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Abstract
The recitation of the Quran holds immense spiritual, cultural, and educational impor-
tance within the Muslim world. Among the various modes of recitation, the Warsh
style is notably prevalent in North Africa, particularly in Algeria, Morocco, and Tunisia.
Accurate recitation requires mastery of the complex rules of Tajweed, which govern pro-
nunciation, articulation, and rhythm. However, assessing the correctness of recitation
remains largely dependent on human experts, posing challenges in terms of accessibility,
scalability, and objectivity.

In recent years, advancements in deep learning and automatic speech recognition
(ASR) have opened new possibilities for developing intelligent systems that can analyze
and evaluate Quranic recitation. Despite progress in Arabic ASR, few works have ad-
dressed the specificity of Quranic recitation, particularly the Warsh style, which presents
unique phonetic and prosodic characteristics.

This research aims to bridge that gap by proposing a multi-faceted system for the
recognition and evaluation of Quranic recitation in the Warsh style using ensemble learn-
ing and attention-based deep neural networks. The work is structured around three major
contributions:

The design of an ensemble deep learning model combining CNN, LSTM, and GRU
architectures for Tajweed classification, achieving robust results in multi-class audio clas-
sification. The integration of attention mechanisms into the models, significantly improv-
ing performance by allowing the networks to focus on relevant temporal patterns in the
recitation audio. The construction of a specialized and annotated dataset containing over
1,200 recitations in Warsh style, collected from Algerian participants with varying levels
of expertise, and supported by a Streamlit platform to facilitate collaboration between
Quranic experts and machine learning practitioners. This work not only contributes a
novel dataset and high-performing models but also lays the groundwork for educational
applications that can assist learners in improving their recitation. The long-term vision
is to complete the dataset to include the full Quran in Warsh recitation, enabling the
development of a comprehensive, real-time evaluation system capable of providing feed-
back and correction based on audio input, bringing Quranic learning closer to everyone,
regardless of their geographic or social context. Keywords: Quranic recitation, Warsh
style, Tajweed, deep learning, speech recognition.

Résumé
La récitation du Coran revêt une importance spirituelle, culturelle et éducative immense
dans le monde musulman. Parmi les différents modes de récitation, le style Warsh est par-
ticulièrement répandu en Afrique du Nord, notamment en Algérie, au Maroc et en Tunisie.
Une récitation correcte exige la maîtrise des règles complexes du Tajwid, qui régissent
la prononciation, l’articulation et le rythme. Toutefois, l’évaluation de la récitation
reste largement dépendante d’experts humains, ce qui pose des problèmes d’accessibilité,
d’évolutivité et d’objectivité.

Ces dernières années, les progrès en apprentissage profond et en reconnaissance au-
tomatique de la parole (ASR) ont ouvert de nouvelles possibilités pour le développement
de systèmes intelligents capables d’analyser et d’évaluer la récitation coranique. Malgré
les avancées dans l’ASR arabe, peu de travaux ont abordé les spécificités de la récitation
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coranique, notamment le style Warsh, qui présente des caractéristiques phonétiques et
prosodiques uniques.

Cette recherche vise à combler cette lacune en proposant un système multifacette
pour la reconnaissance et l’évaluation de la récitation du Coran en style Warsh, basé
sur l’apprentissage par ensemble et les réseaux neuronaux profonds avec mécanismes
d’attention. Le travail s’articule autour de trois contributions majeures :

La conception d’un modèle d’apprentissage profond en ensemble combinant les archi-
tectures CNN, LSTM et GRU pour la classification du Tajwid, obtenant des résultats
robustes en classification audio multiclasses.

L’intégration de mécanismes d’attention dans les modèles, améliorant significative-
ment les performances en permettant aux réseaux de se concentrer sur les motifs tem-
porels pertinents dans l’audio de récitation.

La constitution d’un ensemble de données spécialisé et annoté contenant plus de 1
200 récitations en style Warsh, recueillies auprès de participants algériens de différents
niveaux, et supporté par une plateforme Streamlit facilitant la collaboration entre experts
du Coran et praticiens de l’apprentissage automatique.

Ce travail apporte non seulement un nouvel ensemble de données et des modèles
performants, mais il pose également les bases d’applications éducatives pouvant aider les
apprenants à améliorer leur récitation. L’objectif à long terme est de compléter le corpus
pour couvrir l’ensemble du Coran en style Warsh, permettant le développement d’un
système d’évaluation complet et en temps réel fournissant des retours et des corrections à
partir de l’audio, rapprochant ainsi l’apprentissage du Coran de chacun, indépendamment
du contexte géographique ou social.

Mots-clés : Récitation coranique, style Warsh, Tajwid, apprentissage profond, re-
connaissance vocale.
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Introduction
The recitation of the Quran holds immense spiritual, cultural, and educational importance
within the Muslim world. Among the various modes of recitation, the Warsh style is no-
tably prevalent in North Africa, particularly in Algeria, Morocco, and Tunisia. Accurate
recitation requires mastery of the complex rules of Tajweed, which govern pronunciation,
articulation, and rhythm. However, assessing the correctness of recitation remains largely
dependent on human experts, posing challenges in terms of accessibility, scalability, and
objectivity.

In recent years, advancements in deep learning and automatic speech recognition
(ASR) have opened new possibilities for developing intelligent systems that can an-
alyze and evaluate Quranic recitation. Despite progress in Arabic ASR, few works
have addressed the specificity of Quranic recitation—particularly the Warsh style—which
presents unique phonetic and prosodic characteristics.

This research aims to bridge that gap by proposing a multi-faceted system for the
recognition and evaluation of Quranic recitation in the Warsh style using ensemble learn-
ing and attention-based deep neural networks. Our work is structured around three major
contributions:

• The design of an ensemble deep learning model combining CNN, LSTM, and GRU
architectures for Tajweed classification, achieving robust results in multi-class audio
classification.

• The integration of attention mechanisms into the models, significantly improving
performance by allowing the networks to focus on relevant temporal patterns in the
recitation audio.

• The construction of a specialized and annotated dataset containing over 1,200
recitations in Warsh style, collected from Algerian participants with varying lev-
els of expertise, and supported by a Streamlit platform to facilitate collaboration
between Quranic experts and machine learning practitioners.

This work not only contributes a novel dataset and high-performing models, but also
lays the groundwork for educational applications that can assist learners in improving
their recitation. Our long-term vision is to complete the dataset to include the full Quran
in Warsh recitation, enabling the development of a comprehensive, real-time evaluation
system capable of providing feedback and correction based on audio input—bringing
Quranic learning closer to everyone, regardless of their geographic or social context.
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State of the Art

1.1 Introduction
The intersection of ancient Quranic recitation practices and modern speech recognition
technology presents a fascinating yet challenging domain of study. This chapter exam-
ines the rich tradition of Quranic recitation with its complex Tajweed rules and diverse
canonical styles (Qira’at), each with unique phonetic features passed down through spe-
cific narrators. As digital technology advances, there’s growing interest in developing au-
tomatic speech recognition (ASR) systems capable of accurately processing these recita-
tions, though the distinctive pronunciation patterns, regional variations, and melodic
characteristics create significant technical hurdles that standard ASR approaches strug-
gle to overcome.

1.2 Speech Recognition
1.2.1 Definition of Speech Recognition
Speech recognition, commonly referred to as Automatic Speech Recognition (ASR), is a
technology that enables computers to interpret and transcribe human speech into text [5].
At its core, speech recognition involves capturing spoken language through a microphone
or other audio input, analyzing the sound waves, and converting them into a digital format
that machines can process. This conversion allows ASR systems to recognize individual
words, and sentences, making it possible for computers to understand and respond to
human language [6].

ASR technology works by breaking down audio signals into smaller parts, called acous-
tic features, which capture the unique characteristics of human speech. These features are
then compared to patterns in a database to identify the corresponding words. ASR sys-
tems use models and algorithms trained on vast amounts of spoken data, allowing them
to recognize a wide range of speech characteristics, from different accents and dialects to
various speaking speeds and intonations. [7].

The applications of ASR are broad and impactful. Voice-activated digital assistants,
such as Apple’s Siri, Amazon’s Alexa, and Google Assistant, rely on ASR to enable
hands-free operation, letting users perform tasks through spoken commands. Speech
recognition is also widely used in transcription services, allowing spoken content like
meetings, lectures, and interviews to be automatically transcribed into text. Addition-
ally, ASR plays a key role in accessibility, providing people with disabilities a way to
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interact with technology more naturally [8]. This technology has become essential for
many modern devices and services, fostering a seamless connection between humans and
computers through natural language interaction.

1.2.2 Process Steps
The speech recognition process consists of several critical steps, each contributing to the
overall effectiveness of the system. These steps are detailed below:

1. Feature Extraction Feature extraction is the first critical step in speech recogni-
tion, where raw audio signals are transformed into a set of features that can be effectively
used for recognition. This transformation typically includes preprocessing the audio to
remove noise and enhance signal quality, followed by applying techniques such as Short-
Time Fourier Transform (STFT) to analyze the frequency content over time [9].

The most common features used in speech recognition are Mel-Frequency Cepstral
Coefficients (MFCCs), which represent the short-term power spectrum of sound. MFCCs
are designed to capture the characteristics of human speech perception, focusing on fre-
quencies that are more relevant to human hearing. The extraction process usually yields
a feature vector for each frame of audio, summarizing the key information needed for
further analysis [10].

2. Acoustic Modeling Once features are extracted, the next step is acoustic model-
ing, which involves creating statistical models to represent the relationship between the
extracted features and the corresponding phonetic units in speech (e.g., phonemes or
sub-phonemes). Acoustic models typically utilize techniques like Hidden Markov Models
(HMMs) or neural networks to capture the temporal dynamics of speech.

Acoustic models are trained using large datasets of audio recordings paired with their
corresponding transcriptions. The quality and quantity of training data significantly
impact the model’s ability to generalize to unseen speech, making it a crucial consideration
in the development of effective speech recognition systems [11].

3. Decoding The decoding step is where the recognition happens. In this phase, the
acoustic model is applied to the features extracted from the input audio signal to identify
the most likely sequence of phonetic units. This process involves searching through the
vast space of possible word sequences and their corresponding acoustic representations.

Decoding typically employs algorithms like the Viterbi algorithm, which finds the
most probable path through the state space defined by the HMMs, or other sophisticated
beam search algorithms that optimize computational efficiency while exploring candidate
sequences. The output of the decoding process is a sequence of recognized phonetic units,
which may need to be further processed into actual words [12].

4. Text Interpretation The final step in the speech recognition process is text in-
terpretation, where the phonetic output is converted into readable text. This step often
involves language modeling, which helps improve the accuracy of word recognition by
considering the context in which words are used.

Language models use statistical or neural approaches to predict the likelihood of
sequences of words, thereby assisting in resolving ambiguities that arise from homophones
(words that sound the same but have different meanings). The most common language
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models include n-gram models, which predict the probability of a word based on the
previous n− 1 words, and more sophisticated models based on neural networks, such as
Long Short-Term Memory (LSTM) networks or Transformer-based architectures [13].

In this final phase, the recognized words are assembled into sentences, and additional
processing may be applied for tasks such as punctuation insertion and context-based
adjustments. This step ensures that the output text is coherent and semantically mean-
ingful [14].

Figure 1.1: The four key steps in the speech recognition process

1.2.3 Representation of the Vocal Signal
In speech recognition, the representation of vocal signals is fundamental for transforming
raw audio signals into a format suitable for processing by algorithms. Two key methods
of representing vocal signals are spectrograms and cepstral coefficients, particularly
the Mel-Frequency Cepstral Coefficients (MFCCs).

1. Spectrograms

Definition: A spectrogram is a visual representation of the frequency spectrum of a
signal as it changes over time. It illustrates how the power of various frequency compo-
nents of the audio signal is distributed throughout its duration.

Mathematical Foundation: To create a spectrogram, the audio signal is divided
into overlapping segments (frames), and the Short-Time Fourier Transform (STFT) is
applied to each frame. Mathematically, the STFT is defined as:

STFT{x(t)} = X(m,ω) =

∫ ∞

−∞
x(t)w(t−m)e−jωtdt (1.1)

Where:

• x(t) is the input signal,

• w(t) is a window function,
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• m represents the time index (frame),

• ω is the angular frequency.

After computing the STFT, the magnitude spectrum is taken to form the spectrogram,
which is then displayed in a 2D plot, showing time on the x-axis, frequency on the y-axis,
and the magnitude (or power) of frequencies represented by color intensity.

Characteristics:

• Time Resolution vs. Frequency Resolution: The choice of frame size and
overlap directly affects the time and frequency resolution. Short frames provide
better time resolution but poorer frequency content, while long frames improve
frequency resolution but blur temporal details.

• Windowing Functions: Commonly used window functions include Hanning and
Hamming windows, which smooth the edges of each frame to minimize discontinu-
ities.

Applications:

• Phonetics: Spectrograms are extensively used in phonetics to analyze speech
sounds, allowing researchers to observe phonetic characteristics such as formants
(resonant frequencies in the human vocal tract), pitch variations, and speech pat-
terns [14].

• Feature Extraction: They serve as inputs for machine learning models in speech
recognition, encapsulating detailed temporal and spectral information about the
speech signal [10].

2. Cepstral Coefficients

Definition: Cepstral coefficients are derived from the power spectrum of a signal and
are particularly effective in representing the characteristics of human speech. The most
common type, the Mel-Frequency Cepstral Coefficients (MFCCs), emphasizes perceptu-
ally relevant features.

Mathematical Foundation: The computation of MFCCs involves several steps:

1. Pre-emphasis: A high-pass filter is applied to the audio signal to amplify high
frequencies:

y(t) = x(t)− αx(t− 1) (1.2)
Where α is typically set to 0.95.

2. Frame Blocking and Windowing: The signal is divided into frames and a
window function is applied.

3. Fourier Transform: The Fast Fourier Transform (FFT) is computed for each
frame to obtain the magnitude spectrum.

4. Mel Filter Bank: The magnitude spectrum is filtered through a set of triangular
filters that mimic human auditory perception. The Mel scale is a perceptual scale
of pitches that approximates human hearing.
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5. Logarithm: The logarithm of the Mel spectrum is taken.

6. DCT: Finally, the Discrete Cosine Transform (DCT) is applied to decorrelate the
coefficients:

ck =
N−1∑
n=0

log(meln) cos
[
πk

N

(
n+

1

2

)]
(1.3)

Where:

• meln is the n-th Mel-filtered coefficient,

• ck are the resulting cepstral coefficients.

1.2.4 Evolution of Speech Recognition
The history and evolution of speech recognition technologies span several decades, re-
flecting advancements in linguistics, computer science, and artificial intelligence. Below,
we outline key milestones in the development of speech recognition systems, highlighting
significant breakthroughs and contributions to the field.

