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Abstract

In this thesis, we use a novel approach to study the existence, uniqueness, and stability of
solutions to a Cauchy-type problem of nonlinear fractional differential equations of variable
order with finite and infinite delay. Contrary to the techniques taken in the literature, which
were centered on the usage of the concept of generalized intervals and the idea of piecewise
constant functions, our approach is straightforward and based on a novel fractional operator
that is more appropriate and demonstrates the solvability and stability of the main problem
under less restrictive presumptions. All results are achieved by using fixed point theory. In all
chapters of this work, we have illustrated our theoretical study with numerical applications to
approximate the solution to all our proposed problems, and we have used different methods.
One of these methods is the finite difference method. The finite difference method is a
numerical technique used to solve differential equations by approximating derivatives with
finite differences. It is widely used in physics, engineering, and other fields where differential
equations need to be solved numerically. Essentially, it discretizes space and time into small
intervals and approximates derivatives with finite differences to obtain a numerical solution.

The second method is the Euler discretization method, also known as the Euler method,
which is one of the simplest numerical methods for solving ordinary differential equations
(ODEs). It belongs to the family of finite difference methods and applies to first-order
equations. The basic idea of this method is to approximate the solution of a differential
equation step by step, using a time interval and starting from an initial condition. In this
work, comparisons were made between these two methods to confirm the theoretical results
founded in this thesis.

Keywords:Derivatives and integrals of variable-order ; Fixed point theorem , Cauchy-
type problem, functional differential equations with infinite delay , functional differential
equations with finite delay , Ulam-Hyers stability, Numerical methods.

AMS (MOS) Subject Classifications: 26A33, 34A08, 34A37, 34A60.
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Résumé

Dans cette these, nous utilisons une nouvelle approche pour étudier 'existence, I'unicité
et la stabilité des solutions d’un probleme de type Cauchy pour des équations différentielles
fractionnaires non linéaires d’ordre variable avec des retards finis et infinis. Contrairement
aux techniques adoptées dans la littérature, qui étaient centrées sur 'utilisation du concept
des intervalles généralisés et I'idée des fonctions constantes par morceaux, notre approche est
directe et repose sur un nouvel opérateur fractionnaire qui est plus approprié et démontre la
solvabilité et la stabilité du probleme principal sous des hypotheéses moins restrictives. Tous
les résultats sont obtenus en utilisant la théorie du point fixe. Dans tous les chapitres de
ce travail, nous avons illustré notre étude théorique par des applications numériques pour
approximer la solution a tous nos problémes proposés, et nous avons utilisé différentes méth-
odes. L’une de ces méthodes est la méthode des différences finies. La méthode des différences
finies est une technique numérique utilisée pour résoudre des équations différentielles en ap-
prochant les dérivées par des différences finies. Elle est largement utilisée en physique, en
ingénierie, et dans d’autres domaines ou des équations différentielles doivent etre résolues
numériquement. Essentiellement, elle discrétise I'espace et le temps en petits intervalles et
approxime les dérivées par des différences finies pour obtenir une solution numérique.

La deuxieme méthode est la méthode de discrétisation d’Euler, également appelée méth-
ode d’Euler, qui est I'une des méthodes numériques les plus simples pour résoudre des équa-
tions différentielles ordinaires (EDO). Elle appartient a la famille des méthodes de différences
finies et s’applique aux équations du premier ordre. L’idée de base de cette méthode est
d’approximer la solution d’une équation différentielle pas a pas, en utilisant un intervalle
de temps et en partant d’une condition initiale. Dans ce travail, des comparaisons ont été
effectuées entre ces deux méthodes pour confirmer les résultats théoriques trouvés dans cette
these.

Motes clés: Dérivées et intégrales d’ordre variable, Théoreme du point fixe, Probleme de
type Cauchy, équations différentielles fonctionnelles avec retard infini, équations différentielles
fonctionnelles avec retard fini, Stabilité d’Ulam-Hyers, méthodes numériques.

AMS (MOS) Subject Classifications: 26A33, 34A08, 34A37, 34A60.
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General introduction

The development of fractional calculus which is a branch of classical calculus, can be traced
back to early attempts to extend the concepts of differentiation and integration to non-integer
orders in the 17th century. Leibniz and L’Hopital were among the mathematicians who first
explored these concepts, but it wasn’t until the 19th century that Augustin-Louis Cauchy
and Liouville made significant adsances that the theory of fractional derivatives and integrals
was formalized [22, 44, 56]. Fractional calculus has been used in a variety of fields over
time. It is used in engineering to simulate intricate systems incorporating electrical circuits,
control theory, and viscoelasticity. It is essential to the description of processes in physics
like diffusion, wave propagation, and fractional quantum mechanics. Fractional calculus also
provides useful tools for deciphering non-Markovian processes and irregular data patterns
in biology, finance, and signal processing. Fractional calculus is an essential component of
contemporary mathematics and applied sciences due to its versatility [1, 4, 40, 43]. Recent
years have seen a huge increase in the number of research publications that examine various
qualitative aspects of differential equations while also involving various fractional operators;
see the papers [3, 39, 41, 42] for more details. In all these contributions, the fractional
operators of constant order were taken into consideration and the conclusions were reached
using the appropriate hypotheses.

Variable-order fractional operators have just recently been conceptualized and formally
formalized. Variable-order differentiations and integrations are a logical progression from
their counterpart in real order. In this situation, the order can continuously change depend-
ing on dependent or independent variables of differentiation or integration. The mentioned
extension in order is more flexible than the conventional fractional order and is a natural
progression [21, 25, 73]. These operators have been successfully used to represent compli-
cated real-world problems in a variety of fields, including biology, mechanics, control theory,
and transport systems. This is due to the capability of developing evolutionary governing

equations. Due to this widespread area of applications, the scientific community has been



General introduction

actively researching variable order fractional applications to the modeling of engineering and
physical systems; see for instance these two old papers [33, 65, 68].

The essential concept behind the extension of constant order fractional calculus to variable-
order (sOR) fractional calculus is the substitution of the constant 7 from the constant order
fractional calculus with the function 7(-). Though this distinction might seem inconsequen-
tial, the (SOR) operator can offer a better understanding of a variety of physical and nat-
ural events. The topic of discussion is the concept of variable order. Fractional differential
equations are a flexible expansion of the traditional fractional calculus, wherein the degree
of differentiation or integration is variable in relation to the independent variable or other
parameters. The deviation from a constant fractional order in representing complicated dy-
namic systems with non-uniform behaviors gives a greater level of flexibility, hence enabling
a more precise representation. The notion of variable-order fractional derivatives has its ori-
gins in the early 20th century and has since garnered considerable interest in contemporary
times owing to its wide-ranging applicability across several fields. The equations presented
in this context consider the fractional order as a function or as depending on other system
characteristics, allowing for a more accurate depiction of real-world occurrences. Researchers
from a variety of fields have used this strategy, including those in physics, biology, economics,
engineering, and control theory [7, 8, 9].

The utilization of variable-order fractional differential equations encompasses a wide range
of applications. The equations utilized in the field of physics are employed to elucidate the
characteristics of materials that exhibit dynamic features, such as porous media or viscoelas-
tic materials. In the field of biology, computational models are employed to simulate and
analyze many biological phenomena, such as the distribution of drugs through tissues or
the activity of neurons. Fractional Diffrential Equations of Variable-order are employed by
economists and finance experts for the purpose of modeling intricate market dynamics and
asset pricing. Furthermore, control engineers employ these methodologies to analyze and
regulate systems exhibiting diverse dynamics, thereby enhancing the precision and efficiency
of control procedures. In general, variable-order fractional differential equations provide a
robust foundation for improving modeling and analysis in various fields, rendering them a
subject of ongoing research and practical implementation in modern scientific and technolog-
ical progress [14, 16, 17].

Recent research in this area has been particularly done by many researchers who focused
on the study of the existence, uniqueness, and stability of solutions (Exi, uniq and stab of

sol) to many different problems of Fractional Diffrential Equations of Variable-order under

Univ-Tiaret/Mathematics: 2024 2



General introduction

different conditions see Souid et al [6, 10, 11, 12, 13, 15, 18, 37, 53, 55, 64, 66, 67, 69]. The
measure of non-compactness technique, the upper-lower solutions method, the continuation
theory, and the techniques based on (Fix pt) are the foundations upon which all of the above-
mentioned results are proved. Further, the stability of the proposed problems in the sense
of Ulam-Hyers (Ula Hyer) or Ulam-Hyers-Rassias (Ula Hyer Ras) was under observation
[19, 36, 54, 61]. It is important to note that the investigation relies heavily on the concept
of piece-wise constant function (piece-wise constant funct) which plays a crucial role. The
majority of the aforementioned results are obtained using this approach, which first divides
the existence interval into subintervals and then defines the differential and integral operators
with respect to those subintervals. Using this technique, researchers were able to convert the
fractional problems of constant order into their equivalent conventional fractional problems
of (constant order).

In this thesis we introduce a novel approach to replace the use of the piece-wise constant
funct and existence interval splitting. The creation of a new operator that is more adaptable
and doesn’t need any additional phases is the keystone of our strategy.

In the following we give an outline of our thesis organization, consisting of 4 chapters.

The first chapter gives some notations, definitions, lemmas, fixed point theorems and
coincidence degree theory which are used throughout this thesis.

In Chapter 2, we study the existence of solutions to the proposed multiterm Cauchy-
type problem (IVP) for the nonlinear fractional differential equation of variable order in the

format

w(0) =0, o

{ Dy u(p) = Y (g, w(p)). ¢ € D=[0,0]
where 0 < 0 < 400, 0 < p(p) < 1,7 : D x IR — IR is a continuous functions Cont funct
and Dgﬂ(f), is the Riemann-Liouville fractional derivative of variable-order p(p). Using the
new technique, we examine the stability and solvability of solutions for (1).

In Chapter 3, we study existence, uniqueness and stability of solutions(Exi, uniq and
stab of sol) to the cauchy-type with finite delay problem of nonlinear fractional differential

equations of variable order (CFDPNFDEVO(2))

o(p) — =
{ DyPhw(p) = (g, w(), ¢ € D:=10,0] (CFDPNFDEVO(2))

IU((,O) = 77(90% pE [—’l", 0]
where 0 < 0 < 400, 0 < p(¢) <1,7: D x C([-r,0],IR) — IR is a continuous functions

Cont funct and D&(@)’ is the Riemann Liouville fractional derivative of variable- order

Univ-Tiaret/Mathematics: 2024 3



General introduction

(R-LFDVO) p(¢) and n(p) € C([-r,0],IR) with n(0) =0 .
For any function w defined on [—r, 0] and any ¢ € D, we denote by w,, the element of
C([—r,0],IR) defined by
we(g) =w(p+7), Jg€[-r0
In Chapter 4, we investigate the existence of solutions for to the cauchy-type with infinite
delay problem of nonlinear fractional differential equations of variable order (CPNFDEVOID(3))
as follows:

Dy w(p) = T(p,w(p)) ¢ €D =0,0]
(CPNFDEVOID(3))

where 0 < 0 < 400, 0 < p(p) <1,7T: D x B — IR is a Continuous Functions Cont funct
and Dgff), is the Riemann Liouville Fractional Derivative of Variable-Order o(y),
0 < p(p) <p*<1andn(e) € B with n(0) = 0 and B is Phase sp.

For each function w defined on | — 0o, 0] and each ¢ € D, we note by w, the element of
B defined by

wy(7) =w(e+7), 7€) —00,0]

Here w,,(.) represents the history of the state from time oo up to the present time .

