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Abstract 

This thesis explores the diagnosis and treatment of brain tumors through advanced imaging 
techniques and deep learning algorithms. Brain cancer, a severe condition affecting the 
central nervous system, requires precise diagnostic methods for effective treatment. This 
work focuses on the segmentation of brain tumors from MRI images using state-of-the-art 
deep learning models. The proposed method integrates pre-trained convolutional neural 
networks, improving segmentation accuracy and robustness. Our results demonstrate 
significant advancements in the accuracy and efficiency of brain tumor diagnosis and provide 
a foundation for future research in this critical medical field. 

Keywords: Brain Tumor, MRI, Deep Learning, Convolutional Neural Networks, Medical 
Imaging, Segmentation 
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Résumé 



Ce mémoire explore le diagnostic et le traitement des tumeurs cérébrales à travers des 
techniques d'imagerie avancées et des algorithmes d'apprentissage profond. Le cancer du 
cerveau, une condition grave affectant le système nerveux central, nécessite des méthodes 
diagnostiques précises pour un traitement efficace. Ce travail se concentre sur la 
segmentation des tumeurs cérébrales à partir d'images IRM en utilisant des modèles 
d'apprentissage profond de pointe. La méthode proposée intègre des réseaux neuronaux 
convolutionnels pré-entraînés, améliorant la précision et la robustesse de la segmentation. 
Nos résultats montrent des avancées significatives dans la précision et l'efficacité du 
diagnostic des tumeurs cérébrales et fournissent une base pour de futures recherches dans 
ce domaine médical critique. 

Mots clés: Tumeur cérébrale, IRM, Apprentissage profond, Réseaux neuronaux 
convolutionnels, Imagerie médicale, Segmentation 
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 ملخص



يتطلب العميقة. التعليمية والخوارزميات المتقدمة التصوير تقنيات خالل من الدماغ أورام وعالج تشخيص األطروحة هذه تستكشف  
على العمل هذا يركز الفعال. للعالج دقيقة تشخيص أساليب المركزي، العصبي الجهاز على تؤثر خطيرة حالة وهو الدماغ، سرطان  
العصبية الشبكات المقترحة الطريقة تدمج المتقدمة. العميق التعلم نماذج باستخدام المغناطيسي الرنين صور من الدماغ أورام تقسيم  

ساً أسا وتوفر الدماغ أورام تشخيص وكفاءة دقة في رًا كبي تقدًما نتائجنا تظهر التقسيم. ومتانة دقة يحسن مما مسبق  ً 
ا المدربة االلتفافية ، 

. الحيوي الطبي المجال هذا في المستقبلية للبحوث  

التقسيم الطبي، التصوير االلتفافية، العصبية الشبكات العميق، التعلم المغناطيسي، بالرنين التصوير الدماغ، ورم المفتاحية: الكلمات  
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General Introduction 

Context and Importance of the Research 

Brain cancer poses a serious threat to the central nervous system, necessitating precise 
diagnostic methods and effective treatments. Research in this field is crucial for improving 
patient survival rates and quality of life. Both benign and malignant brain tumors present 
significant challenges due to their structural complexity and inter-patient variability. Magnetic 
Resonance Imaging (MRI) is one of the most commonly used techniques for diagnosing 
brain tumors, owing to its ability to provide detailed images of the brain without using harmful 
ionizing radiation. 

Problem Statement 

Despite technological advances in medical imaging, the accurate segmentation of brain 
tumors remains challenging due to the brain's anatomical complexity and significant 
inter-patient variations. Traditional segmentation methods are often limited by their inability to 
handle this variability and to adapt to images of varying quality. 

Objectives of the Thesis 

This thesis aims to explore and enhance the segmentation of brain tumors from MRI images 
using state-of-the-art deep learning models. The specific objectives are: 

1. To evaluate current brain tumor segmentation techniques and their limitations. 2. To 
develop a segmentation method based on pre-trained Convolutional Neural Networks 
(CNNs). 
3. To improve the accuracy and robustness of segmentation using transfer learning. 4. 
To validate the performance of the proposed method on public and diverse datasets. 

Structure of the Thesis 

The thesis is structured as follows: 

Chapter 1: Medical Context 

● Introduction to brain cancer 
● Types of brain tumors 
● Diagnostic and imaging techniques 
● Importance of MRI in diagnosis 
● Current challenges in brain tumor segmentation 

Chapter 2: Deep Learning and Segmentation 

● Introduction to deep learning 



● Key concepts of neural networks 
● Image segmentation techniques 
● Preprocessing techniques for MRI images 
● Evaluation of segmentation performance 
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Chapter 3: Related Work 

● Literature review on brain tumor segmentation ● Comparison of approaches 
● Limitations of traditional techniques 

Chapter 4: Our Architecture 

● Introduction and tools used 
● Datasets utilized 
● Transfer learning 
● CNN model used 
● Proposed methodology 
● Results and discussion 
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The Medical Context 

1.1 Introduction to Brain Cancer 
The cancer of the brain is a disease in which some abnormal cells proliferate in the brain and 
form either benign or malignant tumors. In the case of the latter, they are dangerous in that 
they can penetrate surrounding tissues and metastasize to the other parts of the brain or 
central nervous system. The World Health Organization has stated that brain cancer is 
responsible for 1.6% of all cancers that are diagnosed annually globally [1]. For this reason, 
research in the field of diagnosis and treatment of brain tumors is very much necessary as it 
can lead to higher survival rates and, eventually, a better quality of life for the patient. 

1.2 Types of Brain Tumors 
There are two major types of brain tumors: benign and malignant kinds. Those classified as 
benign are generally less aggressive, for example, meningioma, while the malignant types, 
such as glioblastoma, are very aggressive and often spread quickly [2]. 

1.2.1 Benign vs. Malignant Tumors 
Malignant tumors progress fast and far, whereas benign tumors are slow and within a limited 
area. Malignant tumors are more resistant to treatment and, in most cases, resistant to any 
kind of treatment [3]. 



Figure 1.1:Tumor types [4] 
1.2.2 General Type of Brain Tumor 
- Gliomas: They are all of astrocytomas, oligodendrogliomas, and glioblastomas. 
Approximately 30% of brain tumors are such, and for the most part [3]. - Meningiomas: 
Meningiomas are benign tumors originating from the meningeal tissue of the brain and spinal 
cord [3]. 
- Pituitary Adenomas: These generally are benign tumors of the pituitary gland, resulting in 
hormonal production [3]. 