Figure 1.2: The evolution of speech recognition technology

1.2.4.1 Early Developments (1950s-1970s)

• Initial Concepts: The journey of speech recognition began in the 1950s with
pioneering work by researchers at Bell Labs, where early systems could recognize
a limited vocabulary of spoken words. One notable example was the ”Audrey”
system, which could recognize digits spoken by a single voice, developed in 1952 by
D. O. Hennessey and R. C. Wilcox. [5]
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• Pattern Recognition: By the late 1950s and early 1960s, speech recognition
shifted towards pattern recognition approaches. Researchers began using tech-
niques such as Dynamic Time Warping (DTW) to match spoken input to predefined
templates, allowing for some flexibility in recognizing variations in speech.

• Statistical Models: In the 1970s, the introduction of statistical models, particu-
larly Hidden Markov Models (HMMs), marked a significant advancement. HMMs
provided a probabilistic framework for modeling the sequential nature of speech.
This approach was further developed by L. R. Rabiner, whose work laid the foun-
dation for modern speech recognition systems.

1.2.4.2 Advancements in the 1980s and 1990s

• Linguistic Knowledge: The 1980s saw the integration of linguistic knowledge
into speech recognition systems. Techniques such as n-gram language models were
employed to improve recognition accuracy by taking into account the context of
words in a sentence.

• Commercial Systems: The first commercial speech recognition systems emerged
during this period. Dragon Dictate, released in 1990, was one of the first widely
used dictation software packages that allowed users to control their computers using
voice commands.

• Large Vocabulary Continuous Speech Recognition: Advances in computa-
tional power enabled the development of large vocabulary continuous speech recog-
nition (LVCSR) systems. Researchers began to design systems capable of recogniz-
ing continuous speech without the need for pauses between words. Notable projects
included IBM’s ViaVoice and Nuance’s Dragon NaturallySpeaking.

1.2.4.3 The 2000s: The Rise of Machine Learning

• Deep Learning: The emergence of deep learning in the 2010s revolutionized speech
recognition technologies. Researchers began applying neural networks, particularly
Deep Neural Networks (DNNs), to model the complex relationships between audio
features and phonetic units. Hinton et al. demonstrated the effectiveness of DNNs
for phoneme recognition in 2012 [7].

• End-to-End Systems: The development of end-to-end systems further simpli-
fied the architecture of speech recognition models. Techniques like Connectionist
Temporal Classification (CTC) allowed for direct mapping from audio input to text
output, reducing the need for intermediate representations [15].

• Attention Mechanisms: The introduction of attention mechanisms, particularly
with sequence-to-sequence models using Recurrent Neural Networks (RNNs), im-
proved the ability of systems to handle variable-length input sequences, leading to
better performance in recognizing longer phrases and sentences.

1.2.4.4 Recent Advances and Current State (2010s-Present)

• Transformer Models: The advent of the Transformer architecture has further
enhanced speech recognition capabilities. Models such as Google’s BERT and Ope-
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nAI’s GPT have demonstrated state-of-the-art performance in various natural lan-
guage processing tasks, including speech recognition [13].

• Multilingual and Cross-Language Models: Recent research has focused on
developing multilingual models capable of recognizing speech in multiple languages
without needing separate models for each language. This development is crucial for
making speech recognition technologies accessible globally.

• Integration into Everyday Technology: Speech recognition has become ubiq-
uitous in consumer technology, integrated into virtual assistants like Siri, Alexa,
and Google Assistant. These systems utilize advanced deep learning techniques and
large datasets to improve accuracy and responsiveness.

• Continued Research: Ongoing research continues to address challenges such as
speaker variability, background noise, and the need for privacy in voice data pro-
cessing. On-device processing, as seen in recent iterations of virtual assistants, is
becoming more prevalent to enhance privacy and responsiveness.

1.2.5 ASR Applications
1.2.5.1 Speech Recognition in Virtual Assistants

Speech recognition in virtual assistants like Siri, Alexa, and Google Assistant has
revolutionized human-device interaction by allowing systems to interpret and respond to
spoken language commands. These assistants operate using a combination of Automatic
Speech Recognition (ASR), Natural Language Processing (NLP), and Machine Learning
(ML) to interpret user speech and carry out tasks such as controlling smart devices or
retrieving information [16].

1. Siri (Apple) Siri, introduced by Apple in 2011, was one of the first voice-activated
personal assistants widely available to the public. Siri’s ASR system is driven by Deep
Neural Networks (DNNs) that convert spoken words into text. It then uses Natural
Language Understanding (NLU) to interpret the query and provide a suitable response
or perform an action, such as sending a message or opening an app [17]. Over time, Siri
has improved with the integration of on-device processing, which enhances both speed
and privacy. With Apple’s Neural Engine, the voice recognition and processing occur
directly on the device for faster response times and increased privacy by limiting the
transmission of voice data to the cloud [18]. Siri is also context-aware, meaning it can
use data such as location and recent actions to provide more relevant results [19].

2. Alexa (Amazon) Alexa, launched by Amazon in 2014 through the Amazon Echo
smart speaker, uses far-field voice recognition technology, allowing it to pick up com-
mands from across the room. Alexa’s core functionalities rely on cloud-based ASR to
convert spoken language into text, after which NLU models process the text and extract
user intent [20]. Alexa’s wake-word detection continuously listens for specific activation
phrases such as ”Alexa” to initiate command processing, which reduces the need for con-
stant interaction. This system is powered by large-scale machine learning models trained
on vast amounts of voice data, allowing Alexa to perform a wide range of tasks, from
controlling smart home devices to answering general questions [21]. Alexa also supports
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a developer ecosystem called Alexa Skills, which enables third-party developers to create
voice applications that extend its capabilities [22].

3. Google Assistant Google Assistant, integrated into a range of devices such
as Android smartphones and Google Nest, uses advanced Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) networks for speech recognition and
understanding. These models help process more complex commands with high accuracy
[23]. Google’s Knowledge Graph plays a pivotal role in allowing Google Assistant to
retrieve information quickly and offer detailed answers to user queries. Furthermore,
multilingual support is a standout feature of Google Assistant, allowing users to issue
commands in different languages interchangeably, thanks to Transformer-based models
that support this functionality [24]. Google Assistant can also access personal data like
calendar events or emails to provide personalized responses based on user preferences and
activity [25].

1.2.5.2 Use in Automatic Transcription

Automatic transcription technologies have profoundly impacted various industries, no-
tably journalism and medical services, by automating the process of converting spoken
language into written text. This advancement not only enhances efficiency but also
improves accuracy in documentation, making these technologies essential tools in con-
temporary workflows.

Applications in Journalism In journalism, automatic transcription systems enable
reporters to quickly convert interviews, press conferences, and speeches into text. This
rapid transcription capability allows journalists to publish news stories more promptly,
which is critical in a fast-paced media environment. By utilizing automatic transcription,
journalists can devote more time to analyzing content rather than manually transcribing
audio recordings [26–28].

Importance in Medical Services In the medical field, automatic transcription tech-
nologies are pivotal for improving documentation practices. Healthcare professionals fre-
quently rely on dictation systems to record patient encounters, clinical notes, and other
essential communications directly into electronic health records (EHRs). This practice
not only saves time but also minimizes the administrative burden on physicians, allowing
them to focus more on patient care [29].

The use of voice recognition systems ensures that medical records are accurately
transcribed, thereby enhancing patient safety and reducing the risks associated with
miscommunication [30]. For example, a study indicated that automatic transcription
reduced the time spent on documentation tasks by approximately 50

Broader Industry Impact Beyond journalism and healthcare, automatic transcrip-
tion technologies are finding applications across various other sectors, including legal and
educational fields. In the legal domain, law firms utilize transcription software to create
records of court proceedings and depositions. This practice ensures that accurate records
are available for reference, which is vital for legal proceedings [31].

In education, automatic transcription is being used to enhance learning experiences
for students, especially those with disabilities. By transcribing lectures and discussions,
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educational institutions can provide students with accessible resources, improving their
understanding of course materials [32].

1.2.5.3 ASR Applications in Quranic Recitation

Automatic Speech Recognition (ASR) technology has been effectively applied in Quranic
recitation, providing tools that assist learners in improving their pronunciation and ad-
herence to Tajweed rules. These applications offer real-time feedback, making Quranic
education more accessible and interactive.

Learn Quran Tajwid Learn Quran Tajwid is a comprehensive mobile application that
offers lessons on Quranic recitation and Tajweed. While it includes features like voice
narration, recording, and transliteration to aid learning, it does not currently incorporate
real-time ASR feedback. Users can record their recitation and compare it with provided
examples, facilitating self-assessment and improvement [33].

1.2.6 Speech Recognition in the Context of Quranic Recitation
1.2.6.1 Definition of the Quran

The Quran is ”the Speech of Allah, revealed to His Prophet Muhammad (peace be upon
him), miraculous in its words and meanings, to be recited in worship, transmitted to
us through an uninterrupted chain of narration, and written in the Mushafs, from the
beginning of Surah Al-Fatiha to the end of Surah An-Nas,” which is the preferred defini-
tion [34]. The Quran is the primary source of spiritual guidance, religious law, and moral
principles for Muslims worldwide. Unlike modern standards, it preserves its original form
in both its words and meanings [34].

The Quran emphasizes its own significance and transformative power in several verses.
Allah the Almighty says:

”And this is a blessed Book which We have revealed, so follow it and fear
Allah that you may receive mercy.”
[Al-An‘ām: 155]

”This (Quran) is a message for humanity, so that they may be warned by
it, and that they may know that He is only One God, and that those of
understanding may take heed.”
[Ibrāhīm: 52]

The Prophet Muhammad (peace be upon him) said:
”Would any of you like to go to the valley of Buthan or Al-‘Aqiq and return
with two large she-camels without committing any sin or severing family ties?”
They replied, ”Yes.” He said:
”Then going to the mosque and learning or reciting two verses from the Book
of Allah is better for him than two she-camels, and three verses are better
than three, and four verses are better than four, and so on.”
[Sahih Muslim]
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1.2.6.2 Definition of Tajweed

Tajweed is the science of Quranic pronunciation. It encompasses a comprehensive set of
phonetic and articulation rules designed to preserve the accuracy and beauty of Quranic
recitation. The purpose of Tajweed is to ensure that each letter and sound is recited from
its correct articulation point, with proper characteristics and intonations, as practiced
by the Prophet Muhammad (peace be upon him). Tajweed is more than a linguistic
discipline; it is a spiritual practice. It maintains the integrity of the Quranic text and
prevents errors that could alter meanings [35].

”Indeed, those who recite the Book of Allah, establish prayer, and spend from
what We have provided them, secretly and publicly, can expect a profit that
will never perish.”
[Fāṭir: 29]

Narrated Aisha (may Allah be pleased with her):
The Messenger of Allah (peace be upon him) said:
”The one who recites the Quran proficiently will be with the noble, righteous
scribes; and the one who reads the Quran, struggling with it and stumbling
through its verses, will have a double reward.”
[Agreed upon – Bukhari and Muslim]

1.2.6.3 Cultural and Religious Importance of Reciting the Quran

The recitation of the Quran is of immense cultural and religious importance in Islam. It
is not merely a routine practice but a sacred act deeply intertwined with the spiritual,
educational, and social fabric of Muslim societies. The Quran, being the holy book of
Islam, is regarded as the literal word of God, revealed to the Prophet Muhammad over
1,400 years ago. Its recitation, known as tilawah, is considered a form of worship and
a way to connect with the divine, carrying both spiritual and cultural significance for
Muslims worldwide [36].

Spiritual Significance In Islam, reciting the Quran is an essential spiritual practice
that goes beyond reading for information. It is seen as a direct communication with
God. The Quran itself emphasizes the importance of recitation, as mentioned in Surah
Al-Muzzammil (73:4), ”Recite the Quran in slow, measured rhythmic tones.” This verse
highlights not only the act of reciting but also the manner in which it should be performed.
Muslims believe that reciting the Quran brings spiritual rewards, known as hasanat, and
serves as a means of spiritual purification. Regular recitation is also thought to bring
comfort, alleviate stress, and provide guidance in a believer’s daily life [37].

The spiritual significance of recitation is further emphasized during the month of
Ramadan, the holiest period in the Islamic calendar. Muslims strive to complete the
entire recitation of the Quran during this month, especially through nightly prayers known
as Taraweeh. This practice, known as Khatm al-Quran, is a highly rewarding spiritual
endeavor and a tradition that brings the community together in worship. The act of
recitation during Ramadan is believed to have special merit, as the Quran was first
revealed during this month [38].
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Educational Importance Learning to recite the Quran correctly is a foundational
element of Islamic education. This education starts early in life, with young Muslims
being taught to read the Quran in Arabic, even if it is not their native language. The
process of learning Quranic recitation involves memorization (Hifz) and mastering the
rules of pronunciation and intonation, known as Tajweed. Quranic schools, or madrasas,
across the world place significant emphasis on these skills, which are seen as essential for
preserving the Quran in its original form and for maintaining the proper pronunciation
of the Arabic language [39].

The educational aspect also extends to those who achieve the memorization of the
entire Quran, known as Hafiz. This accomplishment is highly respected in the Muslim
community and is often associated with spiritual leadership. Being a Hafiz carries not
only religious merit but also social prestige, as those who have memorized the Quran are
considered guardians of its message. Furthermore, memorization is believed to facilitate
a deeper understanding of the text and its meanings, contributing to the educational and
spiritual growth of the individual [40].

Social and Cultural Importance The Quran plays a central role in various social
and cultural practices within the Muslim community. It is recited during significant life
events, including weddings, funerals, and the birth of a child, where specific verses are
chosen to seek blessings, offer comfort, or commemorate the occasion. This tradition
reflects the deep integration of the Quran in the cultural life of Muslims, where it serves
as a constant spiritual guide and a source of solace during times of joy and sorrow [41].

In addition, Quranic recitation competitions are popular in many Muslim-majority
countries and communities, with participants demonstrating their mastery of the text and
the rules of Tajweed. These competitions, often held at local, national, and international
levels, celebrate the beauty of the Quran and encourage young Muslims to engage with the
holy text. The social impact of such events extends beyond the individual participants,
as they inspire others to appreciate and pursue the study and recitation of the Quran [42].

1.2.6.4 Unique Intonations and Sounds in Quranic Recitation

Quranic recitation involves intonations and sounds that are not commonly found in con-
versational Arabic. These unique features are governed by the rules of Tajweed and
include:

• Melodic Intonations: The melodic nature of Quranic recitation is a deliberate
feature meant to enhance the listening experience. The reciter’s voice modulation
follows a rhythmic pattern that emphasizes certain words or phrases, giving the
recitation a musical quality that is not present in spoken Arabic [43].

• Use of Emphatic Consonants: Some consonants in Arabic are articulated with
greater emphasis (e.g., the letters Ṣād, Ḍād, Ṭā, and Ẓā). In the context of Quranic
recitation, the degree of emphasis can be more pronounced than in standard Arabic,
which requires recognition systems to be able to capture these subtle distinctions
[40].

