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Résumé

L’objectif de cette these est d’examiner l'existence et 'unicité de solu-
tions pour quelques types de problemes non linéaires a valeurs initiales et
aux limites d’équations différentielles fractionnaires de dérivée au sens de
Riemann-Liouville d’ordre variable. Les résultats de cette étude sont établis
par des théoremes de point fixe et I'approche de mesure de non-compactité,
notre technique est simple et basée sur un nouvel opérateur fractionnaire
qui est plus approprié et démontre la solvabilité du probleme principal sous
des présomptions moins restrictives. Contrairement aux techniques utilisées
dans la littérature, qui étaient basées sur 'utilisation du concept d’intervalles
généralisés et I'idée de fonctions constantes par morceaux.

Mots clés : E’quations différentielles fractionnaires d’ordre variable, Probleme
a valeurs initiales et aux limites, Théoremes du point fize, Mesure de non-
compactité de Kuratowski, E’quations différentielles fonctionnelles a retard
fini.

Classifcations : 26A33, 34A08, 34A37, 34A60.



Abstract

The purpose of this thesis is to examine the existence and uniqueness of
solutions for a few types of nonlinear initial and boundary value problems
involving Riemann-Liouville fractional differential equations of variable or-
der. This study’s results are all supported by fixed point theorems and the
measure of noncompactness approach, our technique is straightforward and
based on a novel fractional operator that is more appropriate and demon-
strates the solvability of the main problems under less restrictive presump-
tions. Contrary to the techniques taken in the literature, which were based
on the usage of the concept of generalized intervals and the idea of piecewise
constant functions.

Key words: Fractional differential equations of variable order, Initial and
Boundary value problem, Fized point theorems, Kuratowski measure of non-
compactness, Stability .

Classifcations: 26A33, 34A08, 34A37, 34A60.
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General Introduction

Fractional operators of variable order, representing a more complex class, are derivatives and
integrals whose orders depend on certain variables. Therefore, these variable-order fractional
derivatives and integrals generalize the constant-order fractional operators.

In 1993, Samko and Ross [44] pioneered fractional integration and differentiation where
the order x is time-dependent, given by x (), instead of a constant. This work extended the
definitions of R-Liouville and Fourier fractional operators [41, 44, 45]. Various definitions for
variable-order fractional derivatives and integrals exist in the literature, including those by
R-Liouville, Caputo, Hadamard, and C-Hadamard; see [44, 45].

Subsequently, several works have focused on variable-order fractional operators, their ap-
plications, and interpretations; see, for example, [3, 30, 19]. In particular, Samko’s variable-
order fractional calculus has proven to be highly useful in mechanics and the theory of viscous
flows [30, 19, 33, 37, 35]. Many physical processes indeed exhibit fractional-order behavior
that may vary with time or space [30]. The paper [19] is dedicated to studying a variable-order
fractional differential equation that characterizes certain problems in viscoelasticity theory.
In [20], the authors analyze the dynamics and control of a nonlinear variable viscoelastic
oscillator, proposing two controllers for variable-order differential equations to track an ar-
bitrary reference function. The study [33] investigates the drag force acting on a particle in
an oscillatory flow of a viscous fluid, where the drag force is determined using variable-order
fractional calculus, with the derivative order varying according to the flow dynamics. In [35],
a variable-order differential equation is developed for a particle in a quiescent viscous lig-
uid. For more on the application of variable-order fractional operators in modeling dynamic
systems, we refer the reader to the recent review article [37].

In recent years, there has been an increasing application of fractional operators and
variable-order fractional differential equations in engineering; see [54, 49] and the references
therein for examples and details. This extensive application highlights the urgent need for

systematic studies on the existence, uniqueness, and stability of solutions to initial and



General introduction

boundary value problems for these equations. Research in this domain is still at an early
stage, with only a few published papers so far, typically addressing relatively simple problems
with limited methodologies, such as those in [46, 51].

Complex competitive interactions are frequently observed in natural systems, such as eco-
logical models that incorporate species food chains linked by trophic interactions, nutrient
diffusion or spread among different states, and competition between healthy and pathogenic
cells. These biological systems often demonstrate long-range temporal memory or spatial
interactions, with the strength of these interactions fluctuating across space and time. Con-
sequently, variable-order fractional operators provide an effective approach for capturing the
dynamics of these interactions as they evolve over both spatial and temporal dimensions.

In this context, Ghanbari et al. [21] developed a model for the competitive dynamics
in a nutrient-phytoplankton-zooplankton interaction system using variable-order operators.
Their findings indicate that the variable-order model alters the system’s memory effects, with
the temporal memory of interactions influenced by both the relative populations within the
nutrient-phytoplankton-zooplankton system and the specific variations in order. Addition-
ally, a variable-order growth model was applied in [2] to analyze the population histories of
various countries, demonstrating that this approach achieved a significantly higher accuracy
than traditional constant-order models.

Another example of competitive dynamics can be found in interactions among popula-
tions affected by three tuberculosis strains—drug-sensitive, emerging multi-drug-resistant,
and extensively drug-resistant—as well as those unaffected by tuberculosis. Sweilam et al.
[52] modeled this complex interaction numerically using variable-order fractional differential
equations with Grunwald-Letnikov operators.

Additionally, using data from the World Health Organization, researchers have estimated
the treatment rates necessary to control the spread of tuberculosis in Egypt. Another biologi-
cal application of variable-order fractional operators is seen in models of competitive dynamics
between healthy and tumorous bone cells. Neto et al. [31, 32] showed that variable-order
fractional differential equations can effectively replicate the outcomes of traditional integer-
order models for bone cell and tumor interactions, with fewer parameters. This variable-order
approach introduces a non-local framework with memory effects, where the order varies with
both time and spatial location. The variable order is influenced by tumor dynamics, allowing
the effects of tumors to be integrated into the original healthy bone model.

The authors emphasize that comparing the variable-order models with actual experimen-

tal data will offer meaningful insights into tumor growth dynamics and provide a basis for the
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General introduction

development of efficient, targeted tumor therapies. A notable application of variable-order
fractional calculus is in modeling the influence of Twitter on the spread of alcoholism [1]. Time
delays were incorporated into the variable-order operators of existing constant-order models,
demonstrating that the variable-order framework more accurately represented the propaga-
tion of alcoholism compared to traditional constant-order models. In all the studies reviewed,
variable-order fractional calculus has been utilized to describe complex competitive dynamics
between biological entities, with the variable-order approach successfully capturing transi-
tions between different dynamic regimes of the biological systems involved. Variable-order
fractional calculus has also been employed in the study of random-order models [48, 50, 55].
However, to date, the research on random-order operators and their applications remains
limited. A significant challenge is the absence of a formal mathematical definition for these
operators and their associated properties. Despite this, the concept of random-order frac-
tional calculus holds considerable promise and may have important applications in modeling
stochastic and chaotic dynamics, such as those observed in financial systems, turbulent flow,
and noise/vibration control. These models could potentially serve as a foundation for the
development of precise risk analysis and control methodologies.

Fractional calculus has gained significant attention and importance due to its wide ap-
plicability in various fields of research and engineering, including physics, chemistry, and
dynamical systems control.

In recent years, there has been growing interest in the existence and uniqueness of solu-
tions to boundary value problems for fractional differential equations. While the literature
on solutions to boundary value problems with fractional (constant) order is abundant, there
is comparatively limited research focused on the existence of solutions to boundary value
problems involving variable-order fractional differential equations.

Nonlinear functional analysis techniques, such as certain fixed-point theorems, have been
essential in establishing the existence of solutions to fractional differential equations of con-
stant order. In these contexts, differential equations can often be reformulated as inte-
gral equations, leveraging key properties of constant-order differential and integral calculus.
However, in general, the calculus of variable-order derivatives does not possess these foun-
dational properties. A critical example is the semigroup property of the fractional integral,
which plays a central role in studying the existence of solutions to fractional-order differ-
ential equations. Based on some results of some experts, we know that the variable order
fractional integral does not have semigroup property, i.e. for general functions x(t), 5(t),
O Onwy £ 19Oty and DX DYty £ DXPPOR(1). ) then the transform be-
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General introduction

tween the variable order fractional integral and derivative is not clear. Thus, it brings us
extreme difficulties, we can’t get these properties for the variable order fractional operators
(integral and derivative). Without these properties for variable order fractional derivative
and integral, we can hardly consider the existence of solutions of differential equations for
variable order derivative by means of nonlinear functional analysis. Thus, one can not trans-
form a differential equation of variable-order into an equivalent integral equation without
these propositions. It is a difficulty for us in dealing with the initial value or boundary value
problems of differential equations of variable-order. It is necessary and significant for us to
conquer the difficulty and obtain the solution to a differential equations of variable-order.

Recently, specifically in the last three years 2021, 2022, 2023 Souid et al they published
more than 30 papers in theory of fractional differential equations of variable-order, in which
we studied the existence, uniqueness, and stability of solutions to various problems, we used
the fixed point theory for this; for example see [7, 9, 10, 11, 12, 14, 37, 16, 25, 17, 40, 18, 39,
38, 36, 8, 13, 47, 53].

In the aforementioned articles the authors used either piece-wise constant functions or
the Picard iterative method, whereas our method used in this thesis is totally different from
theirs, it is based on a perturbation of an operator resulting from an integration of the
fractional derivative operator. As far as we know this method is new and does not appear in
any previous work.

An overview of our thesis structure, which consists of 4 chapters outlining the contri-
butions, is provided below. The first chapter introduce the terminology, notations, and
introductory information that will be utilized throughout this thesis.

The main content of Chapter 2, is an affirmative response to the existence question for
two different initial value problems (IVP for short) involving RLD of linear variable order

given as follows.

y(0) =0, (2)
where Dgi) set forth RLDVO o(t), 0 : D; - Risa CFsand 0 < 0, < 0(t) < 0* < 1,

A; is a function pending specification.

{(qﬁ@@):Aﬁwwyte:mFL0<F<m,m

{@ﬁg@:&@@,mphqmw0<N<w(n
E(t) =0(t), t € D3 :=[-r,0], (2)

Univ-Tiaret/Mathematics: 2025 4



General introduction

where Dgﬁ) set forth RLDVO o(t), r > 0 and o(t) satisfies 0 < 0, < 0(t) < o* < 1,
Ay : D? x LY(D3,R) — R is a function pending specification and § € L' (D3) with
6(0) = 0. For any function £ defined on [—r, N] and any ¢ € D, we denote by & the
elements of L'([—r, 0], R) defined by

E(N) =&+ XN), Ne[-r0].

Here &(.) quantifies the history of the state from time ¢ — r up to the present time t.
We denote D? = D? U D3 = [—r, N]|.

The main content of Chapter 3, is to provide an answer in the positive to the exis-
tence query for three distinct Initial and boundary value problems (abbreviated IVP/BVP)

involving RLD with non-linear variable order given as follows.

1.
(DR y) (1) = As(t,y(t), t€Ds:=(0,F], 0<F <oo, (A)
y(0) =0, (B)
where Dgi"y(')) set forth the RLFDVO pu(t, y(t)), Az is a function pending specification
and p satisfies 0 < p, < p(t,y(t)) < p* < 1.
2.
(Dy D) (1) = Aa(t,w), tE€Df=(0,F], 0<F <oo, (A)
u(t) = ¢(1), t €Dy :=[-r0], (B)
where Dgﬁ’“(')) set forth the RLFDVO p(t, u(t)), p satisfies 0 < p. < p(t, u(t)) < p* <
1, Ay : Df x LY(D;) — R is a function pending specification and ¢ € L' (Dj) with
¢(0) = 0. For any function u defined on [—r, F] and any ¢t € D}, we denote by u; the
elements of L'([—r,0]) defined by
u(N) = u(t +X), N € [-r0].
Here us(.) quantifies the history of the state from time ¢ — r up to the present time t.
We denote D* = D} UD; = [—r, F].
3.

