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Abstract

In this work, we present the existence of extremal solutions for nonlinear
conformable fractional differential equation involving integral boundary condition,
and for a coupled system of nonlinear first order ordinary differential equations
with initial conditions. Also, we present existence of extremal solutions for a cou-
pled system of nonlinear conformable fractional differential equations with initial
conditions.

Existence results for these problems are obtained by using the monotone iter-
ative technique combined with the method of upper and lower solutions.

Key words and phrases: Conformable fractional derivative, conformable frac-
tional calculus, systems of conformable fractional differential equations, upper and
lower solutions, monotone iterative technique.
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Résumé

Dans ce mémoire, nous présentons l’existence de solutions extrêmes pour une
équation différentielle fractionnaire conforme non linéaire avec condition intégrale,
et pour un système couplé d’équations différentielles ordinaires non linéaires du
premier ordre avec des conditions initiales. Aussi, nous présentons l’existence de
solutions extrêmes pour un système couplé d’équations différentielles fractionnaires
conformes non linéaires avec conditions initiales. Ces résultats sont obtenus grâce
à la technique itérative monotone combinée à la méthode des sous et sur solutions.

.
Mots Clés: Dérivée fractionnaire conforme, calculs fractionnaire conforme, sys-
tèmes d’équations différentielles fractionnaires conformes, sous et sur solutions,
technique des itérations monotones.
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Introduction

Fractional calculus is a generalization of ordinary differentiation and integration
to arbitrary non-integer order. Fractional differential equations play an important
role in describing many phenomena and processes in various fields of science such
as physics, chemistry, control systems, population dynamics, aerodynamics and
electrodynamics, etc. For examples and details, the reader can see the references
[18, 21, 23, 26, 27].

Recently, a new fractional derivative, called the conformable fractional deriva-
tive, was introduced by Khalil et al. [17]. For recent results on conformable
fractional derivatives we refer the reader to [1, 2, 4, 5, 10, 12, 15, 16]. We point
out that the method of lower and upper solutions has been applied by several au-
thors to obtain the existence of solutions of initial value problems and boundary
value problems for fractional differential equations, see [6, 28, 29, 30].

In this work, we present existence of extremal solutions for nonlinear con-
formable fractional differential equation involving integral boundary condition,
and for a coupled system of nonlinear first order ordinary differential equations
with initial conditions. Also, we present existence of extremal solutions for a cou-
pled system of nonlinear conformable fractional differential equations with initial
conditions. Existence results for these problems are obtained by using the mono-
tone iterative technique combined with the method of upper and lower solutions.
The purpose of this method is to:

(i) constructing two monotone iterative sequences, by using γ, δ the lower and
upper solutions with γ ≤ δ,

(ii) showing the convergence of the constructed sequences,

(iii) proving these two sequences approximate the extremal solutions of the given
problem.

A solution x∗ in [γ, δ] is a maximal solution if x∗ ≥ x for any other solution x in
[γ, δ]. A solution y∗ in [γ, δ] is a minimal solution if y∗ ≤ x for any other solution x
in [γ, δ], when both a minimal and a maximal solution in [γ, δ] exist, we call them
the extremal solutions in [γ, δ].
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For applications of monotone iterative technique combined with the method
of upper and lower solutions to differential equations and differential systems, one
can refer to literatures [3, 8, 9, 19, 20, 22].

We have organized this work as follows:
In Chapter 1, we present some definitions and results which are used through-

out this thesis.
In Chapter 2, we prove the existence of extremal solutions for the following

nonlinear conformable fractional differential equation involving integral boundary
condition, using the method of upper and lower solutions and its associated mono-
tone iterative technique:

x(α)(t) = f(t, x(t)), t ∈ I = [0, 1],

x(0) =

∫ 1

0

x(t)dt,
(1)

where 0 < α ≤ 1, f : I × R → R is a continuous function, x(α)(t) denotes the
conformable fractional derivative of x at t of order α and σ ∈ R.

In Chapter 3, we investigate the existence of extremal solutions for a coupled
system of nonlinear first order ordinary differential equations with initial condi-
tions, by using the comparison principle and the monotone iterative technique
combined with the method of upper and lower solutions:

x
′
(t) = f(t, x(t), y(t)), t ∈ I = [a, b],

y
′
(t) = g(t, y(t), x(t)), t ∈ I = [a, b],

x(a) = λ0, y(a) = β0.

(2)

where f, g ∈ C([a, b]× R× R,R) and λ0, β0 ∈ R with λ0 ≤ β0.

In Chapter 4, we investigate the existence of extremal solutions for a coupled
system of nonlinear conformable fractional differential equations with initial con-
ditions, by using the comparison principle and the monotone iterative technique
combined with the method of upper and lower solutions:

x(α)(t) = f(t, x(t), y(t)), t ∈ I = [a, b],

y(α)(t) = g(t, y(t), x(t)), t ∈ I = [a, b],

x(a) = λ0, y(a) = β0.

(3)

where f, g ∈ C([a, b]×R×R,R), λ0, β0 ∈ R, λ0 ≤ β0, x(α), y(α) are the conformable
fractional derivatives with 0 < α ≤ 1.
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Chapter 1

Preliminaries

In this chapter, we present some definitions and results which we will use in this
work.

1.1 Elements of Functional Analysis
Let C(J,R) be the Banach space of continuous functions from J = [a, b] into R
with the norm

‖u‖ = sup{|u(t)| : t ∈ J}.
Definition 1.1.1. [25]. Let E, F be Banach spaces and T : E → F .
(i) The operator T is said to be bounded if it maps any bounded subset of E into

a bounded subset of F .

(ii) The operator T is called compact if T (E) is relatively compact (i.e., T (E) is
compact).

(iii) The operator T is said to be completely continuous if it is continuous and
maps any bounded subset of E into a relatively compact subset of F .

Theorem 1.1.2. (Arzela-Ascoli theorem [24]). A subset F of C([a, b],Rn) is rel-
atively compact (i.e. F is compact) if and only if the following conditions hold:

1. F is uniformly bounded i.e, there exists M > 0 such that

‖f(t)‖ < M for each t ∈ [a, b] and each f ∈ F .

2. F is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each
t1, t2 ∈ [a, b], |t2 − t1| 6 δ implies ‖f(t2)− f(t1)‖ 6 ε, for every f ∈ F .

Theorem 1.1.3. (Schauder’s fixed point theorem [11]). Let C be a convex (not
necessarily closed) subset of a normed linear space E. Then each compact map
N : C → C has at least one fixed point.

6



1.2. Conformable Fractional Calculus 7

1.2 Conformable Fractional Calculus
In this section, we introduce some necessary definitions and properties of the con-
formable fractional calculus which are used in this thesis and can be found in
[1, 13, 17].

Definition 1.2.1. [17] Given a function f : [0,∞) → R and a real constant
α ∈ (0, 1]. The conformable fractional derivative of f of order α is defined by,

f (α)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(1.1)

for all t > 0. If f (α)(t) exists and is finite, we say that f is α-differentiable at t.
If f is α-differentiable in some interval (0, a), a > 0, and limt→0+ f

(α)(t) exists,
then the conformable fractional derivative of f of order α at t = 0 is defined as

f (α)(0) = lim
t→0+

f (α)(t).

Theorem 1.2.2. [17] Let α ∈ (0, 1] and f : [0,∞)→ R a α-differentiable function
at t0 > 0, then f is continuous at t0.

Theorem 1.2.3. [17] Let α ∈ (0, 1] and assume f, g to be α-differentiable at a
point t > 0. Then,

(i) (af + bg)(α) = af (α) + bg(α), for all a, b ∈ R;

(ii) (fg)(α) = fg(α) + gf (α);

(iii) (f/g)(α) =
gf (α) − fg(α)

g2
.

(iv) If, in addition, f is differentiable at a point t > 0, then

f (α)(t) = t1−αf ′(t).

Additionaly, conformable fractional derivatives of certain functions as follow:

1. (tp)(α) = p tp−α, for all p ∈ R.

2. (λ)(α) = 0, for all λ ∈ R.

3. (ect)(α) = c t1−αect, for all c ∈ R.

4. (e
p
α
tα)(α) = p e

p
α
tα , for all p ∈ R.

Remark 1.2.4. It is not difficult to verify the following assertions:
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1.2. Conformable Fractional Calculus 8

(i) The function x : t 7→ e
p
α
tα, p ∈ R, is the unique solution to the conformable

fractional differential equation

x(α)(t) = p x(t), t ∈ [0,∞), x(0) = 1.

(ii) If f is differentiable at t, then f is α-differentiable at t.