• Phonological Rules Specific to the Quran: The Quran includes rules for the
merging or separation of sounds (e.g., Idgham and Ithar), which do not always apply
to other forms of Arabic speech. These rules contribute to the unique soundscape
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of Quranic recitation and must be taken into account when designing ASR systems
[41].

The combination of these features makes Quranic recitation a distinct form of speech
that presents unique challenges for automatic recognition. The task is not just to rec-
ognize phonetic content but also to interpret the prosodic and rhythmic qualities of the
recitation, which traditional ASR approaches may not be equipped to handle.

The Role of Tajweed in Quranic Recitation The proper recitation of the Quran is
governed by Tajweed, a set of rules that ensures the accurate pronunciation and intonation
of the words as they were revealed. Tajweed is considered essential for preserving the
linguistic and phonetic integrity of the Quran, as it dictates how each letter should be
pronounced and where pauses should be made. The correct application of Tajweed is not
only a matter of linguistic precision but also a spiritual obligation, as reciting the Quran
improperly can alter its meaning [43].

Learning Tajweed requires dedicated study and is often taught by qualified teachers
(sheikhs) who have received traditional training in this art. The emphasis on proper
pronunciation reflects the cultural reverence for the Quran and the belief that its words
should be uttered in the most beautiful and correct manner. Skilled reciters are highly
respected, and their recitations are often broadcast on radio and television, especially
during the month of Ramadan, further reinforcing the cultural importance of Tajweed
[38].

Variations in Recitation Styles The Quran is recited in multiple traditional styles,
known as Qira’at, which reflect slight variations in pronunciation and articulation. These
styles have been passed down through generations, maintaining different authentic meth-
ods of recitation that were taught by the Prophet Muhammad. The most commonly
practiced styles, such as Hafs and Warsh, are widely accepted and practiced in different
regions of the Muslim world. The existence of these variations demonstrates the Quran’s
flexibility in accommodating diverse phonetic expressions while preserving the uniformity
of its message [40].

1.2.6.5 Components of Tajweed Rules

The rules of Tajweed can be categorized into several main components:

• Makharij al-Huruf (Articulation Points of Letters): Makharij refers to the
specific points in the vocal tract where each Arabic letter is articulated. The correct
pronunciation requires knowing the exact origin of each letter, whether it comes
from the throat, tongue, lips, or nasal passage. For instance, the letter ”�” (ain) is
pronounced from the middle throat, while ”�” (qaf) originates from the back of the
tongue touching the soft palate. This precise articulation is crucial for maintaining
the authenticity of Quranic recitation [40].

• Sifat al-Huruf (Characteristics of Letters): Each Arabic letter has specific
characteristics or attributes that affect its sound. These characteristics include
shiddah (strength), rikha (softness), istifal (elevation), and itbaq (adhesion). Addi-
tionally, some letters are pronounced with tafkhim (emphasis), resulting in a heavier
sound, while others are recited with tarqiq (lightness). For example, the letter ”�”
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(daad) is pronounced with emphasis, while ”�” (seen) is pronounced lightly. Proper
knowledge of these characteristics ensures that reciters can accurately produce the
distinct sounds required in Tajweed [41, 42].

• Rules for Nunation and Mim (Nūn Sākinah and Mīm Sākinah): These
rules regulate how the letters ”�” (nun) and ”�” (mim) are pronounced when they
appear with a sukun (a state of rest) or at the end of words. The rules include
idgham (assimilation), ikhfa (concealment), izhar (clarity), and iqlab (conversion).
For instance, if a nun sakinah is followed by a letter that triggers ikhfa, it is pro-
nounced with a nasalized tone. These rules contribute to the rhythm and fluidity
of Quranic recitation [38].

• Qalqalah (Echoing): Qalqalah refers to a slight echoing sound that occurs when
certain consonants ,�) ,� ,� ,� (� appear with a sukun. This rule adds emphasis to
the pronunciation, making the recitation clearer and more expressive. The strength
of the qalqalah varies depending on whether the consonant occurs at the end of a
word or within it [43].

• Rules for Stopping and Continuing (Waqf and Wasl): Tajweed rules also
dictate where a reciter should pause (waqf) or continue (wasl) during recitation
to ensure that the meaning is conveyed correctly. Improper pausing can alter the
intended meaning of a verse. These rules provide guidance on which words can be
joined or where the recitation should stop for proper comprehension. Marks are
often included in the Quranic text to indicate preferred stopping points, obligatory
stops, or places where continuation is encouraged [40].

1.2.6.6 The Ten Mutawatir Qira’at (Readings)

Definition of Quranic Readings and Their Sources The Qira’at (plural of Qira’ah)
are the various canonical ways of reciting the Qur’an that originated from the Prophet
Muhammad’s oral recitation. These readings reflect dialectal variations among Arab
tribes at the time of revelation. Although they differ in pronunciation, grammar, or word
choice, the meanings remain consistent [44, 45].

The term Mutawatir refers to transmissions passed down by such a large number
of narrators that it is impossible they conspired to fabricate them. The ten Mutawatir
Qira’at are all traced back to the Prophet Muhammad through strong, continuous chains
of narration [46, 47].

Sources of these readings include:

1. Direct teaching from the Prophet to his companions

2. Compilation during the caliphate of Uthman ibn Affan

3. Oral transmission by qualified scholars over generations

4. Codification by early scholars such as Abu Bakr Ibn Mujahid in his seminal work
Kitab al-Sab’a [46]
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1.2.6.7 The Seven Well-Known Qira’at

Qira’ah of Nāfiʿ (Narrators: Warsh and Qālūn) Nafi al-Madani (d. 169 AH) was
a master reciter from Medina. He studied under 70 of the Tabi’in who had learned from
companions like Ubayy ibn Kab and Ibn Abbas [48].

Narrators:
• Warsh (ʿUthmān ibn Saʿīd al-Miṣrī, d. 197 AH) – spread in North and West Africa

• Qālūn (ʿĪsā ibn Mīnā, d. 220 AH) – used in Libya and Tunisia
Features: Emphasis on the clear pronunciation of hamzah, and the use of tashīl

(softening) [45].

Qira’ah of Ibn Kathīr (Narrators: al-Bazzī and Qunbul) Ibn Kathīr al-Makkī
(d. 120 AH) was Imam of Mecca. He learned from ʿAbdullah ibn al-Sā’ib and Mujāhid.

Narrators:
• al-Bazzī (d. 250 AH)

• Qunbul (d. 291 AH)
Features: Characterized by omission of sakt (pause) and unique vowel lengthening

patterns [47].

Qira’ah of Abū ʿAmr (Narrators: al-Dūrī and al-Sūsī) Abū ʿAmr al-Baṣrī (d.
154 AH), from Basra, studied under successors of the companions.

Narrators:
• al-Dūrī (also narrator for al-Kisā’ī)

• al-Sūsī
Features: Known for idghām kabīr (strong assimilation) and use of imāla (vowel

inclination) [45].

Qira’ah of Ibn ʿĀmir (Narrators: Hishām and Ibn Dhakwān) Ibn ʿĀmir (d.
118 AH), chief judge in Damascus during the Umayyad era.

Narrators:
• Hishām

• Ibn Dhakwān
Features: Unique placement of hamzah and grammatical variations [44].

Qira’ah of ʿĀṣim (Narrators: Shuʿbah and Ḥafṣ) ʿĀṣim ibn Abī al-Najūd (d.
127 AH) from Kufa, studied under Abū ʿAbd al-Raḥmān al-Sulamī.

Narrators:
• Shuʿbah

• Ḥafṣ – the most widespread recitation today
Features: Clarity and ease of pronunciation, distinctive treatment of idghām and

ra [45].
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Qira’ah of Ḥamzah (Narrators: Khalaf and Khallād) Ḥamzah al-Zayyāt (d. 156
AH), a Kufan reciter, learned from chains linked to Ibn Masʿūd.

Narrators:

• Khalaf – also recognized as the tenth reader

• Khallād

Features: Frequent use of sakt, detailed imāla patterns, unique treatment of hamzah
[47].

Qira’ah of al-Kisā’ī (Narrators: al-Layth and Ḥafṣ al-Dūrī) Al-Kisā’ī (d. 189
AH), grammarian and court tutor, learned from Ḥamzah.

Narrators:

• al-Layth

• Ḥafṣ al-Dūrī – also transmitted Abū ʿAmr’s reading

Features: Special rules for waqf (pausing) and extensive use of imāla [45].

1.2.6.8 The Three Additional Qira’at Completing the Ten

Qira’ah of Abū Jaʿfar (Narrators: Ibn Wardān and Ibn Jammaz) Abū Jaʿfar
(d. 130 AH), from Medina, learned from Ibn ʿAbbās and Abū Hurayrah.

Narrators:

• Ibn Wardān

• Ibn Jammaz

Features: Use of ṣilah (word-joining), unique madd (lengthening), and consonantal
pronunciation [44].

Qira’ah of Yaʿqūb (Narrators: Ruways and Rawḥ) Yaʿqūb al-Ḥaḍramī (d. 205
AH) from Basra, studied under students of Abū Mūsā al-Ashʿarī.

Narrators:

• Ruways

• Rawḥ

Features: Distinctive idghām rules and glottal stop pronunciation [45].

Qira’ah of Khalaf al-ʿĀshir (Narrators: Isḥāq al-Marwazī and Idrīs al-Ḥaddād)
Khalaf ibn Hishām (d. 229 AH), initially a narrator of Ḥamzah, later became a canonical
reader.

Narrators:

• Isḥāq al-Marwazī

• Idrīs al-Ḥaddād

Features: Similar to Ḥamzah’s reading with over 120 differences, mainly in vowel
and consonant treatment [47].
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1.2.6.9 The Significance and Wisdom Behind the Diversity of Qira’at

The multiplicity of Qira’at reflects divine wisdom:

• Ease and Accessibility: Addressing dialectal differences across Arab tribes

• Semantic Depth: Complementary meanings enhance understanding

• Preservation: Cross-verification between readings ensured textual integrity

• Linguistic Richness: Showcases the flexibility and expressiveness of the Arabic
language [44, 45]

1.2.6.10 Distinctive Features of Warsh’s Recitation

The narration of Warsh from Nafi’ is one of the prominent Quranic recitations and is char-
acterized by unique features in pronunciation and performance, which give it a distinct
nature among other narrations. These characteristics are evident in several aspects:

• Hamzah (Glottal Stops): Warsh tends to facilitate the glottal stops by either
softening, omitting, or transferring their vowel sounds to a preceding silent letter.
This affects the pronunciation of certain words and gives the recitation a distinct
fluidity.

• Prolongation (Madd): Warsh is known for his tendency to extend the prolonga-
tions, especially in both the connected and separate prolongations, often extending
them to six movements. This adds a unique beauty and expressiveness to the
recitation.

• Imālah and Taqleel (Vowel Modification and Softening): Warsh uses Imālah
and Taqleel in some words, which introduces variation in pronunciation and reflects
a richness in performance and recitation styles.

• Mīm al-Jamʿ and Hāʾ al-Kināyah (The Collective Mīm and the Pronom-
inal Hāʾ): Warsh follows specific rules in pronouncing the collective Mīm and the
pronominal Hāʾ, such as rounding the Mīm and placing a Wāw in the middle when
followed by a Hamzah of interruption. This influences how words are connected
and emphasizes his distinct style of recitation.

These features make Warsh’s narration distinctive and give the recitation a special
character that is appreciated in many Islamic communities, especially in the Maghreb
region, where this narration is widely practiced. The table below presents a detailed
breakdown of tajweed rules and pronunciation features specific to the Warsh recitation:

1.2.6.11 Key Differences Between Warsh and Hafs Readings

The two most commonly recited versions of the Qur’an today are those transmitted by
Warsh and Ḥafṣ. Both are considered canonical and trace back to reputable chains of
narration. However, they differ in several phonetic, grammatical, and lexical aspects.
These variations are not contradictions but rather complementary traditions reflecting
the rich oral transmission of the Qur’an. Table 1.2.6.11 presents a comparative overview
of some key differences between the Warsh and Ḥafṣ readings.
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Note Example (Warsh) Rule Category
Natural prolongation
without interference

(Sūrat al-Baqarah
2:285)

Madd al-Tabiʿī (natural
prolongation)

Natural Madd

Sound of ”shaking” in
letters of Qalqalah

(Sūrat al-Qamar 54:49) Qalqalah (vibration) Qalqalah

Nasal sound in letters (Sūrat al-Fajr 89:10) Ghunna (nasalization) Ghunna
Concealing the letter
with light sound

(Sūrat al-Baqarah
2:261)

Ikhfāʾ (concealment) Ikhfāʾ

Merging letters
smoothly

(Sūrat al-Baqarah
2:261)

Idghām (merging) Idghām

Clear pronunciation
without merging

(Sūrat al-Fil 105:1) Iz’hār (clarification) Iz’hār

Slight change of vowel
sound

(Sūrat al-Fatiḥa 1:1) Imlāʾ (slanting) Imlāʾ

Opening sound of the
letter

(Sūrat al-Ikhlas 112:1) Fath (open sound) Fath

Emphasis on the sound
of certain letters

(Sūrat al-Rahman
55:13)

Tafkhīm (emphasis) Tafkhīm

Emphasizing the sound
of Rāʾ with Dammah or
Fathah

(Sūrat al-Fatiḥa 1:2) Tafkhīm al-Rāʾ (em-
phasis on Rāʾ)

Emphasis on
Rāʾ

Softening the sound of
Rāʾ with Kasrah

(Sūrat al-Mumtahina
60:10)

Tarqīq al-Rāʾ (softening
Rāʾ)

Softening of
Rāʾ

Replacing Hamzah with
another letter

(Sūrat al-Baqarah
2:285)

Ibdāl al-Hamzah (sub-
stitution of Hamzah)

Substitution of
Hamzah

Long prolongation of
the vowel sound

(Sūrat al-Baqarah
2:285)

Madd al-Tawīl (long
prolongation)

Long Madd

Prolonging when the
Hamzah comes after a
vowel

(Sūrat al-Baqarah
2:261)

Madd al-Badl (prolon-
gation with Hamzah)

Substitution
Madd

Shifting the sound in a
subtle way

(Sūrat al-Baqarah
2:261)

Naql (shift) Shift

Easing the transition
between vowels

(Sūrat al-Baqarah
2:285)

Tashīl (simplification) Simplification

The sound of Mīm in
joined words

(Sūrat al-Mumtahina
60:10)

Mīm al-Jamʿ (the join-
ing Mīm)

Mīm of Joining

The sound of Hāʾ rep-
resenting an indirect ob-
ject

(Sūrat al-Baqarah
2:255)

Hāʾ al-Kināyah
(kināyah Hāʾ)

Kināyah Hāʾ

Table 1.1: Tajweed Examples and Rules in Warsh Recitation

1.2.7 Complexity of Tajweed Rules and Their Impact on Speech
Recognition

The recitation of the Quran follows a detailed set of phonetic rules known as Tajweed,
which govern the correct pronunciation of Arabic letters and various phonetic features.