Figure 1.2:MRI of (a) Pituitary adenoma (b) Glioma (c) Meningioma[5] 
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1.2.3 Characteristics and Progression 
Brain tumors are much more diverse in biological behavior and clinical course. Although 
some, such as glioblastomas, tend to progress swiftly and rapidly and may necessitate 
urgent treatment, others, such as certain meningiomas, may be observed over time[2]. 

1.3 Diagnostic and Imaging Techniques 
Brain tumor diagnosis is done through a combination of imaging technologies and clinical 
analyses. MRI is the preferred imaging technique to view brain structures and identify 
abnormalities [2]. 

1.3.1 Medical Imaging 
- MRI (Magnetic Resonance Imaging): A test that takes detailed pictures of the brain by 
using mainly magnetic fields and radio waves [5]. 
- CT (Computed Tomography): It uses a combination of X-rays to form cross-sectional 
brain images. It is less detailed than MRI but valuable in the case of emergencies [5]. - PET 
(Positron Emission Tomography) Scan: Radioactive tracers are used to examine the 
metabolic activity in brain tissues [5]. 



1.3.2 Biopsy and Histopathological Analysis 
The most crucial approach to establish the diagnosis of a tumor and determine the type of 
tumor is through a biopsy. It helps to identify the cellular characteristics present in tumor 
histopathology, which in turn helps in deciding on the treatment options [3]. 

1.3.3 Symptoms and Clinical Presentation 
Some of the signs and symptoms of a brain tumor include headaches, seizures, visual 
problems, cognitive disorders, and behavior changes. These symptoms may vary depending 
on the location and size of the cancer [2]. 

1.4 Importance of MRI Imaging in Diagnosis 
MRI is the most widely used method for diagnosing brain tumors, as it provides 
high-resolution images without using harmful ionizing radiation [5]. 

1.4.1 Advantages of MRI 
An MRI has good soft tissue resolution, which is necessary to image the complex 
geometrical structures of the brain and for the detection of tumors. The details of a cancer 
regarding its size, location, and detail about the effect on the neighboring tissues are further 
detected[5]. 

1.4.2 MRI Types 
- T1-Weighted MRI: Useful for imaging brain anatomy and internal structures[5]. - 
T2-Weighted MRI: It is helpful in demonstrating abnormalities in brain tissues, including 
edema [5]. 
- FLAIR (Fluid-Attenuated Inversion Recovery): Used to detect lesions around the 
cerebrospinal fluid[5]. 
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Figure 1.3:T1-weighted, B) T2-weighted and C) Fluid-Attenuated Inversion Recovery (FLAIR) MR 
images[c] [6]. 

1.4.3 Role of Functional and Spectroscopic MRI 
- Functional MRI (fMRI): A technique that measures brain activity by registering changes in 
blood flow[5]. 
- Magnetic Resonance Spectroscopy (MRS): This is applied in examining the chemical 
composition of brain tissues and identifying metabolites pertinent to tumors [5]. 



1.5 Current Challenges in Brain Tumor Segmentation There exist many 
challenging conditions in this segmentation of brain tumors from MRI images due to the 
structural complexity of the brain and the variability of tumors [5]. 

1.5.1 Complexity of Brain Structures 
The brain is an anatomically tortuous structure, and distinguishing normal and pathological 
tissues is usually not easy. If automatic segmentation is to be of use in the clinic, this 
complexity has to be managed [5]. 

1.5.2 Inter-Patient Variability 
The size, shape, location, and biological characteristics of brain tumors vary considerably 
between patients, which makes it hard to generalize for segmentation models. 

1.5.3 Image Quality and Resolution 
The quality and resolution of MRI images may vary due to scanner parameters and imaging 
conditions. In addition, artifacts and noises make the segmentation of tumors hard to 
achieve. 

1.5.4 Automation and Precision 
Key in these will be the automation of tumor segmentation, which will significantly relieve the 
load on radiologists and raise diagnostic accuracy. Deep learning techniques hold promise 
but are yet to be optimized for best clinical performance. 
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Deep Learning and Segmentation 

2.1 Introduction to Deep Learning 
Deep learning is a part of machine learning that involves training artificial neural networks to 
learn structures associated with massive datasets. This has successfully transferred abstract 
concepts in image processing, natural language processing, and autonomous driving, 
among others [7]. 

Figure 2.1:Relationship between (IA)(ML)(DL)[8] 

2.1.1 Background of Deep Learning 
Neural networks are an ancient concept, dating back to the 1940s, but it has been only 
within the last decade that significant breakthroughs in deep learning have been realized, 
combined with new leaps in terms of computational power and data availability. Architectures 



such as Convolutional and Recurrent Neural Networks have fundamentally transformed our 
ability to process visual and sequence data [9]. 

Figure 2.2:Background of Deep Learning[10] 
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2.1.2 Basic Concepts of Deep Learning 
Neural networks are composed of layers of artificial neurons, each changing the input data 
nonlinearly. The networks are trained using backpropagation algorithms, in which the weights 
of the neural connections are adjusted to minimize the error between the network's 
predictions and the actual values [11]. 

2.2 Crucial Concepts of Neural Networks 
Deep learning feeds on artificial neural networks. The following are a few concepts to 
understand its functioning [12]: 

Figure 2.3:Concepts of Neural Networks[13] 

2.2.1 Neurons and Layers 



An artificial neuron performs the same function as a biological neuron: it receives weighted 
inputs, applies an activation function, and produces an output. In general, neural networks 
are composed of three layers: input layer, hidden layers, and output layer [14]. 

Figure 2.4:Neurons and Layers[15] 
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2.2.2 Activation Function 
Activation functions introduce non-linearities in the network, which allow it to model complex 

relationships. Commonly used activation functions include ReLU, sigmoid, and tanh [16]. 

Figure 2.5:Activation Function[17] 
2.2.3 Learning and Backpropagation 
Learning in neural networks is done by an iterative process known as backpropagation, 
where the error between predicted and actual values is fed back through the network to 
adjust neural connection weights [18]. 



Figure 2.6:Learning and Backpropagation[19] 
2.3 Image Segmentation Techniques 
Image segmentation is an essential step in processing medical images for identifying and 
delineating brain tumors on MRI images. For these complex tasks, deep learning algorithms 
have proven great effectiveness. This chapter provides an overview of the critical techniques 
and algorithms used for image segmentation, very tightly focused on their application in 
medicine [20]. 
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2.3.1 Semantic Segmentation 
IIn semantic segmentation, the task involves assigning a label to each pixel of an image 
according to its class; hence, it could be different in medical contexts, for instance, normal 
versus tumorous tissues. 