Theorem 1.2.5. [13] Let a > 0 and f : [a, b]→ R be a given function that satisfies

(i) f is continuous on [a, b],

(ii) f is α-differentiable for some α ∈ (0, 1).

Then we have the following:

(1) If fα(x) > 0 for all x ∈ (a, b), then f is increasing on [a, b].

(2) If fα(x) < 0 for all x ∈ (a, b), then f is decreasing on [a, b].

Definition 1.2.6. (Conformable fractional integral [17]). Let α ∈ (0, 1] and f :
[a,∞) → R. The conformable fractional integral of f of order α from a to t,
denoted by Iaα(f)(t), is defined by

Iaα(f)(t) :=

∫ t

a

f(s)dαs :=

∫ t

a

f(s)sα−1ds.

The considered integral is the usual improper Riemann one.
For a = 0 we put I0

α(f)(t) = Iα(f)(t).

Theorem 1.2.7. [17] If f is a continuous function in the domain of Iaα then, for
all t ≥ a we have

(Iaα(f))(α) (t) = f(t).

Lemma 1.2.8. [17] Let f : (a, b)→ R be differentiable and 0 < α ≤ 1. Then, for
all t > a we have

Iaα(f (α))(t) = f(t)− f(a). (1.2)

Proposition 1.2.9. [13] Let 0 < a < b, f : [a, b]→ R be continuous function and
0 < α < 1. Then for all t ∈ [a, b] we have,

|Iaα(f)(t)| ≤ Iaα|f |(t).

Theorem 1.2.10. (Rolle’s theorem [13]) Let a > 0 and f : [a, b]→ R be a function
with the properties that

(1) f is continuous on [a, b],

8



1.2. Conformable Fractional Calculus 9

(2) f is α−differentiable on (a, b) for some α ∈ (0, 1),

(3) f(a) = f(b).

Then, there exists c ∈ (a, b), such that fα(c) = 0.

Theorem 1.2.11. (Mean Value Theorem [13]) Let a > 0 and f : [a, b] → R be a
function with the properties that

(1) f is continuous on [a, b],

(2) f is α−differentiable on (a, b) for some α ∈ (0, 1),

Then, there exists θ ∈]a, b[, such that f (α)(θ) =
f(b)− f(a)
1
α

(bα − aα)
.

Remark 1.2.12. We introduce the following space:

Cα(J,R) = {f : J → R, is α-differentiable on J and f (α) ∈ C(J,R)}.

If α = 1, we have

C1(J,R) = {f : J → R, is differentiable on J and f
′ ∈ C(J,R)}.

9



Chapter 2

Extremal solutions to conformable
fractional differential equations

2.1 Introduction
In this chapter, we consider the existence of solutions for the following nonlinear
conformable fractional differential equation involving integral boundary condition:

x(α)(t) = f(t, x(t)), t ∈ I = [0, 1],

x(0) =

∫ 1

0

x(t)dt,
(2.1)

where 0 < α ≤ 1, f : I × R → R is a continuous function, x(α)(t) denotes the
conformable fractional derivative of x at t of order α.

S. Meng et al. in [22], studied the existence of extremal iteration solution
to the following nonlinear conformable fractional differential equation involving
integral boundary condition:

x(α)(t) = f(t, x(t)), t ∈ I = [0, 1],

x(0) =

∫ 1

0

x(t)dµ(t),
(2.2)

where 0 < α ≤ 1, f : I × R → R is a continuous function, x(α)(t) denotes the

conformable fractional derivative of x at t of order α and
∫ 1

0

x(t)dµ(t) denotes the

Riemann-Stieltjes integral with positive Stieltjes measure of µ.
In [14] T. Jankowski studied the existence of extremal solutions to the following

10



2.2. Linear fractional differential equations 11

nonlinear ordinary differential equations with integral boundary conditions:
x
′
(t) = f(t, x(t)), t ∈ J = [0, T ], T > 0

x(0) = λ

∫ T

0

x(t)dt+ d,
(2.3)

where f : I × R→ R is a continuous function, d ∈ R and λ = −1 or λ = 1.
The existence result of (2.1) is obtained by means of the method of upper

and lower solutions and its associated monotone iterative technique. Based on a
comparison result, two monotone iterative sequences are obtained using the upper
and lower solutions, and these two sequences approximate the extremal solutions
of the (2.1).

2.2 Linear fractional differential equations
In this section, we study the expression of the solutions of a linear conformable
fractional differential equation involving integral boundary problem:

x(α)(t) = −p(t)x(t) + g(t), t ∈ I = [0, 1],

x(0) =

∫ 1

0

x(t)dt+ σ,
(2.4)

with 0 < α ≤ 1, σ ∈ R and p, g ∈ C([0, 1],R).
Once we have such expression, we derive comparison results for the considered

problems.

Theorem 2.2.1. If 1−
∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt 6= 0, then problem (2.4) has a unique

solution x ∈ C([0, 1],R), and it is given by the following expression:

x(t) =
e−

∫ t
0 τ

α−1p(τ)dτ

1−
∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτdsdt+ σ

]

+

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτds.

(2.5)

Proof. Let x be a solution of problem (2.4), we have x(α)(t) + p(t)x(t) = g(t). By
Theorem 1.2.3, we have that the following property holds:

[e
∫ t
0 τ

α−1p(τ)dτx(t)](α) = e
∫ t
0 τ

α−1p(τ)dτxα(t) + p(t)x(t)e
∫ t
0 τ

α−1p(τ)dτ

= (xα(t) + p(t)x(t)) e
∫ t
0 τ

α−1p(τ)dτ

= g(t)e
∫ t
0 τ

α−1p(τ)dτ .

11



2.2. Linear fractional differential equations 12

Applying Iα the conformable fractional integral of order α to both sides of, we
have

e
∫ t
0 τ

α−1p(τ)dτx(t)− x(0) = Iα

[
g(t)e

∫ t
0 τ

α−1p(τ)dτ
]

=

∫ t

0

sα−1g(s)e
∫ s
0 τ

α−1p(τ)dτds.

Then

x(t) = e−
∫ t
0 τ

α−1p(τ)dτ

(
x(0) +

∫ t

0

sα−1g(s)e
∫ s
0 τ

α−1p(τ)dτds

)
= x(0)e−

∫ t
0 τ

α−1p(τ)dτ +

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτds.

(2.6)

From the boundary condition of (2.4), we have∫ 1

0

x(t)dt+ σ = x(0)

∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt+

∫ 1

0

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτdsdt+ σ.

So, (
1−

∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt

)
x(0) =

∫ 1

0

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτdsdt+ σ.

On account of condition 1−
∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt 6= 0, then

x(0) =
1

1−
∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτdsdt+ σ

]
. (2.7)

Now, by substituting (2.7) into (2.6), we get

x(t) =
e−

∫ t
0 τ

α−1p(τ)dτ

1−
∫ 1

0

e−
∫ t
0 τ

α−1p(τ)dτdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτdsdt+ σ

]

+

∫ t

0

sα−1g(s)e−
∫ t
s τ

α−1p(τ)dτds.

Thus problem (2.4) has a unique solution. The proof is finished.

As a direct consequence of the previous result, we deduce the following ex-
pression for the following particular case where p is a constant function i.e.,
∀x ∈ I : p(x) = M ∈ R.

12



2.2. Linear fractional differential equations 13

Corollary 2.2.2. Let M ∈ R and 1 −
∫ 1

0

e−
M
α
tαdt 6= 0. If g ∈ C([0, 1],R), then

problem 
x(α)(t) = −Mx(t) + g(t), t ∈ I = [0, 1],

x(0) =

∫ 1

0

x(t)dt+ σ,
(2.8)

has a unique solution x ∈ C([0, 1],R), and it is given by the following expression:

x(t) =
e−

M
α
tα

1−
∫ 1

0

e−
M
α
tαdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)dsdt+ σ

]

+

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)ds.

(2.9)

In the next Lemmas, we discuss comparison results for the linear problem (2.8).

Lemma 2.2.3. Let 0 < α ≤ 1, M ∈ R, 1−
∫ 1

0

e−
M
α
tαdt > 0 and x ∈ C([0, 1],R),

such that: x
α(t) ≤ −Mx(t), t ∈ [0, 1],

x(0) ≤
∫ 1

0

x(t)dt.
(2.10)

Then x(t) ≤ 0 for every t ∈ I = [0, 1].

Proof. we put xα(t) +Mx(t) = g(t) and x(0)−
∫ 1

0

x(t)dt = σ. We are know that

g(t) ≤ 0, for every t ∈ I = [0, 1], a ≤ 0, and
x(α)(t) = −Mx(t) + g(t), t ∈ [0, 1],

x(0) =

∫ 1

0

x(t)dt+ σ.
(2.11)

By Corollary 2.2.2, the expression of x(t) is given by (2.9):

x(t) =
e−

M
α
tα

1−
∫ 1

0

e−
M
α
tαdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)dsdt+ σ

]

+

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)ds,

we can conclude that, x(t) ≤ 0 for every t ∈ I = [0, 1].

