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Résumé

Une suite (a,) de nombres réels est équidistribuée sur un intervalle si la probabilité de trouver
des termes dans tout sous-intervalle est proportionnelle & la longueur de ce sous-intervalle.

On dit qu’elle est équidistribuée modulo 1 ou uniformément distribuée modulo 1 si la suite
des parties fractionnaires de a,, notée (a,) ou (a, — |an]), est équidistribuée dans 'intervalle
[0, 1].

Pour tout nombre réel donné r > 0 et tout o > 0, Koksma et H. Weyl ont respectivement
prouvé que les ensembles F, de tous les nombres réels positifs r > 0 et les ensembles W,. de tous
les nombres réels positifs a > 0, pour lesquels la suite ar™,cn n’est pas uniformément distribuée
modulo 1, ont une mesure de Lebesgue nulle.

Dans ce mémoire, nous donnons certaines propriétés algébriques de certains ensembles F,, et
montrons, entre autres choses, que les ensembles W, sont non dénombrables.



Abstract

A sequence (ay) of real numbers is equidistributed on an interval if the probability of finding
any terms in any subinterval is proportional to the length of the subinterval. And is said to
be equidistributed modulo 1 or uniformly distributed modulo 1 if the sequence of the fractional
parts of a,,, denoted by (a,) , is equidistributed in the interval [0, 1]. For any given real numbers
r > 0 and a > 0 Koksma and H. Weyl proved respectively that the setsE, of all positive real
numbers r > 0 and the sets W, of all positive real numbers a > 0, for which the sequence ar™,cn
is not uniformly distributed modulo 1, have Lebesgue measure zero. In this memoir, we give
some algebraic properties of certain sets F,a and show, among other things, that the sets W,
are uncountable.



Rating

1. N=4{0,1,2...} : designates the set of natural integers.
2. 7 : designates the ring of rational or relative integers.
3. Q : designates the body of rational numbers.
4. R : designates the body of real numbers.
5. C : designates the field of complex numbers.
6. A : designates a commutative and unitary ring.
7. VA\Q : designates the set of elements of V' that are not in .
8. D (zp,7) : designates an open disk with center zy and radius 7.
9. D (zg,7) : designates a closed disk with center zy and radius ..
10. log : denotes the neperian logarithm.
11. E(x) : designates the integer part of z..
12. {z} : is the fractional part of .
13. E'(z) : designates the nearest integer to z i.e..

o B
E(””)‘{< L

<
)+ 1,{z}

1
2, :so: E'(1.4)=1;E'(1.6) =2
>3-

14. ||z|| : denotes the distance from the real number x to the nearest integer i.e..
|z = |z — E'(x)| = min{|z — n|,n € Z}

= min{{a},1 - {2}}

For two real numbers x1, x2 and an integer n, we have

lz1 + 22| < [|21 || + |22,

[nz ]| < [nf |z -



15. Given a real number z, we can write x as:

N | =

z = E'(z) + &(x) with _71 <eg(z) <

16. For two integers n and k such that 0 < k < n we note

AN n!
Cn = <k> - Kl(n— k)

17. if f(x) and g(x) two functions defined on [zg, +oo | and g(z) > 0 for > zg, so

f(z) =0(g(x)) stands for (IM > 0) so that|f(z)| < Mg(z) (Vx > x0)

@) b O of e
(hmsup (@) < oo> (f(x) is a big O of g(x))
[ f(@)] ,
f(z) =o(g(x)) stands for mgr—lr-loo o) = 0(f(x) is a small o of g(x))
|/ ()]

f(z) ~g(x) stands fo xgr—l{loo o)

= 1(f equivalent to g or V(400))

These notations are also valid in a neighbourhood V' (zg), avec zg # +o0.