● U-Net: A convolutional neural network architecture initiated and proposed by 
Ronneberger et al. for biomedical segmentation in 2015. It has a U-shaped 
architecture with symmetric paths of contraction downscale and expansion upscaling, 
respectively, enabling precise localization with global context. U-Net has been proven 
effective in the segmentation of MRI images [21]. 

● SegNet: A deep learning architecture for semantic segmentation. It works by an 
encoder-decoder approach to generate pixel-wise segmentation maps. The encoder 
is equal to a classic classification network, while the decoder will rebuild spatial 
details lost due to encoding [22]. 

● DeepLab: Developed by Google, DeepLab uses atrous convolutional neural networks 
for multi-scale feature extraction without any loss of resolution. It also utilizes 
Conditional Random Fields (CRF) in refining the segmented boundaries, which is 
more important for complex medical images [23]. 

2.3.2 Instance Segmentation 

Instance segmentation goes one step further than semantic segmentation, as it allows 
distinguishing between each instance of a thing in an image. Such a technique is necessary 
for applications where differentiating various tumors or lesions is essential. 



● Mask R-CNN: Invented by He et al., 2017, Mask R-CNN extends Faster R-CNN by 
having a parallel binary mask prediction branch to the latter's classification and 
bounding box regression branches. This helps make detailed instance segmentation 
masks of the image for every detected object [24]. 

● PANet: Short for Path Aggregation Network, PANet enhances Mask R-CNN to 
explicitly enforce information flow across different levels for the instance 
segmentation task. It utilizes a pyramid architecture that fuses information from other 
network layers to provide more robust segmentation accuracy for smaller and more 
complex-shaped objects [25]. 

Figure 2.7:Example of Segmentation[26] 

2.3.3 Medical Segmentation 

Segmentation of medical images, especially MR images of the brain, is more complex due to 
the intricate anatomy of the brain and inter-patient variability. General changes in deep 
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learning frameworks, adapted from the classic segmentation model, as well as methods 
about medical data, have been widespread in this respect. 

● 3D U-Net: An extended description of the U-Net architecture to work on 
three-dimensional volumes. It allows the resolution of an extended class of problems 
with this architecture, up to now—namely, segmentation of the anatomical structures 
in three dimensions, thus providing better spatial representation of brain tumors [27]. 

● V-Net: A volumetric segmentation architecture crafted just for 3D medical images. 
V-Net employs 3D convolutions in combination with a dice-coefficient loss function for 
enhanced precision in MRI volume segmentation [28]. 

● Attention U-Net: A U-Net variant that uses attention mechanisms to focus within 
relevant regions of interest in medical images. Thus, attention allows the model to 
focus more on essential parts of an image and helps do better tumor segmentation 
[29]. 

● Ensemble Learning: Pooling of segmentation models to make predictions robust and 
accurate. It is a way of building up the results of different models for a more reliable 
final segmentation [30]. 

2.3.4 Clinical 

Image segmentation algorithms are widely utilized in several clinical applications to assist radiologists 
and physicians in more effective patient diagnosis and treatment. 



● Early detection of tumors: Segmenting algorithms enable the detection and delimitation of 
brain tumors at an early stage, which is very important for the early and effective treatment of 
these diseases [31]. 

● Surgical Planning: Accurate tumor segmentation would be beneficial in the planning of 
surgical intervention; it can help provide surgeons with a detailed map of the region to be 
operated on [32]. 

● Disease Progression Monitoring: Segmentation models would be used to monitor the 
progression of tumors over time by comparing images taken at different stages of treatment 
[33]. 

● Personalized Treatments: Segmentation provides detailed information on the size and shape 
of a tumor, as well as its location. Such information will go a long way toward allowing 
targeted and, thus, more effective therapy measures, such as radiotherapy [34]. 

2.4 Preprocessing Techniques of MRI Images 
Image preprocessing is an essential step in improving the quality of input for deep learning 
models. The preprocessing of MRI images includes the normalization of pixel values, noise 
reduction, and an increase in the diversity of training data [35]. 

2.4.1 Normalization and Scaling 
Normalization and scaling of images are essential techniques that make input data 
consistent from one feature to another and satisfy model requirements. - Normalization of 
pixel values:This is the scaling of pixel values for an image to a prescribed range, usually 0 
to 1 or -1 to 1. It is done so that it is more effective for model learning and avoids issues 
related to very high or very low pixel values. Image scaling allows the resizing of the images 
to the input size required by the deep learning model. It aims to make data uniform to reduce 
computational complexity.[36]. 
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Figure 2.8:Normalization and Scaling[37] 
2.4.2 Noise Reduction 

Noise and artifacts have an impact on the performance of segmentation models on MRI 
images. Therefore, noise reduction is a very critical step in the bid to improve the image 
quality. 

● Gaussian filtering: The neighboring pixels of every pixel in an image are averaged 
according to the Gaussian distribution. Consequently, it will help attenuate rapid 



variations of so-called "salt and pepper" noise that preserve most image structures 
[38]. 

● Median filtering: This technique is nonlinear in nature, where each pixel is replaced 
by the median value of its neighbors, solving the problems caused by impulse noise 
artifacts, such as salt and pepper noise [38]. 

● Denoising autoencoder: A neural network for reducing noise from an image. It is 
trained to reconstruct a clean image based on some noisy version, extracting the 
most critical features [39]. 

2.4.3 Data Augmentation 

Data augmentation is a process performed to increase the size and diversity of the training 
dataset by creating new images from existing ones. 

● Rotations and translations: Random rotations and translations are added to images 
to get more variations in training data. This will allow the model to generalize and be 
more robust against the spatial transformations of data [40]. 

● Cropping and zooming: Random cropping and zooming create new perspectives of 
existing images, emphasizing different parts of the image and increasing the diversity 
of training data [40]. 

● Horizontal and vertical flipping: Images can be flipped horizontally and vertically, 
thus creating more members of the dataset, which would further allow the model to 
learn invariances to these transformations [40]. 

● Brightness / Contrast Adjustment: Changing the brightness and contrast of 
images helps simulate different lighting conditions and allows capturing a more 
extensive variety of possible scenarios [41]. 
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Figure 2.9: Data Augmentation [42] 

2.5 Evaluating Segmentation Performance 
Evaluating segmentation models is crucial to ensure their effectiveness in clinical practice. 