13



2.3. Main Results 14

Lemma 2.2.4. Let 0 < α ≤ 1, M ∈ R, 1−
∫ 1

0

e−
M
α
tαdt > 0 and x ∈ C([0, 1],R),

such that: x
α(t) ≥ −Mx(t), t ∈ [0, 1],

x(0) ≥
∫ 1

0

x(t)dt.
(2.12)

Then x(t) ≥ 0 for every t ∈ I = [0, 1].

Proof. we put xα(t) +Mx(t) = g(t) and x(0)−
∫ 1

0

x(t)dt = σ. We are know that

g(t) ≥ 0, for every t ∈ I = [0, 1], σ ≥ 0, and
x(α)(t) = −Mx(t) + g(t), t ∈ [0, 1],

x(0) =

∫ 1

0

x(t)dt+ σ.
(2.13)

By Corollary 2.2.2, the expression of x(t) is given by (2.9):

x(t) =
e−

M
α
tα

1−
∫ 1

0

e−
M
α
tαdt

[∫ 1

0

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)dsdt+ σ

]

+

∫ t

0

sα−1g(s)e−
M
α

(tα−sα)ds,

we can conclude that, x(t) ≥ 0 for every t ∈ I = [0, 1].

2.3 Main Results
In this section, we prove the existence of extremal solutions for conformable frac-
tional differential equation involving integral boundary condition (2.1). Let us
define what we mean by a solution of this problem.

Definition 2.3.1. A solution of problem (2.1) will be a function x ∈ C1(I,R) for
which (2.1) is satisfied.

Next, we introduce the notion of lower and upper solutions for the problem
(2.1).

Definition 2.3.2. Let γ ∈ Cα(I,R). We say that γ is a lower solution of problem
(2.1), if it satisfies:

γ(α)(t) ≤ f(t, γ(t)), for all t ∈ I = [0, 1],

γ(0) ≤
∫ 1

0

γ(t)dt.
(2.14)

14



2.3. Main Results 15

Let δ ∈ Cα(I,R). We say that δ is an upper solution of problem (2.1), if it satisfies:
δ(α)(t) ≥ f(t, δ(t)), for all t ∈ I = [0, 1],

δ(0) ≥
∫ 1

0

δ(t)dt.
(2.15)

We define the sector [γ, δ] = {x ∈ Cα(I,R) : γ(t) ≤ x(t) ≤ δ(t), t ∈ I}.
Now we give the main result on the existence of solutions for the nonlinear problem
(2.1).

Theorem 2.3.3. Assume that:

(H1) f : [0, 1]× R→ R is continuous function.

(H2) There exists γ, δ ∈ C(I,R), lower and upper solutions to problem (2.1),
respectively, such that γ(t) ≤ δ(t), for all t ∈ I.

(H3) There exists constant M ∈ R With 1−
∫ 1

0

e−
M
α
tαdt > 0 which satisfies

f(t, x)− f(t, x) ≤M(x− x),

for
γ(t) ≤ x ≤ x ≤ δ(t).

Then there exist monotone iterative sequences {vn}n∈N, {wn}n∈N ⊂ C(I,R) con-
verging uniformly to v, w, respectively, (i.e., limn→∞ vn = v, limn→∞wn = w),
and v, w are the extremal solutions of problem (2.1) in the sector [γ, δ], such that

γ = v0 ≤ ... ≤ vn ≤ ... ≤ wn ≤ ... ≤ w0 := δ, on I for all n ∈ N.

Proof. For all vn, wn ∈ C(I,R), let
v

(α)
n+1(t) = f(t, vn(t))−M (vn+1(t)− vn(t)) , t ∈ [0, 1],

w
(α)
n+1(t) = f(t, wn(t))−M (wn+1(t)− wn(t)) , t ∈ [0, 1],

vn+1(0) =

∫ 1

0

vn+1(t)dt, wn+1(0) =

∫ 1

0

wn+1(t)dt.

(2.16)

Thus, the iterative sequences {vn} and {wn} can be constructed by Corollary
2.2.2. Firstly, we shall prove that

vn ≤ vn+1 ≤ wn+1 ≤ wn, n = 0, 1, 2, . . .

15



2.3. Main Results 16

Let p = v0 − v1. According to (2.16) and Definition 2.3.2, we have


p(α)(t) = v

(α)
0 (t)− v(α)

1 (t) ≤ f(t, v0(t))− f(t, v0(t)) +M (v1(t)− v0(t)) , t ∈ [0, 1],

p(0) ≤
∫ 1

0

v0(t)dt−
∫ 1

0

v1(t)dt =

∫ 1

0

(v0(t)− v1(t))dt,

i.e., 
p(α)(t) ≤ −Mp(t), t ∈ [0, 1],

p(0) ≤
∫ 1

0

p(t)dt.

Therefore, by Lemma 2.2.3, we have p(t) ≤ 0, t ∈ I, then v0(t) ≤ v1(t), t ∈ I.

Similarly, Let q = w0 − w1. According to (2.16) and Definition 2.3.2, we have


q(α)(t) = w

(α)
0 (t)− w(α)

1 (t) ≥ f(t, w0(t))− f(t, w0(t)) +M (w1(t)− w0(t)) , t ∈ [0, 1],

q(0) ≥
∫ 1

0

w0(t)dt−
∫ 1

0

w1(t)dt =

∫ 1

0

(w0(t)− w1(t))dt,

i.e., 
q(α)(t) ≥ −Mq(t), t ∈ [0, 1],

q(0) ≥
∫ 1

0

q(t)dt.

Therefore, by Lemma 2.2.4, we have q(t) ≥ 0, t ∈ I, then w0(t) ≥ w1(t), t ∈ I.

Now, let r = v1 − w1. According to (2.16) and (H3), we have

r(α)(t) = f(t, v0(t))− f(t, w0(t))−M (v1(t)− v0(t)− w1(t)− w0(t))

≤M (w0(t)− v0(t))−M (v1(t)− v0(t)− w1(t)− w0(t))

= −Mr(t),

r(0) =

∫ 1

0

r(t)dt.

By Lemma 2.2.3, we have r(t) ≤ 0 for every t ∈ I, then v1(t) ≤ w1(t) for every
t ∈ I.

16



2.3. Main Results 17

Secondly, we show that v1, w1 are lower and upper solutions of (2.1), respectively.
We have

v
(α)
1 (t) = f(t, v0(t))−M (v1(t)− v0(t))− f(t, v1(t)) + f(t, v1(t))

≤M (v1(t)− v0(t))−M (v1(t)− v0(t)) + f(t, v1(t))

≤ f(t, v1(t)),

v1(0) =

∫ 1

0

v1(t)dt,

and 

w
(α)
1 (t) = f(t, w0(t))−M (w1(t)− w0(t))− f(t, w1(t)) + f(t, w1(t))

≥M (w1(t)− w0(t))−M (w1(t)− w0(t)) + f(t, w1(t))

≥ f(t, w1(t)),

w1(0) =

∫ 1

0

w1(t)dt.

According to (H3) and Definition 2.3.2, we deduce that v1, w1 are lower and up-
per solutions of (2.1), respectively. By the above arguments and mathematical
induction, it is clear that:

v0 ≤ ... ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ .... ≤ w0, n = 0, 1, 2, .... (2.17)

Thirdly, we show that limn→∞ vn(t) = v and limn→∞wn = w. Hence, we
need to conclude that vn, wn are uniformly bounded and equicontinuous on [0, 1].
Obviously, the uniform boundedness of sequences vn, wn follows from (2.17). Thus,
there exists K > 0 such that for all n ∈ N.

|f(t, vn(t))−M(vn+1(t)− vn(t))| ≤ K

and
|f(t, wn(t))−M(wn+1(t)− wn(t))| ≤ K

Using Theorem 1.2.11, we get

|vn(t1)− vn(t2)| = 1

α
|tα1 − tα2 ||v(α)

n (θ)|

=
1

α
|tα1 − tα2 ||f(θ, vn−1(θ))−M (vn(θ)− vn−1(θ)) |

17



2.3. Main Results 18

As t1 → t2, the right-hand side of the above inequality tends to zero. Therefore,
{vn} are equicontinuous. Similarly, we obtain that {wn} are equicontinuous too.
By the Arzelà-Ascoli Theorems, we conclude that the sequences {vn} and {wn}
have subsequences {vnk} and {wnk}, respectively, such that vnk → v and wnk → w
as k →∞. This, together with the monotonicity of the sequences {vn} and {wn},
implies

lim
n→∞

vn(t) = v(t), lim
n→∞

wn(t) = w(t)

uniformly on [0, 1]. Please note that the sequence {vn} satisfies
vn(t) = e−

M
α
tα
[
vn−1(0) +

∫ t

0

sα−1 (f(t, vn−1(s)) +Mvn−1(s)) e
M
α
sαds

]
, t ∈ [0, 1],

vn(0) =

∫ 1

0

vn(t)dt, n = 1, 2, · · ·

(2.18)
Let n→∞ in (2.18). We have

v(t) = e−
M
α
tα
(
v(0) +

∫ t

0

sα−1 (f(t, v(s)) +Mv(s)) e
M
α
sαds

)
, t ∈ [0, 1],

v(0) =

∫ 1

0

v(t)dt.