Introduction

The concept of uniform distribution modulo 1 was introduced by Hermann Weyl|7] in 1916.
A real sequence (), is said to be uniformly distributed modulo 1 if, for any subinterval I
of [0,1), the proportion of its terms in I tends to the length of I as the sequence lengthens.
Weyl’s criterion states that a sequence is uniformly distributed modulo 1 if and only if the sum
27]2;1 e2mhen ig pegligible compared to N for any h non-zero

Weyl demonstrated that arithmetic progressions are uniformly distributed modulo 1 if and
only if their common difference is irrational. For geometric progressions, it has been shown that
(Ar™) is uniformly distributed modulo 1 We also know (through theresult by J. F. Koksmal3|)
that for almost all A > 0 and almost all » > 1, except in sets of Lebesgue measure zero called
"Weyl’s exceptional sets" and "Koksma’s exceptional sets."

No explicit number r > 1 is known for which (™) is uniformly distributed modulo 1 , although
examples of r > 1 that are not uniformly distributed are known and are specific algebraic
numbers, such as Pisot-Vijayaraghavan (P.V.) numbers and Salem numbers.1 were appeared in
the article [1] by D. W. Boyd found geometric progressions with a transcendental ratio that
are not uniformly distributed modulo 1 . It is well established that there exist transcendental
real numbers r > 1 for which (") is not uniformly distributed modulo 1 because Koksma’s
exceptional sets are uncountable.

"Our memory is organized as follows:

The first chapter: We provided definitions and reminders of the theories used in this mem-
ory, such as rational series, integer series, convergence radius, analytic functions, holomorphic
functions, poles and residues, algebraic numbers and algebraic integers.

The second chapter: We define the concept of uniform distribution mod 1. We introduced
uniformly distributed, Weyl’s criterion, Lebesgue measure in R, Koksma’s theorem, and equidis-
tribution of geometric sequences and we gave explanatory explanations for them, and gave a
remarkable example of a sequence uniformly distributed mod 1

The the last chapter: We gave some properties of exceptional sets of real numbers as the
set of algebraic integers, then we characterized the subset S of algebraic integers and we gave
the necessary and sufficient condition to belong to the set S, then we introduced the theorem
(Weyl, 1916) and proved that the sets of Weyl are uncountable.



Chapter 1

Preliminaries

In this chapter, we give some reminders of definitions and necessary results relating to general
algebra, formal series complex analysis and algebraic numbers which will be used throughout
this memory.

1.1 Definitions

The structures of group, ring, field and vector space are covered first and are assumed to be
familiar to the reader. A[X] is the ring of polynomials.

+oo
> Xt
k=0

with coefficients aj in the ring A, whose addition and multiplication are defined below:

n

Zaka + Zkak = Z(ak + bk)Xk,
k=0 k=0

k=0
n s s+n s+n
(Z aka)(Z b X*) = Z e X, with ¢ = Z apby.
k=0 k=0 k=0 p+q=k

Let A[|X]] be the ring of formal series

ZanX”

k>0

into the indeterminate X with coefficients a,, in the ring A, whose addition and multiplication
are those of the ring A [X], generalized.

Remark 1. The ring A[X] of polynomials is a sub-ring of the ring A[[X]] of formal series; if A
is a field, the ring AJ[X]] has the external law:

A apXP =D "(Aap)XF where A€ A,
k>0 k>0
is a vector space on A.
Proposition 1.1. A formal series

Zaka

k=0

of the ring A[[X]] is invertible in AJ[X]] if and only if the coefficient ag of this series is invertible
in the ring A.



Proof. The series Zaka is invertible if and only if there exists a series Z b X" such

k>0 k>0
that

aobo =1
apby +a1bg =0
aogbe 4+ a1b1 + asby = 0

This system implies that ag is invertible.
On the other hand, if ag is invertible, we can compute by(by = aal), then b; = (—alaal)aal.
and all b, by the following recurrence relation:

bo = aal
- -1
b, = —ag 1 Zzzo ap—pbp,n > 1.
[ |

1.1.1 Field of rational fractions

Definition 1.1. On note

K(X)={P(X)/Q(X) where P and Q are in A[X],Q # 0}
the field of fractions of the ring A[X] where A is an integral ring.