27



Aspect Warsh Reading Hafṣ Reading
Vowel Lengthening
(Madd)

Applies longer madd in
some cases (e.g., madd mun-
fasil)

Uses shorter or medium-
length madd in similar cases

Hamzah Pronunci-
ation

Tends to simplify or soften
hamzah using tashīl

Preserves clear and distinct
hamzah sounds

Inclination and Re-
duction (Imāla and
Qasr)

Uses imāla (e.g., tilting
vowel sounds like ā to ē) in
certain words

Generally avoids imāla and
leans toward full vowel ar-
ticulation

Wording and Spe-
cific Terms

Some word differences, such
as “maliki” vs. “maaliki” in
Al-Fatiha

May use different accepted
variant, often based on
other authentic transmis-
sions

Table 1.2: Key Differences Between Warsh and Hafṣ Readings

These rules extend beyond mere technical aspects, encompassing the linguistic and artistic
dimensions of recitation. Understanding and adapting to these rules present unique
challenges for automatic speech recognition (ASR) systems due to their complexity.

1.2.7.1 Understanding Tajweed Rules

Tajweed consists of multiple guidelines addressing pronunciation, such as the articula-
tion points of letters (makhārij), elongation (madd), nasalization (ghunnah), and specific
pausing methods (waqf). Each Arabic letter has a distinct articulation point and charac-
teristic sound, requiring precise pronunciation during recitation. For instance, the letters
� (qaf) and � (kaf) are articulated from different areas of the throat and mouth, influencing
their acoustic representation in ASR systems.

Moreover, Tajweed includes intricate aspects such as idgham (merging of sounds),
iqlab (sound changes), and ikhfa (concealing of sounds), which depend on the phonetic
context in which the letters appear. These rules add depth to the recitation but also
introduce significant variability in pronunciation, creating a distinct linguistic challenge
for ASR systems.

1.2.7.2 Impact on Speech Recognition Technology

The complexity of Tajweed rules introduces several hurdles for ASR systems aiming to
recognize Quranic recitation effectively:

• Phonetic Variability: The rules cause subtle variations in pronunciation based
on context, which can be difficult for ASR systems to capture. While such systems
often rely on extensive training datasets, they may lack the specialized vocabulary
and pronunciation nuances required for accurate recognition of Quranic recitation,
leading to higher rates of misrecognition.

• Contextual Dependencies: Tajweed rules are context-dependent; the pronun-
ciation of a letter can change depending on its position within a word and the
surrounding phonetic environment. This adds complexity to the modeling and
training of ASR systems, as they must account for these dependencies to ensure
accurate recognition.
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• Acoustic Challenges: The melodic and rhythmic aspects of Quranic recitation,
which are integral to Tajweed, introduce additional variability in the speech signal.
Variations in pitch, tone, and intonation can make it challenging for ASR systems
to distinguish between similar-sounding phonemes, adversely affecting their perfor-
mance.

• Training Data Limitations: The scarcity of annotated datasets focused on
Tajweed-compliant recitation limits the ability of ASR systems to learn the phonetic
intricacies required. Most existing models are trained on general Arabic speech
data, which may not adequately represent the unique characteristics of Quranic
recitation.

1.2.7.3 Pronunciation Variability Among Reciters

Pronunciation variability is a significant challenge in the automatic recognition of Quranic
recitation, impacting the efficacy of automatic speech recognition (ASR) systems. Each
reciter introduces a unique blend of phonetic and stylistic characteristics influenced by
various factors such as regional dialects, personal interpretation of Tajweed rules, and
individual linguistic backgrounds.

Influence of Regional Dialects Arabic, as a language, boasts a rich tapestry of di-
alects that vary considerably across different regions. These dialectal differences manifest
in the pronunciation of specific letters and sounds, which can profoundly affect the ASR
systems designed for Quranic recitation. For instance, the letter � (jeem) may be pro-
nounced as /d�/ in the Egyptian dialect, whereas in some Gulf dialects, it might be
articulated as /�/. Such variations complicate the recognition process, as ASR systems
trained on standardized Arabic may struggle to accommodate these dialectal distinctions.
Consequently, regional accents can lead to increased misrecognition rates, especially if
the training data lacks sufficient representation of various dialects.

Personal Interpretation and Style Beyond regional influences, individual reciters
often develop distinctive styles and interpretations of recitation. This personal style is
shaped by factors including the reciter’s educational background, age, and exposure to
different schools of thought regarding Tajweed. For example, a seasoned reciter may em-
phasize certain elongation rules (madd) more than a novice reciter, leading to variability
in how words are pronounced. Similarly, some reciters might merge sounds differently
(idgham), resulting in subtle yet significant differences in pronunciation. These individ-
ual stylistic choices introduce additional layers of complexity for ASR systems, which
may find it challenging to generalize across diverse recitation styles.

Variability in Tajweed Application The application of Tajweed rules is not uniform
among all reciters. Some individuals may strictly adhere to the rules, while others might
interpret them more flexibly, particularly in less formal recitation settings. This incon-
sistency creates a broad spectrum of pronunciations that ASR systems must navigate.
For instance, the application of nasalization (ghunnah) can vary in emphasis, resulting
in differing acoustic patterns that complicate the recognition process. Moreover, reciters
may pause or elongate sounds in ways that are personally meaningful to them, which can
deviate from standardized pronunciation. This variability underscores the necessity for
ASR systems to accommodate a wide range of phonetic manifestations.
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Impact on ASR System Performance The pronounced variability in pronunciation
among reciters directly contributes to a higher error rate in ASR systems designed for
Quranic recitation. Traditional ASR models typically excel with standardized speech but
falter when confronted with the unpredictability inherent in the diverse pronunciations
of Quranic recitation. As a result, these systems may misidentify phonemes, leading to
inaccuracies in transcription and recognition. The challenge is exacerbated by the fact
that many ASR systems rely on large datasets that may not adequately represent the
full spectrum of recitation styles or the intricate nuances of Tajweed.

1.2.7.4 Phonetic Particularities of the Quran Compared to Standard Arabic

The phonetic characteristics of the Quran present distinct features that differentiate it
from Standard Arabic. These differences arise not only from the linguistic structure of the
Arabic language but also from the unique aesthetic and rhythmic qualities associated with
Quranic recitation. Understanding these phonetic particularities is crucial for developing
effective automatic speech recognition (ASR) systems that can accurately process Quranic
texts.

Articulation and Pronunciation Variability One of the key phonetic features that
set Quranic Arabic apart is the specific articulation of certain phonemes. The rules
of Tajweed, which govern the correct pronunciation of the Quran, introduce a level of
complexity not found in Standard Arabic. For instance, the articulation points of letters
(makhārij) dictate how each letter is produced, requiring reciters to pay close attention
to the physical movements of the tongue and mouth. The letter � (qaf) is articulated from
a deeper part of the throat compared to � (kaf), leading to distinctive acoustic properties
that ASR systems must learn to recognize.

Moreover, Tajweed encompasses several nuanced rules that affect pronunciation, such
as elongation (madd), nasal sounds (ghunnah), and emphasis (tafkhīm). These rules
not only alter the duration and quality of vowels but also influence how consonants are
pronounced in different contexts. For instance, the nasalization of certain sounds adds a
layer of complexity to the phonetic structure, as it requires precise control over airflow and
sound production. Such intricacies create a rich auditory landscape in Quranic recitation,
which can be difficult for ASR systems to model accurately.

Contextual Phonetic Variability The context in which phonemes occur plays a sig-
nificant role in how they are pronounced in Quranic recitation. This variability is often
dictated by the application of Tajweed rules, which can change the pronunciation of a
letter based on its surrounding phonetic environment. For example, the phenomenon of
idgham (merging sounds) allows certain letters to blend together when recited in succes-
sion, resulting in altered pronunciations that may not be evident in Standard Arabic.

Additionally, the melodic aspects of Quranic recitation introduce further variabil-
ity. Reciters often employ different styles—such as Mujawwad (elongated) or Murattal
(moderate)—which affect pitch, intonation, and rhythm. This variability complicates the
task for ASR systems, which must be equipped to handle the diverse phonetic expressions
that arise from these different recitation styles.

Impact on Automatic Speech Recognition The unique phonetic characteristics of
Quranic recitation pose several challenges for ASR systems. Traditional speech recog-
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nition models are typically trained on standard Arabic speech datasets, which may not
encompass the specific phonetic variations present in Quranic recitation. This can lead
to misrecognition and decreased accuracy when processing Quranic texts.

One significant challenge is the increased phonetic variability inherent in Quranic
recitation. Due to the rules of Tajweed and the emphasis on melodic features, the same
word may be pronounced differently depending on context, style, or reciter. ASR systems
that do not account for this variability are likely to struggle with accurate recognition,
leading to a higher rate of errors. Furthermore, the absence of comprehensive, annotated
training datasets tailored to Quranic recitation limits the ability of these systems to learn
the necessary phonetic distinctions.

1.2.7.5 Lack of Resources and Annotated Databases for Model Training

The advancement of automatic speech recognition (ASR) technologies tailored for Quranic
recitation faces a critical obstacle due to the lack of comprehensive resources and ade-
quately annotated databases. This scarcity significantly hampers the ability of researchers
and developers to create efficient and accurate ASR systems that can effectively handle
the unique phonetic and linguistic features of Quranic Arabic.

The Importance of Annotated Datasets Annotated datasets are the backbone of
any machine learning application, including ASR. These datasets serve as the foundation
upon which models learn to recognize and process spoken language. In the realm of ASR,
particularly for Quranic recitation, the quality, size, and specificity of the datasets are
vital. However, the availability of such datasets is notably limited compared to those
developed for standard Arabic or other widely spoken languages.

Most existing datasets focus on general Arabic speech, which often fails to encapsu-
late the specificities of Quranic recitation, such as the nuanced pronunciation variations
governed by Tajweed rules. Consequently, ASR systems trained on these datasets may
lack the necessary capabilities to accurately recognize and transcribe Quranic recitation,
leading to increased error rates and decreased reliability.

Challenges in Data Collection The process of gathering annotated data for Quranic
recitation presents several challenges. Firstly, Quranic recitation is a highly specialized
practice that involves not only linguistic knowledge but also a deep understanding of
cultural and religious contexts. Collecting data from a diverse array of reciters, each
with their unique interpretation and style, is essential to developing robust ASR sys-
tems. However, this diversity introduces complications in standardizing recordings and
annotations.

Additionally, the artistry involved in Quranic recitation requires capturing various
styles and nuances, including variations in pitch, rhythm, and intonation. This com-
plexity demands a meticulous approach to both recording and annotating, necessitating
collaboration between linguists, religious scholars, and ASR specialists. Unfortunately,
such interdisciplinary collaboration is often challenging to achieve, resulting in limited
data collection efforts.

Consequences of Limited Data The consequences of having insufficient annotated
datasets are profound. ASR systems developed without access to extensive and diverse
training data may exhibit poor generalization capabilities. These systems struggle to
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adapt to the various pronunciation styles and Tajweed rules that characterize Quranic
recitation. As a result, recognition errors become more frequent, particularly in cases
where reciters deviate from the ”standard” forms of pronunciation or employ stylistic
variations unique to their training.

Moreover, the lack of resources can stifle innovation within the field of ASR tech-
nology for Quranic recitation. Researchers may find it difficult to experiment with new
algorithms or modeling techniques without the foundational datasets needed to evaluate
performance. This stagnation limits advancements that could improve recognition accu-
racy and expand the applicability of ASR systems in educational and religious contexts.

Sensitivity to Tone and Modulations Specific to Each Recitation Style The
recitation of the Quran is characterized by a distinctive use of tone and modulation, which
are essential aspects of its expressive and melodic nature. These features are not merely
stylistic but are integral to the proper conveyance of meaning, emotion, and spiritual
depth in the recitation. Each recitation style, such as Mujawwad, known for its slow,
deliberate delivery, or Murattal, which is more rhythmic and consistent, brings unique
tonal variations and modulative patterns. The sensitivity to these elements presents
specific challenges for automatic speech recognition (ASR) systems aimed at accurately
transcribing Quranic recitation.

The Importance of Tone and Modulation in Quranic Recitation Tone involves
the pitch variations that occur during recitation, while modulation refers to the dynamic
changes in pitch, volume, and rhythm. In Quranic recitation, these elements are used to
highlight certain words or phrases, evoke particular emotions, and adhere to the recitation
rules established by Tajweed. The choice of tone and modulation often depends on the
reciter’s style, their interpretation of the verses, and the intended impact on the listener.
These variations serve not only an aesthetic purpose but also convey subtleties in meaning
and expression that are essential to the recitation’s spiritual and linguistic integrity.

1.2.7.6 Challenges for ASR Systems

The presence of diverse tonal and modulative features introduces several difficulties for
ASR systems designed for Quranic recitation:

• Phonetic Variability: The way in which tonal changes are applied can lead to
significant phonetic variability across different recitation styles and even among
individual reciters. For example, the pronunciation of a specific phoneme may be
lengthened or articulated with a varying intensity depending on the style. This
phonetic diversity is challenging for ASR models that are typically trained on more
uniform speech data, such as standard Arabic, which lacks the same range of tonal
intricacies. This discrepancy can lead to a higher rate of misrecognition, particularly
when the system encounters less common styles of recitation [49].

• Contextual Interpretation Issues: In Quranic recitation, tonal and modulative
changes are closely linked to the meaning and interpretation of the text. Vari-
ations in pitch and rhythm can emphasize certain words or phrases, guiding the
listener’s understanding of the verse. An ASR system that does not account for
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these variations may misinterpret the intended emphasis or fail to distinguish be-
tween similarly pronounced words, leading to errors in transcription that could alter
the meaning of the recited text [50].

• Limitations in Training Data: Training data for ASR models usually consists
of general Arabic speech, which may not include sufficient examples of Quranic
recitation with its distinctive tonal patterns. This limitation hampers the system’s
ability to learn the fine-grained features needed to accurately recognize Quranic
recitation. The scarcity of annotated datasets that capture various recitation styles
and the corresponding tonal characteristics further exacerbates this issue [51].

1.3 Conclusion
Despite the considerable challenges facing automatic speech recognition of Quranic recitation—
including the complexity of Tajweed rules, pronunciation variability among reciters, and
the scarcity of comprehensive annotated datasets—the potential benefits make this pur-
suit worthwhile. The unique phonetic landscape of Quranic Arabic, with its context-
dependent pronunciation rules and melodic elements, requires specialized approaches that
go beyond conventional ASR techniques. Future progress will depend on collaborative
efforts between computer scientists, linguists, and Quranic scholars to develop better
training resources and recognition models that can capture the subtle nuances of this
centuries-old oral tradition, ultimately serving educational, preservation, and accessibil-
ity purposes.
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Chapter 2

Speech Recognition Techniques

2.1 Introduction
Speech recognition has come a long way, moving from basic rule-based systems to ad-
vanced deep learning methods. This chapter highlighted how these techniques have im-
proved the ability of machines to process and understand spoken language. Applying
them to Quranic recitation is especially valuable, as it helps preserve a rich religious
tradition. We saw how research has tackled challenges like complex pronunciation rules
and multiple recitation styles.