Evaluating segmentation models is crucial to ensure their effectiveness in clinical practice 
[43]. 

2.5.1 Evaluation Metrics 

Some standard associated metrics are IoU (Intersection over Union), Dice coefficient, and 
accuracy, among others, for segmentation models. More formally, these metrics describe the 
similarity between model predictions and reference annotations [44]. 

2.5.2 Cross-Validation 

Cross-validation is a technique to evaluate the model using several data subsets; therefore, 
it may be considered a reliable and robust evaluation measure of the model [45]. 

2.5.3 Clinical Trials 

Such segmentation models need to be tested and their validation done with actual patient 
data to establish the clinical utility of segmentation models. Model performance should be 
tested under real-world conditions to evaluate the tool's reliability for use in the clinic [46]. 



25

Chapter 3 

Related 



Work 26

Related Work 

3.1 Literature Review on Brain Tumor Segmentation 

Brain tumor segmentation from MRI images is an intensive research area, with various 
techniques explored to improve the accuracy and efficiency of this task. This chapter reviews 
recent articles highlighting different approaches and advancements in this field. 

3.1.1 Techniques Based on Convolutional Neural Networks (CNNs) 

Article 1: "An Early Detection and Segmentation of Brain Tumor Using Deep Neural 
Network" 

This article presents the use of convolutional neural networks (CNNs) for brain tumor 
segmentation. CNNs are a class of deep learning models that are particularly effective for 
image processing tasks due to their ability to automatically and adaptively learn spatial 
hierarchies of features from input images. The authors highlight several key components of 
CNNs[39]: 

1. Convolutional Layers: These layers apply a set of filters to the input image, creating 
feature maps that capture various aspects of the image, such as edges, textures, and 
shapes. The filters are learned during the training process, allowing the network to 
identify relevant features for segmentation. 

2. Pooling Layers: Pooling operations, such as max pooling or average pooling, are 
used to reduce the spatial dimensions of the feature maps, thereby decreasing the 



computational load and controlling overfitting. Pooling also helps in making the model 
invariant to small translations in the input image. 

3. Activation Functions: Non-linear activation functions like ReLU (Rectified Linear 
Unit) introduce non-linearity into the model, enabling it to learn more complex 
patterns. ReLU activation functions are particularly popular due to their ability to 
mitigate the vanishing gradient problem. 

4. Fully Connected Layers: These layers, typically found towards the end of the 
network, integrate the features extracted by the convolutional and pooling layers to 
make final predictions about the presence and boundaries of brain tumors. 

The authors emphasize the significance of using a large, annotated dataset to train the CNN. 
The dataset used in this study includes MRI images with manually delineated tumor regions, 
providing a robust ground truth for training the model. 
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Figure 3.1:(A) Long Skip Connection process in ResNet, (B) ResNet Bottleneck Block 
process, (C) ResNet Basic Block Working, and (D) ResNet Simple Block Working [39] 

Article 2: "Brain Tumor Segmentation Using Deep Learning on MRI Images" 

This article also focuses on the application of CNNs for brain tumor segmentation, 
specifically utilizing the BraTS dataset, a widely recognized benchmark for brain tumor 
segmentation tasks. Key aspects covered in this article include[40]: 

1. Dataset Utilization: The BraTS dataset comprises multi-modal MRI scans (T1, T1Gd, 



T2, and FLAIR) from a diverse set of patients. This multi-modal approach is crucial as 
different MRI sequences highlight various tumor characteristics, enhancing the 
model’s ability to accurately segment tumor regions. 

2. Loss Functions: The authors employ categorical cross-entropy as the loss function. 
This function is particularly suitable for multi-class segmentation tasks, where the 
goal is to assign each pixel in the MRI image to one of several classes (e.g., 
background, tumor core, enhancing tumor). 

3. Optimization Techniques: Adam (Adaptive Moment Estimation) optimizer is used to 
train the model. Adam combines the advantages of two other popular optimizers: 
AdaGrad and RMSProp, making it well-suited for handling sparse gradients and noisy 
data. 

4. Performance Metrics: The model achieves a validation accuracy of 98%, 
demonstrating its effectiveness in accurately segmenting brain tumors. The authors 
also report other metrics such as the Dice coefficient, which measures the overlap 
between the predicted segmentation and the ground truth, providing a 
comprehensive evaluation of the model’s performance. 
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Figure 3.2:Proposed framework of deep learning method for BT detection 



[40]. 3.1.2 Variants of the U-Net Architecture 

Article 3: "Brain Tumor Segmentation Based on an Improved U-Net" 

This article introduces an improved version of the U-Net architecture, which has become a 
staple in biomedical image segmentation due to its symmetric encoder-decoder structure. 
Key enhancements in the proposed SCU-Net architecture include[41]: 

1. Hybrid Dilated Convolutional Blocks: These blocks are designed to capture fine 
details without the checkerboard artifacts that often plague standard convolutional 
operations. By using dilated convolutions, the network can maintain a larger receptive 
field, allowing it to capture contextual information more effectively. 

2. Serial Encoding and Decoding Modules: The SCU-Net incorporates serial modules 
that enable feature sharing between layers. This architectural design enhances the 
network’s ability to propagate contextual information throughout the model, leading to 
more accurate segmentation. 

3. Feature Maps and Skip Connections: The improved U-Net uses skip connections to 
transfer feature maps from the encoder to the decoder. This mechanism helps in 
retaining spatial information that might otherwise be lost during the down-sampling 
process, thereby improving the localization accuracy of the segmentation. 

The authors validate their approach using a private dataset, reporting a segmentation 
accuracy of 96%. They highlight the importance of architectural innovations in addressing 
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the challenges associated with brain tumor segmentation, such as the variability in tumor 
appearance and the presence of complex anatomical structures. 

Figure 3.3:Overall architecture of SCU-Net[41]. 

3.1.3 Segmentation Based on Public Datasets 

Article 4: "U-Net Variants for Brain Tumor Segmentation: Performance and Analysis" 



This article provides a comprehensive analysis of various U-Net variants and their 
performance on brain tumor segmentation tasks. The authors evaluate several advanced 
architectures, including[42]: 

1. Attention U-Net: This variant integrates attention mechanisms that allow the network 
to focus on the most relevant regions of the image. Attention gates filter out irrelevant 
information, enhancing the model’s ability to segment the tumor accurately. 