Rational series

Definition 1.2. Let R be a field and let S(X) be a formal series of the ring K[[X]].
The series S is said to be rational if there exist two polynomials P and Q of the ring K[X] with
Q(0) # 0 such that:

S=P/Q

1.1.2 Rationality of formal series

Criterion 1.1. A formal series

S(X) =) a, X"

n>0

of the ring R[[X]] is rational if and only if there exist two integers s, ng and (s + 1) elements
qo, q1, - - -, qs with go # 0, of the field K such that:

QoQn + q10n_1+ ...+ qsGn_s = 0,Yn > ng.

Proof. If F' is a rational series, we can write

P(X
F(X) = Z%anxn = QEXi



with
zhn ,(P,Q) € K[X]? and deg(P) =
The two formal series are equal
QF =P

and since

anX X ZanX"

n>0

= chX” with ¢, = Zan i

n>0

Lets take ng = sup(r + 1, s) since deg(P) = r then ¢, = 0 for n > ng, so we get
qoan + q10n—1 + ... + @sGn—s = 07 Vn > no-
Conversely
S
= Z X",
n=0
the relation given in the criterion, shows that QF is of degree < ng—1, so F' is a rational series.Hl

Lemma 1. (Fatou) If S is a rational formal series of the ring Z|[X]], then there exist two
coprime polynomials P and Q of the ring Z[X|, such that :

5= P/Q
with Q(0) =

Proof. Let be the following non-zero coprime polynomials,

anX” and Q(X anX” in Z[X],

n=0

and the fraction
F=P/Q.

If F(X) € Z[[X]] then Q(X) is invertible in ZZ[[X]], by Proposition 1.1, o is invertible in ZZ we
deduce that go € {—1,1} and since

QIX)=q+quX + .. +qXF

then Q(0) =1 or Q(0) = —1.
In the case where Q(0) = —1, we take

F=-P/-Q

The lemma is proved. B

1.2 Integer series

Definition 1.3. Any series of the form

E anz"

n>0

where a,, are scalars in any field and z a variable complex is called an integer series.



radius of convergence

Definition 1.4. The radius of convergence of an integer series
S et
n>0
is the number
p=supr €R+;Z]an]r" < 400 p €Ry;
n>0
and convergence disk or convergence domain of the series is the ball D(0; p).
Theorem 1.1. The radius of convergence p of an integer series
S o
n>0
1s given by the formula

1 . 1
— = limsup |a, |
P n—-+o0o

Remark 2. Let ano anz™ and EnZO b,z" be two integer series whose radii of convergence R
and R’ respectively. Let R" denote the radius of convergence of the sum of integer series.

Z (an + bp) 2™

n>0

then R” > min (R, R').

1.2.1 Analytic functions

Definition 1.5. Let 2 be an open of C and f: Q2 — C be a function. Lett € Q. We say that f
is analytic in t if there exists a number r > 0 such that the disk D(t;r) is contained in  and an

integer series
S
n>0
of radius of convergence p > r such that, for z € D(t;r), we have
f(2) =) an(z—t)"
n>0
We say that f is analytic on Q if it is analytic at any point on Q.

Proposition 1.2. : [2] Let f(z) = Zanz” be the integer series whose radius of convergence
n>0
p# 0. Let t be a point inside the disk of convergence. Then the integer series

1 n n
Z Hf( )(t)w
n>0
has a radius of convergence at least equal to p — |t| and we have:
1 n n
IO SETIRIOIERT)
n>0

for all z such that |z —t| < p —|t].