(Dy“w) (1) = As(t,w(t), t€Ds:=(0,D), 0<D<oo, (A)

w(0) =w(D) =0,, (B)

Univ-Tiaret/Mathematics: 2025 5



General introduction

where Dgﬂ(;’w(‘)) set forth the RLEDVO u(t,w(t)), As is a function pending specification,
1< pe < p(tw(t)) < p <2

The main content of Chapter 4, is to provide an answer in the positive to the existence
query for finite delayed weighted fractional problem (abbreviated FDFP) involving RLD with

non-linear variable order given as follows.

(0+DsOu) (t) = As(t,up), t€DS:=(0,F], 0<F < oo, (A)

u(t) = (1), t e DS :=[-r0], (B)

Where o+ D) set forth the WRLFDVOu(t), r > 0, u satisfies 0 < p, < p(t) < p* < 1,
Ag : DY x LL(DS) — R is a function pending specification and ¢ € L. (D) with ¢(0) = 0.
For any function u defined on [—7r, F] and any ¢t € DY, we denote by u; the elements of
L} ([-r,0]) defined by

u(N) =u(t +X), XN € [-r0].

Here u,(.) quantifies the history of the state from time ¢ — r up to the present time t. We
denote Dg = DS U DS = [—r, F .

Univ-Tiaret/Mathematics: 2025 6



Chapter 1
Preliminary

In this chapter, we introduce the core definitions that will be utilized throughout the thesis.

1.1 Mathematical Notations and Fundamental Defini-
tions
Consider A = [0, F]. By C(A,R), we denote the BS of CF z: A — R with the norm
[2]loc = sup{lz(t)] : t € A}
The symbol C.(A,R) denotes the BS of functions x : (0, F] — R such that
0<¢<1and tz(t) € C(AR),

equipped with the norm
z]lc = Sup{t|z(t)] : t € A}.

The symbol LP(A,R), 1 < p < oo denotes the BS of functions = : A — R which are

Lebesgue measurable such that
F
p>1and / |z(ON) [PdN < o0.
Jo

LP(A,R) is associated with the norm

1

el = ([ eOolran) P



Preliminary

Lemma 1.1.1 Let 0 < a,b < 1 and t < 0, then f(t) = at — b s a strictly monotonic

function.

Proof 1.1.1 A simple calculation leads us to f'(t) = a'lna — bt Inb,
Case a < b

Ina < Inb (Since In is increasing) and then f'(t) < 0.

Case b <a

Inb < Ina (Since In is increasing) and then f'(t) > 0.

Combining these two cases concludes our claim.

Remark 1.1.1 The following observations are made to facilitate our research in the next
section:
prOE < pet

1. 1 <1
f 0<F <1, then {F—u(%) <

prot <,
e <.

o

If 1<F, then {
Set ¥* = max{1, F*1 "}

3. The function T'(u(t)) € L'(A), hence we can set:

1
F”IGSS'SUp{‘F(u(t)‘HEA}'

FrOWONT < et
. < N
4. If 0<F <1, then RS
[rOu))=1 <
5. If 1< [F, then { Fuat) <1,
Set X* = max{1, F*~ F "}
6. The function T'(u(t,u(t))) € L*'(A), hence we can set:

1
Fo= ess.sup{‘W‘ it € A}.

1.2 Fractional Calculus.

This section is about some definitions and properties of fractional calculus of constant-order

and variable-order

Univ-Tiaret/Mathematics: 2025 8



Preliminary

1.2.1 Fractional calculus of constant-order
Definition 1.2.1 (/29]) The left RLICO of the function ¢ € L*([a,b],R) of order x € R,
is defined by .

T20(8) = gy /. (8= 21000,

where T'(.) is the gamma function.

Definition 1.2.2 (/29]) The left RLDCO of order x > 0 of function ¢ € L*([a,b],Ry), is
given by

P00 = o (1) L= 00,

here n. = [x] + 1.

The following properties are some of the main ones of the fractional derivatives and integrals.

Lemma 1.2.1 (/29]) Let x >0, a >0, ¢ € L'(a,b), D, ¢ € L'(a,b). Then, the differential
equation
D:+¢ = 07

has unique solution
¢(s) = 1(s — B)* 7+ da(s — )" 72+ o+ (s — B) 7,
wheren = [X]|+1, gy e R, £ =1,2,....n.
Lemma 1.2.2 (/29]) Let x >0, a >0, ¢ € L'(a,b), D¢ € L*(a,b). Then,
L Dy d(s)] = ¢(s) + ¢i(s = B) "+ ¢als = B) 72+ oo 4+ ult — ) 7",
wheren =[x+ 1, ¢, e R, £ =1,2,...,n.
Lemma 1.2.3 ([29]) Let x >0, a >0, ¢ € L'(a,b), DX, ¢ € L*(a,b). Then,
Dy [Zg: 0(s)] = o(s).
Lemma 1.2.4 (/29]) Let x, u>0,a >0, ¢ € L'(a,b). Then,

Lyv [T (s)] = Io [ L5 o(s)] = I::m ().

Univ-Tiaret/Mathematics: 2025 9



Preliminary

1.2.2 Fractional calculus of variable-order
We consider the CF a(t) : A — (0,a*] and b(t) : A — (0,0*]. Then,

Definition 1.2.3 [44] The left RLFIVO for a function ¢ € C.(A,R) is defined by

t _ a(N)—1
<IZ§~)¢) (1) :/al %gb(x)dx, t> ay. (1.1)
If a(t) is a constant (a(t) = x ), then (1.1) becomes
T o(t) = r(1><) /t (t = W) Lp(N)dN, > ar. (1.2)

Definition 1.2.4 [//] The left RLFDVO for function ¢ € C1_(A,R) is defined by
b(.) _ d( 1-b(.) > _d (t — X))
(Dal+ ¢> 0= 5 (30) 0= 5 [ iy t>a (1)
If b(t) is a constant (b(t) = p), then (1.3) has the form

d iy d ot (E =)
Dol = g Litol) = 3 | T SN N, t> ay. (1.4)

Remark 1.2.1 As remarked, when a(X) = C** and b(\) = C**, then RLFDVO and RLFIVO
is nothing then the standard RLDCO and RLICO, respectively; see [}4] for more details.

Remark 1.2.2 For general functions a(t) and b(t), the semigroup property is lost, i.e:
29 [(#4) ]+ (270

explore further in [56].

The following lemmas deals with the properties of RLICO.

Lemma 1.2.5 (/29])If ¢ € R, then RLICO is bounded in C.(A,R) and we have for ¢ €

CAR)
*I'(1 —
150l < fr =l x> . (15)

Lemma 1.2.6 (/29])If ¢ € R, then RLICO is bounded in LP(A,R) and we have for ¢ €

[P(A,R)
150l < spy Il % >0 (16)

Based on Lemma 1.2.5 and Lemma 1.2.6, we obtain
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Lemma 1.2.7 ([22]) Let a : A — (0,1] be a CF, such that 0 < a, < a(t) < a* <1, then
(Igi')qﬁ) € C.(A,R) for ¢ € C(A,R). Moreover, we have

ST (ax)FrX*
|(Z00)]). < )

S (17)

Proof 1.2.1 Let ¢ € C(A,R). From Eq.(1.1), we have
t
(Z500) 0] < [[t= 200
a(n)—1
t t—X
<re [ (S2) T oo

F 1.8
FFZ* ! ax—1 ( )
< oy [ =2 e 0
Dla) e,
< Fa*—l Ioir|¢(t)‘
This implies that
| (z5¢ cb)Hg < — o I Ztellls
From Eq.(1.5), we end up with
a() FT(1 =) (a)F r2®
@) < —rara—g ol
This is the desired inequality.
Lemma 1.2.8 [22] Let a: A — (0,1] be a CF, such that 0 < a. < a(t) < a* <1, then
(Igi)gb) € LP(A,R) for ¢ € LP(A,R). Moreover, we have
FFI‘E
[(Z59)]), < 1], (1.9)

Proof 1.2.2 Let ¢ € LP(A,R). By help of Eq.(1.27), we get

|@06)], < " g,

From Eq.(1.6), we have

|@06)], < =10l

Definition 1.2.5 ([}2, 5}]) The left RLFIVO p, p = u(t, ¢(t)) for a function ¢ € C(A,R)

18

1(0(-)) _ (t — NP1 )
(Ia; ¢) (t)_/al NOoS) dN)dN, > ay, (1.10)
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where I'(.) denotes the standard Gamma function and ay € Ds. If u(t, ¢(t)) is a constant p,
then (1.10) will be reduced to

Iglm(t) = F(lu) /t (t = >N dN, t > ay, (1.11)

which is the classical RLICO [}1, /3, 3].

We give here the definitions and properties of R-Liouvil’s integral an derivative of implicit

order

Definition 1.2.6 ([/2, 5/]) The left RLDVO x, x = X(t,$(t)) for a function ¢ € C(A,R)
18
b= )X On00)

() _ 4 (aute0) _d
(Dal+ ¢> (=2 (zal+ ¢> 0= & | B wpapq PV 1> e (112)

If x(t,y(t)) is a constant x, then (1.3) will be
d d t({t—x)"

DX o(t) = Z 17 6(1)

o = % o Wqﬁ(%)d%, t> as, (113)

which is the classical RLDCO x [/1, 43].

For further explorations on RLICO and RLDCO we can see [41, 43] and for RLFDVO see
[4, 42].

Remark 1.2.3 For general functions p(t,y(t)) and X (t,y(t)), the semigroup property is lost,
i.€e:
1(-,¢(.) < (9(.)) (50 ())+x(6(.))
o T Pt
explore further in [57, 58].

The following lemmas deals with the properties of RLFIVO.