This shows that v is a solution of the nonlinear problem (2.1). Similarly, we obtain
w is a solution of the nonlinear problem (2.1) too. And

v0(t) ≤ v(t) ≤ w(t) ≤ w0(t), t ∈ [0, 1].

Finally, we are going to prove that v, w are minimal and maximal solutions of (2.1)
in the sector [v0, w0]. In the following, we show this using induction arguments.
Suppose that h(t) is any solution of (2.1) in the [v0, w0] that is

v0(t) ≤ h(t) ≤ w0(t), t ∈ [0, 1].

Assume that vn(t) ≤ h(t) ≤ wn(t) hold. Let p(t) = vn+1(t)− h(t), we have

p(α)(t) = v
(α)
n+1(t)− h(α)(t)

= f(t, vn(t))−M (vn+1(t)− vn(t))− f(t, g(t))

≤M (g(t)− vn(t))−M (vn+1(t)− vn(t))

= −Mp(t),

p(0) =

∫ 1

0

p(t)dt.

(2.19)

18
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Then, by Lemma 2.2.3, we have vn+1(t) ≤ g(t), t ∈ [0, 1]. By similar method, we
can show that h(t) ≤ wn+1(t), t ∈ [0, 1]. Therefore,

vn ≤ h ≤ wn, n = 1, 2, ....

By taking n → ∞ in the above inequalities, we get that v ≤ h ≤ w. That is v, w
are extremal solutions of problem (2.1) in [v0, w0]. Thus, the proof is finished.

2.4 Examples
In this section, we present two examples where we apply Theorem 2.3.3.

Example 2.4.1. Consider the conformable fractional boundary value problem:
x( 1

2
)(t) = −2

9
(1 + x(t))3 + 1

9
sin t, t ∈ [0, 1],

x(0) =

∫ 1

0

x(t)dt,
(2.20)

where, α = 1
2
and f(t, x) = −2

9
(1 + x)3 + 1

9
sin t t ∈ [0, 1]. It is clear that f is

continuous function. Take v0(t) = −1 ≤ w0(t) = 0 for t ∈ [0, 1], then
v

( 1
2

)

0 (t) = 0 ≤ 1
9

sin t = f(t, v0(t)),

v0(0) = −1 ≤
∫ 1

0

v0(t)dt = −1,
(2.21)

and 
w

( 1
2

)

0 (t) = 0 > −1
9
(2− sin t) = f(t, w0(t)),

w0(0) = 0 =

∫ 1

0

w0(t)dt.
(2.22)

Then v0, w0 are lower and upper solutions of (2.20) respectively, then assumptions
(H1) and (H2) holds. Let x, x ∈ R, with v0(t) ≤ x ≤ x ≤ w0(t), t ∈ I, then we
have 0 ≤ 1 + x ≤ 1 + x ≤ 1 and

f(t, x)− f(t, x) = −2

9
(1 + x)3 +

2

9
(1 + x)3 =

2

9

(
(1 + x)3 − (1 + x)3

)
=

2

9
(x− x)

(
(1 + x)2 + (1 + x)(1 + x) + (1 + x)2

)
≤ 2

9
(x− x)(3) =

2

3
(x− x)

≤ 1.(x− x).

19
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Hence the assumption (H3) holds with M = 1. In addition,∫ 1

0

e
− t

( 12 )

1
2 dt =

∫ 1

0

e−2t
1
2 dt <

∫ 1

0

dt = 1.

By Theorem 2.3.3, problem (2.20) has an extremal iterative solutions (v, w) ∈
[v0, w0]× [v0, w0] on [0, 1], which can be obtained by taking limits from the iterative
sequences:

vn(t) = e−2t1/2
[
vn−1(0) +

∫ t

0

s−1/2

(
−2

9
(1 + vn−1(s))3 +

1

9
sin s+ vn−1(s)

)
e2s1/2ds

]
,

wn(t) = e−2t1/2
[
wn−1(0) +

∫ t

0

s−1/2

(
−2

9
(1 + wn−1(s))3 +

1

9
sin s+ wn−1(s)

)
e2s1/2ds

]
.

Example 2.4.2. Consider the following problem:
x
′
(t) = −x2(t) + tx(t), t ∈ [0, 1],

x(0) =

∫ 1

0

x(t)dt,
(2.23)

where, α = 1 and f(t, x) = −x2 + tx. It is clear that f is continuous function.
Take v0(t) = 0 ≤ w0(t) = 1 for t ∈ [0, 1], then

v
′
0(t) = 0 ≤ f(t, v0(t)) = 0,

v0(0) = 0 ≤
∫ 1

0

v0(t)dt = 0,
(2.24)

and 
w
′
0(t) = 0 ≥ f(t, w0(t)) = t− 1,

w0(0) = 1 ≥
∫ 1

0

w0(t)dt = 1.
(2.25)

Then v0, w0 are lower and upper solutions of (2.23) respectively, then assumptions
(H1) and (H2) holds. Let x, x ∈ R, with v0(t) ≤ x ≤ x ≤ w0(t), t ∈ I, then

f(t, x)− f(t, x) = −x2 + tx+ x2 − tx =
(
x2 − x2

)
+ t (x− x)

≤
(
x2 − x2

)
= (x− x) (x+ x)

≤ 2(x− x).

Hence the assumption (H3) holds with M = 2. In addition,∫ 1

0

e−2tdt =
1

2
(1− e−2) ≤ 1

2
< 1.

20
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By Theorem 2.3.3, problem (2.23) has an extremal iterative solutions (v, w) ∈
[v0, w0]× [v0, w0] on [0, 1], which can be obtained by taking limits from the iterative
sequences:

vn(t) = e−2t

[
vn−1(0) +

∫ t

0

(
−v2

n−1(s) + svn−1(s) + 2vn−1(s)
)
e2sds

]
,

wn(t) = e−2t

[
wn−1(0) +

∫ t

0

(
−w2

n−1(s) + swn−1(s) + 2wn−1(s)
)
e2sds

]
.

21



Chapter 3

Extremal solutions to a coupled
system of first order ordinary
differential equations

In this chapter, we investigate the existence of extremal solutions for a coupled
system of nonlinear first order ordinary differential equations by using the com-
parison principle and the monotone iterative technique combined with the method
of upper and lower solutions:

x
′
(t) = f(t, x(t), y(t)), t ∈ I = [a, b],

y
′
(t) = g(t, y(t), x(t)), t ∈ I = [a, b],

x(a) = λ0, y(a) = β0.

(3.1)

where f, g ∈ C([a, b]× R× R,R) and λ0, β0 ∈ R with λ0 ≤ β0.

Now we enunciate the following existence and uniqueness results for initial
linear equations and initial linear system.

Lemma 3.0.3. Let M ∈ R and x0 ∈ R. If g ∈ C([a, b],R), then the linear initial
value problem: x

′
(t) +Mx(t) = g(t), t ∈ I = [a, b],

x(a) = x0,
(3.2)

has a unique solution x ∈ C([a, b],R), and it is given by the following expression:

x(t) = e−Mt

(
x0e

Ma +

∫ t

a

eMsg(s)ds

)
. (3.3)
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Proof. We first consider the associated linear homogeneous equation:x
′
(t) +Mx(t) = 0, t ∈ I = [a, b],

x(a) = x0,
(3.4)

We can easily get that the solution to (3.4) is x(t) = Ce−Mt, where C is
constant. By x(a) = x0, we have C = x0e

Ma.
Hence, the solution to (3.4) is x(t) = x0e

Mae−Mt.
Let x(t) = C(t)e−Mt is the general solution to problem (3.2), and then we can get

C(t) = x0e
Ma +

∫ t

a

eMsg(s)ds

Hence, the solution to (3.2) is

x(t) = e−Mt

(
x0e

Ma +

∫ t

a

eMsg(s)ds

)
.