2.2 Traditional Speech Recognition Techniques
Speech recognition has evolved significantly over the years, with various techniques devel-
oped to improve the accuracy and efficiency of recognizing spoken language. One of the
foundational techniques in speech recognition is the Gaussian Mixture Model (GMM),
which serves as a probabilistic approach for modeling vocal features.

2.2.1 Gaussian Mixture Models (GMM): Probabilistic Tech-
niques for Modeling Vocal Features

Gaussian Mixture Models (GMMs) are a statistical method widely used in speech recog-
nition for modeling the distribution of acoustic features extracted from speech signals.
A GMM assumes that the acoustic feature vector is generated from a mixture of several
Gaussian distributions, each representing a distinct phonetic unit or sound segment in
the speech signal.

Mathematical Foundation The GMM is defined mathematically as a weighted sum
of multiple Gaussian distributions:

p(x) =
K∑
k=1

πkN (x|µk,Σk) (2.1)

where:

• p(x) is the probability density function of the feature vector x,
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• K is the number of Gaussian components,

• πk are the mixture weights (with
∑K

k=1 πk = 1),

• N (x|µk,Σk) is the Gaussian distribution with mean µk and covariance Σk.

The parameters of the GMM (means, covariances, and weights) can be estimated using
the Expectation-Maximization (EM) algorithm, which iteratively refines the estimates to
maximize the likelihood of the observed data.

Feature Extraction In speech recognition, features such as Mel-frequency cepstral
coefficients (MFCCs) are commonly extracted from audio signals to represent vocal char-
acteristics. These features capture the essential information about the speech signal while
reducing dimensionality. Once extracted, GMMs are trained on these features to learn
the statistical properties of different phonetic units.

Advantages and Limitations One of the main advantages of GMMs is their ability to
effectively model the complex and multimodal distribution of speech features, capturing
variations due to different speakers, accents, and speaking styles. Additionally, GMMs
can be easily integrated with other statistical modeling techniques, such as HMMs.

However, GMMs also have limitations. They assume that the feature distribution can
be adequately represented by a finite number of Gaussian components, which may not
always hold true in practice. Moreover, training GMMs requires a substantial amount of
labeled data, and their performance can degrade with insufficient training samples.

2.2.2 Hidden Markov Models (HMM): Sequential Probability-
Based Approaches for Modeling Phoneme Sequences

Hidden Markov Models (HMMs) are a crucial statistical tool in the field of speech recog-
nition. They provide a probabilistic framework for modeling sequences of phonemes,
which are the basic units of sound in speech. HMMs are particularly effective for tasks
that involve time-dependent data, such as spoken language, where the order of phonemes
matters significantly.

Mathematical Framework An HMM is defined by:

• A set of states S = {s1, s2, . . . , sN}, representing distinct phonetic units or hidden
states.

• A set of observation symbols V = {v1, v2, . . . , vM}, corresponding to the feature
vectors derived from the acoustic signals (e.g., Mel-frequency cepstral coefficients
(MFCCs)).

• Transition probabilities A = {aij}, where aij = P (sj|si) denotes the probability of
transitioning from state si to state sj.

• An initial state distribution π = {πi}, indicating the probability of starting in each
state si.

• Emission probabilities B = {bi(vt)}, where bi(vt) = P (vt|si) gives the probability
of observing the feature vector vt given that the model is in state si.
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The primary goal of using HMMs is to find the most likely sequence of hidden states
that could have generated the observed sequence of acoustic feature vectors. This pro-
cess involves two major computational problems: training the HMM parameters using
a labeled dataset and decoding the most probable state sequence given an observation
sequence.

Training HMMs The training of HMMs is typically performed using the Baum-Welch
algorithm, a specific instance of the Expectation-Maximization (EM) technique. This
algorithm iteratively adjusts the model parameters (transition and emission probabilities)
to maximize the likelihood of the observed training data. A detailed explanation of the
algorithm can be found in [52].

Decoding with HMMs When recognizing speech, the Viterbi algorithm is used to
compute the most likely sequence of hidden states given the observed feature vectors.
This algorithm efficiently finds the optimal path through the state space by maintain-
ing a dynamic programming table, which significantly reduces computational complexity
compared to a brute-force approach.

Advantages and Limitations The primary advantages of HMMs include their ability
to model temporal sequences and handle variable-length input data. However, they do
have limitations, such as the Markov assumption, which can oversimplify the relationships
between phonemes, leading to potential inaccuracies in modeling. Additionally, training
HMMs requires substantial labeled data, which may not always be available.

Despite the rise of deep learning techniques in recent years, HMMs remain relevant
in modern speech recognition frameworks, often being integrated with neural network
models to leverage their sequential modeling capabilities while improving the robustness
of acoustic feature learning [53].

2.2.3 Rule-Based Methods: Use of Linguistic Models Based on
Expert Knowledge

Rule-based methods in speech recognition represent one of the foundational approaches
to modeling and interpreting spoken language, prevalent before the era of neural networks
and statistical learning. These methods rely on linguistic rules and expert knowledge to
analyze speech, incorporating phonetic, syntactic, and semantic information.

Fundamentals of Rule-Based Methods Rule-based systems utilize a set of pre-
defined linguistic rules to process and analyze spoken language. Key components of
rule-based methods include:

• Phonetic Rules: These rules define how phonemes can be combined to form words
and how variations occur in different phonetic contexts.

• Grammatical Rules: These rules govern the structure of sentences, enabling the
system to parse and interpret spoken input based on grammatical conventions.

• Lexical Knowledge: A comprehensive lexicon is essential, containing words, their
phonetic representations, and related rules regarding stress and intonation patterns.
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• Contextual Rules: These rules account for context, refining recognition accuracy
by considering speaker identity and conversational context.

The integration of these components allows rule-based systems to interpret speech
input effectively and generate corresponding textual output.

Advantages of Rule-Based Methods Rule-based approaches offer several advan-
tages:

• Transparency: The explicit nature of rules allows for a clear understanding of
how the system processes speech, making it easier to debug and refine.

• Customization: Rule-based systems can be tailored to specific domains, such as
medical or legal transcription, where specialized vocabulary is common [54].

• Low Data Dependency: Since these systems rely on linguistic expertise rather
than large datasets, they can perform effectively with limited training data [55].

Limitations of Rule-Based Methods Despite their strengths, rule-based methods
have notable limitations:

• Scalability Issues: As vocabulary size increases, maintaining and updating rules
becomes increasingly complex [54].

• Lack of Flexibility: Rule-based systems often struggle to adapt to varied speech
inputs, leading to limitations in handling natural language variability, such as ac-
cents and dialects [56].

• Difficulty in Capturing Linguistic Nuances: The fixed nature of rules makes
it challenging to model the inherent variability and nuances of human speech effec-
tively [57].

2.3 Modern Speech Recognition Techniques
In this section, we provide a detailed explanation of the architectures of various models
used in modern speech recognition, including Deep Neural Networks (DNNs), Convolu-
tional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) with Long Short-
Term Memory (LSTM), Transformers, Attention Mechanisms, and Hybrid Ensemble
Learning Systems. Each model is explained with its respective architecture diagram.

2.3.1 Deep Neural Networks (DNNs)
DNNs are a class of artificial neural networks with multiple layers between the input and
output. They are used to model complex relationships in data and are a fundamental
building block for modern speech recognition systems.

The DNN architecture consists of an input layer that receives feature vectors (e.g.,
MFCCs), several hidden layers that perform non-linear transformations, and an output
layer that generates probabilities for each possible transcription. The network is trained
by minimizing a loss function such as cross-entropy to predict the correct transcription
from an input speech feature.
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Figure 2.1: Architecture of a Deep Neural Network (DNN) used for Speech Recognition
[1].

2.3.2 Convolutional Neural Networks (CNNs)
CNNs are particularly effective in speech recognition for extracting hierarchical features
from spectrograms or mel-spectrograms of audio signals. They utilize convolutional layers
that apply filters to detect patterns like phonemes in the speech signal.

Figure 2.2: A simple architecture of a Convolutional Neural Network (CNN) [2].

The CNN architecture consists of an input layer, followed by convolutional layers,
pooling layers, and fully connected layers. The convolutional layers extract local features
from the spectrogram, while the pooling layers reduce dimensionality. The fully connected
layers combine these features to make predictions.
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2.3.3 Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM)

RNNs and LSTMs are designed for sequence-based tasks, which makes them ideal for
speech recognition where temporal dependencies exist between audio frames. LSTMs, in
particular, solve the vanishing gradient problem that occurs in standard RNNs [15, 58].

Figure 2.3: Architecture of a Long Short-Term Memory (LSTM) [3]

The LSTM architecture includes an input layer, forget, input, and output gates that
regulate the flow of information. The memory cell stores information over time, allowing
the network to capture long-term dependencies.

2.3.4 Gated Recurrent Unit (GRU)
The Gated Recurrent Unit (GRU), introduced by Cho et al. in 2014 [59], is a type of
recurrent neural network (RNN) designed to model sequential data efficiently, especially
in tasks such as speech recognition and time-series prediction. GRUs simplify the tra-
ditional LSTM architecture by using only two gates: the update gate, which determines
how much past information is retained, and the reset gate, which controls how much of
the previous state is forgotten. Unlike LSTM, GRUs merge the memory cell and hidden
state into a single vector, resulting in fewer parameters and faster training while still
mitigating the vanishing gradient problem.

2.3.5 Transformers
Transformers rely on self-attention mechanisms to process sequences in parallel. This ar-
chitecture is efficient at capturing long-range dependencies and learning complex relation-
ships in speech data. The Transformer architecture uses an encoder-decoder structure.
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The encoder applies self-attention to the input, and the decoder generates the output
sequence based on attention over the encoder outputs [13].

Figure 2.4: Architecture of a Transformer [4]

The Transformer architecture uses an encoder-decoder structure. The encoder applies
self-attention to the input, and the decoder generates the output sequence based on
attention over the encoder outputs.

2.3.6 Attention Mechanisms
The attention mechanism allows the model to focus on the most important parts of the
input sequence. This is especially useful in speech recognition, where some parts of the
signal carry more weight than others [13].

The attention mechanism assigns weights to input elements based on their relevance
to the current output step. These weights enhance the influence of key features on model
predictions.

2.3.7 Ensemble Learning Methods
Ensemble methods are a class of machine learning techniques that combine multiple
models to improve predictive accuracy, robustness, and generalization. Instead of relying
on a single model, ensemble learning aggregates the outputs of several weak learners
to achieve better performance. This approach is especially effective in handling complex
datasets and helps reduce overfitting, thereby improving both classification and regression
tasks [60].

2.3.7.1 Types of Ensemble Methods

Bagging (Bootstrap Aggregating) Bagging is an ensemble learning technique that
enhances the accuracy and stability of machine learning algorithms. It follows these
steps [61]:

• Data Sampling: Multiple subsets of the training data are created using bootstrap
sampling (random sampling with replacement).
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• Model Training: A separate model is trained on each subset.

• Aggregation: The outputs from all models are combined (averaged for regression,
majority voting for classification) to form the final prediction.

Key Benefits:

• Reduces variance and overfitting.

• Improves accuracy by combining diverse predictions [62].

Random Forest Random Forest is a powerful implementation of bagging based on
decision trees [63]:

• Creates multiple decision trees using random subsets of the training data and fea-
tures.

• Aggregates predictions from individual trees to form the final output.

• Handles both classification and regression tasks effectively.

• Reduces variance and improves accuracy through averaging [64].

Boosting Boosting sequentially trains models, with each model focusing on correcting
the errors of its predecessors [65]:

• Sequential Training: Each model learns from the mistakes of the previous model.

• Weight Adjustment: Higher weights are assigned to misclassified instances to
emphasize them in the next iteration.

• Model Combination: Predictions are combined via weighted averaging or voting.

Key Benefits:

• Reduces bias by focusing on hard-to-classify examples.

• Produces strong predictors from weak learners [66].

Gradient Boosting

• Builds models sequentially, with each new model correcting the errors of the pre-
vious ensemble.

• Fits to the negative gradient of the loss function [67].

• Optimizes performance through additive modeling.

AdaBoost (Adaptive Boosting)

• Iteratively adjusts the weights of misclassified training examples.

• Focuses subsequent models on difficult cases.

• Combines all models weighted by their accuracy for final predictions [65].
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XGBoost (Extreme Gradient Boosting)

• Optimized implementation of gradient boosting designed for speed and perfor-
mance.

• Uses advanced regularization (L1, L2) to prevent overfitting.

• Incorporates efficient tree-based learning with automatic handling of missing values
and sparse data.

• Highly scalable with parallelized tree construction.

• Offers tunable hyperparameters such as learning rate, tree depth, and number of
boosting rounds [68].

LightGBM

• Gradient boosting framework using tree-based learning algorithms.

• Offers faster training speed and higher efficiency with lower memory usage.

• Implements Gradient-based One-Side Sampling and Exclusive Feature Bundling.

• Grows trees leaf-wise rather than level-wise for better accuracy with fewer resources
[69].

Stacking (Stacked Generalization) Stacking combines multiple base models to form
a more accurate meta-model [70]:

• Base Models: Several models (level-0) are trained on the original dataset.

• Meta-Model: A new model (level-1) is trained on the outputs of the base models
to produce the final prediction.

Key Benefits:

• Leverages model diversity.

• Learns to optimally combine predictions [71].

Voting and Averaging These techniques provide straightforward methods to combine
model predictions [72].

Voting (for classification)

• Hard Voting: Selects the majority vote among models.

• Soft Voting: Averages predicted probabilities across models.

• Leverages collective intelligence to improve classification accuracy [73].
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Averaging (for regression)

• Uses the mean or weighted average of predictions from multiple regression models.

• Smooths individual model errors.

• Produces more stable and accurate predictions than any single model [74].

2.4 Existing Research in Quranic Recitation Recog-
nition

Quranic recitation recognition has made significant progress over the years, thanks to
advances in speech recognition, deep learning, and AI techniques. This section presents
a comprehensive review of research in various aspects of Quranic recitation recognition,
including the foundational methods, deep learning applications, recitation style analysis,
error detection, and recent innovations in the field.

2.4.1 Early Works and Foundational Studies
In the early years of Quranic recitation recognition, researchers employed classical ma-
chine learning techniques to model phonetic variations and apply Tajweed rules. Early
studies mainly used small datasets and simpler methods such as Support Vector Machines
(SVM), Multi-Layer Perceptron (MLP), and Hidden Markov Models (HMM) to recognize
basic Tajweed rules and detect errors in Quranic recitation. This table includes research
from 2010 to 2017 that used classical machine learning techniques such as MLP, SVM,
and HMM for Tajweed recognition and error detection. These studies mainly focused on
small datasets and basic Tajweed rules like Qalqalah and Hafiz verification.