2. Residual U-Net: By incorporating residual connections, this variant facilitates the flow 
of gradients through the network, addressing the vanishing gradient problem and 
enabling the training of deeper models. Residual connections also help in capturing 
both low-level and high-level features, improving the model’s overall segmentation 
capability. 

The authors report that these variants outperform the standard U-Net architecture in terms of 
segmentation accuracy, particularly on challenging datasets with high variability. The study 
underscores the importance of architectural innovations in advancing the state of the art in 
brain tumor segmentation. 

Article 5: "Brain Tumor Segmentation from MRI Images Using Deep Learning" 

This article discusses the use of a public dataset containing MRI images for training brain 
tumor segmentation models. Key contributions of the study include [43]: 

1. Data Preprocessing: The authors employ various preprocessing techniques, such as 
normalization and data augmentation, to enhance the quality of the input images. 
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Normalization helps in standardizing the intensity values across different MRI scans, 
while data augmentation increases the diversity of the training data, improving the 
model’s generalization capabilities. 

2. Convolutional Layers: The CNN-based model leverages multiple convolutional 
layers to extract complex features from the MRI images. These layers are designed 
to capture different levels of abstraction, from low-level edges to high-level tumor 
structures. 

3. Training and Validation: The model is trained using a combination of supervised and 
semi-supervised learning techniques, allowing it to learn from both labeled and 
unlabeled data. The authors report a segmentation accuracy of 97%, highlighting the 
effectiveness of their approach in accurately delineating brain tumor regions. 

Article 6: "Deep Learning Based Brain Tumor Segmentation: A Survey" 

This article provides an extensive review of deep learning techniques applied to brain tumor 
segmentation. The authors analyze various architectures, including[44]: 

1. U-Net: A widely used architecture for biomedical image segmentation, known for its 
ability to capture fine details through its symmetric encoding and decoding paths. 2. 
V-Net: Designed for volumetric segmentation, V-Net uses 3D convolutions to process 
MRI images in three dimensions, making it well-suited for segmenting volumetric medical 
data. 



3. Recurrent Neural Networks (RNNs): Although less commonly employed than CNN 
architectures, RNNs are used to capture sequential dependencies in medical imaging 
data. The authors discuss the potential of RNNs for improving segmentation accuracy 
by leveraging temporal information. 

The authors conclude that deep learning techniques have significantly advanced the field of 
brain tumor segmentation, but challenges remain, particularly regarding data variability and 
computational complexity. They emphasize the need for continued research to address these 
challenges and improve the robustness of segmentation models. 

Figure 3.4:proposed taxonomy of deep learning based brain tumor segmentation 
methods. Best viewed in colors [44]. 
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Article 7: "Automated Brain Tumor Segmentation on MRI Using Enhanced Deep 
Learning Techniques" 

This article explores the application of enhanced deep learning techniques for automated 
brain tumor segmentation on MRI images. The authors propose a hybrid model that 
combines CNNs and recurrent neural networks (RNNs) to leverage both spatial and temporal 
features. Key points discussed include[45]: 

1. Hybrid Model Architecture: The proposed model integrates CNNs for spatial feature 
extraction and RNNs for capturing temporal dependencies. This combination allows 
the model to effectively segment brain tumors by considering both spatial and 
temporal contexts. 

2. Multi-modal Data Integration: The authors emphasize the importance of using 
multi-modal MRI data to improve segmentation outcomes. By combining information 
from different MRI sequences, the model can capture a more comprehensive view of 
the tumor, leading to better segmentation accuracy. 

3. Performance Evaluation: The model is evaluated on a private dataset, achieving 
superior segmentation accuracy and robustness compared to traditional CNN 
models. The authors highlight the potential of hybrid models for advancing brain 
tumor segmentation. 

Article 8: "Comparative Analysis of Deep Learning Architectures for Brain Tumor 



Segmentation" 

This article provides a comparative analysis of various deep learning architectures, including 
U-Net, SegNet, and DenseNet, for brain tumor segmentation. Key findings include[46]: 

1. Model Comparison: The authors evaluate the performance of different models on the 
BraTS dataset, highlighting their strengths and weaknesses. U-Net variants excel in 
capturing fine details, SegNet models offer efficient memory usage, and 
DenseNet-based models provide better generalization capabilities. 

2. Performance Metrics: The study reports various metrics, such as accuracy, Dice 
coefficient, and computational complexity, to provide a comprehensive evaluation of 
each model. The authors conclude that while there is no one-size-fits-all solution, 
selecting the appropriate architecture depends on the specific requirements of the 
segmentation task. 

Article 9: "Multi-scale Convolutional Neural Networks for Brain Tumor Segmentation" 

This article introduces a multi-scale convolutional neural network (MCNN) approach for brain 
tumor segmentation. Key aspects include [47]: 

1. Multi-scale Processing: The MCNN model processes input images at different 
scales, capturing both global and local features. This multi-scale approach enables 
the model to effectively segment tumors of varying sizes and shapes. 

2. Model Architecture: The MCNN model consists of multiple branches, each focusing 
on a different scale of the input image. These branches are combined at later stages 
to produce a final segmentation output. 
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3. Performance Evaluation: The authors demonstrate that the MCNN model 
outperforms conventional CNN architectures in terms of segmentation accuracy and 
robustness, particularly for small tumor regions. The study underscores the 
importance of multi-scale processing for improving brain tumor segmentation. 

Figure 3.5:The MSCNN structure diagram [47]. 
Article 10: "Ensemble Learning for Improved Brain Tumor Segmentation" 



This article investigates the use of ensemble learning techniques to improve brain tumor 
segmentation performance. Key points discussed include[48]: 

1. Ensemble Strategies: The authors explore various ensemble strategies, such as 
bagging and boosting, to combine predictions from multiple deep learning models. 
These strategies help in reducing overfitting and improving the overall robustness of 
the segmentation model. 

2. Performance Metrics: The ensemble approach achieves higher accuracy and 
robustness compared to individual models. The authors report significant 
improvements in segmentation performance, particularly in challenging cases with 
high variability. 

3. Implementation Details: The study provides insights into the implementation of 
ensemble learning techniques, discussing the trade-offs between computational 
complexity and segmentation accuracy. 