Proof. Let ro = |t|, an = |ay,|. Calculate the p-th derivative of f
p+q)!
1) =50 P
=0 7

so that ( Y
p+q)!
‘f(l’)(t)) < E Tap+qrg.

q>0

For ro <7 < p, we have

Z;; ‘f(p)(t)‘ (r—mro)’ < Z ot Q)!O‘qu(q) (r—70)"
pq

Ipl
= q'p!
the terms of the series are positive, so we can see that

n

(p+q)! n o
Z o et (r o)’ = Z On Z pln—p)'0 Pr—m)? ),

!
paq TP n>0 p=0 " p)
as
> o = (o)
T r—7To = (r—ro To
Spln—p)!°
then
1 n
S ‘f@) (t)) (r=r0)’ <3 anp” < +ov.
p>0 P p=0

So the radius of convergence of the series
1
— f(n) n
> (e
n>0
is greater than or equal to r — rg, since we can choose r arbitrarily close to p, then the radius of

convergence is greater than or equal to p — rg.

Let z be such that |z —t| < p — r¢, the series

|
Z Map+qtq(z — )P
q'p!
X
converges absolutely. Fubini’s inversion theorem states that its sum can be calculated by grouping

terms arbitrarily. As before

n

(p+q)! n! _
> q'p! apigt?(z = 1) =D an | 3 P Pz = 1)

_ |
P,q n>0 p=0 (n—p)
= Zanz” = f(z). 1
n>0

Proposition 1.3. The sum S(z) of a convergent integer series
>,
n>0

of radius of convergence p > 0 is an analytic function in the disk |z| < p.

Proof. the series S(z) is integer, so according to proposition 1.2, it is Taylor-developable at
any point inside the disk of convergence and therefore analytic. B



1.2.2 Holomorphic functions

Definition 1.6. Q2 be an open of C,a € Q. A function f: Q — C is said to be holomorphic in

a if the limit
L flath) ~ f(a)
h—0 h

exists in C; it is said to be holomorphic in € if it is holomorphic at any point in Q.
The set of holomorphic functions on an open Q of C is denoted by H ().

Remark 3. Any analytic function on an open set Q of C is holomorphic.

1.2.3 Poles and residues

Definition 1.7. Let Q be an open of C and zy € Q. If the function f is holomorphic on Q\ {zo},
it has a Laurent expansion in zy;

F2)=> an(z—2)"

nel

and the coefficient a_y of (z — zo)_l in this expansion is called the residual of f at zy. Further-
more, if zg s a pole of order 1 then:

Res(f.z0) = lim (2 — 20) f(2).

Z—r20

Definition 1.8. The coefficient a_1 of the Laurent series expansion is called the residue of the
function at the pole z = zy. It is given by

a_1 = Res. = Zli_)rrzl(J =] {Zk__ll ((z - zo)k’f(z)>]

(if zo is a pole of order k)

Definition 1.9. Let Q be an open of C,a € Q and f : Q\{a} — C a holomorphic function. If
there exists a function g : Q@ — C and n € N* such that:

gla) £ 0 et f(z) = (zg_(‘j)n,vz € O\{a}

then a is a pole of order n of he function f.

Definition 1.10. Let © be an open of C. A function f is said to be meromorphic in Q if there
exists a discrete part [ of Q such that f € H(Q\F) and any point of F is a pole of f.
The set of meromorphic functions on Q) is denoted by M(Q2) .

Remark 4. Any meromorphic function f is the quotient of two holomorphic functions h and g
on €.

_9
= h
such that the set of points F is the set of zero’s of h.

1.3 Algebraic numbers and algebraic integers

1.3.1 Algebraic numbers

Definition 1.11. The number o € C is said to be algebraic if it satisfies a polynomial equation
"+ a4+ . +a,

with rational coefficients a; € Q. We denote the set of algebraic numbers by Q.



Examples:

1. a= % 2 is algebraic, since it satisfies the equation 2 — % =0.

2. = ? + 1 is algebraic, since it satisfies the equation (z —1)3 = 2, i.e.,

22— 322 +3x-3=0.

Lemma 2. The number o € C is algebraic if and only if the vector space over Q
V={10a0a%..)

1s finite-dimensional.