Univ-Tiaret/Mathematics: 2024 4



Chapter 1
Preliminary

This chapter introduces some important fundamental definitions, fixed point theoremes which

are used throughout this thesis.

1.1 Notations and definitions

The symbol ¥ = C(D, IR)) represents the Banach space of continuous functions from D into
IR with the norm
[wllw = sup [w(p)].
weD

1.2 Fractional calculus.

1.2.1 Fractional calculus of constant-order
Definition 1.2.1 ([/3, 51]). The left Riemann-Liouville fractional integral of the function
h € L'([a,b],R,) of order p € R+ is defined by

1

IEh(t) = gy [ (o= 50" hs)ds,

where T'(.) is the gamma function.

Definition 1.2.2 ([/3, 51]). The left Riemann-Liouville fractional derivative of order o > 0
of function h € L*([a,b],Ry), is given by

D20 = e () [ o= this



Preliminary

here n = [p| + 1 and [p] denotes the integer part of p. If € (0, 1], then

d 1 d

(Dath)(p) = *Ii;ph(@ = m@

e /j(gp — 8)"Ph(s)ds.

The following properties are some of the main ones of the fractional derivatives and integrals.
Lemma 1.2.1 ([}3]). Let p >0, a >0, h € L*(a,b), D¥.h € L'(a,b). Then,

DY I8 h(p) = h(gp).
Lemma 1.2.2 ([/3]). Let p, @w >0, a >0, h € L'(a,b). Then,

L5 h(p) = I3 1] h(p) = [fjwh<90)-

1.2.2 Fractional calculus of variable-order

Definition 1.2.3 ([58], [59], [68]) Let —o00 < vy < vy < +00, and p(p) : [v1, ve] — (0, 4+00),
the left RLFIVO for function F(p) is defined by
2 — S)g.j(s)—l
A A )
Definition 1.2.4 ([58], [59], [68]) Let —oco < v < vy < 400, n € N and
(o) : [v1,v2] = (n—1,n), the left Riem-Liov-frac-deriv-var-oder for function F(p) is defined
by

F(s)ds, ¢ >, (1.1)

DZ&&)F(@ _ <CZO>n[:f—@(¢)F(SD) — <dcfp>n /: (QOI‘(_nS—)né?;))_l F(s)ds, p>uv1. (1.2)

We notice that, if the order p(¢) is a constant function g, then the Riemann-Liouville frac-
tional derivative of varaible order (1.2) and Riemann-Liouville fractional integral of varaible

order (1.1) are the usual Riemann-Liouville fractional derivative and integral, respectively(see
[43, 58, 59)).

Remark 1.2.1 For arbitrary functions p(p), o(e), we notice that the semigroup property
doesn’t hold, i.e:

Iziw)]ffrw)F(@) A IZ_SP)—FQ(W)F(QD).

The above identity was very well proved and justified in the literature see ([10], [11], [12]).
Example: Let

u() = 2, pel0,1], o) = 1, ¢e€]0,1],
7 0 €1, 3], 77 e o €]1,3],

Univ-Tiaret/Mathematics: 2024 6



Preliminary

and  h(p) =¢, ¢€]0,3].

o L (o — g1 s (g — 7yo(r)—1
BN = [P [T s

I e
_/0 =5 /0 Ty Tdrds

vlo—s) t(s—71)° (s—7)!
+/1 ) [/0 D) TdT + SYO) dr|ds,

" . ¢ (p—s u(s)+v(s)—1
I _~(_<P)+ (W)h((p) :‘/O ( )

we see that

w(0) 1(2—3s)s? 2(s3 s 5§
Io+(¢)fa£¢)h(90)’<p=2 - /0 ( ) ds + 1 <6_2+6>d8’

2r'(2)
5 N 17 22
24 24 247
) 1(9— 2+1 1 1+2 1
Io£ i cp)h< No=2 = /0 (Chull) i ECEDE sds +/ 1+2 ———————sds
o N 5 16
T 24 94 21

Therefore, we obtain

DT 0(0) | gms # TP ()] s

Lemma 1.2.3 ([7}]) Let p : D — (0,1] be a Cont funct, then for

we C(D,IR) =w(p) €V, pw(p) e, (0<it<1)and for each points on D the I (cp)
exists.

Lemma 1.2.4 ([7}]) Let p : D — (0,1] be a Cont funct, then
Igi(w)w((p) eV forwe V.

Remark 1.2.2 [7/] : As p(p) is Cont funct , for 0 < s < ¢ < o we let p, = mlg lp(p)],
<p<o
then we get

if

0<o<1, then ¢®®1 < g1

Univ-Tiaret/Mathematics: 2024 7



Preliminary

1 <o <oo, then o1 < 1,

thus for —oo < o < +o00, we know

o)t < max{l,09 1} = o".

1.3 Phase Space

The notion of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-normed
space satisfying suitable axioms, which was introduced by Hale and Kato [34] (see also Kappel
and Schappacher [38] and Schumacher [62]). For a detailed discussion on this topic we refer
the reader to the book by Hino et al [35].

Fractional differential equations have been of great interest recently. In cause, in part to
both the intensive development of the theory of fractional calculus itself and the applications
of such constructions in various sciences such as physics, mechanics, chemistry, engineering,
etc. For details, see the monographs of Miller and Ross [47], Podlubny [51] and Samko et al
[60], and the papers of Delboso and Rodino [24], Diethelm et al ( [27] , [26] , [28]), Gaul et al
[30], Glockle and Nonnenmacher [31], Mainardi [45], Metzler et al [46], Momani and Hadid
[48], Momani et al [49], Podlubny et al [52], Yu and Gao [71] and the references therein.

Our approach is based on the Banach fixed point theorem and on the nonlinear alterna-
tive of Leray-Schauder type [32]. These results can be considered as a contribution to this
emerging field.

In this thesis, we take on that the state space (%8, |.]|,) is a Seminormed line of funct

map (—o0,0] into IR, and check the fundamental axioms of Hale and kate given in [34].
(&) Ifw: (—o0, 5] = IR, and wy € B, then Vi € D the following conditions are satisfied:

(i) w,, isin B.
(ii) [lwells < wp)supilw(s)]: 0 < s <@} 4 L(@)wolls,
(iii) Jw(p)| < Tlwellss,

where the constant 7' > 0, the Cont funct « : D — [0, 00), the locally bounded
L [0,00) — [0, 00), the k,T, L are independent of w(.).
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Preliminary

(£-1) For the function w(.) in (£), w, is a B-valued Cont funct on D.

(E-2) The space B is complete.

1.3.1 Examples of Phase Spaces

In this section, we present some examples of phase spaces.

Example 1.3.1 The space C,.

For any real constant vy, we define the functional space C., by
C,={neC((—00,0],¥) ,lim,,_o n(y) existe in V}
endowed with the following norm

|| = sup{e?|n(y)|;7 < 0},

Then in the space C, (see [35]) the axioms (£) - (E-2) are satisfied.

Example 1.3.2 The spaces BC, BUC , C* and C°. Let
BC' the space of bounded continuous functions defined from (—oo,0] to ¥
BUC the space of bounded uniformly continous functions defined from (—oo,0] to W

C>:={ne BC : lim,,_oon()) existe in U}

CY:={n € BC : lim,,_-n(y) = 0}, endowed with the uniform norm

7]l = sup{n(y) : 7 < 0}.

We have ( [35]) that the spaces BUC, C* and C° satisfy conditions (£) - (E-2). BC
satisfies (£-1) - (£-2) but (£) is not satisfied.

Example 1.3.3 The spaces Cy, UC,,C° and Cy.
Let g be a positive continuous function on (—o0,0] . We define

Cy = {n € C((~00,0], W) : 4 is bounded on (~co, 0]}

a(7)
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Preliminary

C’g ={nely,: lim]ﬁ_oo—gg; = 0}, endowed with the uniform norm
()
n|| = sup{—=% : 7 < 0}.
7]l { ) }

Consider the following condition on the function g.

(g1) For all a > 0, supo<y<q SUp % P =00 < )< —p o < 00.

Then we have ( [35]) that the spaces Cy and CY satisfy conditions (£-2). They satisfy
conditions (€) and (£-1) if g1 holds.

Example 1.3.4 The product space C,. x LF.

Let v be a real number, 1 < p < +o00 andr > 0, we denote C, x LY the space of measurable
functions n : (—00,0] — ¥ which are continuous on [—r,0] such that e?|n(y)? is integrable

on (—00,0]. We endowed C, x L? with the following norm

Il = sup{ln()l = =7 <3 <0} + [ " ln()rdy.

Then C, x L, ||.||) is a normed space satisfying the azioms (€) - (E-2).

1.4 Some fixed point theorems

Theorem 1.4.1 (Banach contr princip [32]). Let C be a non-empty closed subset of a
Banach sp U, then any contraction mapping V' of C into itself has a Fix pt.

Theorem 1.4.2 (Schauder fix pt thm [23]). Let ¥V a Banach sp and Q be a conver,
closed bounded non-empty subset of ¥ and V : Q — @ is Compl cont. Then V has at
least one Fix pt in ().

Theorem 1.4.3 (Alt nonlinear L-S thm) ([/3]) Let ¥ a Banach sp and Q) be a conver,
closed bounded non-empty of W and V. C Q an open and such that 0 € V . Assume that
OV — Q is Compl cont. If (V) is Relat comp then, either

(i) : ® has a Fixz pt, or

(ii) : there is a point u € OV and X € (0;1) with u = \Pu.
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Preliminary

Lemma 1.4.1 Let ¢ : [0,0] — [0,00) be a Real funct and i(.) is a nonnegative, Locally
int funct on [0, 0] and there are constants v >0 and 0 < p(p) < p* < 1 such that

o) < 0o+ [ O s

then there ezists a constant k = k(p*) such that

8(e) < o)+ [ (@_))ud

for every ¢ € [0, 0].

1.5 Types of stability

Theorem 1.5.1 : The (CPNFDEVOID(3)) is Ula Hyer Stab if there exists cy > 0, such
that for each ¢ > 0 and for every solution x € U of the following inequality

DS\ () = T, x(9))| <&, peD

there exists a solution w € ¥ of (CPNFDEVOID(3))

Ix(p) —w(p)| <cre, peD

1.6 Finite Difference Method

1.6.1 Finite Difference Method Principle

The principle of this method is outlined in the following lineS' We assume that the interval
[a, b] is subdivided into n subintervals [¢y, pr11] of length b = =2 using equally spaced nodes
or = a+ kh for Kk =0,1,...,n [20, 57]. The composite trapezmdal rule for n subintervals

allows us to write:

Zi fon) + Flon)], (1.3)
and ,
| f@)de = T(5,h). (14)

Univ-Tiaret/Mathematics: 2024 11



Preliminary

1.6.2 Approximation of the Fractional Derivative in the Riemann-

Liouville Sense Using the Finite Difference Method

We have the following Cauchy-type problem of fractional variable order

{ DY w(e) =T(p,w(e)), ¢€D=1[0,0] (1)

w(0) =0, (2) (15)

where 0 < 0 < 400, 0 < p(¢) < 1,7 : D x IR — IR is a continuous functions Cont funct
and Dgﬁ(f), is the Riemann-Liouville fractional derivative of variable-order p(¢p).

