache 

performance is the rate of requests fulfilled by all caches in the network that store content 

locally for a set amount of time [73,74]. 

𝑪𝑯𝒊𝒕_𝑹𝒂𝒕𝒊𝒐  =   
𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒂𝒄𝒉𝒆 𝒉𝒊𝒕𝒔 

𝒕𝒐𝒕𝒂𝒍 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕 
  

 

• Latency: Latency refers to the overall time it takes to process a content request and return 

the related data to the user. It is an important performance metric for network systems. Lower 

latency means faster content delivery, which enhances the user experience dramatically. 

• Average delay (A_Delay): Is the average time it takes for a consumer to obtain the content 

after submitting a related interest [52]. 

𝐴𝐷𝑒𝑙𝑎𝑦 =  
𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠
 

•        Network traffic (Net-traffic): This represent the total number of interest and data 

packets received across all routers [52]. 

𝑁𝑒𝑡_𝑇𝑟𝑎𝑓𝑓𝑖𝑐 =  (𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠 +  𝑑𝑎𝑡𝑎) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑟𝑜𝑢𝑡𝑒𝑟𝑠 

2.11.2 Results  

This section provides experimental outcomes of our suggested deep reinforcement 

learning-based cache replacement approach in the context of Named Data Networking 

(NDN). Our main goal is to assess the suggested model's performance and adaptability, where 

Key performance metrics such cache hit ratio, average latency, network traffic and producers' 

load are the main focus of evaluation. To demonstrate the benefits of our suggested approach, 

the outcomes are examined in relation to traditional cache replacement techniques. 
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                                 Figure 21  Hit Ratio Comparison across Models 

The bar chart compares cache hit ratios produced by various cache replacement 

algorithms. The x-axis displays the tested algorithms, which include classical approaches like 

LRU (Least Recently Used), LFU (Least Frequently Used), and FIFO (First-In-First-Out), as 

well as reinforcement learning-based techniques like Q-Learning, DQL (Deep Q-Learning), 

DDQL (Double Deep Q-Learning), Dueling DQN, and Dueling DQN CNN+LSTM. The y-

axis represents the hit ratio, which is the percentage of cache requests successfully supplied 

from the cache.  

The results indicate that traditional policies like LRU, LFU, and FIFO have moderate hit 

rates, ranging from 0.61 to 0.67. Reinforcement learning-based strategies have a distinct edge, 

with Q-Learning obtaining a hit ratio of 0.70, followed by Deep Q-Learning (DQL) and 

Double Deep Q-Learning (DDQL) at around 0.72 and 0.74, respectively. Notably, the 

Dueling DQN architecture and its upgraded form, which combines CNN and LSTM 

processes, have the greatest hit ratios, topping 0.78 and nearing 0.80. This demonstrates the 

models' capacity to learn and generalize effective cache replacement techniques, resulting in 

improved content delivery performance. 

 

         Figure 22 Average Latency Comparison of Cache Replacement Policies 
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The bar chart "Average Latency Comparison" depicts the average response latency for 

each cache replacement strategy (in seconds). The x-axis displays the assessed techniques, 

which include both classical (LRU, LFU, FIFO) and reinforcement learning-based algorithms 

(Q-Learning, DQL, DDQL, Dueling DQN, Dueling DQN CNN+LSTM). The y-axis shows 

the average latency in seconds.  

As seen, traditional policies such as Least Recently Used (LRU), Least Frequently Used 

(LFU), and First-In-First-Out (FIFO) have greater latency values, with FIFO reaching roughly 

0.48 seconds. In contrast, reinforcement learning approaches show significant progress in 

latency reduction. Q-Learning has a latency of around 0.38 seconds, although Deep Q-

Learning (DQL), Double Deep Q-Learning (DDQL), and Dueling DQN all improve 

performance. Notably, the Dueling DQN coupled with a CNN-LSTM architecture has the 

lowest latency, at 0.17 seconds, demonstrating the efficiency of deep reinforcement learning 

combined with temporal and spatial feature extraction in reducing network response time. 

 

  Figure 23 Network Traffic Comparaison between tradition policies and RL approaches  

The bar chart named compares the amount of cache misses recorded by different cache 

replacement algorithms and reinforcement learning-based approaches. The x-axis shows the 

evaluated algorithms, which include traditional methods like LRU (Least Recently Used), 

LFU (Least Frequently Used), and FIFO (First-In-First-Out), as well as advanced 

reinforcement learning techniques like Q-Learning, DQL (Deep Q-Learning), DDQL (Double 

Deep Q-Learning), Dueling DQN, and Dueling DQN CNN+LSTM. The y-axis shows the 

total number of cache misses detected for each approach. 