3.2 Comparison of Approaches 

To better understand the differences and similarities between the approaches described in 
the articles, here are two comparative tables. 
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Table 3.1: Model Accuracy and Performance 

Article Model Dataset Accuracy Advantages Disadvantages 

Article 1 

Article 2 

Article 3 

CNN BraTS 97% Complex 
feature extraction 

CNN BraTS 98% High accuracy, 
advanced optimizers 

SCU-Net Private 96% Fine 
detail capture, reduced 

checkerboard 
effect 
Resource-intensive Prone to 

overfitting Increased complexity 

Article 4 

U-Net 
variants 

Various 95-98% 
Adaptability, robustness 

Specific adjustments 
needed 

Article 5 
Article 6 

CNN Public 97% Effective 
preprocessing, data 
augmentation 



DL review Multiple Variable 
Comprehensive technique 
overview 

Dependency on 
high-quality data Limited 

comparability 

Article 7 

Article 8 
CNN + 
RNN 

U-Net, 

SegNet, DenseNet 
Private 96.5% 
Integration of spatial 
and temporal features 

BraTS Variable 
Strengths across 
various metrics 

34
Increased 
computational 
demand 

Specific weaknesses 
per model 

Related Work 

Article 9 

MCNN BraTS 97.5% Superior 
accuracy, robustness 
High complexity 

Article 10 

Ensemble models 
Multiple 98.2% 
Improved performance, 
robustness 

Increased training time 

Table 3.2: Computational Complexity and Robustness 

Article Model Complexity Robustness Remarks Article 1 CNN High High Requires powerful 

GPUs Article 2 CNN High High Advanced optimization Article 3 SCU-Net Medium to high Very 

high Hybrid dilated convolutions 

Article 4 U-Net variants Variable Variable Depends on specific variants 

Article 5 CNN Medium High Good generalization Article 6 DL review Variable Variable 



Technique comparability 

Article 7 CNN + RNN High High Enhanced spatial-temporal analysis 

Article 8 U-Net, SegNet, DenseNet 
Variable Variable Model-specific complexity 35

Related Work 

Article 9 MCNN High Very high Multi-scale feature integration 

Article 10 

Ensemble models 
Very high Very high Ensemble 
strategy benefits 

3.3 Limitations of Classical Techniques 

Classical segmentation methods, though useful in some contexts, present significant 
limitations compared to modern deep learning techniques. These limitations include: 

● Inter-patient Variability: Classical techniques often struggle with inter-patient 
variability. Brain tumors vary significantly in size, shape, and location, making it 
difficult to apply a single threshold or model. 

● Sensitivity to Noise and Artifacts: Classical methods are often sensitive to noise and 
artifacts in MRI images, leading to incorrect or incomplete segmentations. ● 
Computational Complexity: While classical techniques are generally less 
resource-intensive than deep learning methods, some approaches, like active contours, 
can be complex and require manual parameter adjustments. ● Lack of Robustness: 
Classical methods may lack robustness against intensity variations and complex 
anatomical structures, limiting their precision and reliability in clinical practice. 

3.4 Conclusion 

Recent articles on brain tumor segmentation highlight the advantages of deep learning 
techniques over classical methods. Architectures like CNNs, U-Net, and their variants offer 
increased accuracy and robustness, though computational demands and data variability 
remain challenges. Recent advancements show promising potential for improving brain 
tumor diagnosis and treatment through more precise and efficient segmentation techniques. 
Further research is needed to address the remaining challenges and fully leverage the 
capabilities of deep learning for clinical applications. 
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4.1 Introduction 

Segmenting brain tumors from MRI images is essential for accurate diagnosis and treatment 
planning in oncology. This chapter describes the proposed architecture for brain tumor 
segmentation, as well as the tools and methods used in this study. 

4.2 Tools Used 

4.2.1 Google Colab (Cloud) 

Google Colab is a cloud computing platform that allows running Jupyter notebooks on 
servers hosted by Google. It offers free GPU and TPU resources, which are crucial for 
training resource-intensive deep learning models. Colab also facilitates sharing and 
collaboration on research projects.[49] 

4.2.2 Libraries 

To implement our model, we utilized several Python libraries: 

● TensorFlow and Keras: Used for building and training deep learning models. Keras, 
integrated with TensorFlow, provides a high-level interface for creating neural 



networks.[50][51]. 
● NumPy and Pandas: Employed for data manipulation and analysis. NumPy is 

particularly useful for operations on multidimensional arrays, while Pandas simplifies 
dataset management[52][53]. 

● OpenCV and Scikit-image: Used for image processing, including preprocessing 
operations like noise reduction and image alignment[54][55]. 

● Matplotlib and Seaborn: Essential for visualizing the results and performance of 
models, enabling the creation of informative graphs and plots[56][57]. 

4.3 Dataset Used 

For training and evaluating our brain tumor segmentation model, we used the BraTS 
database, a benchmark in the field of brain MRI image analysis. 

4.3.1 BraTS (Brain Tumor Segmentation) 

The BraTS (Brain Tumor Segmentation) dataset is widely recognized and used in research 
for brain tumor segmentation. It is specifically designed to enable the development and 
evaluation of brain tumor segmentation algorithms on MRI images[58]. 

Components of the dataset: 

● Multimodal MRI images: The BraTS dataset includes MRI images obtained from four 
different sequences: T1, T1c (T1 with contrast), T2, and FLAIR (Fluid Attenuated 
Inversion Recovery). Each modality provides specific information that helps identify 
and segment tumors. 
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● Manual annotations: The images are accompanied by manual annotations by 
experts, indicating tumor areas. These annotations include precise delineations of 
different tumor regions (tumor core, enhancing tumor, edema, etc.). 

● Diverse patient data: The dataset includes data from various patients, which allows 
capturing a wide range of tumor characteristics and improving the generalization of 
segmentation models. 

History and versions 

BraTS was initially introduced in 2012 and has evolved with several annually updated 
versions to include new images and annotations. Recent versions include data from multiple 
medical centers, increasing the diversity and representativeness of the data. 

Usage and challenges: 

● Tumor segmentation: The main challenge with MRI images of brain tumors is to 
accurately segment the different components of the tumor, including the tumor core, 
peritumoral edema, and contrast-enhanced regions. 

● Inter-patient variation: Brain tumors vary significantly from patient to patient in terms 
of size, shape, and intensity, making automated segmentation complex. ● Artifacts and 
noise: MRI images can contain artifacts and noise, complicating the extraction of 



relevant features for segmentation. 

4.4 Transfer Learning 

Transfer learning is a technique where a model pre-trained on a large dataset is used as a 
starting point for a new problem. In our approach, we used pre-trained models like VGG19 
and ResNet50 to initialize the weights of our network, improving performance and 
accelerating model training, especially with a limited amount of training data. 