The solution of this problem is:

We apply (1.3) and (1.4), we find[57]:

b 5= (o — 5y )9se-1)1 k=i (o, — gp,)P(sk)—1
w(p;) = 2(}2 (¢ F(p(si_l)) Y(sp—1,w(sg_1)) + ];1 (¢ F(p(lk)) T(sk,w(sk))>

This further simplifies as:

k=il (5 _ o \o(sk)—1 Ne(0)-1
wie) =h( % o s w(s) + el 0, w(0)
B k=i—1 (@i . Sk)p(sk)—l M . .
_h( > s T(sk,w(sk))> ooy Y00 =1

We try to write the linear part separately and the nonlinear part, then we write the

system in matrix form and use methods to solve it.

1.7 Euler’s discretization method

The discretization process is introduced to discretize fractional-order differential equations/systems.
It has been observed that as the fractional-order parameter approaches one, Euler’s discretiza-

tion method is recovered. This discretization method has been applied to fractional-order
versions of the Riccati differential equation and Chua’s system [2, 29, 47] . In this context, we

are particularly interested in applying the discretization method to the Cauchy-type problem

for fractional variable order. Let 0 < p(p) < 1, and consider the fractional-order differential
equation given by the system (1.5).

The corresponding equation with a piecewise constant argument is

Dy w(p) = T(rZ, w(r2)), peD=[0,0]

r
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Preliminary

Let ¢ € [0,7], then £ € [0,1]. We get Dgfp)w(gp) =7(0,w(0)),p € [0,r].

Thus wy = wy + F(%;?;O))T(O, wo).

Let ¢ € [r,2r], then £ € [1,2]. We get DS w(p) = T(r,w(r)), ¢ € [r,2r].
Thus wy = wy + é‘fl_lgzir)))’l"(r, wy).

Let ¢ € [2r,3r], then £ € [2,3]. We get DS\ w(p) = T'(2r, w(2r)), ¢ € [2r,3r].

Thus w3 = wq + MT(QT, wy).

T(T+p(2r))
Repeating the process, we get when ¢ € [nr, (n + 1)r], then £ € [n,n +1].
So we get DY w(p) = T(nr,w(nr)), ¢ € [nr, (n + 1)r].
thus
(p — )"

Wni1(p) = wp(nr) + Y (nr,w,(nr)).

[(1 + p(nr))

We can compute this sequence w, for larger n to obtain a more accurate approximation.

Univ-Tiaret/Mathematics: 2024
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Chapter 2

A Novel Fractional Operator
Approach to Cauchy-type Problem

Existence, Uniqueness, and Stability

2.1 Introduction

'Tn this chapter , we introduce a novel approach to replace the use of the piece-wise con-
stant funct and existence interval splitting. The creation of a new operator that is more
adaptable and doesn’t need any additional phases is the keystone of our strategy. We apply

the new technique on the following Cauchy-type problem of fractional variable order

{ D5 w(p) = T(o,w(), ¢ € D=10,0] (2.1)

w(0) =0,

where 0 < 0 < 400, 0 < p(p) < 1,7 : D x IR — IR is a continuous functions Cont funct
and Dgﬁ”), is the Riemann-Liouville fractional derivative of variable-order p(¢). Using the
new technique, we examine the stability and solvability of solutions for (2.1). We assert that

the method used is original and hasn’t been used in any earlier publications.

2.2 Existence and uniqueness of solutions
Throughout the remainder portion of the study, the following assumptions are made available.

(H1) p:[0,0] = (0, "] is Cont funct, such that § < p(p) < p* < 1.

1S. Sabit, M. S. Souid,M. Benaouda, Journal of Studies in Science of Science , ISSN: 1003-2053,(2025).
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(H2) Let ¢'T : D x IR — IR is Cont funct (0 < ¢ < 1). Then, there exist a constant, £ > 0,
such that

' 1T (p, 1) = T(p,22)| < Lllzy — x2| for any x1,22,€ IR and ¢ € D.

Definition 2.2.1 A function w € C(D,IR) is said to be a solution for (2.1) if and only if

it verifies (2.1) simultaneously.

For the existence of solutions for the (2.1), an auxiliary lemma is needed as follows:

Lemma 2.2.1 [72] The function w € V is a solution of (2.1) if and only if it satisfies the

integral equation

© — 3 p(s)—1
w(p) :/0 %T(s,w(s))da’, o(s) > 0.

The first outcome validates the existence of the solutions found using Schauder fix pt

thm.

Theorem 2.2.1 Let conditions (H1) and (H2) hold. If

o* ol T(1 — 1)o?

<1, (2.2)
(t+1) (F(l — 1+ p*) —orol=o (1 — L)a@*—b>
then the (2.1) has at least one solution on V.
Proof 2.2.1 Consider the operator S : W — W, defined by
# (p —5)P!
%wgpz/ ————7(s,w(s))ds. 2.3
w)e) = [ E T s (o) (23

We consider the set
BRL = {’LU € \Ija ”wH‘I’ < RL}>

where

o*ol ™ T T(1 — 1) o

R, = :
(t+1) (F(l — 1+ p*) — o¥al=e (1 — L)J@*—‘>
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Clearly Bg, is Convezx, closed bounded non-empty.
The proof will be presented in three steps following this.
Step 1: & is Cont ope.

Let w,, be a sequence such that w, — w in ¥ then
[(Swy) = (Sw)fv — 0.

For p € D, we have

© — g)pls)-1 © — g)pls)-1
Stu)(e) - S = | [T (s (s))ds — [T (s w(s))as|

[(p(s)) o Tlp(s))

It follows that

Cx Cx 1 v p(s)—1
3)(9) = @)@ <y [l = 97T (s wa(s)  T(s, ()l
¢ s px—1 (%0_S> o —
< F(@*)/o o <0> s~ wy(s) — w(s)|ds
lo*ot o 4 ool
< Ty e wlle [ (o =55

lo o =T (p )01 —1) .,

< [wn — wllw.
[(1 =+ p*)l(p*)
Therefore, we have
lo*ot =T (1—u) .,
1S(wn) = () < — O wy, — wllw,

(I —t+p%)

which implies that
|(Sw,) — (Sw)|lg -0 as n— oo.

Consequently, S is Cont ope on V.
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Step 2: %(BRL) g (BRL)-
For w € Bg,, and by (H2), we get

[S(w) ()] =

IN

IN

IN

IN

IN

IN

IN

In light of this,

|S(w)(p)]

where

@ — g)p(s)—-1
/0 %T(s,w(s))dzs

F(é*) /: "p*_l(@)pﬂmsaw(s))us
orol™ ;)* / )Y (5,w(s)) — T(s,0) + T(s,0)|ds
? / — 5)9 1<|T(s w(s)) —Y(s,0)| + |T(570)|>d5
R / )Y (5,w(s)) — T (s,0)|ds

Hor) (69 TG, 0)lds

* 1—px

® * l—p*T* ®
e [T s us)las + L |
0 r 0

['(p*)

ool e

(9*)

o*ol =T T(

57 (¢ — 8)stds

©
- - — )1y
Foy el [ o= sds +

o*o (e )01 —1)

I(p")l(1 -

o*ol=o (1 — 1)

(1 — ©
o )T L)Up”/ S ds
0

L+ o)

“wlle + S
O,*O.l—p*r(l _ L) J@*—LH,LU“ a*al—p*T*F(l — L) O'p*_LSOL'
we obtain
* 11— *gl=o«T*
oo 7T — L>Jp*_b||w||\p + -2 G ot
= T -t (4 DI = et p7)
O,*O.l—KJ*T*F(l _ L) P(l — L + K‘)*>

o Tt X

L+ D1 =+ p*) M'l—v+p*) -
o*ol™ T (1 — 1) ot

(t+1) (F(l — 1+ ") —orol=eT(1 — L)a@*—b>

IA

T* = supyep|T (¢, 0)|.

ool (1 — 1)ow—

- Rw
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Therefore, it follows that (Bg,) C (Bg,)-

Step 3 .S is Compact ope.
Now, we will show that I(Bg,) is Relat comp, meaning that S is Compact ope. Clearly
S(Bg,) is UB because by Step 2, we have S(Bg,) = {S(w) : w € Bg,} C Bg,. Thus for each
w € Bg, we have ||(w)|lg < R, which implies that $(Bg,) is Unif bnd. It remains to be
demonstrated that S(Bg,) is Equi-cont.

Firstly, we can remark that the function v(p) = X — u¥ is decreasing for ¢ € (1,0) and
0 <A< pu<1. Indeed, since In\ < Inu < 0,\? > u? > 0, we have that

V(@) = MIn\ — pflnp < pfln\ — pflnp = p?(Ink — Inu) < 0,

which implies that v(p) is decreasing function. Thus, for

01— s p(s)—1 0o — 5 p(s)—1
Vp(s) = -
o o

where 0 < #=2 < 22 < 1, we may look vy(s) as the same type as v(s), then wy) is

decreasing with respect to its exponent p(s) — 1.

For 1,9 € D where 1 < 9 and w € Bpg,, we have

I()() “(Mwﬂ

_ S @(S o1 1 — 5 p(s)—1
SDQ T(S,w(s))ds —/0 (Sor(p()S))T(s,w(s))ds
902 — 5) @(S #2 (pp — 5)91) 7!

T(S, w(s))ds + T(s,w(s))ds

e D(p(s))
_S(@l
_ /0 %ns,ww»ds
P2 _S@(S)—1M 5
= [Pt — ool

1 o1 0o — s p(s)—1 o1 — s p(s)—1
< / [0@(5)_1 ( ) e <0> } 17 (s,w(s)) — T(s,0) + T (s,0)|ds
0

) o\ pls)-1
+ L ’ U"(S)_ICDQ S) |7 (s,w(s)) —7(s,0)+7(s,0)|ds

[(p*) Jou o
o e fr—s\T o1 — s\ !
<co 101 (28] ][ - meo oo

« ©2 <902 — s)ml lms’w@) —Y(s,0)| + |T(s, 0)\]ds
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As a result, we get

lo* ) *Y* )
+ Of(ngqul_p*/ 2(902 —S)p*_ls_bds—l— o O_l—go*/ 2(902 _S)p*—ls—Lds
p*

o*(Uwlly +77)
[(p*)

1—px a1 A Y-"r oo\l —td
o7 [* Ga =57t = (o1 — )57

o*(w|lv +7*)
['(p*)

1—px /4,02 x—1 —t
o (2 — 8)* s tds

Y1
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< o*(U||w]lw + T*
B [(p*)

) 1—pu a1 BT -FE ) o a1 o\l e
o (pg — 8) s tds (p1 — 8) s tds
0 0

U*(€||w||‘y +T*) 1—pu, —t O
+ F(p*) g Y1 (@2 801)
< Clwlle +17) oo, [TEITA =) oo TEITA—0) o
= " Py O | T P2

I'(p*) L1 -+ p*) (1l —+ p*)

o (llwlle +17) 1. o
+ F(p*) o ¥1 (SOQ 901)

Consequently, we have
) o) — S| < Tl T

o D (1 — ) ™ = T(1 — 1) "
F(l L+ @*) g ( L)gol ( L)SOQ

o (Uwlle +77) 1, _, o
F(@*) g ¥1 (902 Sol) .

Hence |(Sw)(p2) — (Sw)(@1)| — 0 as |p2— 1| — 0. This implies that I(Bg,) is Equi-cont.
As a sequence of Steps 1 to 3 together with Arzella Ascolli thm, we conclude that & is
Compl cont. Then by SFPT the (2.1) has at least one solution.

Remark 2.2.1 The simplicity of condition (2.2) in comparison to the conditions of the ear-

lzer publications in the literature cannot be overlooked.