Lemma 3.0.4. Let M,N ∈ R, N ≥ 0 and h1, h2 ∈ C(I,R). The linear system
x
′
(t) = h1(t)−M x(t)−N y(t), for t ∈ I = [a, b],

y
′
(t) = h2(t)−M y(t)−N x(t), for t ∈ I = [a, b],

x(a) = λ0, y(a) = β0,

(3.5)

has a unique system of solutions (x, y) ∈ C1([a, b],R)× C1([a, b],R), with

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ I = [a, b],

where

z(t) = e−(M+N)t

(
(λ0 + β0) e(M+N)a +

∫ t

a

e(M+N)s (h1 + h2) (s)ds

)
,

w(t) = e−(M−N)t

(
(λ0 − β0) e(M−N)a +

∫ t

a

e(M−N)s (h1 − h2) (s)ds

)
.

Proof. The pair (x, y) ∈ C1([a, b],R)×C1([a, b],R) is a solution to system (3.5) if
and only if

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ [a, b]
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where z(t) and w(t) are the solutions to the following problems:{
z
′
(t) = (h1 + h2) (t)− (M +N)z(t), t ∈ [a, b],

z(a) = λ0 + β0,{
w
′
(t) = (h1 − h2) (t)− (M −N)w(t), t ∈ [a, b],

w(a) = λ0 − β0,

By Lemma 3.0.3, we have

z(t) = e−(M+N)t

(
(λ0 + β0) e(M+N)a +

∫ t

a

e(M+N)s (h1 + h2) (s)ds

)
,

w(t) = e−(M−N)t

(
(λ0 − β0) e(M−N)a +

∫ t

a

e(M−N)s (h1 − h2) (s)ds

)
.

In the next Lemma, we prove a comparison result for the initial linear problem
(3.2).

Lemma 3.0.5. Let x ∈ C1([a, b],R) satisfy{
x
′
(t) +Mx(t) > 0, t ∈ [a, b]

x(a) > 0,

where M ∈ R, then x(t) > 0 for all t ∈ [a, b].

Proof. we put x′(t) + Mx(t) = g(t) and x(a) = x0 ≥ 0. We know that g(t) ≥ 0,
for every t ∈ I = [a, b] andx

′
(t) +Mx(t) = g(t), t ∈ [a, b],

x(a) = x0 ≥ 0.
(3.6)

By Lemma 3.0.3, the expression of x(t) is:

x(t) = e−Mt

(
x0e

Ma +

∫ t

a

eMsg(s)ds

)
,

we can conclude that, x(t) ≥ 0 for every t ∈ I = [a, b].

Now we are in a position to prove the following comparison result for system
(3.5).
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3.1. Main Result 25

Lemma 3.0.6. (Comparison principle).
Let (x, y) ∈ C1([a, b],R)× C1([a, b],R) satisfy

x
′
(t) ≥ −M x(t) +N y(t), for t ∈ I = [a, b],

y
′
(t) ≥ −M y(t) +N x(t), for t ∈ I = [a, b],

x(a) ≥ 0, y(a) ≥ 0,

(3.7)

where M,N ∈ R with N ≥ 0. Then x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [a, b].

Proof. Let u(t) = x(t) + y(t), then (3.7) is equivalent to the following:{
u
′
(t) ≥ −(M −N)u(t), t ∈ [a, b]

u(a) ≥ 0,

i.e., {
u
′
(t) +Mu(t) > 0, t ∈ [a, b],

u(a) ≥ 0.

By Lemma 3.0.5, we know that

u(t) ≥ 0, for allt ∈ [a, b], i.e., x(t) + y(t) ≥ 0, for allt ∈ [a, b].

By (3), we have
x
′
(t) + (M +N)x(t) ≥ 0, for t ∈ I = [a, b],

y
′
(t) + (M +N)y(t) ≥ 0, for t ∈ I = [a, b],

x(a) ≥ 0, y(a) ≥ 0.

By Lemma 3.0.5, we have x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [a, b]. The proof is
completed.

3.1 Main Result
In this section, we prove the existence of extremal solutions for problem (3.1). Let
us defining what we mean by a solution of this problem.

Definition 3.1.1. A solution of problem (3.1) will be a pair (x, y) ∈ C1(I,R) ×
C1(I,R) for which (3.1) is satisfied.
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Next, we introduce the concept of coupled lower and upper solutions of this
problem as follows.

Definition 3.1.2. We say that γ, δ ∈ C1(I,R) is a pair of coupled lower and
upper solutions of the problem (3.1), if γ(t) ≤ δ(t) for all t ∈ I and the following
inequalities hold:γ

′
(t) ≤ f(t, γ(t), δ(t)), for t ∈ I, γ(a) ≤ λ0,

δ
′
(t) ≥ g(t, δ(t), γ(t)), for t ∈ I, δ(a) ≥ β0.

(3.8)

We assume the following hypothesis:

(F1) f, g : I × R× R→ R are continuous functions.

(F2) There exists γ, δ ∈ C1(I,R), a pair of coupled lower and upper solutions of
the problem (3.1).

(F3) There exist constants M ∈ R and N ≥ 0 such thatf(t, x, y)− f(t, x, y) ≥ −M(x− x)−N(y − y),

g(t, y, x)− g(t, y, x) ≥ −M(y − y)−N(x− x),

where γ(t) ≤ x ≤ x ≤ δ(t), γ(t) ≤ y ≤ y ≤ δ(t) for all t ∈ I, and

g(t, y, x)− f(t, x, y) ≥ −M(y − x)−N(x− y),

where γ(t) ≤ x ≤ y ≤ δ(t) for all t ∈ I.

Now, we can obtain our main theorem.

Theorem 3.1.3. Assume that (F1), (F2) and (F3) hold. Then (3.1) has an ex-
tremal system of solutions (x∗, y∗) ∈ [γ, δ] × [γ, δ], and there exist two monotone
iterative sequences {xn}n∈N , {yn}n∈N converging uniformly to x∗, y∗, respectively,
where xn, yn ∈ [γ, δ] , such that

γ = x0 ≤ x1 ≤ · · · 6 xn 6 · · · 6 x∗ 6 y∗ 6 · · · 6 yn 6 · · · 6 y1 6 y0 = δ, onI, ∀n ∈ N.
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Proof. Firstly, for all xn, yn ∈ C1([a, b],R), we consider the linear system:


x
′
n+1(t) = f(t, xn(t), yn(t)) +M (xn(t)− xn+1(t)) +N (yn(t)− yn+1(t)) , t ∈ [a, b],

y
′
n+1(t) = g(t, yn(t), xn(t)) +M (yn(t)− yn+1(t)) +N (xn(t)− xn+1(t)) , t ∈ [a, b],

xn+1(a) = λ0, yn+1(a) = β0.

(3.9)
By Lemma 3.0.4, the linear system (3.9) has a unique system of solutions in
C1([a, b],R)× C1([a, b],R), which is defined by

xn+1(t) =
pn+1(t) + qn+1(t)

2
, yn+1(t) =

pn+1(t)− qn+1(t)

2
, for all t ∈ [a, b] (3.10)

where

pn+1(t) =e−(M+N)t

(
(λ0 + β0)e(M+N)a +

∫ t

a

e(M+N)s [f(s, xn(s), yn(s))

+g(s, yn(s), xn(s)) + (M +N) (xn(s) + yn(s))] ds)),

(3.11)

qn+1(t) =e−(M−N)t

(
(λ0 − β0)e(M−N)a +

∫ t

a

e(M−N)s [f(s, xn(s), yn(s))

−g(s, yn(s), xn(s)) + (M −N) (xn(s)− yn(s))] ds) .

(3.12)

Secondly, we shall prove that

xn 6 xn+1 6 yn+1 6 yn, on I for all n ∈ N.

Let p = x1 − x0, q = y0 − y1. According to (3.9) and (F1)− (F2), we have

p
′
(t) >M (x0(t)− x1(t)) +N (y0(t)− y1(t)) , for t ∈ I

p(a) > λ0 − λ0 = 0,

q
′
(t) > −M (y0(t)− y1(t))−N (x0(t)− x1(t)) , for t ∈ I

q(a) > β0 − β0 = 0,

i.e., p
′
(t) > −Mp(t) +Nq(t), for t ∈ I p(a) > 0,

q
′
(t) > −Mq(t) +Np(t), for t ∈ I q(a) > 0.