Research Year Dataset Methodology Features Focus Area Perf.
Hassan et al. [75] 2012 50 samples MLP Neural Net-

work
MFCC Qalqalah Kubra 95–100%

Al-Ayyoub et al.
[76]

2017 3,071 audio files SVM MFCC, LPC,
WPD

8 Tajweed rules 96.4%

Khorsheed & Al-
Thubaity [77]

2013 120 hours HMM MFCC Continuous
recognition

88.6%

Alagrami et
al. [78]

2019 657 recordings SVM Filter Banks 4 Tajweed rules 99%

Al-Fahad et al.
[79]

2008 2,000 recordings GMM MFCC Speaker identifi-
cation

93%

Table 2.1: Early Approaches in Quranic Recitation Recognition

These studies laid the foundation for later developments by identifying the core chal-
lenges in recitation recognition, including phonetic complexity and variations in pronun-
ciation. Despite the limitations of these early models, they provided key insights into the
practical challenges of developing accurate Quranic recitation systems.

2.4.2 Arabic Speech and Quranic Recitation Datasets
This table provides a comparative overview of key research studies from 2014 to 2024 that
have contributed to the development of Arabic speech and Quranic recitation datasets.
It highlights diverse approaches in data collection, annotation strategies, dataset scale,
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and evaluation methods. The works span multiple domains such as offensive language de-
tection, opinion mining, dialectal speech, and Quranic recitation—reflecting the growing
interest and innovation in Arabic natural language processing and speech technology.

Ref Topic Description
[80] Offensive Lan-

guage Detection
Annotated 4000 Arabic comments
using Amazon Mechanical Turk
with 94% accuracy.

[81] Arabic Opinion
Mining

Used Amazon Mechanical Turk for
annotating Arabic opinion targets
and polarity.

[82] Arabic Corpus
Annotation

Evaluated the effectiveness of
crowdsourcing for Arabic POS
tagging (63.91%) and grammatical
case endings (50.07%).

[83] Algerian Arabic
Speech Corpus

Created Kalam’DZ corpus with
4881 speakers and over 104.4 hours
of speech data.

[84] Crowdsourced
Quranic Recita-
tion

Collected 50,000 Quranic verses
and validated 150 manually using
Google Speech-to-Text.

[85] Quranic Recita-
tion Dataset
(QDAT)

Gathered 1500 audio files with cor-
rect and incorrect recitations, focus-
ing on Tajweed rules.

[86] Quranic Recita-
tion Dataset

Collected 7000 Quranic recitations
from 1287 participants across 11
countries. Developed Quran Voice
platform for annotation. Achieved
crowd accuracy of 0.77 and an
inter-rater agreement of 0.63.

Table 2.2: Summary of research on Arabic speech and Quranic recitation datasets.

2.4.3 Deep Learning Approaches for Quranic Recitation Recog-
nition

With the advent of deep learning, particularly Convolutional Neural Networks (CNN),
Long Short-Term Memory (LSTM) networks, and CNN-LSTM hybrids, more advanced
and accurate models have been developed for Quranic recitation recognition. These
models are capable of learning complex patterns in the audio features, improving recog-
nition accuracy and robustness. They are particularly effective at handling large-scale
datasets, which were not possible with classical machine learning techniques. The table
presents studies from 2017 to 2022 that used CNN, LSTM, BiLSTM, and hybrid models
for Tajweed verification, error detection, and multi-level recitation recognition.

These deep learning-based systems have significantly improved the accuracy of Quranic
recitation recognition. They are capable of recognizing subtle nuances in recitation styles,
detecting errors in real time, and providing accurate feedback for learning purposes. The
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Research Year Dataset Methodology Features Focus Area Perf.
Brour & Benab-
bou

2020 1,200 recordings CNN-LSTM Spectrograms Multi-level recog-
nition

92.3%

Shafik et al. 2021 500 recordings Deep CNN Mel-
spectrograms

Tajweed verifica-
tion

94.7%

Abdullah et al. 2019 1,000 samples BiLSTM MFCC + Delta Error detection 91.2%
Al-Hakeem et al. 2022 2,500 recordings Transformer Wav2Vec Full surah recog-

nition
89.3%

Farouk & Ibrahim 2019 1,200 samples LSTM Spectrograms Quranic verse
recognition

94.0%

Table 2.3: Deep Learning Approaches in Quranic Audio Analysis

use of larger datasets and more sophisticated models has allowed researchers to achieve
higher accuracy rates compared to earlier methods.

2.4.4 Qira’at and Recitation Style Classification
Qira’at refers to the different recitation styles of the Quran, each with unique phonetic
features, which must be recognized to apply the correct Tajweed rules. Accurate clas-
sification of Qira’at types is crucial for developing systems that can handle different
styles of recitation and provide accurate feedback. This table provides an overview of
research from 2020 to 2022 that used machine learning models such as SVM, CNN, and
Transformer for the classification of different Qira’at types and recitation styles. High
accuracy in identifying different reciters and styles was achieved using large datasets and
deep learning models.

Research Year Dataset Methodology Features Focus Area Perf.
Nahar et al. 2021 258 recordings SVM MFCC 10 Qira’at types 96%
Al-Otaibi et al. 2020 1,500 samples CNN + RNN Spectrograms Style classifica-

tion
94.2%

Mahmoud et al. 2022 750 hours Transformer Mel-
spectrograms

Multi-style recog-
nition

91.8%

Al-Juhani et al. 2021 3,000 segments XGBoost MFCC Reciter identifica-
tion

95.3%

Khan et al. 2020 5,000 clips ResNet + LSTM Mel-
spectrograms

Style transfer 88.9%

Table 2.4: Style and Reciter Recognition in Quranic Audio

These studies emphasize the importance of recognizing the recitation style or Qira’at
used by a particular reciter. Accurate style classification ensures that the correct Tajweed
rules are applied, which is essential for the proper teaching and learning of Quranic
recitation.

2.4.5 Error Detection and Correction in Recitation
Error detection and correction are critical components of any Quranic recitation recog-
nition system. These systems must identify and correct deviations from Tajweed rules,
such as mispronunciations or improper intonations, to ensure accurate recitation. Several
recent studies have used deep learning models, such as CNNs, RNNs, and reinforcement
learning, to automate error detection and correction in recitations. The table lists stud-
ies from 2020 to 2022 that focus on automatic error detection and correction in Quranic
recitation using deep learning models. The studies employed models like CNN, RNN,
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and reinforcement learning to identify pronunciation errors and deviations from Tajweed.
The systems achieved accuracy rates of up to 93

Research Year Dataset Methodology Features Focus Area Perf.
Shafik et al. 2020 700 samples CNN Mel-

spectrograms
Error detection 91.0%

Muhammad et al. 2018 10 expert recita-
tions

Vector Distance MFCC, VQE-
Hafiz system

Error detection 86–92%

Rahman et al. 2020 Surah Al-Fatiha HMM MFCC Children’s learn-
ing

87.5%

Table 2.5: Error Detection in Quranic Recitation

The use of deep learning for error detection allows for real-time correction of recitation
mistakes, which is essential for both learning and teaching purposes. By accurately
identifying errors and providing corrective feedback, these systems can support learners
in improving their Tajweed and recitation skills.

2.4.6 Multi-modal Systems and Innovation in Quranic Recita-
tion Recognition

Recent innovations in multi-modal systems combine audio, visual, and textual data to
enhance Quranic recitation recognition. These systems integrate different sensory modali-
ties, providing richer feedback and improving the accuracy and interactivity of the recog-
nition process. This table shows studies from 2021 to 2022 that combined different
modalities, such as audio, visual feedback, and reinforcement learning, to improve the
accuracy and interactivity of Quranic recitation recognition systems.

Research Year Dataset Methodology Features Focus Area Perf.
Al-Quran et al. 2022 Full Quran Vision + Audio MFCC, Visual

data
Complete learn-
ing

90.2%

Siddiqui et al. 2021 Multiple samples Hybrid Acoustic + NLP Error correction 93.1%
Rahman et al. 2022 Multiple samples Reinforcement

Learning
Audio + Feed-
back

Personalized
teaching

87.6%

Al-Mohsen et al. 2021 Distributed sys-
tem

Federated Learn-
ing

Audio data Community
learning

85.4%

Abdullah et al. 2022 Interactive AR/VR + AI Audio + Visual Immersive learn-
ing

89.7%

Table 2.6: Advanced Learning Systems for Quranic Recitation

These multi-modal systems offer an innovative approach to Quranic recitation learn-
ing, enabling users to interact with their recitation in more engaging and informative
ways. By combining different types of feedback, these systems enhance the learning
experience and provide a deeper understanding of the recitation process.

2.4.7 Recent Advances in Automatic Speech Recognition (ASR)
for Quranic Recitation

Automatic Speech Recognition (ASR) is a rapidly evolving field, and recent advances
in ASR techniques have greatly impacted Quranic recitation recognition. Transformer-
based models and pre-trained models such as Wav2Vec have been used to improve the
performance of ASR systems in recognizing Quranic recitation. These models are capable
of handling complex phonetic variations and different recitation styles.
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The table outlines studies from 2019 to 2022 that applied ASR models, including
Transformer-based models, for Quranic recitation recognition. These studies demonstrate
advancements in dealing with variations in recitation styles and pronunciation. The
reported performance in terms of accuracy and F1-Score varies depending on the dataset
and task, ranging from 87% to 92.3%. The integration of ASR technologies with deep

Research Year Dataset Methodology Features Focus Area Perf.
Zhang et al. 2019 114 surahs Graph Neural

Networks
Audio + Text Structure analy-

sis
91.2%
F1-score

Hussein et al. 2021 6,236 verses Transformer Wav2Vec,
BERT

Style transfer 88.7%
BLEU

Al-Khalifa et al. 2022 Multiple texts Deep Learning Filter Banks,
MFCC

Cross-reference 87.5%
Precision

Table 2.7: Recent Multimodal Approaches in Quranic Research

learning models allows for more accurate recognition of Quranic recitations, even when
there are variations in pronunciation or recitation style. This approach is particularly
useful in applications requiring real-time feedback and error detection.

2.5 Conclusion
Speech recognition has come a long way, moving from basic rule-based systems to ad-
vanced deep learning methods. This chapter highlighted how these techniques have im-
proved the ability of machines to process and understand spoken language. Applying
them to Quranic recitation is especially valuable, as it helps preserve a rich religious
tradition. We saw how research has tackled challenges like complex pronunciation rules
and multiple recitation styles. Key progress includes the use of deep learning, better use
of context, and the creation of specialized datasets. Still, there are challenges to solve,
such as pronunciation variations and user-centered design for learning tools. Future work
should focus on smarter models that need less data, better error correction, and more
personalized learning. Overall, applying speech recognition to Quranic recitation is not
only a technical success but also a way to protect and teach an important part of cultural
and religious heritage.
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Chapter 3

proposed approaches

3.1 Introduction
A contribution, presented in Chapter 3, aims to improve the performance indicators using
the QDAT dataset. This improvement is achieved by evaluating the performance of the
proposed model. These tests are satisfactory. To this end, an article was published in the
Indonesian Journal of Electrical Engineering and Computer Science, entitled ”Enhanc-
ing Quranic Recitation Through Machine Learning: A Predictive Approach to Tajweed
Optimization.”

3.2 overview
In this project, we focus on classifying Quranic recitation based on Tajweed rules us-
ing deep learning models. We explore two approaches that apply hybrid deep learning
techniques to an existing dataset, combining different model architectures to improve
recognition accuracy and performances. Additionally, we create a new dataset that in-
cludes multiple verses, various Tajweed rules, and corresponding audio recordings, en-
hancing training and evaluation. Our main objectives are to ensure precise classification
of Tajweed rules, develop a flexible and scalable system, and implement parallel process-
ing for better efficiency.

3.3 Proposed Approachs :

3.4 The first approach
This approach leverages multiple neural network architectures (CNN, LSTM, and GRU)
in an ensemble to improve classification accuracy for audio pattern recognition, likely
focused on evaluating recitation quality against established rules.
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Figure 3.1: Process of the Ensemble Learning Model for Quranic Recitation Recognition

3.4.1 Dataset
The QDAT dataset [87] is developed for the classification and analysis of Quranic recita-
tion, focusing on the recognition of Tajweed rules using deep learning techniques. It
contains 1,500 audio recordings from 150 unique speakers, representing a diverse
range of recitation styles and pronunciation patterns. The dataset includes 350 male
and 1,159 female reciters, covering six different age groups: under 15, 15-25, 25-35,
35-45, 45-55, and 55-70 years. This demographic diversity ensures that the dataset
captures various speech characteristics, including differences in tone, pronunciation ac-
curacy, and fluency. Each recording is stored in WAV format with a sampling rate
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of 11 kHz, mono channel, and 16-bit resolution, ensuring high-quality audio for
precise speech processing. The recordings were collected under controlled conditions
using WhatsApp voice messages, minimizing noise interference and enhancing dataset
reliability. To improve model performance and allow for better generalization, each recita-
tion is repeated approximately ten times, ensuring the dataset includes variations while
maintaining consistency. Alongside the audio recordings, the dataset provides a CSV
file containing essential metadata, including WAV file links, speaker age and gen-
der, Tajweed rule compliance labels, and overall recitation quality assessment,
facilitating in-depth analysis and classification. The QDAT dataset is publicly available
for research in Quranic speech recognition, Tajweed rule classification, and deep learning
applications.

3.4.2 Preprocessing Pipeline
A. Audio Preprocessing: The preprocessing pipeline for Quranic recitation classifi-

cation begins with MFCC extraction, a crucial step in transforming raw audio
signals into meaningful features. The process starts with pre-emphasis filtering,
where a high-pass filter is applied to enhance high-frequency components and coun-
teract signal attenuation. Next, the signal undergoes framing and windowing,
where it is divided into overlapping segments, and a Hamming window is applied
to minimize spectral leakage. The Fast Fourier Transform (FFT) is then used
to convert the time-domain signal into the frequency domain, enabling a detailed
spectral analysis. To simulate human auditory perception, Mel filter banks are
applied using triangular filters to extract relevant frequency components. Finally,
a Discrete Cosine Transform (DCT) is performed to reduce dimensionality, re-
taining the most significant coefficients—typically between 13 and 20—while pre-
serving essential spectral characteristics. This structured feature extraction process
ensures that the input audio data is well-optimized for deep learning models.

B. Label Encoding: After feature extraction, categorical information associated with
the audio recordings is converted into numerical representations to facilitate model
training. Each reciter is assigned a unique identifier to distinguish individual
speakers. Tajweed rules are encoded numerically, allowing the model to differ-
entiate between various recitation characteristics. Additionally, Surah names are
mapped to numerical indices to standardize the classification process. This
structured encoding ensures that the input data is well-organized, improving the
efficiency and accuracy of Quranic recitation classification using deep learning tech-
niques.