Theorem 2.2.2 Let (H1) and (H2) hold . If
lo*ol= T (1 — 1)
I'(l—t+ p*)
then the (2.1) has a unique solution in V.

o Tt <1, (2.4)

Proof 2.2.2 We shall employ the Banach contr princip to prove that S which is defined
in (2.3) has Fix pt. To show that S admits a unique Fix pt , it suffices to show that S is
a contraction.

For wi(p), ws(p) € ¥, we get

Swn)(p) — S(wa) ()| =

[(p(s))

Plo— o s.wi(8)) — T(s. w(s))|ds
/o T'(p(s)) T(s,wi(s)) = T(s,wa(s))|ds.

¢ (o — s)¥ s)—1 ¢ (p— 5)@(8)—1
/0 —<T(s,w1(s))ds _/o 1 (5, wa(5))ds
)
= (
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It follows that

S(wn)(e) = Sua)()| £ pror [le =9 () = wa(o)ls
< wok "p”((@; S>> )~ sl
< Sl =l o= as

< Lo o= T'(p*)I'(1 —¢) oy

T =t e)T(p)
lo*ot = T(1 — 1)

- Tl —-1t+4g)

[w1 — wallw

o7 lwy — wellw.

By the boundedness of p on D, we end up with

lo*ot=T'(1 —1)

[S(wr) = S(we)| < T+ o)

o " Jwy — wa|v.

Consequently by (2.4), the operator  is a contraction. Thus, by Banach contr princip,

X has a unique Fixz pt w € U, which is a unique solution of the (2.1).

Remark 2.2.2 Unlike the assumptions used in the literature , condition (2.4) does not in-

volve the piece-wise constant funct .

2.3 Ulam Hyers stability

The stability of solutions to a specified problem is one of the key qualitative characteristics,
and in the next section, we study the Ulam-Hyers stability for solutions to the alleged variable
order (2.1).

Theorem 2.3.1 Let the conditions (H1) and (H2) hold, then the (2.1) is Ula Hyer stab.

Proof 2.3.1 Let ¢ > 0 an arbitrary number and the function x(p) from x € V satisfy the
following inequality
DY x () =T, x(9))| <&, p€D

we have

© — 8 1—p(s)
p9x(p) = [T T (s

o I'(1—p(s))
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we obtain

’X(@ - /OSO MT(& x(s))ds

_ &)p(s)—1
< E/SD wds
0 I'(

T =5
g\
<o [l () e
I'(p*) Jo o
eo*o® L e
< 7/ s (¢ — 8)stds
I'(p*) Jo
* 11—« *
< eo*ol ™ T(p" (1 — L)ap*ﬂ /so s
L)1 = ¢+ p*) 0
- ea*o! T T(1—1) s Tp
- P-4 L+ 1o
* 1—px .
< ec*ot I (1 — 1) r—
t+1DIT(1 -+ p*)

Let o € D, however, we get

X (¢) — w(ep)|

*ol=o:T(1 — _ \e(s)-1
anas ) o /jwﬂs,x(s))ds

= ‘€<L—|—1>F(1—L—|—p* T(p(s))

¢ (p — 5)9ls)-1
—/0 %T(s,w(s))ds

o*o® I (1 — 1) et u (y — )91
=T rd— v en” 7 +/0 [‘(p—(s))|T(S7X(S)) — Y(s,w(s))|ds

U*Ul—p*r<1 — [,) € ® ©—s px—1
< Ox—L, L p*—l ¥ . B
s €(L —+ 1)F(1 — 0+ @*)U "+ F(p*) /0 g ( o S |X($) w($)|ds

o*otm (1 — 1)
€
T+ DI =+ )

_ lo*||lx —wlly 4 ¢ L
F(@*) 0
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ot T(1—1) ., lotal¥
<e ot YT +
(t+ DI -+ )

X —wlel ()T —0) o,
D(p*)T(1 — ¢+ p*)

U*O‘lfp*l—‘(l — L) O'KJ*_L(IOL 4 60‘*0‘179* X — ’Uj”qu(l — L)

=TT — ot o) T(1— 0+ o)

o7,

Thus, we get

L

Ea*o-lfp*lj(l — L) @*L) < 0—*0‘17@*1—‘<1 — L)

_ 1—
Ix w||\1,< I'(1l—+ p*) L+ D1 =0+ p*

o "ty
)

For each w € M, it follows that

o*ol™ (1 — 1)
g(L + )1 — 4 p*
" I'(l1—v+ ")

I'(1 -1+ p*) = Lo*al=9T'(1 — 1)ow=

‘X(w)_w(@)’ S HX—lUH\p S )Jp*—LSOL

U*Ul_p*Up*_LgDLF(l _ L)

(t+1) (F(l — 1+ p*) —lorol=oT(1 — L)a@*—L>

IA

9 = Cr€.

which implies that (2.1) is Ula Hyer stab.
Remark 2.3.1 [n light of conditions (H1) and (H2), one may readily draw the conclusion

that the stability of (2.1) is concluded under less onerous assumptions.

2.4 An application

Consider the following fractional problem

DyPw(p) =T(p,w(p)), D =[0,1]

(2.5)
w(0) =0,
where p(¢) = 1¢ + 2 is a Cont funct on [3,1] and 1'(u, w) = 1(’1‘2‘ is a Cont funct on
(0,1] x IR. Clearly for ¢ € [0, 1], we have
O
4 20
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which implies that condition (H1) holds. Further, we have

1 1
1 1 @5 w5
51T (p,wy) — T (p,w = 5 —

L] =1 |
T+ D+ %)
- ‘

(L [+ [22)

—|Wwp — Wa|.
= 3 1 2

Hence condition (H2) holds with ¢ = £ and ¢ = 5. For the purpose of verifying (2.4), it is
clear that

oo =9 T(1 — L)gp*_b _ gfa+3) 11T 1 L A5908 o
D(1— ¢+ p*) r1—-+i+2) 350(%) 157 0.8912

By Theorem (2.2.2), problem (2.5) has a unique solution.

In the remaining part, we present the solution w(y) for p(¢) = ¢+ 2 with ¢ € [0,1] and

w;(p) for p(p;) = t; + 2 where ¢; is fixed. Figure (2.1) represents the plot of the solution

w depending on . On other hand, Figure (2.2) presents a comparison between the solution

w and some different solutions w; with different g.

The solution w(y) with p(¢) = ¢/5 + 3/4 in [0,1]

0.7

w(e)

1
0.8 1

©

Figure 2.1: The solution w(¢p) in [0, 1] with p(p) = £ +

o
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0.9 The solution w(p) and the solution w;(p) for p(r) = 0.7692 in [0,1]

w(sp)
wi(p) .

0.8

¥

0.9 The solution w(y) and the solution w;(¢) for p(p) = 0.7893 in [0,1]

w(p)
wi(p) =
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08 The solution w(p) and the solution w;(p) for p(yr) = 0.8094 in [0,1]

w(yp)
0.7 F wi(p) _

0.8 1
P

0.8 The solution w(y) and the solution w;(¢) for p(p) = 0.8295 in [0,1]

w(p)

0.7 wi() /

0.8 1
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The solution w(p) and the solution w; () for p(y) = 0.8505 in [0,1]

w(sp)
wi(p)

0 0.2 0.4 0.6 0.8 1
¥
The solution w(y) and the solution w;(¢) for p(p) = 0.8696 in [0,1]
w(p)
wi(4p)

0 0.2 0.4 0.6 0.8 1
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07 The solution w(p) and the solution w; () for p(r) = 0.8897 in [0,1]

w(sp)
wi(p)

¥
0.7 The solution w(y) and the solution w;(¢) for p(¢) = 0.9098 in [0,1]
w(p)
wi()
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The solution w(y) and the solution w;(p) for ()

0.7

= 0.95 in [0,1]

w(e)
wily)

0.4

¥

0.6

0.8

Figure 2.2: A plot of w(p), w;(p) for different p(y)
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In this table, we present the Norme; = max

»€0,1]

w(p) — wi(p)

for p(¢) € [0, 1].

U; 0.0959 | 0.1963 | 0.2968 | 0.3973 | 0.5023 | 0.5982 | 0.6986 | 0.7991 | 0.8995 | 1.0000
©i(u) | 0.7692 | 0.7893 | 0.8094 | 0.8295 | 0.8505 | 0.8696 | 0.8897 | 0.9098 | 0.9299 | 0.9500
Norm; | 0.2808 | 0.2017 | 0.1289 | 0.1084 | 0.1442 | 0.1764 | 0.2092 | 0.2406 | 0.2705 | 0.2987

We observe that the norm is small when @;(u) is close to 0.85. Almost the center of the

interval.

Conclusion

This chapter introduces an innovative approach for solving fractional-order differential equa-
tions, specifically addressing the Cauchy-type problem with variable fractional order. By
developing a new operator that eliminates the need for phase adjustments or interval split-
ting, we offer a more adaptable and efficient technique. The application of this method to
the problem defined by the fractional-order Riemann-Liouville derivative shows promising
results in terms of both stability and solvability. The originality of the approach is evident,
as it has not been explored in existing literature. Overall, this work lays the groundwork for
further research and potential applications in the field of fractional calculus and its numerous

real-world applications.
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Chapter 3

Cauchy-Type Problem With Finite
Delay for Nonlinear Fractional

Differential Equations of Variable
Order

3.1 Introduction

! In this chapter we dispense with the use of the partial constant function , We discuss this
work the Exi,uniq and stab of sol to the following (CFDPNFDEVO(2))

p(p) _ =
{ D§Fw(p) = T(p,w(p)), ¢ € D=[0,0] (CFDPNFDEVO(2))
w(p) =n(p), ¢ € [-r0]

where 0 < 0 < 400, 0 < p(p) <1, T : D x C(]-r,0],]R) — IR is a continuous

), is the Riemann-Liouville fractional derivative of variable-

functions Cont funct and ngfp
order (R-LFDVO) p(¢) and n(¢) € C([—r,0],IR) with n(0) =0 .
For any function w defined on [—r, o] and any ¢ € D, we denote by w,, the element of
C([-r,0],IR) defined by
w,(7) =w(p+7), g€ [-r0]
M. Benaouda , S. Sabit, , M. S. Souid, Hijaz Ahmad, Cauchy-Type Problem With Finite Delay for

Nonlinear Fractional Differential Equations of Variable Order, (submitted).
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3.2 Existence and uniqueness of solutions

We impose the following assumptions:
(A1) p:[0,0] = (0,p*] is Cont funct, such that 3 < p(p) < p, < 1.

(A2) Let ¢'T : D x C([-r,0],IR) — IR is Cont funct (0 <: < 1),exists a constants, ¢ > 0,
such that,

Y (p,u) = T(p,v)| <Lllu—wv| for any u,v,€ IR and ¢ € D. (3.1)

(A3) Exists a, 3 € C(D,IR") such that

T (e )l < alp) + B(p)llulle for ¢ € D and u e W

Definition 3.2.1 A function w € C(D,IR) is said to be a solution for (CFDPNFDEVO(2))
if and only if it verifies (CFDPNFDEVO(2))simultaneously.

For the existence of solutions for the (CFDPNFDEVO(2)), an auxiliary lemma is needed

as follows:

Lemma 3.2.1 [72] Let 0 < p(p) < 1 and let ¢ : (0,0] — IR be continuous and
limg, o+ () = ¥(0%) € IR. Then w is a solution of the fractional integral equation

© — 3 p(s)—1
w(p) = /0 %w(s)ds, T €D and p(s) > 0,

if and only if w is a solution of the initial value problem for the fractional differential equation

Do) = ¢(§0)7 T E (070]
(3.2)
w(0) = 0.