Lemma 1.2.9 [22]/ If p : A xR — (0, 1] is a continuous function, such that 0 < p, <
p(t,o(t)) < p* <1, then I(’)ﬂg”‘z)('))aﬁ € C(AR) for ¢ € C(A,R). Moreover, we have:
(i)

FT(L = QL) o5
Iﬂ(w(ﬁ(-)) < 4 . 1.14
L (e (1.14)

(ii) For ¢1, 02 € C(A,R), we have
4F BT (p) X2*T(1 — ©)
L(14 e —¢)

175" 6 = T3V < 61— éall (1.15)

where B = max {F 4,, F ¢, }-
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Proof 1.2.3 (i) Let ¢ € C.(A,R). From Eq. (1.10) we have

(ZE8) ()] < Fo [ (=500 iy

F

t bSO\ HOO0) 1
< [ (B22) PN

Fo2™ [t -1
< — X)H
< == [ =m0l

< Dl oX

< =L g o o).
The above estimate implies
Lp)F o2,
1750l < = 25 1T 16l
We apply (1.5) to obtain
FU(1 — )T (s ) F g2
Iz gl < =19l

I(14 pe — <)

(it) For ¢1, 02 € C(A,R), we have

‘(Igﬁ,%(ﬁ(bl) (t) — (Ig+(~,¢2(-))¢2> (t)‘

LN, 0108)))

7\ OB 01
< 2BY* / <<M>
0 a

x[p1(N) = d2(ON)|dN

t (1 — D )HONe1(N) 1
ol =) G1(N)d N —

(t — X )HnezN)—1

(1.16)

LN, ¢2(8)))

(t—>\
+ -
F

¢2(>\)d>\'

)#(Ndn(%))—l)

ABY* [t
< ot [ XN — gVl
F H~ 0
ABT () X"
< — i Lotlon(t) — e (D)l
(1.17)
From Eq.(1.5) we get
) , ABT () X* 0,
Iz, — a0y < BT e
4F BT (p) 2*T(1 — ¢) '
< —
< L o —
which conclude the proof.
13
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Lemma 1.2.10 /22] If p: A X R —(0, 1] is a CF, such that 0 < p, < u(t,¢(t)) < p* <1,
then ISLJS"M')% € LP(A,R) for ¢ € LP(A,R). Moreover, we have: (i)
FF¢2*

|z g, <

(ii) For ¢1, 02 € LP(A,R) we have

[lp- (1.18)

4F BX*

1Z08 D gy — T2y, < 61 — éall,. (1.19)

Proof 1.2.4 (i) Using (9), we obtain

I(p) F 2™
[T

Lo
|z D)), <

Now, we apply Eq.(1.6) to get

1Z55 1911l -

me*

Lo(.
|Ze* D)), < ]],-

(it) From Eq.(1.17) we obtain
ABT(11,) 5"

(20 Pon) (1) = (250" 0) ()] S[ P Ié‘il(qbl—%)(xﬂr
< [8r0

2| @i - sy

Using Eq.(1.6) integrating both sides of (1.20) on A and take %—mot on both sides, we get
AF BX*

(1.20)

1Z5t Doy — To V|, < 61 = 2llp.

The proof of (12) is completed.

1.3 Weighted Fractional calculus of variable-order

This section is about some definitions and properties of weighted fractional calculus of

constant-order and weighted fractional calculus of variable-order

Definition 1.3.1 ([15]) The left WRLFIVO p, where pu = pu(t) for a function p(t) is
1 t
1O ) (¢ :7/ B(t) — ROV O () (E (N dN, ¢ > op, (121
(1 Z670) ) = mmay J,, (1O = BV T w00 R O Lo (121
where I'(.) is the standard Gamma function and ay € A. If u(t) is a constant p, then (1.21)

will be reduced to

(4 — 1 ! pn—1 /
(+T80) () = ST / () = ROV WSO N, > o0, (1.22)

which is the classical WRLICO introduced in [24], when w and h are the identity see [}1, /3].

Univ-Tiaret/Mathematics: 2025 14



Preliminary

Definition 1.3.2 ([15]) The left WRLFDVO A, where A = A(t) for a function ¢(t) is

o1

(+P28) (0 = 5 (rZE99) 0 = 3 (i . 00— B w00 )

(1.23)

If A(t) is a constant A, then (1.23) will be

(Dhe) ()= 5 (L Th) ol = 5 (W [ (htt) - h<x>>—Aw<x>¢<x>h'<x>dx) >
(1.24)

which is the classical WRLDCO for A introduced in [2/], when w and h are the identity see
/417 43]

For further explorations on RLICO and WRLICO we can see [41, 43, 24], see also for
WRLFDVO and RLFDVO [4, 42, 15].

Remark 1.3.1 [t is well known that the semigroup property does not hold in the case of the
functions u(t), A(t), ie.,

(o T80 [ Z000] (8) # (T 00) (1),
for further explorations when w and h is the identity see [57, 58].
The following lemmas deals with the properties of WRLICO. Let a,b € R.

Lemma 1.3.1 ([43]) Let ¢ €€ L? ([a,b]), then the WRLICO defined by Eq.(1.22) is bounded

in LP (la,b]), furthermore

((b) — (a))”
xI'(x)

||0+I$§0||p,w < ||‘P||p,w7 x > 0. (1.25)

On the base of lemmas 1.3.1 a similar inequality for the WRLFIVO.

Lemma 1.3.2 Let p € LP([a,b]), then Z{)ﬂ(')ap € LP ([a,b]). Moreover, we have:

((b) — h(a)) F u6"

*

||UT15(.)90||P7W S

Iellp.- (1.26)

Proof 1.3.1 Let ¢ € LP([a,b]). From Eq. (1.1), and taking into account Remark 1.1.1 and
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assumptions on h and w we have

(o Z60) )] < |

< b
— |w(®)] (7(b) — h(a))

g GRS I N ECN TN

o TEs
= Jw(®)] () — h(a

G () lep(t)].
(1.27)

The above estimate implies

() F 0"

L THO) o < —
|| ()OHIL < (h(b) _ h(a))u*

0'1 w

<P| ||p,w-

o+ Z

We apply (1.25) to obtain
(h(b) — hla)) F u6"

*

o+ Z6% @l < ellp.,

and this completes the proof.

1.3.1 Measure of Non-Compactness

This subsection discusses some necessary background information about the (KMNC).

Definition 1.3.3 ([5/) Let X be a BS and Qx C X . The (KMNC) is a mapping @ :
P(X) — [0, 00] which is constructed as follows:

@ (Qy) =inf{p >0:Qr C U0y, diam (U;) < p},

where

diam (U¢) = sup [l — &l ¢, £ € Ui}
We can infer the following properties of (KMNC):
Proposition 1.3.1 (/5, 6]). Let X be a BS, U, Uy, Uy are BS of X, then

1. ¢(U) =0<«= U is RC.
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2. o) = 0.
3. (0) = & (B) = & (convD).

4. Uy C Uy = & (Uy) < & (Uy).

5. @ (U 4 0y) < B (By) + D (Uy).

6. @ (NU) = |\|® (U), ) € R.

7. @ (Uy UT,) = max {® (U,), P (Uy)}.
8. & (U N Us) = min {& (V1) , D (Us))}.
9. (B + py) = D (V) for any ¢y € X.

Definition 1.3.4 [5/Let J C R a bounded interval and X C L'(J) bounded, we define the
(MNC) of X on L'(J) by

B(X) = lim {Sup {Sup (/J ot +h) — go(t)dt) bl < 5} e X} . (1.28)

Theorem 1.3.1 [27, 23]Let J a bounded interval and f € L*(J), then we have

lim }t / T o = o(t) ac. (1.29)

h—0

1.4 Some fixed point theorems

In this section we are going to list some FP which will serve as a tool in the coming two

chapters.

Theorem 1.4.1 (DFPT) [5] Let A be COBNE of a BS X and ¥ : A — A is a CO operator
satisfying
BW(S)) < kB(S), for any (S #0) C K, ke [0,1),

i.e., ¥ is k — set contractions. Then ¥ has at least a FP in A.

Theorem 1.4.2 (SFPT) ([29] [28]) Let E be a BS and Q be a CCBNE of E andV¥ : Q — @
is a CC map. Then ¥ has at least a FP in Q.

Lemma 1.4.1 (/20]) Let © be a CCBNE of a Banach space and ¥ : © — O be a mapping
such that for some n € N, ¥" is a contraction. Then ¥ has a UFP in ©.
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Chapter 2

Initial and Boundary Value Problems
with Non-Linear Variable Order

Derivative

2.1 New Results Achieved for Fractional Differential
Equations with R-Liouville Derivatives of Nonlin-

ear Variable Order

1 'We deal with the existence of solutions of the obtained solution for the Initial value problem
(IVP for short)

{ (D5e) (1) = Ailt.e(t), t€Di:=(0,F], 0<F <oo, (1) (IVPNFDEVO)

p(0) =0, (2)

where Dgf) set forth RLDVO ¢(.), 41 : D; xR —-RisaCFand 0 <o, <o(t) <o* < 1.

2.1.1 Existence of solutions

Definition 2.1.1 A function y € Ci_,«(D1,R) ory € LP(Dy,R) is said to be a solution for
(IVPNFDEVO) if and only if it verifies (IVPNFDEVO(1)) and (IVPNFDEVO(2)), simul-

taneously.

1 A. Hallouz, G.Stamov, M.S.Souid and I.Stamova , New Results Achieved for Fractional Differential
Equations with R-Liouville Derivatives of Nonlinear Variable Order, Azioms, 2023:895, 12-9, (2023).
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Before proceeding further, we expose the characterization of equation (IVPNFDEVO(1)) by

an integral equation.

Lemma 2.1.1 Let ¢ be an element of Cy_s«(Dy,R) or LP(Dy,R). Then, (IVPNFDEVO(1))

s equivalent to

o) B t (t_>\)*cr(%) B t
(72279%) (1) _/0 ng<x)dx_/o ALOn, o)A £ € . (2.1)

Proof 2.1.1 Let ¢ € C(Dy,R) or ¢ € LP(Dy,R). Then, equation (IVPNFDEVO(1)) is
(D5e) () = = / = o5y (%)dx = Ai(t, (1) (2.2)

Integrating both sides of (2.2) over [0,t] we get

t _ —o(N) ;
/0 %s@(%)dk =00+/0 AN o(N)d N (2.3)

Fvaluating (2.3) at 0 implies that co = 0, which is the desired claim. Conversely, differenti-
ating both sides of (2.1) to reach

= . 24
e ST (k)dx Ay(t, (1) (2.4
From this we get (IVPNFDEVO(1)) and this concludes the proof.

To proceed, we outline some essential assumptions for the analysis.
(H1) o : Dy — (0,0,] is a CF.
(H2) A; : Dy x R — Ris a CF in the first variable such that

|AL(t, 1) — ALt 02)] < klor — @2,V 1,02 €R, t €Dy, k> 0.

2.1.2 Existence Result in C (D, R)

Theorem 2.1.1 Assume (H1)-(H2) are satisfied. Then (IVPNFDEVO) has a US.

Proof 2.1.2 Let ¢ = 1 — 0* and © be the set of element in C.(Dy,R) such that ¢(0) = 0,

and consider the following operator

011@—>®,
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where
(©0)(6) = (1) + (T570) (1) = [ AOn, w0
It follows that

t *
[ A @100) = A0 2R < kel = el

and
(©1e1)() = Ore2) (O] < lrt) = eal®)| + (T (o1 = ) (1)
ST AT EPANENITIN

<L lor — ol + | (2o " (01 — 02)) (1))
+kt” 1 — o
For all t € Dy, we have

10101 = Orals < llipr = @alls + 17577 (01 = @2)lls + Ellpr — sl -
Using FEq.(1.7), we get
10101 — Orallc < |l1 = @allc + F B(o™, 0")Fr27|[o1 — @allc + Kllp1 — @2,
where B is the beta function. Setting wy = (1 + F, B(o*,0*)Fr2* + k), we have
1012 — Owyllc < @iller — 2.
By induction, we can prove that
10161 = Opalle < Zhln = all

where OF = 0100 0...001—n times. Since %? is the general term of the convergent
exponential series €1, it tends to zero as n tends to infinity, and so for n sufficiently large

we have

Lemma (1.4.1) asserts that the operator Oy has a UFP. This implies that
1-0() !
(=" () = [ A0 yO0)n, (2.6)
with y(0) = 0. From Lemma(2.1.1), we get
DIOy(t) = At y(t)) with y(0) = 0. (2.7)

This concludes the proof.
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2.1.3 Existence Result in L’(D,R)

Theorem 2.1.2 Assume (H1)-(H2) are satisfied. Then (IVPNFDEVO) has a US.