3.4.3 Model Architectures
3.4.3.1 CNN Architecture

The CNN architecture is specifically designed to extract spectral features from audio sig-
nals through a sophisticated configuration of layers. The input consists of Mel-Frequency
Cepstral Coefficients (MFCCs) transformed into 2D tensors , representing time steps,
MFCC features, and channels respectively. The model employs three convolutional lay-
ers with increasing filter counts (64, 128, and 256), each using kernel size 3 and ReLU
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activation functions. MaxPooling layers with pool size 2 follow the first two convolu-
tional layers to reduce dimensionality and focus on the most salient features. The feature
extraction section is followed by dense layers, including a hidden layer with 128 neurons
and ReLU activation, a dropout layer with rate 0.5 to prevent overfitting, and a final
output layer with sigmoid activation for binary classification. The validation curve shows
larger fluctuations than the training curve, particularly around epochs 4 and 12, which is
characteristic of CNN models applied to audio data with inherent variability in spectral
content.

CNN Architecture =



Input: (256, 13, 1)

Conv1D(64, kernel_size = 3, activation = ’relu’)
MaxPooling1D(2)

Conv1D(128, kernel_size = 3, activation = ’relu’)
MaxPooling1D(2)

Conv1D(256, kernel_size = 3, activation = ’relu’)
Dense(128, activation = ’relu’)
Dropout(0.5)
Dense(1, activation = ’sigmoid’)

(3.1)

The Convolutional Neural Network (CNN) model demonstrates a clear learning progres-
sion across the 16 training epochs as visualized in Figure 3.7. The training accuracy
(represented by the dark blue line) begins at approximately 55% and steadily increases
to reach approximately 85% by the final epoch. In contrast, the validation accuracy (light
blue line) follows a more volatile path, starting around 55% and rising to approximately
75% by epoch 16. This 10% gap between training and validation accuracy suggests the
presence of some overfitting, where the model performs better on data it has seen during
training than on unseen validation samples.

Figure 3.2: The CNN Models accuracy
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Metric Value
Final Training Accuracy 85%
Final Validation Accuracy 75%
Observations Overfitting present; unstable validation accuracy

Table 3.1: Performance Metrics - CNN Model

3.4.3.2 LSTM Architecture

The LSTM architecture employs a sophisticated three-layer recurrent structure optimized
for sequence modeling. The model accepts input with dimensions (256, 13), representing
time steps and MFCC features extracted from the audio signals. The first LSTM layer
contains 256 units with return_sequences=True to maintain temporal information for
subsequent layers. This is followed by a second LSTM layer with 128 units (also with re-
turn_sequences=True) and a final LSTM layer with 64 units. The recurrent structure is
complemented by dense layers, including a hidden layer with 64 neurons and ReLU acti-
vation, a dropout layer with rate 0.5 for regularization, and an output layer with sigmoid
activation. The model also incorporates batch normalization between layers to stabilize
and accelerate the learning process by normalizing activations. The learning curve shows
a particularly steep improvement between epochs 0 and 5, followed by more gradual en-
hancement and occasional plateaus, which is typical of recurrent neural networks as they
progressively refine their ability to model long-term dependencies in sequential data.

LSTM Architecture =



Input: (256, 13)

LSTM(256, return_sequences = True)
LSTM(128, return_sequences = True)
LSTM(64)

Dense(64, activation = ’relu’)
Dropout(0.5)
Dense(1, activation = ’sigmoid’)

(3.2)

The Long Short-Term Memory (LSTM) model exhibits superior temporal modeling capa-
bility as illustrated in Figure 3.8. The learning curve shows remarkable stability compared
to the CNN model, with the dark yellow training accuracy line demonstrating consistent
improvement from 60% at epoch 0 to 85% by epoch 16. The validation curve (light
yellow) displays a similar upward trend, though with greater variability, starting at ap-
proximately 70% and reaching 82% by the final epoch. This narrower gap of 3% between
final training and validation accuracies indicates better generalization ability than the
CNN model. The LSTM’s performance is particularly noteworthy in capturing the se-
quential characteristics and temporal dependencies of Quranic recitation audio, where
rhythm, pauses, and pronunciation patterns evolve over time.
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Figure 3.3: The LSTM Models accuracy

Metric Value
Final Training Accuracy 85%
Final Validation Accuracy 82%
Observations Stable learning; good generalization

Table 3.2: Performance Metrics - LSTM Model

3.4.3.3 GRU Architecture

The GRU architecture shares structural similarities with the LSTM model but offers
computational efficiency through simplified gating mechanisms. The input shape is con-
figured as (256, 13) for time steps and MFCC features. The model consists of three
stacked GRU layers with decreasing unit counts: the first layer with 256 units (re-
turn_sequences=True), the second with 128 units (return_sequences=True), and the
final GRU layer with 64 units. These recurrent layers are followed by a dense layer
with 64 neurons and ReLU activation, a dropout layer with rate 0.5 for regularization,
and an output layer with sigmoid activation for classification. The GRU’s architectural
simplicity—using two gates (update and reset) instead of LSTM’s three gates—translates
to approximately 25% fewer parameters, resulting in reduced training time without signif-
icant accuracy compromises. This model demonstrates particular efficiency in the early
epochs, showing that it can quickly capture essential temporal patterns in audio data,
making it suitable for applications with limited computational resources or where rapid
model development is prioritized.

GRU Architecture =



Input: (256, 13)

GRU(256, return_sequences = True)
GRU(128, return_sequences = True)
GRU(64)

Dense(64, activation = ’relu’)
Dropout(0.5)
Dense(1, activation = ’sigmoid’)

(3.3)
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The Gated Recurrent Unit (GRU) model represents an efficient alternative to LSTM,
demonstrating unique learning characteristics as shown in Figure 3.9. The training ac-
curacy (dark green line) demonstrates rapid progression in early epochs, particularly
between epochs 0 and 6, where accuracy improves from approximately 60% to 80%. This
is followed by more gradual enhancement and earlier stabilization than observed with the
LSTM model. The validation accuracy (light green line) follows a similar pattern with
notable fluctuations, especially around epochs 4, 8, and 12. The final validation accuracy
reaches approximately 80%, with a minimal gap between training and validation curves,
suggesting an excellent balance between learning capacity and generalization ability.

Figure 3.4: The GRU Models accuracy

Metric Value
Final Training Accuracy 83–85%
Final Validation Accuracy 80%
Observations Fast early learning; lightweight and efficient

Table 3.3: Performance Metrics - GRU Model

3.4.4 Ensemble Learning
The ensemble approach demonstrated significant performance improvement compared
to individual models. By combining individual predictions from each model through
a logistic regression-based meta-model with performance-based weighting, we achieved
robust classification results. The overall learning curve shows faster convergence and
increased stability, reaching a maximum accuracy of 86.82%. As shown in Figure 3.10,
the confusion matrix reveals excellent discrimination capability. These results confirm
the robustness of the ensemble approach for Quranic recitation classification.
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Figure 3.5: Confusion Matrix for Meta-Model

3.4.5 Performance Analysis
3.4.5.1 Individual Model Performance

A comprehensive analysis of model performance metrics reveals varying strengths and
weaknesses across different architectures. The CNN model achieved 76.36% training ac-
curacy, 71.62% validation accuracy, and 73.45% testing accuracy with a relatively fast
training time of 7 seconds per epoch, though it exhibited high computational complexity.
The LSTM model demonstrated superior performance with 85.00% training accuracy,
82.00% validation accuracy, and 81.23% testing accuracy, but required longer training
times at 12 seconds per epoch and maintained high complexity. The GRU architecture de-
livered intermediate results with 80.00% training accuracy, 78.50% validation accuracy,
and 77.89% testing accuracy, processing at 9 seconds per epoch while still demanding
high computational resources. Most notably, the ensemble approach significantly out-
performed all individual models, reaching 86.82% training accuracy, 84.30% validation
accuracy, and 83.75% testing accuracy, though at the cost of increased training time (15
seconds per epoch) and very high computational complexity.

3.4.5.2 Technical Implementation Details

For all models, we employed a consistent set of hyperparameters to ensure fair comparison.

Parameter Value
Optimizer Adam
Learning Rate 0.001
β1 0.9
β2 0.999
Loss Function Binary Cross-Entropy
Batch Size Consistent across all models
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Table 3.4: Comprehensive Model Performance Comparison
Model Training Acc. Validation Acc. Testing Acc.
CNN 76.36% 71.62% 73.45%
LSTM 85.00% 82.00% 81.23%
GRU 80.00% 78.50% 77.89%
Ensemble 86.82% 84.30% 83.75%

Table 3.5: Technical Implementation Details for All Models

size of 32 and trained each model for 17 epochs. To prevent overfitting, we imple-
mented a dropout rate of 0.5 throughout all architectures.

3.4.5.3 Confusion Matrix Analysis

The ensemble model’s confusion matrix provides detailed insight into classification per-
formance.

These results translate to the following derived metrics:

• Precision: 86.18% ( TP
TP+FP

)

• Recall: 82.81% ( TP
TP+FN

)

• F1-Score: 84.46% (2× Precision×Recall
Precision+Recall

)

• Accuracy: 86.82% ( TP+TN
TP+TN+FP+FN

)

This balanced performance across multiple metrics demonstrates the robust nature of
the ensemble approach.

3.4.6 Conclusion
The experimental results demonstrate the effectiveness of our ensemble approach for
Quranic recitation classification. Our key contributions can be summarized as follows:

• Development of a robust ensemble architecture that enhances classification perfor-
mance.

• Implementation of an optimized preprocessing pipeline for improved feature extrac-
tion.

• Achievement of an overall classification accuracy of 86.82%, highlighting the model’s
reliability.

• Identification of promising improvement perspectives for future advancements in
Quranic recitation recognition.
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3.5 The second approach
This approach refines the ensemble learning technique introduced in the first approach
by implementing a custom attention mechanism and focusing on optimizing individual
model architectures before combining their predictions through stacking.

Figure 3.6: Process of the Ensemble Learning Model with attention mechanism for
Quranic Recitation Recognition
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3.5.1 Attention Mechanism Implementation
A. Custom Attention Layer: A pivotal enhancement in this approach is the im-

plementation of a custom attention layer designed to focus on the most relevant
temporal features in audio sequences. The attention mechanism operates by com-
puting attention weights through a learned transformation:

q = inputs ·W + b (3.4)

where W and b are trainable parameters. The attention weights are then obtained
by applying softmax normalization:

attention_weights = softmax(q, axis=1) (3.5)

These weights are subsequently used to create a weighted representation of the
input:

weighted_input = inputs · attention_weights (3.6)

Finally, the weighted features are aggregated through summation:

output =
T∑
t=1

weighted_inputt (3.7)

This attention mechanism enables the models to focus on segments of audio that are
most discriminative for Quranic recitation classification, addressing the temporal
variability inherent in pronunciation and rhythmic patterns.

B. Enhanced Feature Extraction: The feature extraction process was refined to
ensure consistent dimensionality across all samples. The MFCC extraction function
was modified to handle variable-length audio inputs by implementing a maximum
padding length of 200 frames. For recordings exceeding this length, features are
truncated, while shorter recordings are padded with zeros. This standardization
process ensures uniform input dimensions for the neural network models while pre-
serving the essential spectral characteristics of the recitations.

3.5.2 Refined Model Architectures
3.5.2.1 Optimized CNN Architecture

The optimized CNN architecture features two convolutional layers with increased filter
counts (128 and 256), employing kernel sizes of 5 and 3 respectively. Each convolu-
tional layer is followed by a MaxPooling1D layer with pool size 3 to effectively reduce
dimensionality while preserving essential spectral patterns. The custom attention layer
is incorporated after the second pooling layer to focus on the most relevant features. The
model concludes with a flattening operation, followed by a dense layer with 256 neurons,
dropout regularization at a rate of 0.4, and a sigmoid activation output layer for binary
classification.
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Optimized CNN Architecture =



Input: (200, 13)

Conv1D(128, kernel_size = 5, activation = ’relu’, padding = ’same’)
MaxPooling1D(3)

Conv1D(256, kernel_size = 3, activation = ’relu’, padding = ’same’)
MaxPooling1D(3)

Attention()
Flatten()
Dense(256, activation = ’relu’)
Dropout(0.4)
Dense(1, activation = ’sigmoid’)

(3.8)
The convolutional neural network architecture was significantly enhanced by increasing
filter complexity and incorporating the attention mechanism. As illustrated in Figure ??,
the CNN model demonstrates improved learning stability compared to the first approach.
The training accuracy (dark blue line) exhibits a steady increase from approximately 53%
at epoch 0 to 84% by epoch 16, with minor fluctuations around epoch 4. The validation
accuracy (light blue line) follows a similar trajectory, reaching approximately 82% in the
final epochs, indicating improved generalization compared to the initial approach.

Figure 3.7: The CNN Models accuracy

Metric Value
Final Training Accuracy 84%
Final Validation Accuracy 82%
Notable Observation Improved stability and reduced overfitting

Table 3.6: Performance Metrics - Optimized CNN Model
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3.5.2.2 Optimized LSTM Architecture

The refined LSTM architecture is structured with two LSTM layers, both configured
with return_sequences=True to preserve temporal information. The first layer contains
256 units, followed by a second layer with 128 units. The custom attention layer is
strategically placed after these recurrent layers to identify and emphasize the most infor-
mative temporal features. This is followed by a dense layer with 128 neurons, dropout
regularization at 0.4, and a sigmoid activation output layer for classification. By main-
taining temporal information throughout the network and applying attention-based fea-
ture emphasis, this architecture achieves superior performance in distinguishing subtle
pronunciation patterns in Quranic recitations.

Optimized LSTM Architecture =



Input: (200, 13)

LSTM(256, return_sequences = True)
LSTM(128, return_sequences = True)
Attention()
Dense(128, activation = ’relu’)
Dropout(0.4)
Dense(1, activation = ’sigmoid’)

(3.9)

The optimized LSTM architecture demonstrates remarkable performance as shown in
Figure ??. The training accuracy (dark yellow line) progresses steadily from 58% at
epoch 0 to approximately 95% by epoch 14, with a slight decline in the final epochs. The
validation accuracy (light yellow line) shows impressive stability, starting at 60% and
reaching approximately 90% by epoch 16. This narrow gap between training and valida-
tion accuracies suggests excellent generalization capability, demonstrating the LSTM’s
superior ability to model temporal dependencies in Quranic recitation audio.