The first result obtained by using the Schauder fix pt thm .

Theorem 3.2.1 Assume that conditions (Al), (A2), (A3) hold, if

ally T(1 —¢)o®"
IF'l—t+p*)—o* al=||B|le I'(1 — ¢)ow*

Then the (CFDPNFDEVO(2)) has at least one solution on V.

o* gl
< 1.
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Proof
Consider the operator & : W — W, defined by :

n(e), if ¢ €[-r0]

(3.3)

— g)pls)-1
/SD %T(s,ws)ds, if €D and p(s)>0
0

We consider the set
Bp, ={we ¥, |w|ly <R}
Where
o* o7 ||ally T(1 —t)o
T(1— 1+ g¢*) —o* o= Bl (1 — 1)oo—
Clearly Bpg, is Convex, closed bounded non-empty.

R, =

The proof will be given in three steps.
Step 1: & is Cont ope.

Let w, be a sequence such that w, — w in ¥ then
[(Swn) — (Sw)ls — 0.

For ¢ € D, we have

[S(wn) () = S(w)(p)]

[(p(s)) [(p(s))

¢ (p— g)P(s)—1
[ s (s = T(s w(e) s

*

< ¢ /%) el ’ _13_L|w (s) —w(s)|ds
— I(p*) Jo o "

lo* gl=9= @
< —w, — —g)lgmtg
< T e = wlle [[le =97 as

lo* o179 T(p")T'(1 —1
< : (") : ) o=y — wlla

Plp*) (1 =+ %)
lo* o= T(1—1)
[S(wn) = S(w)llw o Jwn — wllw

<
- L(1 -0+ p*)

|(Sw,) — (Sw)||lg =0 as n— oco.

Consequently, & is Cont ope on V.

/Oso MT(S;wn(s»ds B /Oso (p— 5o

Y(s,w(s))ds

Univ-Tiaret/Mathematics: 2024
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Step 2: S(BRL) g (BRL)-

For w € Bpg,, and by (A3), we get:

# (p =)t
/0 WT(S, wg)ds

© — 8 p(s)—1
/0 %]T(S,ws)’ds

S(w)(@)] =

1 e -5\
o O.lfp* ©
< T o= (sl + 5B hets)] ) ds
I'(p*) Jo
< T [P - syt lalolds + Tl [ — s a3l ()l
e - p—Ss s a(s)|ds + —=—— L 5 IS4
o e [¢ o o' =Bl 7
. —/ oo s p**lsﬂds—i— A Vel | AT / 0—5 @rlsfbds
M) Jo ¥ NCORE
R * . * 1—px * —
S o o !QH\P I'(p*) F*(l L)Om_L . o* o !ﬁ“xy ['(p*) F*(l L)O_p*—LHw”\Ij
[ )T = o+ 57) FE)h =+ o)
o* gl allg T(1 — 1) o* gle= Blle T(1 —1)
< et et
= Mi—tp)  ° T—i+g) il
- 0_* O'lip*“OéH\I/ F(]. _ L) ot o F(l — 0 ‘I’ p*)
< T(1— ¢+ o) P(1—1+¢*) —0* o' =Bl T(1 — t)ow—
) o* o= ||allg T(1 =)o
T M-t ) =0 o= Blly D1 = )oe
= R,.

Which means that (Bg,) C (Bg,).

Step 3 :$ is compact ope

Now, we will show that &(Bpg,) is Relat comp, meaning that & is compact ope. Clearly
$(Bg,) is Unif bnd because by Step 2, we have S(Bg,) = {S(w) : w € Bg,} C Bpg, thus for
each w € Bg, we have ||S(w)||y < R, which means that S(Bg,) is Unif bnd. It remains to

show that (Bg,) is Equi-cont.
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Firstly, we can remark that the function v(p) = \? — u? is decreasing for ¢ € (0, 1) and
0 <A< p < 1. Indeed, since InA < Inp < 0, \? > pu¥ > 0, we have that

V(@) = MIn\ — pflnp < pfln\ — pflnp = p?(Ink — Inp) < 0,

which implies that v(y) is decreasing function. Thus, for

01— 5 p(s)—1 0y — p(s)—1
Vp<3) = - 3
o o

where 0 < £=2 < 2222 < 1, we may look v,(s) as the same type as v(s), then v,(s) is

loa

decreasing with respect to its exponent p(s) — 1.

For ¢1, 02 € D, ¢1 < @9 and w € Bp,, we have:

|9(w)(p2) = p(w) (1)

)—1

— /@2 (02 — )90
0 I'(p(s))

#1 (g1 —5)!

T(s,w(s))ds —/0 T'(p(s))

T(s,w(s))ds

o1 (g — 5)9)1 e2 (g — 5)91
= /0 uT(s,w(s))ds +/ uT(s,w(s))ds

I'(p(s)) o D(p(s))
¥1 1— 8 go(s)—l
—/0 %T(s,w(s))ds
1 p(s)—1 o(s)-1]| L (s, w(s)) & o(s)—1| T (s, w(s))
| Lt =07 = o S s [ = Sy

This implies that

[S(w)(p2) = S(w) ()]
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o llalle 41— /‘pl { pe—1 o _1] .
i * _ * _ _ * Ld
T(o") o ; (p2 — 3) (p1 —9) s “ds

* ©1
TNl g1 [ (g, — syt = (= )]s

['(p*)

* 2 * 2
g el HaH\I’al_K’*/ (2 — 8)"* " 1s7tds + g 12w IWile Hﬁ”\PHwH‘l’UI_K’*/ (2 — 8)7 " 1s7"ds,

F(@*) ®1 F(@*) ®1

o o' ([lally + [1Bllwllwlle) e A
o L7 e =9t = G = s sas

orol=ox(

alle + [|8]|wl|w|lw) /“D2 ool —
—8)¥* 7 s ds
['(p*) 1 (2 = 5)
o*a" O (|lafle + I1Bllvllwlle)
['(p*)

»1 »1
/ (g — 8) tstds — / (o1 — 8)*ts'ds
0

0
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grol=ox(

alle + [1Bllellwle)

_ L
F(p*) ©1 (@2 ()01)
o'o! = (Jally + Blelwle) [PA = L") o _ DA=OL(p7) o
< I(p) PI—te)™ TU—1te)"

o o (lalle + 1Bllwllw]w)

—t _ o
+ T(p") ©1 (P2 — 1)
o o (lafle + 11Bllvllwlw)

Il =) —T(1 —)ps "
< Tl -+ ¢%) (1 =) (1= ¢)eh

a*a' = (|lally + [|B]lv]lw]v)
+ - @1 (2 — 1),
I(p*) !

Consequently, we have:

* 1—px
R(w)en) — ()] < T U I oy — g pa - g
e (ol + [ Bleluls)

— o

Hence |(Sw)(p2) — (Sw)(p1)| — 0 as |¢2 — ¢1| — 0. It implies that 3(Bpg,) is Equi-cont.
As a sequence of Steps 1 to 3 together with Arzella Ascolli thm, we conclude that & is

Compl cont.
Then by Schauder fix pt thm the (CFDPNFDEVO(2)) has at least one solution.

Then, we give an existence the second result based on Banach contr princip.

Theorem 3.2.2 Assume that conditions (A1), (A2) hold, and if

lo*a =9 T'(1—1)
I'l—t+ p*)

ot < (3.6)

then the (CFDPNFDEVO(2)) has a unique solution in V.
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Proof We shall use the Banach contr princip to prove that & be defined in (3.3) has

Fix pt.

To show that & admits a unique Fix pt, it suffices to show that & is a contraction.

For wq(¢), wa(p) € ¥, we obtain that:

I(wn)(¢) = Sluwn) ()

IA

IN

IN

¢ (o — 5)P8)1 o (Vs ¢ (p — s)Ple)1 s ws(s))ds
b Ty T s = | Ry Tt

< — s p(s)—1
J %ms:wﬂs» — T(s,wn(s))|ds

/ ) — g p(s)—1
- p(s)—1 ® -t . d
e e = IS R

14 ¢ fp—s
s —1
['(p*) /0 7 ( o )
lo*o =9
I'(p*)
lo*ol= T'(p*) T(1 —
[(p*) I(1 =4 %)

px—1
s wi(s) — wa(s)|ds

v —1_.—¢
s = wall [ (o — )5~

L
) 09wy — wly

lo*ol=2 T(1 — 1)
Pl =+ p)

o lwy — ws|w,

by bound ¢ on D we find

[S(wr) — S(wo) |l <

lo*ol=9 T(1 —1)
(1 =+ p*)

o " lwr — wa|y.

Consequently by (3.6), the operator J is a contraction. Hence, by Banach contr prin-
cip, & has a unique Fix pt w € ¥, which is a unique solution of the (CFDPNFDEVO(2)).

3.3 Ulam-Hyers stability

Theorem 3.3.1 Let the conditions (Al) and (A2),(A3) hold, then the (CFDPNFDEVO(2))

is Ula Hyer stab.

Proof 3.3.1 Let € > 0 an arbitrary number and the function x(p) from x € U satisfy the

following inequality

1D x () — T, x())| <&,

peD
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we have

¢ (p— g)l—#(s)
D@\ () :/ (p = ) x(s)ds,

o T(1—p(s)
we obtain

¢ (o — 5)9)1 # (p— )2t
X(p _/ o L x(s))ds) < 5/ T T
= [y T )
p(s)-1
< _°© /‘P go-1( PS5 s7's'ds
I'(p*) Jo d
— @*_1
< € /@00@*_1 £ s 's‘ds
I'(p*) Jo d
go_*o_l—p* ©
< 29 o1l e
< o) /o (p—9) s 's'ds
* 11— * —
< ecto [(p*)T(1 L)Up*—b /@ stds
(T — i+ ) 0
g eo*o 9 D(1 — 1) p*_b{ sttt ]“"
= T —t+p*) L+ 1o
50*01_%1_‘(1 — L)
< ©x—L H’l.
S T -t 7
Let o € D, we get
() )< eoto! (1 —1) L+1+/SO (SO_S)W(S)AT( (s))d
o o L T(s,x(s))ds
X\¥ P> (tL+ D1 — o+ g% v 0 I'(p(s)) *
¢ (p — s)P)-1
Y S AR
A TRl
< eo* oo D(1 — 1) s H_ll +/so (p— s)@(s)—l‘T(S (s)) = T(s,w(s))|ds
o A ’ N ’
St e’ P T

eo*a =9 T(1 — 1)
T (e+ DT =0+ o)

¢ e — s\
Sy 0(9"0) 5x(s) — w(s)lds
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eo*a ™o T(1 — 1) lo*ot—o

©x—t, t+1 X_leIl /cp — s p*flstds
ST -t en)’ 7 (") p P79
* _1—x * 11—« *
< eo*o' (1 —1) gt it loro ™ T(p")I'(1 — L)ap*_LHX — wl|y
(t+DT(1 — ¢+ p*) [(p9)I(1 =0+ %)
* 11— * 51—
< oo ¥ P(l B L) gt 1+1 bo*o™™¥ P(l _ L) O_p*ﬂHX . w||\1/
L+ D01 — o+ p*) L1l -+ p*)
Then
lo*o =T (1 — 1) eo*a ™9 T(1 — 1)
—w _ O.p*—b —w < s —L L+1’
Ix & (1 -+ p*) Ix Il < L+ D01 — ¢+ p*) 4
* 11— _ * 21— _
Ix — wlle(1 — lo*a' =91 (1 L)Up*ﬂ) < oo~ I(1 — 1) Pt gL
I'(1—1t+ p*) (t+ DT(1 — 1+ p*)
We obtain, for each ¢ € D
eo*ol=T(1 -1 ., I(l—u+p"
Ix(e) —wie)l < ¢ L28)_ponmigert ( )

t+ 1DI(1 — v+ p*) I'(1—t4p*) —Llo*ot=2T'(1 — 1))
SO'*Ulip*O'p*iLQOLJrlF(l . L)

- (t+1) <F(1 — 1+ p*) — bo*ol=9T(1 — L)o@*—b)>

= Cre€.

then the (CFDPNFDEVO(2)) is Ula Hyer stab.