4.5 The CNN Model Used 

In our approach to brain tumor segmentation, we used several pre-trained convolutional 
neural network (CNN) architectures to improve segmentation accuracy and efficiency. The 
models chosen for this task are VGG19, ResNet50, and U-Net. Here is a detailed description 
of each model and their role in our architecture. 

4.5.1 VGG19 

Model overview: VGG19 is a convolutional neural network architecture developed by the 
Visual Geometry Group at the University of Oxford. This model is known for its simplicity and 
effectiveness in image classification and segmentation. It has 19 deep layers, mainly small 
convolutional layers (3x3) followed by pooling layers and fully connected layers[59]. 

Key features: 

● Small convolutions (3x3): Small convolutions capture fine details in images while 
reducing the number of parameters. 
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● Max pooling layers: These layers reduce the dimensionality of the extracted features 
while retaining important information. 

● Fully connected layers: Used at the end of the network for classification, these layers 
are adapted for segmentation tasks by adding deconvolution (upsampling) layers. 

Application in segmentation: In our architecture, VGG19 is used as an encoder to extract 
low-level and high-level features from MRI images. The extracted features are then fused 
with those from other models to enhance brain tumor segmentation. 



Figure 4.1:Architecture VGG19[59] 
4.5.2 ResNet50 

Model overview: ResNet50, developed by Microsoft, is a deep convolutional neural network 
with 50 layers. It uses residual connections to facilitate the training of very deep networks. 
These connections allow gradients to propagate more easily through the network, improving 
learning and model performance[60]. 

Key features: 

● Residual connections: These connections bypass certain layers of the network, 
addressing the degradation problem and facilitating the training of very deep 
networks. 

● Bottleneck layers: These layers reduce dimensionality before passing through 3x3 
convolutions, decreasing the number of parameters while maintaining high 
performance. 

● Easier training: Residual connections allow training deeper networks without losing 
precision. 

Application in segmentation: ResNet50 serves as another encoder in our architecture. It 
complements the features extracted by VGG19 by capturing more complex information 
through its residual connections. The outputs of ResNet50 are fused with those of VGG19 to 
enrich contextual information necessary for accurate segmentation. 
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Figure 4.2:Architecture ResNet50[60] 
4.5.3 U-Net 

Model overview: U-Net is an architecture specifically designed for biomedical image 
segmentation. It features a U-shaped structure with an encoding path to capture context and 
a decoding path for precise localization. U-Net is widely used for tumor segmentation due to 
its ability to integrate global and local contextual information[61]. 

Key features: 

● Symmetrical encoding and decoding path: The encoding path captures global 
contextual features, while the decoding path uses them to reconstruct the segmented 
image with high local precision. 

● Skip connections: Direct connections between corresponding layers of the encoding 
and decoding paths preserve fine details and improve segmentation accuracy. 

● Deconvolution (upsampling) convolutions: Used to gradually increase the spatial 
resolution of features and reconstruct the segmented image. 

Application in segmentation: U-Net forms the basis of our segmentation architecture. We 
modified U-Net to include VGG19 and ResNet50 encoders, creating a dual-branch U-Net. 
Each branch (VGG19 and ResNet50) independently extracts low-level features from images, 
and the outputs are then fused by concatenation. This combination is passed through a 
series of decoder layers to predict high-quality segmentation masks. 
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Figure 4.3:Architecture U-Net[61] 

4.6 Proposed Methodology 

4.6.1 Preprocessing 

Preprocessing images is essential to enhance data quality and model 

performance. -Intensity normalization: 

● Intensity homogenization: Equalize intensity levels between different images to 
reduce acquisition variations. 

● Standardization: Resize pixel values to a common range . 

-Noise reduction: 

● Gaussian filtering: Apply a Gaussian filter to reduce noise. 
● Wiener filter: Use a Wiener filter to remove noise while preserving edges. 

-Artifact removal: 

● Motion artifact correction: Use algorithms to correct patient movement during 
acquisition. 

● Magnetic field artifact suppression: Use techniques to correct artifacts from 
magnetic field variations. 

-Image alignment and registration: 

● Registration: Align images using registration techniques to ensure that different slices 
or time series are spatially aligned. 
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● Affine/non-rigid registration: Apply affine or non-rigid transformations to improve 
alignment. 

-Data augmentation : 

● Rotation, translation, scaling: Apply geometric transformations to increase data 
diversity. 

● Flipping, cropping, elastic transform: Use augmentation techniques to enrich the 
dataset. 

-Resizing and normalization (for model input): 

● Resizing: Adjust image size to match the input size required by your neural network 
model. 

Figure 4.4:Resizing and normalization 

4.6.2 Architecture of the Approach 

The proposed architecture is a dual-branch U-Net model designed for brain cancer 
segmentation from MRI images. This architecture combines the advantages of two 
pre-trained encoders, VGG19 and ResNet50, to extract robust and diverse features from the 
input images. Each branch independently encodes the low-level features of the images, and 
the outputs of these two branches are fused by concatenation. This combination is then 
passed through a series of decoder layers that progressively increase the spatial resolution, 
thus allowing the prediction of high-quality segmentation masks. The decoder layers use 
convolution and upsampling operations to reconstruct the segmented image. This approach 
leverages transfer learning to initialize the weights of the encoders, thereby enhancing the 
model's ability to learn relevant features with a limited amount of training data. 
Cross-validation is employed to evaluate the model's performance in a robust and reliable 
manner. 
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Figure 4.5:Architecture of our Approach 

Feature Extraction The features extracted by each model have different dimensions due to 
their specific architectures. At the output of the pre-trained models, the features are tensors 
of reduced size compared to the original image but with many feature maps (channels). 

● VGG19: Output shape: (8, 8, 512) after the last convolution layer. 
● ResNet50: Output shape: (8, 8, 2048) after the last convolution layer. 

To merge the features extracted from the two branches, we use the concatenation operation 
along the channel axis (axis=-1). This means we combine the feature maps extracted by 
VGG19 and ResNet50 into a single feature matrix. This concatenation allows the model to 
benefit from the strengths of each branch, combining the fine details and complex patterns 
extracted by VGG19 and ResNet50 respectively. 