Proof 2.1.3 Let © be the set of element in L'(D;,R) such that ¢(0) = 0, and consider the

following operator

0,:0 — 0,
where
(©0)(6) = o(t) + (T "0) (1) = [ AsOn, w0
We have
[ A 0100) = AiOns 2 O0)N| < R r =l
and

p

(@)1 = Ore2)OF < 21 = e2OF + |(Z™ (01 = 2)) ()
A 21 N) = AOn @a(N)d N )
<2(|p1(t) — 2P + | (Zo: " (01 = 2)) ()]
R |l — ol 2).

(2.8)

Integrating Eq.(2.8) over [0, F|, we get

10101 — Ovall? < 22 (Ilon — @alls + 1T "1 — @I+ F20] 1 — ).
Using Eq.(1.9), we get

FFr2™\"
(0001 = Orally <2 (Il = all 4 (FEZ) lln = ally 4 287 = el

FFpEa\"
<o (14 (HF >+F2k‘p>||901—902||£.

FFrX*

O—*

1
p P
Setting wy = 2 (1 + < > + F2kp> , we have

0191 — O190|], < @a|01 — w2llp-

By induction we can prove that

wn
10101 — O13[, < TT?H% — 2l
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where O = 01001 0...00;— n times. Since wﬂ—? is the general term of the convergent

exponential series €S, it tends to zero as n tends to infinity, and so for n sufficiently large we

have. .
=2
n!
Lemma 1.4.1 implies that the operator Oy has a UFP. This implies that
t
(Z0:Y0) () = [ A0 o0 (2.9)
with ¢(0) = 0. From Lemma 2.1.1, we get
(D5) (£) = Au(t, (1) with ©(0) = 0. (2.10)

2.1.4 Applications

Example 1:Consider the following fractional initial-value problem

DY) (1) = A (t,y(t)), te D= (0,1 (1
{ (D6y) (1) = Ailt.y(2), ¢ € D= (0.1] (1) ([VPNFDEVO2)
y(0) =0, (2)
where o(t) = %‘lt + 1% and A (t,y) = (t + 1)% + i|y| Clearly, a is a CF on [0, 1], and
—4 9 9
0 5+10<U(t)<10 0.9 <

We have A;(t,x) is a CF on D; x R, and
1 1
At 2) ~ At )] < Gllel—lull < Gl — ol

Therefore, the two conditions (H1)—(H2) are fulfilled by Theorem 2.1.2 and thus problem
(IVPNFDEVO2) has a US.

2.2  On The Finite Delayed Fractional Differential Equa-
tion Via R-Liouville Derivative of Non-linear Variable-

Order

2 We will study the existence of solutions for the initial value problem (IVP for short)

{@ﬂkﬂw—Aﬂ@¢tepﬁ—@NL0<N<m,u)

(FDPLFDEVO)
() = 0(t), t € D2:=[—r0] (2)

2M.S. Souid, A. Hallouz, G.Hatira,On The Finite Delayed Fractional Differential Equation Via R-

Liouville Derivative of Non-linear Variable-Order
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where Dgp set forth RLDVO o(.), 7 > 0 and o(t) satisfies 0 < 0. < o(t) < ¢* < 1. Consider
& a Banach space such that dim & = oo endowed with the norm |.|., Ay : D} x L}(D3,€) — &
is a generic function and 6 € L' (D3, ) with 6(0) = 0. For any function ¢ defined on [—r, N]
and any t € D7, we denote by & the elements of L'([—r, 0], R) defined by

&E(ON) =&(t+N), N €[-r0].
Here &;(.) quantifies the history of the state from time ¢ — r up to the present time t. We

denote D? = D} U D3 = [—r, N].

2.2.1 Achieved results

Definition 2.2.1 We say that £ € L' (D?) is a solution for (FDPLFDEVO) if and only if it
(FDPLFDEVO(1)) and (FDPLFDEVO(2)) are fulfilled at the same time.

In order to make the analysis issue easy in the BS L' (D?), we will provide an equivalent
integral form of FDPLFDEVO(1).

Lemma 2.2.1 For each ¢ € L' (D?). Then, equation (FDPLFDEVO(1)) is equivalent to

1—0o(. . ¢ (t_>\>_a(>\) _ ! 2
(25:70¢) (1) _/0 wg(x)dx_/() As(n, &), t € D2, (2.11)

Proof 2.2.1 Let £ € LP(D* R), dy definition(1.3), (FDPLFDEVO(A)) is

t(t — X))
(D37) ()= 51 [ fi =2y SOV = Aalt ). (2.12)
Take the integral (2.12) from [0,t], we get
t(t —2)"o™) t
/ Mg(x)dx:cﬁ | A0ng0d (2.13)

Fort =0 at (2.13) gives us co = 0. The converse is a differentiation of (2.11), and it is

imsured by lemma 1.2.8 and we reach

—o(N)

d rt(t—x) B
dt/o m&x)d% = As(t, &), (2.14)
from which we get (FDPLFDEVO(A)). The proof is concluded.

To proceed, we outline assumptions essential for the analysis.

(A1) o:Dix —(0, 0.] is a CF.
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(A2) Ay : D% x L' (D3,€) — £ is a CF with respect to its first variable and such that:

As(t, fr) = Aat, )|, < 7|| i = fo|

L\(p.g)’ v fl’f? S <D§>5> )

t € D? and 7 > 0.

(A3) Ay : D? x L' (D3,€) — £ is a CF and for a sufficiently small § > 0 we assume further
that

Aot +0, 1) = As(t, fo)|, < NO)+7 || = £

£ 1 1 2
nppey ¥ Sz €L (D3,€). (2.15)
t € D? and 7 > 0, X a positive CF near the origine and A(0) = 0.

The 17" obtained result is concluded from lemma(1.4.1).

Theorem 2.2.1 Under the assumptions (A1)-(A2) the (FDPLFDEVO) has a US in the BS
L' (D?).

Proof 2.2.2 Let ¢, & elements in L' (D?) and the operator

W, : L} (D2) Ny (192) :

where
. (), t € D3,
%) (= { W) + T 760 — [ An6)adn, te D, 10
Where 0 < n < 1. We have from (A2) that ,
: N
‘/0 As(N, o) — A2(>\a§x)d>\’g < T/O Il — §x||L1(Dg,5)d>\ (2.17)
< N7llp = &l a2y
Using Eq.(2.17), we get
(W) 1) = (W) ®)], < mle(t) = €Ble + 1757 o (t) = Ty e(0) e
[ [ AsOn 000 = Aen €N s,
<nlet) — p(t)le + [ Tor " e(t) = o "Vt
+N7lle — &l (p2.6)-
We conclude
HW’W B W’?f‘ pprgy =P Ellwe + HI(%:U(')SO B IS;U(.)g‘ LY(D2,€) (2.19)

+N?7]|¢ — €| L1p2g)-
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Using Eq.(1.9) from lemma 4, we get

HWW - 17\3775] L(02.8) < (77 + W + N2r> o = &l p2.g) (2.20)
Set .
w3 =1n+ W + N*7. (2.21)
Using an induction argument to prove that
N N ok
HWS‘P - erff‘ e S /7?”%0 — &1 D), (2.22)

k

— w
where W,’; is in composition sens. It is a basic fact to prove that k—? it tends to zero as k

tends to infinity, and so a sufficiently large k we have.

k
w3
o < L.

From lemma 1.4.1 the ezistence of a unique & € L* (D?) such that
(W) (1) = £(1). (2.23)

1
At this point we can fix n = 3 and t € D? we deduce

Letting n — 1 in the interval D?, we reach that
t
z;ﬂ@gu)=:A.Aﬂ>wqu>wtezﬁ. (2.24)

Using Lemma(2.2.1), then we can conclude that

{Dﬁ@ﬂ:Aﬁg&tepi (2.25)
E(t) =0(t) t € Di.
This concludes our proof.
The 2¢"¢ obtained result is a consequence of Theorem (1.4.1).
Theorem 2.2.2 Assume that (A1)-(A3) are satisfied and
K = W+N2T< 1. (2.26)

Then the (FDPLFDEVO) has ALS in L* (D?).
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Proof 2.2.3 Let p,¢ elements in L' (D?) , t € D? and consider the operator
Wy, : L' (D?) = L' (D?)

where
(), t € D2,

(W.6) (0 { me) + 100 — [ A(n 6 )dn, e DY (2:27)

2
Where n,, = Y and a >0 a real number made to be fized after in the proof.For t € D3
n

a

(W) (1)], < 1081, (2.28)

From (A3) we have that

t N
[ Al odn] < [ 1A 90) = AalN 0l NN Aol )

ook (2.29)
< N7llelprp2) + N [[A2(, 0]l
For t € D3 and by mean of Eq.(2.29), we get
- L ¢
|(F) ], < mle®le + 20 Op(0)] +| [ AeOn oO)aN| 250

<mle(®)le + [Ty e(t)|, + N7l¢llioze) + N [|42(, 0)l o s -

Combining Eq.(2.30) and Eq.(2.28), we get

(2%

2
LY(D2,€) TNl e (2.31)
+N? | A2(, 0)]| o6 + ||9||L1(D§,5)'

1—0(.
L1(D2.£) < nn”%p”Ll(D?,E) + HIO+ ()g0

Using Eq.(1.9) from Lemma 4, we get

(N +7)F X"
(22— <"” N el e + NP M O)ll s + 1811 (..
(2.32)
There is a sufficiently large integer Ny for which
e <1—K VYn> Ny (2.33)

And the choice of Ny is independent from the choice of a > 0 fized in the binning of the proof.

ot N2 | As( 0) | o + /6]
2 (X} 00 + 1 2
R= e TR (2.34)
1— (nn—f—K)
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Consider
Br = {80 el (DQ) | ellr2e) < R} : (2.35)
It is well known that Bg is a CCBNE.
We will prove that Wnn : B — Bpg is CC in few steps.
step1: The fact that Wnn (Br) C Bg is bay construction.
step2: )/NV% is CO, let (pr)k>0 C Br, and ¢ € Bg such that ¢, P We have to state

and prove the following lemma

Lemma 2.2.2 We have the following convergence

HISIU(')S% - Io+ 90’ 0. (2.36)

—
1 D2 5) k—+o00

N
/0 Ao (N, k) = Az (N, ) DN —— 0, (2.37)

Proof 2.2.4 For Eq.(2.36) using Eq.(1.9), we get

1o 4(N + r) B+
|78 — TV e S T lew = ellzroe.ey = 0. (2.38)
For Eq.(2.37) we have
N
[ 1400 o) = a0 )l N < Nrllge = llegy = 0, (2:39)

and this is exactly (2.37).