3.4 Numerical example application

Consider the following fractional problem,

DyPw(e) =T(p,w(p)), €D =[01]
(3.7)

w(p) =n(p) =sin(p), ¢ €[-1,0]

where p(¢) = £ + 1 is a Cont funct on [3,1].
|w]

T (p,w) = 2—— is a Cont funct on (0,1] x IR.
906

For ¢ € [0, 1], we have
<plp) <1,

N —
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Then, we have

|wi] [wa|
) B B
08| (o, w1) = T(p,ws)| = “W( : O : 1 )‘
Ppeo pe
_ |w1|_|w2|
2 2
] = fus
= —||w1| — |W
2 1 2
1
< §\w1—w2\.

Hence the condition (A2) holds with : = % and £ = £, 0" = 1.
Next, we prove that the condition (3.6)

lo*o' = T(1—u) o, 1 NG

—— ~ 0.600425.... < 1
[(1—+ p*) 21“(%1)

Accordingly the condition (3.6) is achieved. By Theorem (3.2.2), the problem (3.7) has unique
solution. In this section, we presente our solution w(p) for p(¢) = 3¢ + 3 with ¢ € [0,1]
and w;(p) for p(p;) = 2¢; + 1 where ¢; is fixed. In figure (3.1), we plot the solution z
depending on u and the figure (3.2) present a comparison between the solution w and the

different solutions w; with a p different.

The solution w(ep) in [-1,1] with @p(p) = ¢/2 + 1/2

w(e)

. . . , ' B )
Figure 3.1: The solution w(yp) in [~1,1] with p(¢) = £ + 5
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Figure 3.2: The plot of w(yp), w;(y) for different p(y)
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In this table, we present the Norm; = max

w(p) —wi(p)

for p(¢) € [0, 1].

€[0,1]
i 0.0959 | 0.1963 | 0.2968 | 0.3973 | 0.5023 | 0.5982 | 0.6986 | 0.7991 | 0.8995 1
©(pi) | 0.5479 | 0.5982 | 0.6484 | 0.6986 | 0.7511 | 0.7991 | 0.8493 | 0.8995 | 0.9498 1
Norm; | 0.2534 | 0.2254 | 0.1945 | 0.1609 | 0.1233 | 0.0879 | 0.1068 | 0.1670 | 0.2415 | 0.3320

We observe that the norm is small when p(p;) is close to 0,8. Almost the center of the

interval.
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Chapter 4

Modern Technique to Study
Cauchy-Type Problem of Fractional
Variable Order

4.1 Introduction and motivations

I The Piece-Wise Constant Function will play a vital role in our study for converting the
fractional problem of varaible order to an equivalent standard fractional problem of the
constant order.

Benchohra et al [5] studied the existence of solutions for the following nonlinear fractional

differential equations for constant order:
DG &(s) = ¢(s,&); s €N :=[0,N] (1)
(4.1)
§(s) = x(s); s€[=7,0L,y>0 (2)
Where Dy, is standard Riemann-Liouville fractional derivative , ¢ : N'x C([—7,0],IR) — IR
is a given function x € C([—v,0],IR) via x(0) = 0. For any function ¢ defined on [—~, N]
and any s € N, we denote by &, the element of C'([—v,0],IR) defined by

55(7)25(5_'_7)’ T E [_770]'

Since the authors in [5] consider an infinite delay, the obtained existence results can

be examined as a generalization of several existence results for delayed fractional differential

M. Benaouda, S. Sabit, H. Gunerhan, M. S. Souid, Modern Technique to Study Cauchy-Type Problem
of Fractional Variable Order, Journal of Modern Physics Letters B, 2024(2024).
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equations with fractional constant order derivatives. In fact, there have been some important
existence results for such equations where different techniques have been applied. [21, 25]
How- ever, as stated above, the corresponding results for delayed fractional varaible order
boundary-value problems are very few.

In this chapter we apply the new technique on the following fractional Cauchy-type prob-
lem (CPNFDEVOID(3))

Dy w(p) = T(p,w(p)) ¢ € D=0,0]

(CPNFDEVOID(3))
w(p) =n(p), @ €] — 00,0

where 0 < 0 < 400, 0 < p(p) <1,7T: D x B — IR is a Continuous Functions Cont funct
and Dgﬂ(r“p), is the Riemann-Liouville Fractional Derivative of Variable-Order @(¢p),
0 < p(p) <p* <1and n(e) € B with n(0) =0 and B is Phase sp .

For each function w defined on | — 0o, 0] and each ¢ € D, we note by w, the element of
B defined by

w@(]) = w((,O—Fj), J E] - 0070]

Here w,(.) represents the history of the state from time oo up to the present time ¢.

4.2 Study existence and uniqueness of solutions

Let us start by defininig what we mean by a solution of problem (CPNFDEVOID(3)). Let

the space
Q={w: (00,0] = IR : w|(e,0) € B and w4 is continuous }.
We impose the following assumptions:
(C1) p:[,0] = (3,07 is Cont funct, such that § < p(p) < p* < 1.

(C2) Let ¢'7: D x B — IR is Cont funct (0 < ¢ < 1), there exist a constants ¢ > 0, such
that,

O[T (p,u) = T(p,v)| < Lllu— v for each u,v,€ B and ¢ € D.
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(C3) There existe a, 3 € C(D,IR") such that

T (e, u)ll < ale) + B(e)lulls,

for ¢ € D and each u € B, and |19 p|ly < oo.

Definition 4.2.1 A function w € Q is said to be a solution for (CPNFDEVOID(3)) if w
satisfies the equation D) =T (g, w(p)) on D and the condition w(p) = n(v) on (—o00,0].

For the existence of solutions for the (CPNFDEVOID(3)), an auxiliary lemma is needed

as follows:

Lemma 4.2.1 [7}] Let 0 < p(p) < 1 and let F': (0,0] — IR be continuous and
limy_o+ F(p) = F(07) € IR. Then w is a solution of Fractional differential equations

© — 3 p(s)—1
w(p) :/0 %F(s)ds, v €D and p(s) > 0,

if and only if w is a solution of the IVP for the Fractional differential equations

{ D) = F(y), 0 € (0,0] 42)

w(0) = 0.
Lemma 4.2.2 [7}] Let (C1) hold. And let w,,w € B assume that
wn(p) = w(p), ¢ € D asn— oo,

then

¢(S0_—sts wwwss ol as n — o
/0 D1 o)) " _>/o (1= (g (#)ds:t € [0,0] as n = oo

The first result obtained by using the Schauder fix pt thm .

Theorem 4.2.1 Suppossing that conditions (C1),(C2) and (C3) are hold, if

o' o~ (llofle + 18w Lol[nlls)

<1
(= +Dl(p*) —o* o= |l wro

Where
ko = sup{[r(p)| : ¢ € D},
Then the (CPNFDEVOID(3)) has at least one solution on V.
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Proof We give the operator ® : {2 — €2 defined by :

(4.3)

@ w SO - %2} (80 — S)p(s)_l
7T (s,w,)ds, if pe D and s) >0
Ly T 0 o(s)
Let ¢(.) : (—o0,0] = IR be the function defined by
0, if ¢ €0,0]
s(p) = .
77(90)7 lf ZBS (—O0,0]
Then ¢y = n. For each v € C([0,0],IR) with v(0) = 0, we denote v* the function defined by
e ) vl if ¢€10,0]
vi(p) = .
0, Z.f (S (_0070]

© — s p(s)—
) = [ ST () + s(o)ds,

Set M, is Banach sp with norm ||.||, such that
My ={v e C(]0,0],IR) : vy = 0},
and let ||.||, in My defined by:
[olls = llvollw + sup{lu(e)] : 0 < ¢ < o} = sup{lo(p)] : 0 < ¢ < o},

We give the operator  : My — M, defined by:

# (p —s5)!

'UGMO

%ngz/ T(s,v*(s)+¢(s))ds, ¢ € D. 4.4
(@0)(0) = [T (8) + 5(9) (14)

We shall use the Schauder fix pt thm to prove that & is Fix pt.
We consider the set

BRL = {U S M07 ||U||U < RL})
where
p— oo T = g(lolly + [Blvlonlle)o®
T g — o ot T D llemeo

Univ-Tiaret/Mathematics: 2024 51



Clearly Bp, is Convex, closed bounded non-empty.
We proved this in three steps.
Step 1: & is Cont ope.

Let v, be a sequence such that v, — v in M, then
[(Svn) = (Sv)le — 0.

For ¢ € [0, o], we find

1S(vn) () = S(v)(p)| =

< — s p(s)—1
/0 %T(Sa vr(s) +s(s))ds

s)—1

e ST s 4 c(s))ds
Ly T + s

¢ (p — g)Ps)-1
/0 %|T(57U2(5) +6(5)) = T(s,v"(s) +<(s))|ds

< s [lo = 990 () v (5) nds
I'(p*) Jo
g _ p(s)—1
< T(p*) /(f o9 <9008> s~ [Jun(s) —v*(s)|lsds
e ® o @*—1
= F(@*)/o Up*_1<¢05> s~ k() supsefo,gl|vn(s) — v(s)l|ds
{o*k @
< 7001*@*/ 0 —8)" s ds|lv, — v|s
r e [T o = o
lo* o9 i, T(p)T(1 —
< g e L= oy, — ),
L(p9)I'(1 =+ p*)
lo* o' k, T(1 — 1)
x _ <k < ©Ox—L _
I9(0) =3 < TS, ol

1(Sv,) — (SV)||ls =0 as n— oo

Consequently, & is Cont ope on Mj.
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Step 2: ¥(Bg,) C (Bg,). For v € Bg,, and by (C3), we get:

© — s p(s)—1
S()() = | [ e

T(o(s)) T(s,v: +¢5)ds

< /“’ (o —s)t
0

T(o(s)) |7 (s,v: +¢5)|ds

(s)-1
1 s s—1(¥P — S ¥ — *
<t e (550) sl 15+ Jas

]‘ L —1 SO_S ot — — *
<t h (g) (57l + 51BN 02 + sl ) ds

g 1—px /90 _ ml( —t —t * )d
ST’ (v —s) s~ als)] + s B(s)[[[vg + <l ) ds

0.*0.1*p* /SO 1
< =) ds

L A 0
orol=e e
— px—1 =t * d

Ry ) (0= T B el s

o*o' | allw /sa )
< — p—5)"" s ds

I'(p~) o )

o* 1 o ||6||‘I’ o 1
e R [ =97t (ol + Nl )ds

o*o 0 |allw /w )
< ——— w—38)"""s "ds

) o 7Y

oo B|lw ¢

— = . (Ko o LO’ / - a1 _Ld
gy Rellvlle & Lellnlla) (o = 9) s ds

ool flall o DI =) .,

D(p*)T(1 — ¢+ p*)
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oo~ ||Blle T (9")T(1 = 1)
o ky||v||le + Lol
o T =t o (kollolle + Lolinllz)
o' lalleT(1 = 1) . 0"l T(L — 1)
- T =+ (1 =+ p%)

o~ (o llvllo + Lollnlls)

c oo M = Yllalle + 1BllwLollnlls) .- , " o™ LA = JlIBllwro

- I'(1—¢+ p*) I'(1—¢+ p*)

o vl

L oo™ T = J(llalle + ||5||x1fLo||77||%)Upm
- I'(1—+ p*)

" (1 -4 p*)

0=+ -0 oo I — O Bllarsos

o o7 T(1 — ) (llalle + [1BllwLo]lnlls)o™~
"Il —t+p*)—of o= I'(1 —0)||B||lwkeo ‘

where:

105 + Sllw < [[o5lls + [lsslls < wollvllo + Lollnlls,

and
Ly = sup{|L(¢)| : ¢ € D},

which means that S(Bg,) C (Bg,).