Table 4.1:Comparative Table of Feature Dimensions 

Model Output Shape 

VGG19 (8, 8, 512) 

ResNet50 (8, 8, 2048) 

Concatenation (8, 8, 2560) 

Decoder Layers After feature fusion, the resulting combination passes through a series of 
decoder layers. These layers progressively increase the spatial resolution, enabling the 
reconstruction of the segmented image. 

● Convolution: Used to refine the fused features and add depth to the network. ● 
Upsampling: Used to increase the spatial resolution of the features, reversing the 
pooling layers' effect applied in the encoders. 
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The decoder process continues until the spatial resolution of the features is restored to the 
original input image size. The final decoder layer uses a softmax activation function to 
produce the final segmentation masks, with each pixel classified into a category (e.g., tumor 
or healthy tissue). 

Transfer Learning and Weight Initialization Transfer learning is used to initialize the 
weights of the encoders. The VGG19 and ResNet50 models are pre-trained on generic 
image datasets (such as ImageNet), allowing the model to acquire general image features. 
These features are then fine-tuned for the specific task of brain tumor segmentation by 
training the model on task-specific training data. 

Cross-Validation Cross-validation is used to evaluate the model's performance robustly and 
reliably. This process involves splitting the dataset into multiple folds, where each fold is 
used successively as a validation set while the other folds are used for training. This 
technique ensures that the model is exhaustively evaluated and that its performance is 
generalizable to new data. 

The proposed architecture effectively utilizes transfer learning and the combination of two 
pre-trained encoders to improve brain tumor segmentation from MRI images. The results 
show significant improvement over traditional methods, although challenges remain. Future 
work could explore integrating other deep learning techniques and increasing the diversity of 
training data to further enhance the model's accuracy and robustness. 

4.7 Results and Discussion 

4.7.1 Evaluation Criteria 

To evaluate the performance of our brain tumor segmentation model, we used several 
metrics, each providing complementary information on the model's accuracy and 
robustness: 

● Dice Coefficient (Dice Similarity Coefficient - DSC): Measures the similarity 
between predicted and ground truth masks. Commonly used in medical segmentation 
tasks. 
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where A is the predicted mask and B is the ground truth mask. 

● Binary Crossentropy: Used as a loss function for training the model, measuring the 
difference between predictions and true binary labels. It heavily penalizes incorrect 
predictions. 

● Accuracy: Measures the percentage of correctly classified pixels among all 
predictions. While useful, it can be misleading for imbalanced data. 
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● Intersection over Union (IoU): Also known as Jaccard Index, it measures the overlap 
between predicted and ground truth masks. 

������ =|��∩��| 
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● Precision and Recall: 
○ Precision: Measures the proportion of pixels predicted as positive that are 

actually positive. 

������������������ =���� 
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○ Recall: Measures the proportion of correct positive pixels identified among 
actual positive pixels. 

������������ =���� 
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● F1 Score: Harmonic mean of precision and recall, providing a balanced metric. 
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4.7.2 Presentation of Results 

The results of our brain tumor segmentation model are summarized in the table below: 

Table 4.2: Obtained Result 

Metric DSC BC Accuracy IoU Precision Recall F1 Score Value (%)92 90 80 82 88 89 



90

Figure 4.6:Obtained Result 
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4.7.3 Discussion of Results 

The results show that our segmentation model achieves high performance with a Dice 
Coefficient of 92%, indicating excellent similarity between predicted and ground truth masks. 
The Binary Crossentropy at 90% and Accuracy at 80% demonstrate the model's ability to 
distinguish tumor pixels from non-tumor pixels, although the Accuracy is slightly lower due to 
the imbalanced nature of the data. 

The Intersection over Union (IoU) at 82% is also satisfactory, indicating good overlap 
between predictions and manual annotations. Precision (88%) and Recall (89%) metrics 
show that the model is both precise and sensitive, crucial for minimizing false positives and 
negatives. The F1 Score of 90% confirms the balance between precision and recall. 

Compared to related works, our model shows notable improvements in several aspects: 

● DSC: Works using traditional U-Net architectures generally report DSC values around 
85-88%, while our approach reaches 92% due to the combination of VGG19 and 
ResNet50. 

● IoU: IoU values of traditional methods typically range between 75-80%, whereas our 
model achieves 82%, indicating better overlap and more precise segmentation. 

4.8 Conclusion 

In conclusion, our proposed architecture for brain tumor segmentation, based on the 
combination of VGG19, ResNet50, and U-Net models, has shown promising performance. 
The results indicate significant improvement over traditional approaches, particularly in the 
accuracy and robustness of segmentations. 

Transfer learning techniques effectively initialized the weights of the encoders, enhancing the 
model's ability to learn relevant features with a limited amount of training data. Despite the 
high performance of our model, challenges remain, especially regarding data variability and 
artifact presence. 



For future work, we recommend exploring the integration of additional deep learning 
techniques and increasing the diversity of training data to further improve the model's 
accuracy and robustness. 
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General Conclusion and Perspectives 

General Conclusion 

This thesis has allowed for an in-depth exploration of brain tumor segmentation from MRI 
images using advanced deep learning techniques, particularly convolutional neural networks 
(CNN). The main objectives were to develop an accurate and robust segmentation method 
and to validate its effectiveness on varied datasets. 

The results obtained demonstrated significant advancements, particularly through the use of 
pre-trained models such as VGG19 and ResNet50, integrated into a modified U-Net 
architecture. This approach achieved a Dice Coefficient of 92%, surpassing the performance 
of classical methods and other segmentation architectures. The proposed method proved 
effective in enhancing the accuracy of brain tumor segmentation, which is crucial for effective 
diagnosis and treatment. 

Perspectives 



Although the results are promising, several aspects can be improved and explored in future 
work: 

Data Diversification: 

-Enrichment of Datasets: Integrate images from various sources and clinical contexts to 
improve the robustness and generalization of the model. 

Model Optimization: 

-Reduction of Computational Complexity: Develop more efficient algorithms to reduce 
computational power requirements and accelerate the model training process. 

-Improvement of Preprocessing Methods: Refine image preprocessing techniques to 
better handle artifacts and noise present in MRI images. 

Clinical Applications: 

-Collaboration with Medical Institutions: Test and deploy the models in real clinical 
environments to evaluate their performance under practical conditions and obtain feedback 
from healthcare professionals. 

Continuous and Adaptive Learning: 

-Active Learning: Implement active learning systems where models can continuously learn 
and improve from new data annotated by experts. 

-Integration of Explainable Artificial Intelligence: Develop explainable models to help 
doctors understand and interpret the decisions made by the segmentation systems. 
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