As a consequence of the above lemma we have

%Y 1—0o(.
HW ngok B Wn"gp Ll(’D27€) S ,r]n”gok - SOHLI(DZ,E) + HIO+ ()ka — IO+ 80’ I DQ 8)
N
TR i
0 Liy(p2g) "

(2.40)
Which means that W”]n is CO.
step3: For two real numbers 0 < p < 0 we have to show that Wnn is a k-Set, which means
for 0 < k <1 we have

& (W, (B)) < k&(B), (2.41)

where @ is the (KMNC). We have for t € D3

(W) (t+8) = (W) ()], < 10(¢ +0) = 0(t)], (2.42)
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From (A83) we have that

t+0 t
‘ / Ay, o5 )d N — / As(N, 5 )dN
0 0

t+0
< ‘ / As(n, ) dN
t

& &

t40
< /t [ A2(N, ) — A2(X, 0)] ¢ dN (2.43)
+0 A2, 0)l | £
< 07llllLr(p2.e) + 0 || Aa(-, 0)]|

00,E *
For t € D3 and by mean of Eq.(2.43), we get
(W) (t+0) = W) (B)], < mlep(t +8) — o(t)le + [Zo7 ™ (p(t +8) = (1))
t+8 t
+ |/ As(ON, o )d N —/ Az (N, o )dN
0 0 e

< malp(t +8) = p(b)le + | Zo: ™ (ot + ) — (t)]
+07lellr o2 ) + 01| As(- 0)l e

£

&

(2.44)
Combining Eq.(2.42) and Eq.(2.44), we conclude that

[P+ 8) = W0

< mlle(-+0) — eOllz ey + || Zor 7 (0 +0) — 0 ()]
+NO7 ||| 2.y + N[ As(, 0)] o e

LY(D2,€) L1(D2€)

(2.45)
Using Eq.(1.9) from Lemma 1.2.7, we get

N +r)FX*"
< (i + DL ot 46) = plllomey

+NoT||o|| L1 (p2,e) + N6 || Az(., 0)]|

[+ 8) = Wi ()|

LY(D?£)

00,E *

(2.46)
And this will give
N N+r)F %
% (Wnn(B>) < (Un + (1)*> ¥ (B) . (2'47>
—0
From FEq.(2.26) and as before there is a sufficiently large integer Ny for which
N b
<11 J{T)Fj Yn > Ns. (2.48)
—0

Thus Eq.(2.41) is satisfied, take Ny = max{Ny, Ny} and hence by Theorem(1.4.1) W, has
at least one FP in Bp.
(W,.€) (1) = £(t) ¥n > N

At this point we can fit a = Ny, n = 2Ny and t € D? to deduce
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In the same way choose n = Ny in the interval DI, we get

77We(t) = /0 t As(N, €.)dN, t € D2, (2.49)
Using Lemma(2.2.1), then we can conclude that
{ Doe(t) = As(t &), 1€ DE, 2.50)
E(t) = 0(t) t € Ds.
This concludes our proof.
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Chapter 3

Initial and Boundary Value Problems
with Implicit Variable Order

Derivative

3.1 New solvability results for a variable-order frac-

tional initial value problem

! We will study the existence of solutions for the initial value problem (IVP for short)

DYy (t) = Ag(t,y(t)), t€Ds:=(0,F], 0<F <oo, (A)
(IVPFDENVO)

y(0) =0. (B)
where Dgy’y(t)) set forth the RLFDVO pu(t,y(t)), As is a generic function and pu satisfies
0 < g < plty@) <pr <L

3.1.1 Existence of solutions

Definition 3.1.1 A function y € C.(Ds,R) or y € LP(D3,R) is said to be a solution for
(IVPFDENVO) if and only if it verifies (IVPFDENVO(A)) and (IVPFDENVO(B)), simul-

taneously.

In order to present our new existence results in the BSs C.(D3,R) and L?(D3,R), we will
analyze an equivalent integral form of the IVPFDENVO(A).

1 A. Hallouz, M. S. Souid and J. Alzabut, New solvability and stability results for variable-order fractional
initial value problem, The Journal of Analysis, 2024 (2024).
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Lemma 3.1.1 Let y be an element of C(Ds,R) or LP(D3,R). Then, equation (IVPF-
DENVO(A)) is equivalent to

B to(t— X))
Tionttu®), gy _ "
e N TONTN]

Proof 3.1.1 Let y € C(D3,R) ory € LP(Ds,R). Then, equation (IVPFDENVO(A)) can

be represented as

YO dn = /Ot AsOnyO))dn, E € Dy (3.1)

)—#(Ny(%))

uit@), oy _ 4 [f (E= X _
D0 = gy | R gy OB = Asth (o) (32)
Integrating both sides of (3.2) from [0,t], we get
t — 3 ) #OnyN) t
/ r<<t1 _T}(Ny SO = o+ JAEUENTEN) N (3.3)

FEvaluating (3.3) at t = 0 gives us ¢o = 0. Conversely, differentiating both sides of (3.1) to

reach

t — S ) HONN)

from which we get (IVPFDENVO(A)). The proof is concluded.

To proceed, we outline assumptions essential for the analysis.

(A1) p: D3 xR —(0, p] is a CF.

(A2) A3 : D5 x R — R is a CF with respect to its first variable and such that:
|A3(ON, x1) — AN, xe)l < Elxa — xels Vo xi,x2 €R,

tepgandk>0.

3.1.2 Existence Result in C (D3, R)

The first obtained result is based on lemma (1.4.1).

Theorem 3.1.1 Assume that (A1)-(A2) are satisfied. Then the (IVPFDENVO) has a US
m Cl_#* (Dg, R)

Proof 3.1.2 Let us consider ¢ = 1 — u* and the set of elements © in the space C.(Ds3,R)
such that y(0) = 0. Define the following operator

IM:9 -0,
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where .

(1) (1) = y(®) + Ly () = [ AOnyON)d N (35)
First, for two z,y : D3 — R using (A2), we have

1A 200) = AuOn gD x| < k<l = all (36)
Then, from 3.6 we can get the following estimation

() (8) — () ()] < |(t) — y(t)] + [Zo-" "Dt — To Dy (t))

[ [AsOn 200) = A s O]

<t~y — x|l + 7o "Dty — 2Dy )] + kt Sy — 2,
(3.7)

We multiply both sides of Eq.(3.7) with t° and take the sup of both sides to get

1Tz — Iyl < |ly — @]l + 125" e — T Oyl + By — ..

Using Eq.(1.15) we obtain
AF BT ()2 5"
I'(24)

||Tz — Tyl < |ly — [l + ly = @lls + Klly — [l

AF BT (p*)22*
I'(2p)

If we set wy = (1 + + k:) , then we have

[z — Ily[|c < @ully — [l
By induction it is trivial to prove that
n n wn
Iz — 1yl < Zhly — ol
n!
where II" = Ilollo...olIl n times. Since wn—? is the general term of the convergent exponential

series €4, it tends to zero as n tends to infinity, and so for n sufficiently large we have.

o
74<]_
n!

lemma 1.4.1 asserts that the operator 11 has a UFP in ©. This implies that
oy, L/&xy<wu (3.8)
with y(0) = 0 Finally, from lemma 3.1.1, we get

DDy (t) = As(t,y(t)) with y(0) =0. (3.9)

This concludes our proof.
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3.1.3 Existence Result in L?(Ds, R)

Theorem 3.1.2 Under the assumptions (A1)-(A2) the (IVPFDENVO) has a US in the BS
[(Ds, R).

Proof 3.1.3 We consider the set © as an element in LP(Ds,R) such that y(0) =0, and the
operator

II:e— 0,

where
t
(My)(6) = y(®) + "y () = [ AOnyON)d N
Then, we have from (A2) that for x,y : D3 — R,

t
[ A 200) = AsOn g )R] < B2y = o]l
and

() () = (y) )7 <27 (Jy(t) — 2@ + [Zo "D at) — T Dy ()P

t P
[ AsOnm00) = AsOx g0 ))in ) (3.10)
<2 (y(t) — () + [T D(t) = Ty () pp
+ kPF|ly — |2) .

Integrating Eq.(3.10) on [0, F], we get
1—p(.x(. 1—p(y(.
([T —Ty|[ < 2° (|ly — 2|l + ||Zo: Ve = Zor Y Dy|p + k2F2ly — 2[]8)
Using Eq.(1.19) from lemma 1.2.10, we get

4F B+
= ly — |2+ kP F 2|y — =] [2)

4F BX* Y
§2P<1+l a ] +k;pf2>||y—x||;;.

[Tz = Tyl[7 < 2°([ly — 2|[; +

I—p

1
If we denote wy = 2 (1 + [%]p + kaQ) P, then the rest of the proof is similar to the final

part of the proof of theorem 3.1.1. This concludes our proof.
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3.2 On The Finite Delayed Fractional Differential Equa-
tion Via R-Liouville Derivative of Non-linear Variable-

Order

2 We will study the existence of solutions for the finite delayed problem (FDP for short)

DIy (1) = Ayt uy), t€Dr:=(0,F], 0<F <oo, (A)
(FDPFDENVO)
u(t) = (), t € Dy = [-r,0]. (B)

Where Dy (u0) get forth the RLEDVO pu(t, u(t)), r > 0, u satisfies
0 < g < plt,ult) <p <1,

Ay : D x LY(D3) — R is a generic function and ¢ € L' (D3) with ¥(0) = 0. For any function
u defined on [—r, F] and any t € D}, we denote by u; the elements of L*([—r,0]) defined by

u(N) =ult+X), N € [-r0].
Here u,(.) quantifies the history of the state from time ¢ — r up to the present time t. We

denote D* = D} UDj = [—r, F].

3.2.1 Achieved Existence Results

Definition 3.2.1 We say that u € L' (D*) is a solution for (FDPFDENVO) if and only if
u verifies (FDPFDENVO(A)) and (FDPFDENVO(B)), at the same time.

Prior to asserting and showing the existence results in the BS L' (D?*), We shall assert and

demonstrate the following technical lemma.

Lemma 3.2.1 For any u € L* (D*), equation (FDPFDENVO(A)) take the following equiv-

alent formula

RIBIEN) t
Ty Oy dx = dx,t € Y. 11
. /r ap)) O [ Avwantent @)

2M. S. Souid, A. Hallouz, G. Hatlra, On The Finite Delayed Fractional Differential Equation Via R-

Liouville Derivative of Non-linear Variable-Order.
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Proof 3.2.1 Letu € LP(D* R), then from definition 1.2.6, we can write (FDPFDENVO(A))

simply as
1(xu(N)

u(tu(t) _
DS - = / X (>\>>>u(>\)d>\ = Au(t, ). (3.12)
Now we can integrate (3.12) from [0,t], to get
. XN)dN tA PN d N 1
/ i x u<>\)>>u( ) _c0+/0 JOnw)d (3.13)

Inserting t = Oin (3.13) gives co = 0, which is Eq(3.11) Conversely, let us consider (3.11),

by the consideration in lemma 1.2.10, we can take its derivative which shows that

— )

and again definition 1.2.6 gives (FDPFDENVO(A)) and conclude the proof.
To proceed, we outline assumptions essential for the analysis.
(A1) p: D} xR — [p*, p. is a CF.
(A2) Ay : D} x L' (D3) — R is a CF with respect to its first variable and such that:
|AL(t, P1) — Au(t, 52)| < 7|@1 — 952||L1(pg) , YV @1, 42 € L (173) :

t € D} and 7 > 0.