Step 3 :3 is Compact ope
Now, we will show that $(Bg,) is Rrlat comp, meaning that & is Compact op. Clearly
3(Bg,) is Unif bnd because by Step 2, we obtain $(Bg,) = {S(v) : v € Bg,} C By, thus
for each v € By, we get ||(v)||ap, < R, which means that J(Bg,) is Unif bnd. It remains

to show that S(Bg,) is Equi-cont.
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For @1, 02 € D, ¢1 < @9 and ¢ € Bp,, we have:

S(0)(02) = S(v) (1)

[l D e (B AP )
=L ey T s [T gy Tl b

= o (@2 _ S)@(S)_l * ¥2 (QOQ - S>p(8)_1 *
B /0 WT<S’US +6s)ds + [pl WT(S,US + 6s)ds

Y1 1— S @(S)—l
_/0 %T(S,U: + ¢5)ds

T(s, v+ <)

NEOI

< /0301 [(SOQ . S)K’(S)*l — (p1 — S)p(s)l]

T(s,v; + )

NEOI

1 o EANCOR _ s\ P!
< /O {Om(s)—l (‘P?> _ o1 P8 }3_L<a(s) + B(s)|Jvr + §s||%)ds

g

1 #2 (s)—1 Y2 — S vt — *
b [ o® s (a(s) + Bls) 07 + <l ) ds

1 1 _ o\ #L RN
< o) [ {0@*—1<%0205> _(,—@*—1(90103> }3—L<a(8)+ﬁ(s)||vz+gs||%>ds

2 — a1
N 1 /%0 Up*—1<9025> S—L(a(s)+5(5)ij+<s\|%>ds

<l I - (2) T o (o0 s + ol
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* 2 — px—1
L (wz ) 5 (als) + B + <ol s

ril((27) - (2] e

voos (2 ) (77 SY*_I]S‘Lﬂ(s)Hv* +allads
F( *) 0 - pu S S

b [ (B) T et 17 [ (2 ) e+ s
L(p*) Jou o I'(p*) Jen g T

IN

o*llallv -, /501 [ pr—1 e 1} N
o llaflw . _ * _ — * Ld
['(p*) o 0 (2 — 5) (1 = 5) 5 s

o*|18llw (rollvllo + Lollnlls) i

(0% —x /O‘Pl [(902 —5) L — () — S)K)*l:|SLdS

* ¥ U*B‘I/HOUU—i_LO'T]% ¥
ol i [ o gyy TNl Lalaln)

— 5 p*_IS_LdS
['(p*) ®1 L) . |

el (Hanw + 118l (Ko llvlls + Lo—llnll%)>
['(p*)

IA

. <||a||q, + 118l (Ko llvllo + Lallnll%))
['(p*)

©2
/ (p2 — )" 's™!ds

1

7ot (llalle + 18l (rolollo + Lolnlz) )
P(p)

1

@1
{ (g3 — 8)"* " tsTds — / (g1 —5)™ 's™"ds
A 0

IA

oot (llallw + 18lls (kollolls + Lollnla)

t I(p*)

01 (2 — p1)%
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R (HQH\I, + HB|’\I,<RGHUHU + LA\UH%)) L) T(1—1¢) o, TleOI(1—1) .,
< [(p") [F(l —ire)Th T )

7o' (llalls + 18le (o ll0lls + Lollnlla) ) ]
+ F(@*> Y1 (902 - 901)

Consequently, we obtain

o*ol=ox (”O‘H‘I’ + ||6||\IJ<’£U”U”U + LUHUH%)>
I(1—t+ p*)

S(0)(2) — 3(0) ()] < T(1 = et ™ =T = )™

7o' (llalle + 18le (o0l + Lollnla)
I'(p*)
Hence |(Sv)(p2) — (Sv)(¢1)| = 0 as |pa — 1| — 0. It implies that (B, ) is Equi-cont.

+ 1 (2 — p1)%

As a sequence of Steps 1 to 3 together with Arzella Ascolli thm, we conclude that < is

Compl cont.

Step 4 (A priori bounds): Now we can expose there exists an open set V' C M, with

v # AS(v) for some 0 < A < 1. Then for each ¢ € [0, 0] we have

® — s p(s)—1
v(p) = )\{/0 %T(s,v: + G)ds]|.

This implies by (C3)

¢ (o — g)P(s)-1
ol < | %|T(s,v§+§s)|d8
< r(;*) 7= 97017 (o) + B0 + <.l ds
. Y p(s)—1 . -, %
< r(m/o g <0> (57" a(s) + 57 B() 0] + il ) ds
< r(i)*) /f 0“‘1(); 8) : (s™als) + s B(s) 0] + sl ) ds
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0_*

%)
< 70179*/ ©— s p*flstﬁ S U:
o [Tl

o'o ! [laflo (eI (1 1)

+ Gllmds + o
P(p" )01 = ¢+ p%)
of ¥ o o*ol =0 ||lalleT(1 — 1) _ _

< 1 p*/ - ox—1 _—t *+ ; d 4 O L,
= F(p*)a 0 (90 3) S B(S)Hvs S H% S P(l — L+ @*) g

but

[0 + sl < flvglls + llsllw

IN

r(p)sup{|v(s)]: 0 <5 <1} + L(p)|[volls + w(p)sup{ls(s)] - 0 < s <1} + L(p)[|so]lw

< Resup{|v(s)] : 0 < s <1} + Ly||n|s.
If we name 1 (¢) the right-hand side of (4.5), then we get
07 + <slls < 9 (8),

and therefor

ool ||lalleT(1 — 0
I'(l—t+p*)

o) < 20 [P ) s B(sleds + o pelol

(")
Using the above inequality and the definition of 1) we have that

Koo o' |lalleT(1 =), Keoto! ¥

Tl—i+¢) I'(p*)

U(p) < Lollnlls+ e [ (st (s)ds, o € [0, 0]

Then from Lemma (1.4.1) , there exists k = k(p*) in this manner we have

kg0 o' |af[oT'(1 — ¢) kg0 0|8l ¥
<L, +-= o T k(") = / —5)* 757 6ds, ¢ € [0, o]
()| < Lo|Inll= T= it o) (9%) (o) | (=) p €10,0]
where . oI )
Keo o 79 |laf|lgl'(1 — ¢ _
0= 1L, Pet)
7l + T(l—0+ ") o
hence (") oo )
K(p" ) koo o ™ (1 — 1)o7 <
<di+ =L,
[l < D=+ )
then ) oI )
S oo T |a||le (1 — ¢
vllg < L|I® + =L"
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Set
V={veM:|v|, <L +1}.

3 : V — My is continuous and Compl cont. From the choice of V | there is no v € OV
such that v = A (v) for A € (0,1). As a consequence of Alt nonlinear L-S thm ([32]) ,
we deduce that & has a fixed point v in V.

The second result obtained by using Banach contr princip.

Theorem 4.2.2 Suppossing that conditions (C1),(C2) are hold, and if

o*o 70l Ky T(1 — 1)
I'(l—t+ p*)

then the (CPNFDEVOID(3)) has a unique solution in V.

ot < 1, (4.5)

Proof:
Let & : My — My be defined as in (4.4). That the operator ® admits a unique Fix pt is
equivalent to & has a Fix pt, and so we turn to proving that & has a Fix pt. We shall that
S My — M, is a contraction map.

For vy(p),v2(p) € My, we obtain that:

© — 3 p(s)—1
R () = (ea)() < [ ETES T 07(6) + 6(5) = T, e5(6) + ()l

1 ) ()1 ©—s p(s)—1
< o(s)— {0 s~ '|uk ok d
= F(p*)/o g ( o ) s~ |lvi(s) — vy(s)||sds
V4 ® fp—s px—1 .,
< w e (B) sl - el
oc* l K @
< Tglees / (p— s)p*_ls_LHUl — Ug||ods
I'(p*) 0
* ¢ " o
< I~ Rasi-p. v — UQHO-/O (o — )" 's7ds

['(p*)

o*ol =9 { k, T(p*)T(1 — 1) oy
[ )D(L =0+ p7)

|U1 - Uz”o

by bound ¢ on D we find

o*ol ™ (K, T(1 — 1)

I90) = S(w2lls < o

oy — v,
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Consequently by (4.5), the operator & is a contraction. Hence, by Banach contr prin-
cip, & has a unique Fix pt v € M), which is a unique solution of the (CPNFDEVOID(3)).

4.3 Ulam Hyers stability

Theorem 4.3.1 Let the conditions (C1) and (C2),(C3) hold, then the (CPNFDEVOID(3))
is Ula Hyer stab.

Proof 4.3.1 Let € > 0 an arbitrary number and the function w(p) from v € B satisfy the
following inequality

D@y () — T(p,x(9))| <&, 9€D

we have
# (p =)' 79

b T oy O

we obtain

2lp—9)t
< < ey

s)—1
oo (e2)
['(p*) Jo o

- o _ g\ P!
/ o1 $=s3 ds
['(p*) Jo o

*

['(p*)

ea*T'(p")'(1 — o)
I(p*)D(L =0+ p7)

IN

IN

IN

O_l—p* /(p( o\l et
©— ) s stds
0

IN

1— —t s L
o gt /sds
0

IA

eo* o179 T (1 — 1) Up*_bl gt ]cp

['(1 -1+ p*) v+ 1],

eo* ol 7T (1 — 1)

L-‘rl‘
(t+DI'(1— o+ p

IN

O.@*—L(p
)
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Let o € D, we get

ec* o7 T (1 — 1)
L+ D1 — 0+ p*)

_ g)p(s)—1
o e /w wT(S,X(S))dS
0

IX(p) —w(p)| = |( T(p(s))