Then, by Lemma 3.0.6, we have p(t) > 0, q(t) > 0, i.e., x1 > x0, y1 6 y0.
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Let w = y1 − x1. According to (3.9) and (F3), we have



w
′
(t) = y

′
1(t)− x′1(t)

= g (t, y0(t), x0(t)) +M (y0(t)− y1(t)) +N (x0(t)− x1(t))

−f (t, x0(t), y0(t))−M (x0(t)− x1(t))−N (y0(t)− y1(t))

> −M (y1(t)− x1(t)) +N (y1(t)− x1(t)) = −(M −N)w(t),

w(a) = β0 − λ0 > 0.

By Lemma 3.0.5, we have w(t) > 0, i.e., y1(t) > x1(t) for all t ∈ I = [a, b].
By mathematical induction, we can prove that

xn 6 xn+1 6 yn+1 6 yn, on I for all n ∈ N.

Thirdly, the sequences {xn}n∈N , {yn}n∈N are monotone and bounded, hence

lim
n→∞

xn = x∗, lim
n→∞

yn = y∗

(x∗, y∗) is an extremal system of solutions to (3.1).

Finally, we prove that (3.1) has at most one extremal system of solutions.
Assume that (x, y) ∈ [γ = x0, δ = y0]× [x0, y0] is the system of solutions to (3.1),
then

x0 = γ 6 x, y 6 y0 = δ

. For some k ∈ N, assume that the following relation holds

xk(t) 6 x(t), y(t) 6 yk(t), t ∈ [a, b].

Let u(t) = x(t)− xk+1(t), v(t) = yk+1(t)− y(t). According to (3.9) and (F3),
we have
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

u
′
(t) = x

′
(t)− x′k+1(t)

= f (t, x(t), y(t))− f(t, xk(t), yk(t))−M (xk(t)− xk+1(t))

−N (yk(t)− yk+1(t)) ,

≥ −M (x(t)− xk(t))−N (y(t)− yk(t))−M (xk(t)− xk+1(t))

−N (yk(t)− yk+1(t))

= −M (x(t)− xk+1(t)) +N (yk+1(t)− y(t)) .

and 

v
′
(t) = y

′

k+1(t)− y′(t)

= g (t, yk(t), xk(t)) +M (yk(t)− yk+1(t)) +N (xk(t)− xk+1(t))

−g(t, y(t), x(t))

≥ −M (yk(t)− y(t))−N (xk(t)− x(t)) +M (yk(t)− yk+1(t))

+N (xk(t)− xk+1(t)

= −M (yk+1(t)− y(t)) +N (x(t)− xk+1(t)) ,

we can get u
′
(t) ≥ −Mu(t) +Nv(t), for t ∈ I u(a) ≥ 0,

v
′
(t) ≥ −Mv(t) +Nu(t), for t ∈ I v(a) ≥ 0.

Then, by Lemma 3.0.6, we have u(t) > 0, v(t) > 0, i.e.,

xk+1(t) 6 x(t), y(t) 6 yk+1(t), t ∈ [a, b].

By the induction arguments, the following relation holds

xn(t) 6 x(t), y(t) 6 yn(t), on I for all n ∈ N.

Taking the limit as n→∞, we get that x∗ 6 x, y 6 y∗.
Hence, (x∗, y∗) ∈ [γ, δ]× [γ, δ] is the extremal system of solutions to (3.1).
So the proof is finished.
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3.2 An example
Consider the following system of nonlinear first order ordinary differential equa-
tions: 

x
′
(t) = 2t3(t− x(t))3 − t4y2(t), t ∈ I = [0, 1],

y
′
(t) = 2t3(t− y(t))3 − t4x2(t), t ∈ I = [0, 1],

x(0) = 0, y(0) = 0,

(3.13)

where f(t, x, y) = 2t3(t− x)3 − t4y2 and g(t, y, x) = 2t3(t− y)3 − t4x2.
It is clear that f, g are continuous functions. Take γ(t) = 0 and δ(t) = t for
t ∈ [0, 1], then

γ
′
(t) = 0 ≤ f(t, γ(t), δ(t)) = 2t6 for t ∈ [0, 1], γ(0) = 0 ≤ 0,

and
δ
′
(t) = 1 ≥ g(t, δ(t), γ(t)) = 0 for t ∈ [0, 1], δ(0) = 0 ≥ 0.

So, γ and δ, are lower and upper solutions of problem (3.13), respectively with
γ(t) = 0 ≤ δ(t) = t for t ∈ [0, 1], then assumptions (F1) and (F2) holds.
Let x, x, y, y ∈ R, then we have:

f(t, x, y)− f(t, x, y) = 2t3[(t− x)3 − (t− x)3]− t4(y2 − y2)

≥ −2t3(x− x)[(t− x)2 + (t− x)(t− x) + (t− x)2]

≥ −6t3(x− x)

≥ −6(x− x)− 0(y − y),

g(t, y, x)− g(t, y, x) = 2t3[(t− y)3 − (t− y)3]− t4(x2 − x2)

≥ −2t3(y − y)[(t− y)2 + (t− y)(t− y) + (t− y)2]

≥ −6t3(y − y)

≥ −6(y − y)− 0(x− x),

with γ(t) ≤ x ≤ x ≤ δ(t), γ(t) ≤ y ≤ y ≤ δ(t) for all t ∈ I, and we have

g(t, y, x)− f(t, x, y) = 2t3[(t− y)3 − (t− x)3]− t4(x2 − y2)

≥ −2t3(y − x)[(t− y)2 + (t− y)(t− x) + (t− x)2]

≥ −6t3(y − x)

≥ −6(y − x) + 0.(x− y).

with γ(t) ≤ x ≤ y ≤ δ(t), for all t ∈ I.
Hence the assumption (F3) holds with M = 6 and N = 0. By Theorem 3.1.3, the
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nonlinear system (3.13) has the extremal solution (x∗, y∗) ∈ C1([0, 1])×C1([0, 1]),
such that (x∗, y∗) ∈ [γ, δ]× [γ, δ] on [0, 1], which can be obtained by taking limits
from the iterative sequences:

xn+1(t) = e−6t

∫ t

0

e6s
[
2s3(s− xn(s))3 − s4y2

n(s) + 6xn(s)
]
ds, t ∈ I = [0, 1],

yn+1(t) = e−6t

∫ t

0

e6s
[
2s3(s− yn(s))3 − s4x2

n(s) + 6yn(s)
]
ds, t ∈ I = [0, 1].
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Chapter 4

Extremal solutions to a coupled
system of conformable fractional
differential equations

In this chapter, we investigate the existence of extremal solutions for a coupled
system of nonlinear conformable fractional differential equations by using the com-
parison principle and the monotone iterative technique combined with the method
of upper and lower solutions:

x(α)(t) = f(t, x(t), y(t)), t ∈ I = [a, b],

y(α)(t) = g(t, y(t), x(t)), t ∈ I = [a, b],

x(a) = λ0, y(a) = β0.

(4.1)

where f, g ∈ C([a, b]×R×R,R), λ0, β0 ∈ R, λ0 ≤ β0, x(α), y(α) are the conformable
fractional derivatives with 0 < α ≤ 1.

B. Bendouma. in [7], studied the existence of extremal iteration solution to the
following coupled system of nonlinear conformable fractional dynamic equations
on time scales: 

x
(α)
∆ (t) = f(t, xσ(t), yσ(t)), t ∈ I = [a, b]T,

y
(α)
∆ (t) = g(t, yσ(t), xσ(t)), t ∈ I = [a, b]T,

x(a) = λ0, y(a) = β0.

(4.2)

where, T is an arbitrary bounded time scale, J = [a, σ(b)]T with a, b ∈ T, 0 < a < b,
λ0, β0 ∈ R, λ0 ≤ β0, f, g : I ×R×R→ R are continuous functions and x(α)

∆ , y(α)
∆

are the conformable fractional derivatives (on time scales) with α ∈ (0, 1].
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4.1 Linear fractional differential equations
In this section, we study the expression of the solutions of a linear conformable
fractional differential equation with initial value conditions.

Lemma 4.1.1. Let 0 < α ≤ 1, M ∈ R and x0 ∈ R. If g ∈ C([a, b],R), then the
linear problem: x

(α)(t) +Mx(t) = g(t), t ∈ I = [a, b],

x(a) = x0,
(4.3)

has a unique solution x ∈ C([a, b],R), and it is given by the following expression:

x(t) = e−
M
α
tα
(
x0e

M
α
aα +

∫ t

a

sα−1e
M
α
sαg(s)ds

)
. (4.4)

Proof. Let x be a solution of problem (4.3). By Theorem 1.2.3, we have that the
following property holds:

[e
M
α

(tα−aα)x(t)](α) = e
M
α

(tα−aα)xα(t) +Mx(t)e
M
α

(tα−aα)

= e
M
α

(tα−aα) (xα(t) +Mx(t))

= e
M
α

(tα−aα)g(t).