(A3) Ay :Dj x L' (D}) — R is a CF and such that:
At @)| < la®)] + 7112l (og) - ¥ @ € L' (D3). (3.15)

teDfand 7 >0, a € L' (D]).
In this first existence and uniqueness result we are going to use lemma 1.4.1.
Theorem 3.2.1 If we consider (A1)-(A2), then (FDPFDENVO) has a US in the BS L* (D*).
Proof 3.2.2 Let v,u elements in L' (D*) , and the operator

X L (D4) I (D4) ,

where

W(t), t € D3,

(Xgu) (t) = { u(t) + IO, / Ao )dn, t €D, (3.16)
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Where 0 < e < 1. We have from (A2) that ,

t F
[ A8 = Al wddn | <7 [l = il gy dn

(3.17)
é FTH'U — UHLI(DAL).
Using Eq.(3.17), we get
[(X0) (8) = (Xeu) (1) < efo(t) —u(®)] + 27" Po(t) — " D))
t
AU, 0O0) = AdOn 1N )
. L—p(t.0(1)) L—pu(t,u(t)) (3.18)
< efut) = o(t) + 2o o (t) = 2o Oult))|
+F7|[v = ul|p1 (D).
Integrating Eq.(5.18) on D*, we get
> ol l—p(0(), l—p(u()
’ Xov— Xou LD < eljv = ul|ppay + HIO+ v—Ty; u’ LA (DA (3.19)
+F27_H’U — u’lLl(D4)-
Using Eq.(1.19) from lemma 1.2.10, we get
> = 4(F +r)BX* )
HXEU — Xu Lo < (6 + — + F°7 ) [Jv — ul| L1 (D). (3.20)
4 BX*
Set wg = ¢ + (F1+ r) " + F27. By induction it is trivial to prove that
—p
pn vn wg
H.Xa v — Xg U’ L1(Dh) S FHU — uHLl(D4)>
where 5(;” is the composition of the same function n times. We can remark that w—? tends to
n!

zero as n tends to infinity, hence for n sufficiently large we have.

wn
=6 1.
n!

Now applying lemma 1.4.1, there exist a unique u € L' (D*) such that
(Xou) (£) = u(t). (3.21)

1
If we consider € = 5 and t € D} we deduce

Take the limit as € — 1 in the interval D}, we reach that

L p(t,u(t)) ! 4
7 u(t) = /0 AyOn, 1w )dN, t € D (3.22)
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At this point Lemma 3.2.1 going to be crucial and give

{ DOy (1) = Ay(t,uy), t € D (3.23)

u(t) = (t) t € Dj.

This concludes our proof.

In this second existence result we are going to use Theorem 1.4.2.

Theorem 3.2.2 [f we consider (A1)-(A3) and the condition

1—p*

Then the (FDPFDENVO) has ALS in L* (D%).

+F*r < 1. (3.24)

Proof 3.2.3 Let v,u elements in L' (D*) , t € D* and consider the operator

e

n

L (DY) = L' (DY),
where
Y(t), t e DI,

5(; u)(t) = t
( " ) ( ) 5nu( )+Il uit, u(t)) —/ A4(>\7u>\)d>\, t e Dil
0

(3.25)

2b
Where €, = s and b > 0 a real number made to be fived after in the proof.For t € D
n

(Fev) 0] < @)1 (3.26)

From (A3) we have that

F
(>\,vx)d>\’ SHaIILl@%)JrT/O HUXHLl(Dg)dX

(3.27)
< lells o)+ F 7lol 2200
For t € D3 and by mean of Eq.(3.27), we get
— t
() 0] < ealo®]+ [ u(n)] +] [ AOx )] s
< enlo(®)] + |25 o ()] + lall s gy + Frllollr e
Combining Eq.(3.28) and Eq.(3.26), we get
> 1—p(0()

|0 ppry S Enllollnen + HIO+ U’ L1(D4) (3.29)

+F||a||L1(D‘11) + F27'||U||L1(D4) + ||77Z}||L1(D‘21)'
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Using Eq.(1.19) from Lemma 1.2.10, we get

|

(F+7)F.2"
< - 1
P O o g [ 550,

+F||a||L1(D‘1‘) + ||¢||L1(D§)-

enV

There is a sufficiently large integer Ny for which
en <1—K Vn > N, (3.31)

And the choice of Ny is independent from the choice of b > 0 fixed in the beginning of the
proof. Set
B HwHL1<D%) _'_FHCLHLl(D;l)

1—(&;1—?)

(3.32)

Consider

Br={veL (D) | |Plluoy < R}. (3.33)

It is well known that Br is a CCBNE.

We will prove that )Ac';n : B — Bpg is CC in few steps.

stepl: The fact that X. (Bg) C By is bay construction.

step2: /'En is CO, let (vg)k>0 C Bgr, and v € By such that vy m v. We have to state

and prove the following lemma

Lemma 3.2.2 We have the following convergence

1 (o () 1 (0()
Zo+ =T || (3.34)
F
/ AN ) = AdOn, ) D —— 0, (3.35)
0 o0
Proof 3.2.4 For Eq.(3.34) using Eq.(1.19), we get
_ _ 4(F +r)BX*
1—p(vk(.) 1—p(v())
HI()+IM k Vp — IO+M ’U‘ LDty = 1_ lu* HUk — U||L1(D4) m 0. (336)

For Eq.(3.35), we have |As(ON, vg») — AsON, v3))] PR 0, and
—+00
’A4(>\,U>\7k) — A4(>\,’U>\)‘ S 2|a(t)| -+ CTHUHLI('D4)7

as a consequence of (A3) and this insures that the DCT is applied and this is exactly (5.35).
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We have

’ Xe, o — X, v e < 5n||rvk — 0|1y
[ O, ) = AdOx ) x (3.37)
0 L1(D%)
1=p(oe(),,  _ gl=p(v()
+[|Zor O Do = T |0
Which means that /'En is continuous.
step3: ./'AV;”(BR) is uniformly bounded by construction, it remains to prove that
1 ft+h , N
—/ (XE v) (N)d N =X v —— 0 Uniformly. (3.38)
h Ji " " Li(DY) h—0

We have

;/Hhv(x) - v(t)dx‘ dt

Hflz /:M (A2,0) \d N~ 0

F
Ssn/
0

t
0|1 rt+h
+ E/t DN — w(t)dx‘ dt
I3 ]_ t+h . _
N /0 ! /t L0y (5) —Ié+“(t’”(t))v(t)d>\| "

1 pt+h t
+/ —/ / A4(p,vp)dp—/ A4(o,vg)dod>\‘dt.
o |hJt 0 0
(3.39)
. L—uOuo)) D 1 (o 1 (7yd
Since v, L. v, | As(p,v,)dp € L (D1>, and ¢ € L' (D7) and as a consequence of
0
Theorem1.53.1 and another application of DCT we conclude that Eq.(3.38) is satisfied.
By Kolmogorov’s theorem X, (Bg) is RC, and hence by Theorem(1.4.2) X., has at least one
FP in Bpg.

LY(DY)

(X,u) (8) = u(t) Vn > No.

At this point we can fix b = Ny, n = 2Ny and t € D} to deduce

In the same way choose n = Ny in the interval D}, we get
t
TPy () = / AyOn, 1w )dN, t € D (3.40)
0

Using Lemma(3.2.1), then we can conclude that

(3.41)

DIy (1) = Ag(t,uy), t e D
u(t) = (t) t € Dj.

This concludes our proof.

Univ-Tiaret/Mathematics: 2025 39



3.2.2 An Approval Example

Example 1:Let us consider the following (FDPFDENVO)

ct
DUy () = e Juellzr oy L teDh=(0,2, (C
o+ ( ) 3(ect + e*Ct)(l + ||Ut||L1(D4)) 1 ( ] ( )
u(t) = (1) teDi=[-r0. (D)
(FDPFDENVO2)
with
(t u)—lzf—i-L (3.42)
OO = T 172+ 3uty '
and
ectu A
Ayt u) = (t,u) € D} x (0,+00), ¢>0. (3.43)

3(ect + efct)(l +U)
From equation (3.42) we can see that p is a CF on Df x R and 0 < u(t,y) < 1. And from
Eq.(3.43) we can see that

et el el
|A4(t,U) - A4(t,v)| < 3(€ct n e_ct) tllp1(pa) . L (Dl) ]
(1+UtL1 (D%)> (1+||Ut||L1(D4))
e |||u||L1(D4) - ||UHL1(D4)|
<
~ 3(et e 2 5 (3.44)
3(et + et) (1 + ||Ut||L1(D4)) (1 + ||Ut||L1(D4))

ect
S 3(6025 + efct) ||U B U”Ll(D4)

S %Hu — UHLI(D4)7

It is easy to check that for the given choice of nonlinear functions p and A, assumptions
(A1)-(A2) are satisfied. Therefore by theorem(3.2.1), the problem (FDPFDENVO2) has a
US.

3.3 Border Value Problem For R-Liouville Differential
Equations Of Nonlinear Variable Order

3M. S. Souid, A. Hallouz, Border Value Problem For R-Liouville Differential Equations Of Nonlinear
Variable Order.
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We will study the existence of solutions for the boundary value problem (BVP for short)

DE (1) = As(t,w(t)), teDs:=(0,D), 0<D < oo, (A)
(BVPFDENVOL1)
w(0) = w(D) =0, (B)

where Dgf’w(t)) set forth RLFDVO, u(t,w(t)), As is a generic function, 1 < p. < u(t,w(t)) <
we< 2.

3.3.1 Existence of solutions

Definition 3.3.1 A function y € Cy_,«(D5) or y € L'(Ds) is said to be a solution for
(BVPFDENVO1) if and only if it verifies (BVPFDENVO1(A)) and (BVPFDENVO1(B)),

simultaneously.

In order to present our new existence results in the BS Cy(Ds) and L'(Ds), we will analyse
an equivalent integral form of the BVPFDENVO1(A).

Lemma 3.3.1 Lety be an element of Co_,+(Ds) or LY(Ds). Then, equation (BVPFDENVO1(A))

1s equivalent to
92— p(twl(t)) t (2 pltw(®), b
" w(t) = D Ia{r ; (D — XN)As (N, w(N))dN) (3.45)
+/ (t — 2)As(n, w(>\)> dn,t € Ds.

Proof 3.3.1 Let y € Co_,+(Ds) ory € LY(Ds). Then, equation (BVPFDENVO1(A)) can

be represented as

2
DOutt) = (1) T t) = Astrl0) (3.46)

Integrating both sides of (BVPFDENVO1(A)) on [0,t] we get

YI=HON ) .
/ r(2 (x)))w(%)dx = ¢ —I—clt+/0 (t —2X)As (N, w(N))d N . (3.47)

FEvaluating (3.47) at 0 and D gives us

Co :0,
D (D — )i D .
6 = 11) (/0 (rl()2 —>/\i)(>\7w(>\)))w(>\)d>\ —/0 (D — >\)A5(>\,w(>\))d>\> - B4

Univ-Tiaret/Mathematics: 2025 41



Inserting these in Eq.(3.47), then Eq.(3.45) yields. Conversely, differentiating twice both
sides of (3.45) gives

AN
(dt> T2 0) = Ayt 0(0), (3.9

from which we get (BVPFDENVO1(A)) and this concludes the proof.
To proceed, we outline assumptions essential for the analysis.
(A1) p:Ds x R — [, p*] is a CF.
(A2) A5 :Ds x R — R is a CF with respect to its first variable and such that:
As(N, By) — As(N, By)| < KBy — Bof, ¥ By, By €R,
X € D; and k > 0.

(A3) As: D5 x R — R is a Carathéodory function such that:
|As(t, E)| < a(t) + b(t)|E|, Yo € R, t € Ds. Where a € C,(Ds), b is a CF on D5 and

both are positive.

3.3.2 Existence Result in L!(Ds)

Theorem 3.3.1 Under the assumptions (A1)-(A2) the (BVPFDENVO1) has a US in the
BS L'(Ds, R).