Proof. Suppose dimgV = d. Then the d + 1 elements 1, a, ... Lo

over Q; i.e., « satisfies an equation of degree < d.
Conversely, if

are linearly dependent

A"+ ad™ M+ +a,=0

then a" = —a1a™ ' — ... —a, € (1,a,...,a"b).
Now ot = —a10™ — ... —ana € (1,a,...,a"1); and so successively
n+2 _n+3 n—1
a"me o e (L., 0T

Thus V = (1,q,...,a" 1) is finitely-generated.

1.3.2 Algebraic integers

Definition 1.12. The number a € C is said to be an algebraic integer if it satisfies a polynomial
equation
"+ a4+ 4a,

with integer coefficients a; € Z. We denote the set of algebraic integers by Z.

Remark. In algebraic number theory, an algebraic integer is often just called an integer,
while the ordinary integers (the elements of Z) are called rational integers.

Examples:

1. We have o = 3v/2 + 1 € Z, since « satisfies

(x—1)* =18

ie.,
22— 22 —17=0.

2. Again, a = V2 +/3 €Z, since « satisfies

(r—vV3)?2=(—2V3+3=2

i.e.,
22— 23z +1=0.
Hence
(224 1)% = 1222
ie.,

2 — 1022 +1=0.



Chapter 2

The modulo 1 distribution

The (modl) distribution of a (¢n),cy sequence of real numbers is the (i), oy obtained by
reducing (modl) each number ¢, to a number v, belonging to a fixed interval of length 1;
practically we consider one of the two intervals [0, 1] or [—%, %} :

Historically, the problem of the distribution of a sequence was first raised by Lagrange, in
connection with the calculation of the motion of the great planets.
More precisely, this calculation involved the distribution of the sequence (na),en, @ € R.

In 1916, H. Weyl formalized the notion of uniformly distributed (mod1) of sequences.

Definition 2.1. A sequence (uy),,cn with values in [0,1] is said to be equidistributed if, for any
pair of real numbers a < b of [0,1], the sequence of integers of general term

o(n) = Card{k € N,k <n,a <wu, <b}

is asymptotically equivalent to n(b — a), i.e., p(n) will merge with n(b — a), at infinity.

A real sequence (up), oy is said to be equidistributed (modl) if the sequence of fractional parts
{un},en of the elements of (un),cy s equidistributed

2.0.3 Weyl’s criterion

The notion of equirAlpartition is closely linked to the Riemann integral. The following theorem
is useful for proving Weyl’s criterion.

Theorem 2.1. A sequence (un),cy with values in [0,1] is uniformly distributed if and only if

for any Riemann-integrable function f, we have:

1n
lim —

-1 1
3 ) = | s

Proof. Let a < b be two real numbers in the interval [0, 1] and let X[a,p) De the indicator
function for the interval [a, b], i.e. the function

x=1if z € [a,b]
x = 0 if not

1 b
/ X[a,b] (t)dt = / dt=b—a
0 a

or

14



> X (ur) = Card {k € N,k < n,a < uy, < b}

by definition of the function x[q 4. Therefore (uy),cy and uniformly distributed if and only if,
for all real a < b

N IRy ST

If the sequence (up),y is equirrect, we have the property announced for any function of type
Xa,p]» @nd we want this for any f Riemann-integrable function.

Since any staircase function can be written as a linear combination of segment-indicator
functions, the property is still true for any staircase function. Finally, any Riemann-integrable
function is the uniform limit of a sequence of staircase functions (see [6]). In other words, if f is
a Riemann-integrable function, then for any € > 0, we can find a staircase function ¢, such that:

Vz € [0,1] we have |f(z) — pe(z)| < €

Let f be such a function, for € > 0 and Ve in steps verifying the approximation property of f,
-1
we have for all n > 1‘%2210 f(ug) — Zk 0 Pe (uk)‘ < iy GE=¢

and
/01 F(t)dt — /01 goa(t)dt‘ < /01 edt = ¢

as we already have

1 t)dt
RS > SNy g

we deduce for n > ng

1 n—1 1
P> o)~ [ edltar] <
" =0 0

So for n > ng we have:
1 n—1 1 1 n—1 1 n—1
DNACSE IVIOI ESED SYUSEED SERTAIE:
" =0 0 = " k=0

/01 0. (t)dt — /01 f(t)dt‘ < 3e.