Applying Iaα the conformable fractional integral of order α to both sides of, we
have

e
M
α

(tα−aα)x(t)− x(a) = Iaα

[
e
M
α

(tα−aα)g(t)
]

=

∫ t

a

sα−1e
M
α

(sα−aα)g(s)ds.

Then

x(t) = e−
M
α

(tα−aα)

(
x(a) +

∫ t

a

sα−1e
M
α

(sα−aα)g(s)ds

)
= e−

M
α
tα
(
e
M
α
aαx0 +

∫ t

a

sα−1e
M
α
sαg(s)ds

)
.

(4.5)

Thus problem (4.3) has a unique solution. The proof is finished.

In the next Lemmas, we discuss comparison results for the linear problem (4.3)
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Lemma 4.1.2. Let x ∈ Cα([a, b],R) satisfy{
x(α)(t) +Mx(t) > 0, t ∈ [a, b]

x(a) > 0,

where 0 < α 6 1,M ∈ R, then x(t) > 0 for all t ∈ [a, b].

Proof. we put xα(t)+Mx(t) = g(t) and x(a) = x0 ≥ 0. We are know that g(t) ≥ 0,
for every t ∈ I = [a, b] andx

(α)(t) +Mx(t) = g(t), t ∈ [a, b],

x(a) = x0 ≥ 0.
(4.6)

By Lemma 4.1.1, the expression of x(t) is:

x(t) = e−
M
α
tα
(
x0e

M
α
aα +

∫ t

a

sα−1e
M
α
sαg(s)ds

)
we can conclude that, x(t) ≥ 0 for every t ∈ I = [a, b].

4.2 Main Result
In this section, we prove the existence of extremal solutions for problem (4.1). Let
us defining what we mean by a solution of this problem.

Definition 4.2.1. A solution of problem (4.1) will be a pair (x, y) ∈ Cα(I,R) ×
Cα(I,R) for which (4.1) is satisfied.

Next, we introduce the concept of coupled lower and upper solutions of this
problem as follows.

Definition 4.2.2. We say that γ, δ ∈ Cα(I,R) is a pair of coupled lower and
upper solutions of the problem (4.1), if γ(t) ≤ δ(t) for all t ∈ I and the following
inequalities hold:γ

(α)(t) ≤ f(t, γ(t), δ(t)), for t ∈ I, γ(a) ≤ λ0,

δ(α)(t) ≥ g(t, δ(t), γ(t)), for t ∈ I, δ(a) ≥ β0.
(4.7)

We assume the following hypothesis:

(H1) f, g : I × R× R→ R are continuous functions.
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(H2) There exists γ, δ ∈ Cα(I,R), a pair of coupled lower and upper solutions of
the problem (4.1).

(H3) There exist constants M ∈ R and N ≥ 0 such thatf(t, x, y)− f(t, x, y) ≥ −M(x− x)−N(y − y),

g(t, y, x)− g(t, y, x) ≥ −M(y − y)−N(x− x),

where γ(t) ≤ x ≤ x ≤ δ(t), γ(t) ≤ y ≤ y ≤ δ(t) for all t ∈ I, and

g(t, y, x)− f(t, x, y) ≥ −M(y − x)−N(x− y),

where γ(t) ≤ x ≤ y ≤ δ(t) for all t ∈ I.

To study the nonlinear system (4.1), we first consider the associated linear
system: 

x(α)(t) = h1(t)−M x(t)−N y(t), for t ∈ I = [a, b],

y(α)(t) = h2(t)−M y(t)−N x(t), for t ∈ I = [a, b],

x(a) = λ0, y(a) = β0,

(4.8)

where α ∈ (0, 1], (λ0, β0) ∈ R2, λ0 ≤ β0, M,N ∈ R, N ≥ 0 and h1, h2 ∈ C(I,R).

Lemma 4.2.3. The linear system (4.8) has a unique system of solutions (x, y) ∈
Cα([a, b],R)× Cα([a, b],R), with

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ I = [a, b],

where

z(t) = e−
M+N
α

tα
(

(λ0 + β0) e
M+N
α

aα +

∫ t

a

sα−1e
M+N
α

sα (h1 + h2) (s)ds

)
,

w(t) = e−
M−N
α

tα
(

(λ0 − β0) e
M−N
α

aα +

∫ t

a

sα−1e
M−N
α

sα (h1 − h2) (s)ds

)
.

Proof. The pair (x, y) ∈ Cα([a, b],R)×Cα([a, b],R) is a solution to system (4.8) if
and only if

x(t) =
z(t) + w(t)

2
, y(t) =

z(t)− w(t)

2
, t ∈ [a, b]
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where z(t) and w(t) are the solutions to the following problems:{
z(α)(t) = (h1 + h2) (t)− (M +N)z(t), t ∈ [a, b],

z(a) = λ0 + β0,{
w(α)(t) = (h1 − h2) (t)− (M −N)w(t), t ∈ [a, b],

w(a) = λ0 − β0,

By Lemma 4.1.1, we have

z(t) = e−
M+N
α

tα
(

(λ0 + β0) e
M+N
α

aα +

∫ t

a

sα−1e
M+N
α

sα (h1 + h2) (s)ds

)
,

w(t) = e−
M−N
α

tα
(

(λ0 − β0) e
M−N
α

aα +

∫ t

a

sα−1e
M−N
α

sα (h1 − h2) (s)ds

)
.

The proof is finished.

Lemma 4.2.4. (Comparison principle).
Let (x, y) ∈ Cα([a, b],R)× Cα([a, b],R) satisfy

x(α)(t) ≥ −M x(t) +N y(t), for t ∈ I = [a, b],

y(α)(t) ≥ −M y(t) +N x(t), for t ∈ I = [a, b],

x(a) ≥ 0, y(a) ≥ 0,

(4.9)

where 0 < α 6 1,M,N ∈ R with N ≥ 0. Then x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [a, b].

Proof. Let u(t) = x(t) + y(t), then (4.9) is equivalent to the following:{
u(α)(t) ≥ −(M −N)u(t), t ∈ [a, b]

u(a) ≥ 0,

i.e., {
u(α)(t) + M̄u(t) > 0, t ∈ [a, b],

u(a) ≥ 0.

By Lemma 4.1.2, we know that

u(t) ≥ 0, for allt ∈ [a, b], i.e., x(t) + y(t) ≥ 0, for allt ∈ [a, b].
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By (4.2), we have
x(α)(t) + (M +N)x(t) ≥ 0, for t ∈ I = [a, b],

y(α)(t) + (M +N)y(t) ≥ 0, for t ∈ I = [a, b],

x(a) ≥ 0, y(a) ≥ 0.

By Lemma 4.1.2, we have x(t) ≥ 0, y(t) ≥ 0 for all t ∈ [a, b]. The proof is
completed.

Now, we can obtain our main theorem.

Theorem 4.2.5. Assume that (H1), (H2) and (H3) hold. Then (4.1) has an ex-
tremal system of solutions (x∗, y∗) ∈ [γ, δ] × [γ, δ], and there exist two monotone
iterative sequences {xn}n∈N , {yn}n∈N converging uniformly to x∗, y∗, respectively,
where xn, yn ∈ [γ, δ] , such that

γ = x0 ≤ x1 ≤ · · · 6 xn 6 · · · 6 x∗ 6 y∗ 6 · · · 6 yn 6 · · · 6 y1 6 y0 = δ, on I, ∀n ∈ N.

Proof. Firstly, for all xn, yn ∈ Cα([a, b],R), we consider the linear system:


x

(α)
n+1(t) = f(t, xn(t), yn(t)) +M (xn(t)− xn+1(t)) +N (yn(t)− yn+1(t)) , t ∈ [a, b],

y
(α)
n+1(t) = g(t, yn(t), xn(t)) +M (yn(t)− yn+1(t)) +N (xn(t)− xn+1(t)) , t ∈ [a, b],

xn+1(a) = λ0, yn+1(a) = β0.

(4.10)
By Lemma 4.2.3, the linear system (4.10) has a unique system of solutions in
Cα([a, b],R)× Cα([a, b],R), which is defined by

xn+1(t) =
pn+1(t) + qn+1(t)

2
, yn+1ג =

pn+1(t)− qn+1(t)

2
, for all t ∈ [a, b] (4.11)

where

pn+1(t) =e−
M+N
α

tα
(

(λ0 + β0)e
M+N
α

aα +

∫ t

a

sα−1e
M+N
α

sα [f(s, xn(s), yn(s))

+g(s, yn(s), xn(s)) + (M +N) (xn(s) + yn(s))] ds)),

(4.12)

qn+1(t) =e−
M−N
α

tα
(

(λ0 − β0)e
M−N
α

aα +

∫ t

a

sα−1e
M−N
α

sα [f(s, xn(s), yn(s))

−g(s, yn(s), xn(s)) + (M −N) (xn(s)− yn(s))] ds) .