The results show that traditional algorithms (LRU, LFU, and FIFO) have a larger amount 

of cache misses, with FIFO doing the worst. of contrast, reinforcement learning-based 

approaches show a steady reduction of cache misses, with the Dueling DQN CNN+LSTM 
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approach obtaining the lowest value. This trend demonstrates the higher effectiveness of deep 

reinforcement learning models in improving cache management and reducing network traffic. 

Overall, the figure clearly shows the performance gap between traditional and learning-based 

policies, highlighting the potential of sophisticated neural architectures to improve cache 

replacement policies in network contexts. This graphic demonstrates the efficacy of 

incorporating deep learning techniques to significantly increase network resource 

consumption. 

TABLE: Detailed Comparison Results 

Model Hit-Ratio Avg-Latency     Network-Traffic        Time Execution 

LRU 0.6500 0.4500 3500 4503.00s 

LFU 0.6800 0.4200 3200 7451.00s 

FIFO 0.6200 0.4800 3800 3009.00s 

Q-Learning 0.7150 0.3850 3423 7890.00s 

DQL 0.7287 0.2713 2800 47001.00s 

DDQL 0.7501 0.2499 2500 67009.00s 

Dueling DQN 0.7809 0.2191 2200 950767.00s 

Dueling DQN 

CNN+LSTM 

0.8256 0.1744 1800 1804000.00s 

 

Conclusion 

This chapter presents a hybrid deep reinforcement learning model that combines CNN, 

LSTM, and the Dueling Deep Q-Network (Dueling DQN) architecture.  The model was 

created to solve constraints in traditional caching methods by simultaneously capturing 

geographical and temporal correlations in content request patterns. 
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Extensive simulations using Zipf-distributed request sequences showed that the proposed 

CNN-LSTM Dueling DQN architecture outperformed both classic policies (LRU, LFU, 

FIFO) and standard reinforcement learning models (Q-learning, DQN, DDQN).  Evaluation 

parameters such as cache hit ratio, latency, and network traffic show that the hybrid 

architecture significantly improves efficiency and flexibility under dynamic request settings. 

These results support the efficiency of mixing spatial and temporal deep learning 

approaches inside reinforcement learning frameworks to control caching in content-centric 

networks.  Future research might concentrate on real-world installations, scaling to bigger 

topologies, and using content popularity prediction algorithms to increase caching 

performance even more. 
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1. General conclusion: 

The NDN concept represents a dramatic shift in network design, altering how data is 

transmitted and retrieved. Unlike typical IP-based networks, NDN focuses on content, making 

information distribution more efficient and secure. 

Caching plays a critical role in named data networking (NDN) routers, where it stores 

temporarily copies of data, reducing the need to retrieve it from the original source. However 

due to the limited cache size, a robust cache replacement policies are important for decision 

making about which data to remove from the cache when it reaches the fill up point. 

In this work, reinforcement learning is employed to try to enhance cache replacement policies. 

The problem of cache replacement policy is given as a partially known Markov decision 

process. Recent state-of-the-art-deep reinforcement learning were investigated, several 

approaches were used including value-based algorithms starting with Q-learning, then the 

integration of deep learning with Q-learning (DQN), and double deep Q-learning. 

In addition to reinforcement learning, an advanced model was used as a novel approach to 

improve standard dueling DQN algorithm. The algorithm is supplemented with CNN and 

LSTM. CNNs help the model uncover spatial connections in content request distributions, 

whereas LSTMs capture temporal relationships across time. Implemented and evaluated with 

the baseline policies, these two factors appear to suggest that the method provided here might 

yield even better outcomes with more research on more difficult cache problems. The 

suggested model beats standard techniques in terms of cache hit ratio, latency reduction, and 

flexibility to dynamic traffic. 

This study demonstrates the potential for merging deep learning with NDN to develop 

smarter, more efficient network systems. The algorithms show greater performance compared 

to baselines as the problem gets more complex. The model was meant to simulate real world 

problems, although performance should be examined in real-world scenarios.  For future 

research the methods and techniques discussed here should be expanded upon and 

investigated in actual database cache systems.  
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