- ¢7<t_s>p(8)_l s, w(s))ds
b Ty e

eo* o7 (1 — ¢ (o — g)9)-1
< e e [T s e ~ T (sl

eo* o9 (1 —) 14 e ©—s pls)-1
@x—t, L+1 p(s)—1 —
+ / — d
T+ -+ p*)a 4 I'(p*) Jo 7 o s x(s) —wis)lds

co* Tl—p*r(l L) f 7 s px—1
ox—t, L+1 ps—1 "2 .
— r + T / - d
(L + 1) (1 e @*)O 2 (@*) 0 o o S |X(S) w(s)| S

co* Ul—p*r(l _ L) (o gl—o= o
ox—t, 141 el 1
- T lix—w / — 5 sds
G+ —rten)’ F (o) e wlle fr (e =s)
co* ol=oT'(1 — ¢ lo*ol= T (o (1 — 4
>~ ( 1 O'@*_LQOL-H - (p ) ( - )UBO*_LHX B UJH\I,
(L+1)F(1—L+p) F(@)F(I—L—f—p)
eo* Jl—KJ*F 1—. go_*o_l—p*l—\ 11—
>~ ( 1 O.‘O*—L('Db-i-l ( - >O_p*—L||X_w||\I,.
L+ DT(1 = ¢+ p*) T(1—i+ oY)
e lo*o! = T(1 1) o D(1— )
oo " I(1 — — eo* o I'(1 —1 —
||X_w||\11(1_ o¥* ) < O S0+1

L(1—1¢+ p*) (t+ DT — o+ p*)

We obtain, for each ¢ € D

eo* ol 7T (1 — 1)
(t4+ DT(1 — ¢+ p*)
I'(1—c+4p*)

I'1 -1+ p*) —lorol=9T'(1 — 1)oP—

@x—t, t+1
¥

IX(p) —w(@) < lIx —wlle <

o* o7 (1 — 1)o® Lt

L+ DT =+ %) = Lo = T(1 = 1)o )

IN

€ = Cr€.

then the (CPNFDEVOID(3)) is Ula Hyer stab.
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4.4 Approximate numerical example

we define this (Fractional problem),

—0p+¢
DF@w(p) = lre v , €D =10,1], 0 < p(p) <1, and 6 > 0.
(o +1)s(e? +e7?)(1 + [wy)

w(p) =n(p), ¢ € (—0,0]

where p(¢) = 3¢ + 3 is a Cont funct on [0, 1].
Clearly for ¢ € [0,1] we have
<p(p) < 1.

where rI'(p*) = rg J§ s te~*ds , and rq > 1 fixed. Let § > 0 and

N | —

By ={w e C’((—oo, 0], IR) limy_soe? Yw(y), exists in IR}.
The norme of By is given by

||w\|9 = Sup—oo<]§0€9J |w(J)|>

Let w : (—o0,0] — IR be such that wy € By. Then

lim, s ooePw,(5) = lim,_soe™w(p+)) = lim, 0?2 w(y) = e %lim, ., _se®wo(y) < oo.
Hence w, € By. Finally we prove that

lwello < K(p)sup{fw(s)]: 0 <5 <@} + Lp)|lwollo,

where kK = L = 1 and 7' =1 we have |w, ()| = |w(¢ + 7)|.

Ifr4+¢<0, we get

For 34+ ¢ > 0, then we have
lwe(9)] < sup{lw(s)]: 0 <'s <}
Thus for all 7+ ¢ € [0,0] , we get

wo(9)] < supflw(s)] : =00 <5 <0} + supflw(s)] : 0 < s < ¢},
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Then

lwello < llwolle + sup{lw(s)] : 0 < s < @}

Then (B, ||.||o) is a Banach sp. We deduce that B is a Phase sp .

Where r = % , set
—O0p+¢
e w
T(QD,U}) = 1 ’ 2 € [0,0’] X %0‘
2 (p+1)s(e? +e?)(1+w)
Let wy,wy € By , then we have
—Op+op
1 1 € wq Wa
6|7 (p,wr) — T (p,w = (b —
@3 [T (p,wi) = T (g, ws)] Ay Pype— . gy
1 e Oete wy Wa
S s 1 -
205 (e#+e?)|l+w  1+w
B e? 79|l wy — wy|
2(ep e ) (14 wp) (1 + ws)
< e?e™ % wy — wy|
2 (e 4 e ?)(1+wp) (1 + ws)
< e?lwy — welsms,
T 2(e¥Fe7¥)
1
<

Hence the condition (C2) holds with ¢ = ¢ and £ =

o* = maz{l,oc 1} = 1.
Next, we prove that the condition (4.5)

o*ol™ { k, T(1 — 1)
['(1—+p)

§||w1 —w2|\%9-

%,/@ozl,p*zland
ipey 1o g
ot =28 2 __ x_-=06<1.
@) 5 2705

Accordingly the condition (4.5) is achieved. By Theorem (4.2.2), the problem (4.6) has

unique solution.
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4.4.1 Numerical results

In this section, we use two numerical methods. The first is the finite difference method

(FDM)[50], the second method is the Euler’s discretization method (DEM)[63]. Both

methods are based on the subdivision of the interval, we took 1000 points. We calculated

the solution wpp(p) with the (FDM) method and the solution wpg () with the (DEM)
1

method for p(¢) = ¢ + 5 with ¢ € [0,1].

In figure (4.1), we plot the solutions wrpy () and wpe (@) depending on ¢ and different

] 4The solution w(¢) with two methods in [0, 1] for p € [0,1] with 6 = 0.5

w(p) with FDM
w(yp) with DEM

1.35 -

1.3

1.25

1.2
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] 35The solution w(y) with two methods in [0, 1] for p € [0, 1] with 6 = 0.7

w(e) with FDM
w(e) with DEM

1.3

1.25

1.2

1.1

1.05

0 0.2 0.4 0.6 0.8 1
¥

—_

The solution w(p) with two methods in [0, 1] for p € [0, 1] with 6 =

1.35 \
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The solution w(y)

1.25

1.2

1.1

1.05

1.14

1.1

1.08

1.06

1.04

1.02

with two methods in [0,1] for p € [0,1] with # = 2

w(yp) with FDM
w(yp) with DEM

0 0.2

0.4

¥

0.6

0.8

ot

w(p) with FDM
w(yp) with DEM

The solution w(y) with two methods in [0, 1] for p € [0, 1] with ¢ =

@

Figure 4.1: The solutions wrpy(¢) and wpeap(p) in [0, 1] with p(p) = %gp +% and different

6.
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In this table, we present the Norm = max |(wrpa(¢) — wprm(p)| for p(e) € [0,1].

»€[0,1]
0 0=0560=07| 6=1 0=2 =5
Norm || 0.02665 | 0.02454 | 0.01541 | 0.02008 | 0.02940

We notice that the error between the two methods is of order 2.

We observe that for 6 < 1, the approximate solution wgp,s is close to the approximate solu-
tion wpgy when 6 is proche to 1. For > 1, the two approximate solution is the same when
6 is proche to 1(see figure(4.1)).

Now,we calculated the solution w; ppas(¢) with the (FDM) method and the solution w; pga(¥)

with the (DEM) method for p(p;) = 1¢; + 1 where ¢; is fixed and for different 6.

In this table, we present the Norm; = m[a)i ’wLFDM(go) —w; peM(p)| for p(p) fixed in
pel0,

0,1]

0,1].
© 0.2 0.4 0.5 0.6 0.8 1.0
o(¢) 0.6 0.7 0.75 0.8 0.9 1
Norm;, 6 = 0.5 || 0.13623 | 0.03688 | 0.02726 | 0.02962 | 0.05435 | 0.07210
Norm;, 6 = 0.7 || 0.13608 | 0.03703 | 0.02102 | 0.02450 | 0.04922 | 0.06663
Norm;,0 =1 || 0.12351 | 0.02798 | 0.01608 | 0.03119 | 0.05407 | 0.07028
Norm;,0 =2 | 0.02132 | 0.02152 | 0.02279 | 0.03419 | 0.05312 | 0.06625
Norm;,0 =5 | 0.02124 | 0.02177 | 0.02989 | 0.03681 | 0.04750 | 0.05489

We observe that 6 < 1 the Norm, is small at ¢ = 0.5, p = 0.75, it decreasing in ¢ € [0, 0.5]
and crescent in ¢ € [0.5,1] but when 6 > 1 is creasing in ¢ € [0,1]. Then for § < 1, the
approximate solution w; ppys is close to the approximate solution w; pga when ¢ is proche

to 0.5(p = 0.75). For 6 > 1, the two approximate solution is the same when ¢ is proche to

Univ-Tiaret/Mathematics: 2024 67



0(p = 0.5)(see figure(4.2)).
In the figure (4.2), we present a comparison between the solution w; rpar(¢) and the solutions

w; pem () with a p different and different 6.

1’2he solution w;(y) with two methods in [0, 1] for g(@)=0.75 with # = 0.5

wi() with FDM
1.35 - w;i(¢p) with DEM
1.3 d
1.25 d
1.2 i
115 i
1.1F i
1.05 d
1 . L | |
0 0.2 0.4 0.6 0.8 1
¥
1'£he solution w;(y) with two methods in [0, 1] for p(p)=0.7 with # = 0.5
. T T T T
wi() with FDM
135 wi(i¢) with DEM g

1.3

1.25

1.2
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] :;I‘She solution w; () with two methods in [0, 1] for p(¢)=0.75 with § = 0.7

w;(y) with FDM
wi(y) with DEM
1.3 i

1.25 1 .

1.2 i

1.1 i

1.05

¥

The solution w;(y) with two methods in [0, 1] for @(p)=0.8 with 8§ = 0.7
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] 3g‘he solution w;(y) with two methods in [0, 1] for p(¢)=0.75 with 8 =1
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The solution w;(¢) with two methods in [0, 1] for p(¢)=0.75 with § = 2

1.25

w;(y) with FDM

wi(y) with DEM
1.2
1.15
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5The solution w; () with two methods in [0, 1] for @(¢)=0.7 with 6 = 2
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The solution w;(y) with two methods in [0, 1] for p(p)=0.75 with § = 5
1.14 \ \ \

wi() with FDM
wi() with DEM

1.1

1.08

1.06

1.04

1.02

¥

] 14The solution w; () with two methods in [0, 1] for p(v)=0.6 with 6 =5

wi(¢) with FDM

wi(¢) with DEM /'—

1.1

1.08

1.06

1.04

1.02

0.8 1

@

Figure 4.2: A plot of w;(¢) with two methods for different () and different 6.
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Conclusion

In this study, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions
for fractional diffrentail equations of varaible order with infinite delay. The achieved results
are based on the Banach contraction principle and Alternative nonlinear Leray-Schauder
theorem with some properties of phase space. Our method is completely new and simple to
use, in contrast to earlier findings that were attained by utilizing the ideas of the general-
ized interval and the piecewise function. In fact, the findings might be seen as a successful
attempt to sidestep dificult calculations and demonstrate the major findings under less strin-
gent presumptions. We concluded the paper the with a concrete example that exposes their
appropriateness. In the future, we investigate into a variety of problems such as hybrid frac-
tional Cauchy-type problems of varaible order or impulsive fractional Cauchy-type problems

of varaible order, which can be conducted using our methodology.
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General Conclusions and Perspectives

In this study, we investigate the existence, uniqueness, and stability of solutions for the
Cauchy-type problem of fractional variable order differential equations. Our method is com-
pletely new and simple to use, in contrast to earlier findings that were attained by utilizing
the ideas of the generalized interval and the piecewise function. In fact, the findings might
be seen as a successful attempt to sidestep difficult calculations and demonstrate the major
findings under less stringent presumptions.

At the end of each chapter of this thesis, we presented numerical applications in which
we explained how to obtain the approximate solution to our problems by using accurate and
different methods. This study is considered a continuation of the theoretical study. The
numerical study is very important practically and scientifically for researchers in order to use
the exact approximate solution in various sciences, whether physical, biological or economic.

In the near future, we want to study these value problems with different conditions by
using complex order.

Finally, we hope that this thesis will be an excellent addition to the field of scientific

research and a good reference for readers, authors, and researchers in this specialty.
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