Figure 3.8: The LSTM Models accuracy
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Metric Value
Final Training Accuracy 93%
Final Validation Accuracy 90%
Notable Observation Superior temporal modeling with exceptional stability

Table 3.7: Performance Metrics - Optimized LSTM Model

3.5.2.3 Optimized GRU Architecture

The optimized GRU architecture parallels the LSTM structure with two GRU layers (256
and 128 units respectively), both configured with return_sequences=True. The custom
attention layer is integrated after these recurrent layers to highlight key temporal features
relevant to classification. This is followed by a dense layer with 128 neurons, dropout
regularization at 0.4, and a sigmoid activation output layer. The GRU’s efficient gating
mechanisms combined with attention-based feature emphasis result in a computationally
efficient yet highly accurate model for Quranic recitation classification.

Optimized GRU Architecture =



Input: (200, 13)

GRU(256, return_sequences = True)
GRU(128, return_sequences = True)
Attention()
Dense(128, activation = ’relu’)
Dropout(0.4)
Dense(1, activation = ’sigmoid’)

(3.10)

The Gated Recurrent Unit model demonstrates exceptional training efficiency and per-
formance stability as illustrated in Figure ??. The training accuracy (dark green line)
shows rapid improvement in early epochs, progressing from 58% at epoch 0 to over 90%
by epoch 8, ultimately reaching approximately 95% by epoch 14. The validation accu-
racy (light green line) demonstrates more variable behavior but follows an overall positive
trend, achieving approximately 88% in the final epochs. This model exhibits excellent
learning efficiency while maintaining good generalization capacity.

Metric Value
Final Training Accuracy 95%
Final Validation Accuracy 88%
Notable Observation Rapid learning with efficient computational footprint

Table 3.8: Performance Metrics - Optimized GRU Model

3.5.3 Advanced Stacking Ensemble Implementation
The second approach implements a more sophisticated stacking ensemble technique that
leverages the strengths of each base model. After training the individual models (CNN,
LSTM, and GRU), their predictions on the test set are extracted and combined to form
meta-features. These meta-features serve as inputs to a meta-model, which in this case is
a logistic regression classifier. The meta-model learns optimal weights for combining the
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Figure 3.9: The GRU Models accuracy

base model predictions, effectively creating an ensemble that outperforms any individual
model.

3.5.3.1 Ensemble Performance Analysis

The stacking ensemble achieved remarkable performance with an accuracy of 91.89% on
the test set, significantly outperforming individual models. As visualized in the confusion
matrix (Figure 3.10), the ensemble model correctly classified 158 instances of class 0 and
114 instances of class 1, while producing only 10 false positives and 14 false negatives.

Figure 3.10: Confusion Matrix for Meta-Model

Based on these results, the following performance metrics were calculated:

• Precision: 91.94% ( TP
TP+FP

= 114
114+10

)

• Recall: 89.06% ( TP
TP+FN

= 114
114+14

)
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• F1-Score: 90.48% (2× Precision×Recall
Precision+Recall

)

• Accuracy: 91.89% ( TP+TN
TP+TN+FP+FN

= 158+114
158+114+10+14

)

3.5.4 Comparative Analysis with First Approach

Metric First Approach Second Approach Improvement
CNN Accuracy 73.45% 82.00% +8.55%
LSTM Accuracy 81.23% 90.00% +8.77%
GRU Accuracy 77.89% 88.00% +10.11%
Ensemble Accuracy 86.82% 91.89% +5.07%

Table 3.9: Performance Comparison Between First and Second Approaches

The second approach demonstrates substantial improvements over the first approach
across all model architectures. The integration of the custom attention mechanism has
yielded particularly significant enhancements, with the GRU model showing the largest
improvement of 10.11 percentage points. The ensemble model’s accuracy increased by
5.07 percentage points to reach 91.89%, demonstrating the effectiveness of the refined
architectures and advanced stacking implementation.

3.5.5 Conclusion
The second approach demonstrates significant advancements in Quranic recitation clas-
sification through several key innovations:

• Integration of a custom attention mechanism that effectively identifies and empha-
sizes the most relevant temporal features in audio sequences.

• Architectural refinements to each model type, resulting in substantial performance
improvements across all architectures.

• Implementation of an advanced stacking ensemble technique that achieved a clas-
sification accuracy of 91.89%, representing a 5.07% improvement over the first ap-
proach.

• Enhanced preprocessing and standardization techniques that ensure consistent fea-
ture representation.

These results confirm that the combination of attention mechanisms with ensemble
learning provides a robust framework for Quranic recitation classification, with potential
applications in automated assessment, education, and preservation of recitation tradi-
tions.
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3.6 The Third Approach
3.6.1 Data Collection and Warsh Recitation Identification
In this part of our work, we focused on building a rich and structured dataset to analyze
Tajweed rules specifically in the Warsh recitation style of the Quran. We developed a new
architecture for Tajweed dataset assessment in the Warsh recitation style and collected
a comprehensive set of recordings from diverse sources, creating a dataset tailored for
machine learning applications in Quranic recitation analysis. Our data collection strategy
aimed for diversity and inclusivity within Algeria. We gathered 1,200 verses from a variety
of Algerian participants - including children as young as 5 years old to elderly individuals
in their 70s. We ensured gender diversity by including both men and women, and captured
a wide range of expertise levels - from world-leading Quranic scholars teaching at King
Fahd University to beginners who were still learning to read. While our current dataset
focuses on Algerian reciters, our goal is to eventually expand this to include participants
from all countries across the Maghreb region . We started with a specific focus: the first
eight verses of Surat Al-’Alaq. This choice helped us maintain consistency for comparative
analysis. Our approach allowed us to cover a broad range of recitation styles while
maintaining depth in specific verse analysis. To manage and enrich this dataset, we
developed a Streamlit-based application. It serves as a bridge between data scientists and
Quranic experts who provide corrections and verification. The tool supports uploading
and converting different audio formats into a standard format, and integrates real-time
Tajweed rule labeling — making the whole process efficient and user-friendly.

3.6.2 Dataset Architecture
3.6.2.1 Core Structure

We designed the dataset architecture to suit Tajweed evaluation, with special attention
to features unique to Warsh recitation. The architecture was reviewed and validated by
distinguished Quranic scholars:

Noureddine Moulay : Holder of a Master’s degree from Emir Abdelkader University
in Constantine, specializing in Maliki jurisprudence and its principles. Currently studying
at the Islamic University of Madinah in the Faculty of Sharia. He also studied at the
College of the Holy Quran and Quranic Studies. He is certified in Warsh, Qalun, and
Hafs recitation styles, and is completing Ibn Kathir Al-Makki and Asim readings.

Dr. Ben Halima Othman : Principal Imam with the Ministry of Religious Affairs
and Endowments, who confirmed the correctness and validity of our approach.

Each record in our dataset includes:

Identification fields: such as id, surah name, verse number, and verse text to give
context.

Audio field: which stores links to the standardized audio files.



Tajweed rule fields: 17 columns covering specific Tajweed rules.

Evaluation metrics: including total rules present, total rules respected, and the target
value for model training.

Category Fields Purpose
Identification id, surah_name,

verse_number, verse_text
Identifies each verse and
provides context

Audio audio_filename Links to the recitation audio
file

Tajweed Rules 17 specific rule columns Evaluates adherence to each
Tajweed rule

Metrics total_rules_present, to-
tal_rules_respected, target

Summary statistics for eval-
uation

Table 3.10: Core structure of the dataset

3.6.2.2 Tajweed Rule Categories

We included a thorough assessment across 17 Tajweed rules — covering all relevant
phonetic aspects of Warsh recitation:

Rule Number Rule Name Description
1 Madd_al_Tabi’i Natural prolongation
2 Qalqalah Vibration in specific letters
3 Ghunna Nasalization
4 Ikhfa Partial hiding of noon or meem
5 Idgham Merging of letters
6 Izhar Clear pronunciation
7 Imla Inclination of vowel sounds
8 Fath Opening (vowel pronunciation)
9 Tafkhim Heavy pronunciation
10 Tafkhim_al_Ra Heavy pronunciation of Ra
11 Tarqiq_al_Ra Light pronunciation of Ra
12 Ibdal_al_Hamzah Substitution of Hamza
13 Madd_al_Tawil Extended prolongation
14 Madd_al_Badl Substitutive prolongation
15 Naql Transfer of vowel
16 Tashil Facilitation of Hamza
17 Iqlaab Conversion of noon to meem

Table 3.11: Tajweed Rules in the Warsh Dataset

Each rule is evaluated using the following system:
0: Rule not present
1: Rule present and correctly applied
-1: Rule present but incorrectly applied
-2: Rule not present but incorrectly marked as applied
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This detailed classification helps us precisely measure the quality of each recitation
and the accuracy of rule application in the Warsh style.

3.6.3 Dataset Management Tool
Our custom Streamlit application plays a key role in managing the dataset. It provides
features for: Visualizing and exploring data entries Adding new verses (with Arabic text
support) Uploading and converting audio files Evaluating Tajweed rules Playing back
audio for verification The app supports MP3, WAV, and OGG formats, converting all
to WAV for uniformity. It uses fallback methods with Librosa and Pydub, and includes
error handling to ensure smooth performance across different environments.

Figure 3.11: Tajweed Rules Evaluation interface showing all available rules that can be
annotated for each verse.

The interface is trilingual (Arabic/English) and divided into three main sections for
ease of use: Dataset viewing and exploration (Figure 3.14) New verse entry and Tajweed
annotation (Figure 3.13) Audio playback and verification (Figure 3.12)
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Figure 3.12: Rule evaluation results showing presence and status of different Tajweed
rules in a specific verse.

Figure 3.13: Verse editing interface allowing for Surah name, verse number, and text
input with Tajweed rule annotation.
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Figure 3.14: Dataset overview showing Quranic verses with their associated audio files
and Tajweed rule annotations.

3.6.4 Dataset Composition
Our final dataset includes recordings from a diverse group of Algerian participants, with
particular emphasis on representing a wide range of ages (from 5 to 70 years old), both
genders, and varying levels of expertise — from world-leading scholars at King Fahd Uni-
versity to complete beginners. Although time constraints prevented us from completing
the correction of all audio samples, the dataset’s architecture and annotation system are
fully established and ready for further development and expansion to other countries in
the Maghreb region.

3.6.5 Applications and Future Work
This dataset opens up exciting possibilities for research and education. It can power ma-
chine learning models to automatically detect Tajweed rule application and offer objective
assessments of recitation. It also lays the groundwork for intelligent learning tools that
can give real-time feedback to students learning the Warsh recitation. Looking ahead,
we plan to:

• Complete the correction of all collected audio samples

• Expand the dataset to include participants from all countries across the Maghreb
region ������) (������

• Include more Surahs in the dataset

• Add spectral analysis to better understand phonetic features

• Build real-time evaluation features for educational apps

These developments will make the dataset even more valuable for both researchers and
learners of Quranic recitation in the Warsh style.
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3.6.6 Conclusion
In this third approach, we successfully developed a structured and specialized dataset
dedicated to the Warsh recitation of the Quran, with a focus on Tajweed rule analysis.
By combining a diverse range of reciters from Algeria—varying in age, gender, and level of
expertise—we ensured that our dataset reflects real-world variability. Our custom-built
Streamlit application enabled efficient data management, rule annotation, and collabo-
ration between Quranic experts and data scientists.

This resource offers significant potential for both research and education. It lays the
foundation for intelligent tools capable of providing automatic Tajweed feedback and
enhancing Quranic learning. Future developments aim to expand the dataset, integrate
spectral phonetic analysis, and enable real-time recitation assessment—bringing us closer
to a comprehensive AI-assisted learning platform for the Warsh recitation style.

3.7 Conclusion
This chapter presents three key contributions to the field of Quranic recitation analysis:

• First Approach: A robust ensemble model was developed, achieving 86.82% accu-
racy through optimized preprocessing and model integration. It demonstrated the
potential of combining multiple deep learning techniques for Tajweed classification.

• Second Approach: By incorporating attention mechanisms and refined architec-
ture design, the model reached 91.89% accuracy — a notable improvement. The
use of advanced ensemble techniques further enhanced performance, making this
method a reliable tool for Tajweed recognition and educational use.

• Third Approach: We developed a dedicated dataset specifically for Warsh recita-
tion, consisting of 1,200 entries annotated across 17 Tajweed rules. This dataset,
paired with a custom Streamlit application, serves as a powerful resource for Quranic
recitation analysis. The Streamlit platform is designed to facilitate collaboration
between two experts in the same domain, providing a shared space for annotating
and verifying Tajweed rules. Our goal is to expand the dataset to cover the entire
Quran, enabling the development of robust models capable of correcting recitation
from audio inputs. This will pave the way for applications that provide real-time
feedback and corrections for Quranic recitation.

Together, these efforts lay a solid foundation for more intelligent, accessible, and
accurate systems for Quranic recitation classification and Tajweed assessment.
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Conclusion
This comprehensive research has made significant contributions to the field of automatic
speech recognition (ASR) for Quranic recitation, with a particular focus on the Warsh
recitation style. The work spans theoretical foundations, technical implementations, and
practical applications through three distinct but complementary approaches.

The first approach established a foundation by developing an ensemble learning model
that combines Convolutional Neural Networks (CNN), Long Short-Term Memory net-
works (LSTM), and Gated Recurrent Units (GRU). This ensemble achieved an accuracy
of 86.82% for Tajweed classification, demonstrating the potential of integrating multiple
deep learning architectures to leverage their complementary strengths.

The second approach built upon this foundation by incorporating custom attention
mechanisms, which significantly enhanced the model’s ability to focus on the most rel-
evant temporal features in audio sequences. This refinement, along with architectural
optimizations, yielded substantial improvements across all model types—particularly in
the GRU architecture, which saw a 10.11 percentage point increase in accuracy. The
advanced stacking ensemble implementation reached an impressive 91.89% accuracy, rep-
resenting a 5.07% improvement over the first approach.

The third approach addressed a critical gap in the field by developing a specialized
dataset specifically for the Warsh recitation style, comprising 1,200 entries from diverse
Algerian participants spanning different ages, genders, and expertise levels. Each en-
try was meticulously annotated across 17 specific Tajweed rules with a standardized
evaluation system. A custom Streamlit application was developed to facilitate dataset
management, annotation, and collaboration between Quranic experts and data scientists.

Together, these approaches create a comprehensive framework for Quranic recitation
analysis that combines:

• Advanced machine learning techniques with attention mechanisms,

• Ensemble methods for robust classification,

• A structured, annotated dataset specifically for Warsh recitation,

• User-friendly tools for dataset management and annotation.

This research has laid a solid foundation for future developments in automated Tajweed
assessment and educational applications. The potential applications extend to intelligent
learning systems capable of providing real-time feedback to students learning Quranic
recitation, tools for preserving recitation traditions, and platforms for objective assess-
ment of recitation quality.

Future work aims to expand the dataset to include participants from across the
Maghreb region, incorporate more Surahs, add spectral analysis for deeper phonetic
understanding, and build real-time evaluation features for educational applications—
ultimately working toward comprehensive AI-assisted learning platforms for Quranic
recitation in the Warsh style.
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