(4.13)
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Secondly, we shall prove that

xn 6 xn+1 6 yn+1 6 yn, on I for all n ∈ N.

Let p = x1 − x0, q = y0 − y1. According to (4.10) and (H1)− (H2), we have

p(α)(t) >M (x0(t)− x1(t)) +N (y0(t)− y1(t)) , for t ∈ I

p(a) > λ0 − λ0 = 0,

q(α)(t) > −M (y0(t)− y1(t))−N (x0(t)− x1(t)) , for t ∈ I

q(a) > β0 − β0 = 0,

i.e., p
(α)(t) > −Mp(t) +Nq(t), for t ∈ I p(a) > 0,

q(α)(t) > −Mq(t) +Np(t), for t ∈ I q(a) > 0.

Then, by Lemma 4.2.4, we have p(t) > 0, q(t) > 0, i.e., x1 > x0, y1 6 y0.

Let w = y1 − x1. According to (4.10) and (H3), we have



w(α)(t) = y
(α)
1 (t)− x(α)

1 (t)

= g (t, y0(t), x0(t)) +M (y0(t)− y1(t)) +N (x0(t)− x1(t))

−f (t, x0(t), y0(t))−M (x0(t)− x1(t))−N (y0(t)− y1(t))

> −M (y1(t)− x1(t)) +N (y1(t)− x1(t)) = −(M −N)w(t),

w(a) = β0 − λ0 > 0.

By Lemma 4.1.2, we have w(t) > 0, i.e., y1(t) > x1(t) for all t ∈ I = [a, b].
By mathematical induction, we can prove that

xn 6 xn+1 6 yn+1 6 yn, on I for all n ∈ N.

Thirdly, the sequences {xn}n∈N , {yn}n∈N are monotone and bounded, hence

lim
n→∞

xn = x∗, lim
n→∞

yn = y∗

(x∗, y∗) is an extremal system of solutions to (4.1).
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Finally, we prove that (4.1) has at most one extremal system of solutions.
Assume that (x, y) ∈ [γ = x0, δ = y0]× [x0, y0] is the system of solutions to (4.1),
then

x0 = γ 6 x, y 6 y0 = δ

. For some k ∈ N, assume that the following relation holds

xk(t) 6 x(t), y(t) 6 yk(t), t ∈ [a, b].

Let u(t) = x(t)−xk+1(t), v(t) = yk+1(t)−y(t). According to (4.10) and (H3),
we have



u(α)(t) = x(α)(t)− x(α)
k+1(t)

= f (t, x(t), y(t))− f(t, xk(t), yk(t))−M (xk(t)− xk+1(t))

−N (yk(t)− yk+1(t)) ,

≥ −M (x(t)− xk(t))−N (y(t)− yk(t))−M (xk(t)− xk+1(t))

−N (yk(t)− yk+1(t))

= −M (x(t)− xk+1(t)) +N (yk+1(t)− y(t)) .

and

v(α)(t) = y
(α)
k+1(t)− y(α)(t)

= g (t, yk(t), xk(t)) +M (yk(t)− yk+1(t)) +N (xk(t)− xk+1(t))

−g(t, y(t), x(t))

≥ −M (yk(t)− y(t))−N (xk(t)− x(t)) +M (yk(t)− yk+1(t))

+N (xk(t)− xk+1(t)

= −M (yk+1(t)− y(t)) +N (x(t)− xk+1(t)) ,

we can get u
(α)(t) ≥ −Mu(t) +Nv(t), for t ∈ I u(a) ≥ 0,

v(α)(t) ≥ −Mv(t) +Nu(t), for t ∈ I v(a) ≥ 0.

Then, by Lemma 4.2.4, we have u(t) > 0, v(t) > 0, i.e.,

xk+1(t) 6 x(t), y(t) 6 yk+1(t), t ∈ [a, b].
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By the induction arguments, the following relation holds

xn(t) 6 x(t), y(t) 6 yn(t), on I for all n ∈ N.

Taking the limit as n→∞, we get that x∗ 6 x, y 6 y∗.
Hence, (x∗, y∗) ∈ [γ, δ]× [γ, δ] is the extremal system of solutions to (4.1).
So the proof is finished.

Remark 4.2.6. The result (Theorem 4.2.5) in this Section 4.2 generalize the pre-
vious one (Theorem 3.1.3) given in Section 3.1(Chapter 3) for the coupled system
of nonlinear first order ordinary differential equations (3.1).

.

4.3 An example
We present an example where we apply Theorem 4.2.5.

Example 4.3.1. Consider the system of nonlinear conformable fractional differ-
ential equations:

x( 1
3

)(t) =
t(2− x(t))2 − y2(t)

3
√
t

, t ∈ I = [1, 2],

y( 1
3

)(t) = t
2
3 (2− y(t))3 − t− 1

3x2(t), t ∈ I = [1, 2],

x(1) = 0, y(1) = 0.5,

(4.14)

where α = 1
3
, f(t, x, y) =

t(2− x)2 − y2

3
√
t

and g(t, y, x) = t
2
3 (2− y)3 − t− 1

3x2.

It is clear that f, g are continuous functions. Take γ(t) = 0 and δ(t) = 2 for
t ∈ [1, 2], then

γ( 1
3

)(t) = 0 ≤ f(t, γ(t), δ(t)) =
4(t− 1)

3
√
t

for t ∈ [1, 2], γ(1) = 0 ≤ 0,

and
δ( 1

3
)(t) = 0 ≥ g(t, δ(t), γ(t)) = 0 for t ∈ [1, 2], δ(1) = 2 ≥ 0.5.

So, γ and δ, are lower and upper solutions of problem (4.14), respectively with
γ(t) = 0 ≤ δ(t) = 2 for t ∈ [1, 2], then assumptions (H1) and (H2) holds.
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Let x, x, y, y ∈ R, then we have:

f(t, x, y)− f(t, x, y) = t1−
1
3

(
(2− x)2 − (2− x)2

)
− 1

3
√
t
(y2 − y2)

≥ t1−
1
3

(
−4(x− x) + x2 − x2

)
− (y2 − y2)

≥ −4t
2
3 (x− x)

≥ −24(x− x)− 0(y − y),

g(t, y, x)− g(t, y, x) = t
2
3

(
(2− y)3 − (2− y)3

)
− t−

1
3 (x2 − x2)

≥ −t
2
3 (y − y)

(
(2− y)2 + (2− y)(2− y) + (2− y)2

)
≥ −12t

2
3 (y − y),

≥ −24(y − y)− 0.(x− x),

with γ(t) ≤ x ≤ x ≤ δ(t), γ(t) ≤ y ≤ y ≤ δ(t) for all t ∈ I, and we have

g(t, y, x)− f(t, x, y) = t
2
3

(
(2− y)3 − (2− x)2

)
+ t−

1
3 (y2 − x2)

≥ −t
2
3 (y − x)

(
(2− y)2 + (2− y)(2− x) + (2− x)2

)
≥ −12t1−

1
3 (y − x)

≥ −24(y − x)− 0.(x− y).

with γ(t) ≤ x ≤ y ≤ δ(t), for all t ∈ I.
Hence the assumption (H3) holds with M = 24 and N = 0. By Theorem 4.2.5, the
nonlinear system (4.14) has the extremal solution (x∗, y∗) ∈ C 1

3 ([1, 2])×C 1
3 ([1, 2]),

such that (x∗, y∗) ∈ [γ, δ] × [γ, δ] on [1, 2], which can be obtained by taking limits
from the iterative sequences:

xn+1(t) =

∫ t

1

s
−2
3 e72(s

1
3−t

1
3 )

[
s(2− xn(s))2 − y2

n(s)
3
√
s

+ 24(xn(s))

]
ds, t ∈ I,

yn+1(t) =

∫ t

1

s
−2
3 e72(s

1
3−t

1
3 )
[
s

2
3 (2− yn(s))3 − s−

1
3x2

n(s) + 24yn(s)
]
ds+ 0.5e72(1−t

1
3 ), t ∈ I.
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Conclusion

In this work, we have considered the existence of extremal solutions for nonlinear
conformable fractional differential equation involving integral boundary condition,
and for a coupled system of nonlinear first order ordinary differential equations
with initial conditions. Also, we present the existence of extremal solutions for
a coupled system of nonlinear conformable fractional differential equations with
initial conditions.
These results will be obtained by using the monotone iterative technique combined
with the method of upper and lower solutions..
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