Proof 3.3.2 Consider the set Q as the elements in L'(Ds) such that w(0) = w(D) = 0, and

the operator

where

(Asw) (1) = w(t) + T Ds(e) = [t = ) AsOn () dx

D (3.50)
_zt) <z§;“<tvw<t>>w(p) - /0 (D — >\)A5(>\,w(>\))d>\> .
By mean of Hélder’s inequality, we have from (A2) that for z,y : D5 — R,
t D
/ (t = X) (As(n, Z(N) — As (N, w(N))) d%’ < kl[z - w||1/ (D = XN)dx
’ 2 0 (3.51)

D
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In the same way we can get

otz _ 4Bv* P .
I§+ M(t’z(t))f(D) —I§+ M(t,w(t))w(D>’ < V* / (D = X)" [Z208) — w(N)|d

4BV*0 B (3.52)
|z —wllh.

Then using Eq.(3.51) and Eq.(3.52) will give the following estimation

(A52) (6) = (Asw) (0] < [2(0) — it \+ Zo 2 = Zg )|
‘1-2 p(t2()) (D) — IngM( (t))w(D)‘

< HZ_W|’1+HIS+M z()= _Ié;/t(.,w(-))le
4Bv*
— |z — kD?||z — .
+(2—,LL*)D||Z wlli + kD*|[Z — wllx
Using Eq.(1.19) from lemma 1.2.10, we get
~ ~ 4Bv* 9\ (1=
~ 4Bv* 5
If we denote wy =1+ Q4 + -———~—= + kD* then we have
(2—p*)D

A5z — Asw||, < wrllz — il

By induction it is trivial to prove that

n

—~ —~ w
[A5"7 = As"w||, < =z = wlly,
n.

wn
—‘7 is the general term of the convergent
n!

exponential series €7, it tends to zero as n tends to infinity, and so for n sufficiently large

- n o o o . .
where A5 = As o Ay o ...o0 Ay n times. Since

we have.
wl
77 < 1
n!

lemma 1.4.1 asserts that the operator Ay has a FP point in Q. This implies that

(b bt b
T2 O () = (g2 Oy (D) - /O (D — 2)As(n, w(N))dN)

D, o (3.55)
+/0 (t — %) As(n, w(N))dN, t € D,
with w(0) = w(D) = 0. Finally, from lemma 3.5.1, we get
DI () = As(t, w(t)) with w(0) = w(D) = 0. (3.56)

This concludes our proof.
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3.3.3 Existence Result in C,(D;)
The first obtained result in this subsection is based on Theorem (1.4.2).
Theorem 3.3.2 Assume that (A1)-(A3) are satisfied and

I'(2—p )0 (" — DF o
Di-w

DT — 1)
BRARN vy

18] 00 + <1 (3.57)

Then the (BVPFDENVO1) has at least a solution in Cs_,,. (Ds).

Proof 3.3.3 Let d > 0 made to be fixed later in the proof, o = 2 — u*, v, = n dand and
the operator
Asy i Co e (D5) = Cyy(Ds), (3.58)
where .
(Asnw)(t) = v (t) + 2Oy gy — /O (t — ) As(n, w(N))dN 550
3.59
t

@ Ou(D) — [7(D %) As(x, (NN,

For all t € Ds, by mean of (A3) and Eq.(1.14) the operator As,, is well defined, and:

(o) )] < vl + 25 Os(e) +2| [7(D = 2 AsOn wO)idx

+ ’Ig:u(t’w(t))w(D) ’

< ot =2l + 2l +2 [ (D = X)) + BN )])x
Fovr
+ i |l
< vatlly + Qi el + 2
2DF T(p* — 1)
b
e L NP
L@ = )l — DF v
o el

||/ (D — >)F X2 dx
W),
I(p* +1) ‘

I

+t7¢
(3.60)
We multiply both sides of Eq.(3.60) with t® and take the sup of both sides to get

[Tl < (o F) el
20" T (u* )H ” (3.61)
L(p+1) ¢

There is a sufficiently large integer Ny for wich

v, <1—K ¥n> N,. (3.62)
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And the choice of Ny is independent from the choice of d > 0 fixed in the beginning of the

proof Set
2D T (pu* — 1)

n lall,
R Ltwrxl) (3.63)
1-— (vn + K)
Consider
Br={z€Cy(Ds) | I[Zll, < R} (3.64)
It is well known that Br is a CCBNE.
We will prove that .Irm : B — Bg is CC in few steps.
step1: The fact that J?l;n(BR) C Bg is bay construction.
step2: ;l;n is CO, let (Zx)n>0 C Bgr, and zZ € Bg such that Zj ﬁ z,
- —+00
Lemma 3.3.2 We have the following convergence
2 u(E())e  r2-u(E(0)=
2 7 ZHQ — 0, (3.65)
zo Dz (D) — 137D %(D)| =0 (3.66)
D
|0 =X 14500, 2000) = A5 (O, Z00) [ dn —— 0, (3.67)
0 —+400
Proof 3.3.4 For Eq.(3.65) and using Eq.(1.15), we get
2— (- 2k ()= 2—u( ()= S e -
[z =Dz, — 2o %Hg < Qallzn —2ll, - 0. (3.68)

For Eq.(3.66) and using Eq.(1.15), we get
4B * t *
e A PSR CONEE/ONITN
0
< 4BT (" — DI(2 — p*)v*
— leﬂ*

’Ig;“(t’z’“(t))fk(D) _ Ig;u(t’w(t))f(D>‘

17k =2l 72 O
(3.69)
For Eq.(3.67) we have (D — X) | As(XN,Ze(N)) — As(ON, Z(N))| ——— 0 and

k——+o0

(D =X [As(n Ze(N)) = As(On, 2O0)] < D(2a(t) + cb(®)][=1],)-

as a consequence of (A8) and these insure that the DCT is applied and this is exactly (3.67)
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We have

t z Cu(tw(t))—
Un(Zk(t) = 2(1)) + = (T "Dz (D) — 727Dz (D)

|(As20) (1) — (As,2)(1)] = 5

T /OD(D — X)(As (N, Ze(N)) — As(N, Z(N)))dN)
+:Z’-2*N(t,zk(t))zk(t) _ Ig:“(t’z(t))é(t)

+/ £ — D) (As (0 Ze(N)) — As (), Z(0))d X

<t e,z — 2,
D
2 [ (D=2 450 Z0N) = AsOn Z00) | dx
o2t 7 (6) = 2t Z(t))—
+epe ’Igf“(t’zk(t))fk(D) _ Ig;“(t’w(t))Z(D)’ '
(3.70)
We multiply both sides of Eq.(3.70) by t9, take the sup of both sides and then use Lemma/(3.3.2)

we get

H;t;nfk - ;(572“9 < ||Zk — §||Q + Q/OD(D — 2 [As(ON, Ze(N) — As(ON, Z(N))] dX
+ HISI”("E'“('))% . 2 (. H

+De ‘Ié;#(t,zk(t))— (D) _ IO2+ #(t w(t ))f(D)‘ s 0.

k——+o00

(3.71)

Which means that ,Irm is CO.
step3: Zgn(BR) is UB by construction, it remains to prove that ;l;n(BR) is EC.

Let t,t € Ds, without loss of generality we can assume t < t, and v € B,

o rom O _getl (D (D — W)IHONE)
vn(F2(0) — t22(0)) + ——— (/0 EEENEPNIRAE

—/D D- >\)A5(>\ Z(N))dn

#(As,2)(7) — 12(A5,2) ()| =

Y=rOVEN) , [t - M)HONE))
o e R B orew= ok
s [ - >A5<x,z< D [e- x>A5<x,z<x>>dx|
<Un|tg()—tgzt|—|—<t tQ‘H O

i N e £ 50\ IHOEO)
+F =[|Z]|v (( D ) ( D ) ax
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L *
+al[EllwD ([ =2 neax)
t

+t/: As(On, ZON) AN + /tt>\]A5(>\,z(>\))\d>\

o+1 g9+1
< v, [192(7) — t22(b)] + <D> C

+FE||Z||QV* /ot ((f N >\)1_#*> dX

1—p*
=||Z|| v D U
(2 —p)t 1
=z F0+
+2D (J[al], + 18l | [Z110) (227t =77
—0_ /7 pot1 _ gotl
< v, |t°2() — toz(t)| + <D> o
Fg||§||glj* 72—p* 2—u* \2—p*
(2 — p*)Di—he (t — T+ (t-1) )
z||Z|| v D U
D, o,
(2 —p)t 1
z Fo0+
+2D (||al|, + 16lllIZ]]0) (tg-i-l e )

— 0.
t—t

Pl (s = DU — )zl

oD (u* — 1)D*"

Where C* - L +lalle + el 2lo) =25

(3.72)

By AAT As,(Bg) is RC, and hence by theorem(1.4.2) As, has at least one FP in Bp.

(As,w)(t) = w(t) Vn > Np.

At this point we can fixre d = Ny and take n = 3Ny we deduce

0 —
w(0) ’ (3.73)
w(D) =
Take n = Ny and this implies that
D
o),y = Lot py [ (D =30 4500, wx)dx)
“ D" m 0 o (3.74)
+/0 (t — 2)As(n, w(N))dn, ¢ € Ds.
Using Lemma(3.3.1)
DI () = As(t,w(t)) with w(0) = w(D) = 0. (3.75)
This concludes our proof
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3.4 An Approval Example
Example 1:Let us consider the following fractional Border value problem

DLty = As(t,w(t)), teQ:=(0,1) (1)

(BVPFDENVO2)
w(0) =w(l) =0, (2)
with
(by) =4 —2 4 (3.76)
L T (PR '
and »
As(t,y) = b1y (3.77)

(4+ 7)1+ [y )*
From equation (3.76) we can see that y is a CF on D5 x R and 1 < pu(t,y) < 2. And from
Eq.(3.77) we can see that

be ™! |z] ||

|As(t,x) — As(t,y)| < (44 7e2) | (14 |z |)2? a (14 |y |)?

< Se”' |z —y|
@+ 7)1 |2 )21+ [y |)?
(3.78)
< le -yl
T (44 7e%)
< 3|ac —yl.
13

It is easy to check that for the given choice of nonlinear functions pu and As; assumptions
(A1)-(A2)are satisfied. Therefore by theorem(3.3.1), the problem (BVPFDENVO2) has a
US.
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Chapter 4

On The Finite Delayed Fractional
Differential Equation Via The
Weighted R-Liouville Derivative of
Variable-Order

We will study the existence of solutions for the finite delayed problem (FDP for short)

0+ DEOu(t) = Ag(t,us), t€DS:=(0,F], 0<F <oo, (A)
(FDPWFDENVO)
ult) = ¢(9), b€ D§ = [0 (8)

Where o+ DY set forth the WRLFDVOu(t), r > 0 and p satisfies 0 < p, < p(t) < p* < 1,
Ag : D¢ x L1 (DS) — R is a generic function and ¢ € LY (DY) with ¢(0) = 0. For any function
u defined on [—r, F] and any ¢ € DY, we denote by u; the elements of L. ([—r,0]) defined by

u(N) =u(t+X), N €[-r0].
Here u,(.) quantifies the history of the state from time ¢ — r up to the present time t. We

denote Dg = DS U DS = [—r, F .

4.1 Achieved Existence Results

Definition 4.1.1 We say that u € L. (Dg) is a solution for (FDPWFDENVO) if and only
if u verifies (FDPWFDENVO(A)) and (FDPWFDENVO(B)), at the same time.

49



Prior to asserting and showing the existence results in the BS L. (Ds), We shall assert and

demonstrate the following technical lemma.

Lemma 4.1.1 For any v € L. (Dg), equation (FDPWFDENVO(A)) take the following

Equivalent formula

1—p(t _ 1 ! —p(n / _ [ 6
T Oult) = sy 0O =90 OO s = | A6<x,ux>d;,1t>e D},

Proof 4.1.1 Letu € L} (D), then from definition(1.3.2) we can write (FDPWFDENVO(A))

simply as

n(t o d 1 t —u(N / _ 6
D) = 5 (cm =y 00 = 900 w00 N ) = Attt D8

(4.2)

Now we can integrate (4.2) from [0,t], to get

1
w(t)[(1 —

1)) /Ot(g<t) - 9(>\))7“(>\)w(>\)u(>\)g’(>\)d>\ =cy+ /Ot AsOn usn)d N . (4.3)

Inserting t = 0in (4.3) gives co = 0, which is Eq(4.1). Conversely, let us consider (4.1), by

the consideration in lemma(1.3.2), we can take its derivative which shows that

d 1 t N / -
% (w(t)F(l _ ,u(t)) /0 (g(t) - g<>\>> ( )w(>\)u(>\)g (>\)d>\> - Aﬁ(t,ut), (4.4)

and again definition(1.3.2) gives (FDPWEFDENVO(A)) and conclude the proof.
To proceed, we outline assumptions essential for the analysis.
(A1) p: D% —(0, ] is a CF, w is a CF and w(z) > 0.
(A2) Ag: DY x L (DS) — R is a CF with respect to its first variable and such that:
Aalt, 31) — At @) < 7161~ Bollo s ¥ B0 € L (D).
t € DS and 7 > 0.
(A3) Ag: DY x L (DS) — R is a CF and such that:
As(t, @) < la(t)| + 7118l » ¥ & € L, (D5) (4.5)

t€Dland 7 >0, a € L' (DY).
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Remark 4.1.1 Let the hypothesis on g and w holds as in (A1), for —r < XN < 0, then we
get
r /
(N[ (e + NI ()i

= [t = el N = (4.6)
< Cu|v]]1,w,4,
(=N ul =)
where C, = ( 7 () w(?) ) .

Example 4.1.1 As an example of L. (DS) we can take w(z) = e %% and g(x) = X% where
K is a real number with K > 0.

In this first existence and uniqueness result we are going to use lemma (1.4.1).

Theorem 4.1.1 If we consider (A1)-(A2), then (FDPWFDENVO) has a US in the BS
Ly, (D).

Proof 4.1.2 Let v,u elements in L. (Dg) , t € Dg and consider the operator
X., : L, (Ds) = Ly, (Ds),

where

- { ), t € DS, .

)02 2ot + (o) ) - [ Astw)ax, ¢ e Dt

Where €,, = I and b > 0 a real number made to be fixed after in the proof. We have from
n
(A2) and Remark 4.1.1 that

.
(N, vs) —A6(>\,Ux)d>\‘ < T/O [[vse — s | 1,0,8, AN

(4.8)
< FCOT||v — ul|1,m,D6-
Using Eq.(4.8) we get
szyﬂ—ﬁggw\<%w) mn+WJHM)@ (-5 0u) (1)
/ As(On, v(N)) — Ag(On, u( d>\'
(4.9)

< enlu(t) —v(t >| + |(0+Zi 7 O0) (1) = (0+Z5Vu) (1)
+F Cut||v — ul|1,0,D6-
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Integrating Fq.(4.9) on Dg, we get

‘ X.v—X.u ‘ < epllv—u||s wpﬁ%—HmI;_“(')v —o+ I;_“(')UH +F 20,7 |v— |1 20,0 -
1,w,Dg Y 1,w,Dg o
(4.10)
Using Eq.(1.26) from lemma 1.5.2, we get
5 = F)—g(—r))F .0
‘ X, v— X u ‘1 5 S (an + o(r) gpi* DE + F2TC*> o — u||1.w,D6- (4.11)
sW, L6

(9(r) = g(=r) F u6"

Set wg = &, + " + [ 27C,. By induction it is trivial to prove that
‘ Xenv - Xanu ’17W7D6 = FHU - u||1,w,D6’

where X' is the composition of the same function n times.
n

w
We can remark that —? tends to zero as n tends to infinily, hence for n sufficiently large we
n!
have.
wn
=8 < 1
n!

Now applying lemma 1.4.1, there exist a unique u € L. (Dg) such that

(AL,u) (1) = u(t). (4.12)

Choose b=1,n =1 and t € D¢ to deduce

Now take n = 0 and t in the interval DY, we get
t
o+ Ty (1) = / AsOn, ws )dn, t € DY, (4.13)
0

Using Lemma(4.1.1), then we can conclude that

{ 0+ DiOu(t) = As(t,ue), t € DS, 414
u(t) = ((t) t € DS.
This concludes our proof.
In this second existence result we are going to use Theorem (1.4.2).
Theorem 4.1.2 [f we consider (A1)-(A3) and the condition
e Rt I Lo P (4.15)

M*
Then the (FDPWFDENVO) has ALS in L. (Dg).
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Proof 4.1.3 Let v,u elements in L. (Ds) , t € Dg and consider the operator
X., : Ly, (Do) — Ly, (Do),
where X., is defined by Eq.(4.7).For t € DS
(2,0) 0] < I¢t)]. (4.16)

From (A3) we have that

t F
[ Asonmdn| < llall+7 [ lloslsadx

(4.17)
< lally + FCrl|v][1 -
For t € DS and by mean of Eq.(4.17), we get
— ¢
(Z) ()] < enlo®)] + | (0T 00) ()] + ‘ JAETONEENIEN s,

< ealv(®)] + | (0 Z5 ) (1)) + llall + £ Corlloll iy

Combining Eq.(4.16) and Eq.(4.18), we get

Using FEq.(1.26) from Lemma 1.3.2, we get

| (9(r) —g(=r)) F u0"

/4[/*
There is a sufficiently large integer Ny for wich

X, v

o S enllvllawm, + o Zi ]| llall + Corllollwms + 1G] wae:  (4:19)

‘1, 1,w,D,

X, v

‘ < <£n—|—
1w

+aﬂumm%+mm+mmwy (4.20)

en <1—K Vn> N, (4.21)

And the choice of Ny is independent from the choice of d > 0 fized in the beginning of the

proof Set
[I¢] w8, + [lallx

= 1—(&#—?)

(4.22)

Consider

Br={ve L' (Do) | [lvlhw < R}. (4.23)

It is well known that Bg is a CCBNE.

We will prove that ./'En : B — Bpg is CC in few steps.

step1: The fact that Zn (Br) C Bg is by construction.

step2: )A(;n is CO, let (vg)k>0 C Bgr, and v € By such that vy, —— v. We have to state

k—4o00
and prove the following lemma
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Lemma 4.1.2 We have the following convergence

o+ o — g T 00| — 0. (4.24)

1L,w,Dg k—+o0

F
/O [As(x ) = AsOn, 0l & —— 0 In L, (D). (4.25)

Proof 4.1.4 For Eq.(}.24) usig Eq.(1.26) we get

(9(F) = g(=r)) F ,0"

H0+1'i—u(-)vk ot Ii—u(.)UHLwDG < "

A

Hvk — UHl,w,DG m} 0. (426)
For Eq.(4.25) we have |w(X)(As(N, vry) — As(ON,v))| ¢ (ON) = 0, and
—400
[As (O, v k) = As(On, 03)] < 2]a(t)] + e[ v]]1,0.p5-

as a consequence of (A8) and this insures that the DCT is applied and this is exactly (4.25).

We have
. r
[ on = Xoyo|| - <enllog = vlliw + || [ AN vam) = As(ON, ) dN
| 1), 71k e (420)
+ |7 o = 2|, O
Which means that ;Y:_.n s CO.
step3: PAC';R(BR) is UB by construction, it remains to prove that
1 pt+h , . '
Hh/t (Xsnv> (N)d XN =&, v ) — 0, Uniformly. (4.28)
We have
1 pt+h — F 1 t+h
E/ (X,0) VAN —Xo || < gn/ w(t v(t)d>\> J(t)dt
t
" t+h
) -l )|

xg'(t)dt

xg'(t)dt

+ o+
7N m

(4.29)
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Since v,g+ I&)_“(')v,/ox As(p,v,)dp € L (Df), and ¢ € L (DY) and as a consequence of
Theorem1.3.1 and another application of DCT we conclude that Eq.(4.28) is satisfied.
By Kolmogorouv’s theorem ZR(BR) is RC, and hence by Theorem(1.4.2) )zn has at least one
FP in Bg.

(?\’;nu) (t) =wu(t) Vn > No.

At this point we can fix b = Ny, n = 2Ny and t € D¢ to deduce

In the same way choose n = Ny in the interval DY, we get
t
o+ ILr 0y (1) = / As(X, s )dN, t € DS, (4.30)
0

Using Lemma(4.1.1), then we can conclude that

o+ DEOu(t) = Ag(t,u,), t € DS, (4.31)
u(t) = ((t) t € DS.
This concludes our proof.
4.2 An Approval Example
Example 1:Let us consider the following (FDPFDENVO)
at
DAOu(t) = el , teDi=(0,2, (C
o+ u( ) 3(€at_|_6fat)(1_|_ ||Ut||17w) 1 ( ] ( )
(FDPWFDENVO2)
u(t) = ¢(t) teD§:=[-r0. (D)
with .
) =t (4.32)
and
Te™y 6
Ag(t,u) = (t,u) € DY x (0,+00). (4.33)

3(e® 4+ e=)(1 4+ u)
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From equation (4.32) we can see that p is a CF on D x R and 0 < pu(t) < 1. And from
Eq.(4.33), we can see that

at
< e e vl
= 3(eat 4 e=at) | @Hlulw)® (ol

[ As (1) = As(L,v)]

_ e 1w = 0]l
~ 3(e® 4 e~at) (1+ ||Ut||17w)2 (1+ ||Ut||1,w)2

(4.34)

76at

< m”u — V|l1w

< %Hu — 0|1,

It is easy to check that for the given choice of nonlinear functions p and Ag assumptions
(A1)-(A2) are satisfied. Therefore by theorem(4.1.1), the problem (FDPWFDENVO2) has
a US.
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Conclusion

This thesis presents an abstract version of the R-Liouville variable-order boundary value
problems. The variable order of the provided systems is denoted by the function (u(t) :
J = (0,1], p(t) : J — (1,2] or p(t,z(t)) : J — (0,1]). The primary challenge that we
addressed was that the semi-group property does not apply to variable-order integrals, which
we discovered after reviewing certain crucial tools (definitions and notations) of the multiplied
variable-order operator.

Next, we gave an analogous perturbed integral equation for each system in each chapter.
The results in this study are established with the help of the Darbo’s fixed point theorem
combined with Kuratowski measure of noncompactness , Schauder and Banach fixed point
theorems.

All of the results we have obtained from our examination into this intriguing particular
research topic are distinct and outstanding.

Moreover, there is great potential for applying all of the findings in this thesis to a wide
range of trans-disciplinary science applications. We might be able to do additional research
on this open research topic with the help of our initial research study findings.

Stated differently, the suggested IVPs or BVPs may eventually be expanded to more complex

real mathematical fractional models.

o7
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