Since this is true for any real € > 0, we deduce

nmmszf /f

Conversely, if the sequence (uy), oy verifies, for any f Riemann-integrable function.

nE&MZf“k - [ st

1n—1 1
- s(u)_ E(t)dt
PN /090

+

15



then this is true in particular for interval indicator functions (which are Riemann-integrable),
and so the sequence is equi-distributed. B

Corollary 2.1. A sequence (un), oy 15 equidistbutrd (mod 1) if and only if, for any Riemann
integrable and 1-periodic function f, we have

Proof In fact, the sequence (uy),cy is uniformly distributed (mod1) if and only if the se-
quence of the general term {u,} is uniformly distributed in [0, 1], then for any f Riemann
integrable function we have

=
lim —

n—1 1
i 3 () = | s

If f is 1-periodic, then f ({u,}) = f (u,) for all n, and so we have the result announced.
Conversely, if for any Riemann integrable and 1-periodic function f we have

1n71 1
im — S f({ud) = [ eyt
X =

n—-+oo N

then by Theorem 2.1 the sequence ({un}),,cy is uniformly distributed , and therefore (uy),, oy is
uniformly distributed (mod1)M

Criterion 2.1. (Weyl) A sequence (up),cy i uniformly distributed (mod 1) if and only if for
any non-zero integer m,
1 n—1
lim — Z exp (2immug) =0
k=0

n—-—+oo N

Proof. If the sequence (uy),cy is evenly spaced (modl), then according to the previous
corollary, for any f Riemann-integrable and 1-periodic function, we have:

1 n—1 1
Jim ST ) = [
k=0
this is the case in particular for the function

x — exp(2immaz) where m € Z*.
Reciprocally, if the sequence (uy), oy verifies, for any integer m € Z*
n—1

1
lim — Z exp (2immug) = 0
k=0

n—-+4oo n
and as (z — exp(2imma) where m € Z*) is 1 -periodic we deduce that:

. 1
lim —
n—-+oo n

n—1
Z exp (2imm {ug}) =0
k=0

If f is a continuous and 1 -periodic function, then according to StoneWeierstrass’ theorem
(see[12]) there exists a sequence (pn)ysg of trigonometric polynomials that converges uniformly

to f.
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(A trigonometric polynomial P is defined by P(z) = Zizﬁn A exp(ikx) where (Ag) € C,
—n<k<n
Nj

m=—

z € IR). Then for e > 0, we can find a trigonometric polynomial p; . (z) = >

N, Am exp(2imma)
such that:

Vz € [0,1] we have |f(x) —pje(x)] <e

For all n > 1, we have

n—1
U3 () ——ijg ({ur})
k=0

/01 f(t)dt — /Olpj,s(t)dt‘ 3 /01 o

1
/ pj,a(t)dt =X
0

1
/ FO)dt — | < e
0

and

as

then

and according to (x) above

— N,
I .
ngrgoo . E E Am exp (2imm {ug}) = A
k=0 m:—Nj

then there exists ng € N such that for n > ng

Z Z Amexp (2imm {ug}) — Ao| < €

k‘ 0m=—N. J

i.e. for n > nyg

< 3e.

1n—1 1 1
w2 it = [ | [ o

Since this is true for every real € > 0, we derive

Then the sequence ({uy}),,cn 18 umformly distributed , so the sequence (uy), ¢y is uniformly
distributed (mod1).H

Corollary 2.2. If a is an irrational number, then the sequence with the general term na is
uniformly distributed (mod1).

Proof. Let a be an irrational number.
We’ll show that the sequence (na),en satisfies Weyl’s criterion.
Notice that for two integers m and k& we have

exp(2immka) = (exp(2imma))*

17



and since
ma ¢ Z and exp(2irma) # 1,

we get
n—1 n—1
Z exp(2imrmka) = Z(exp(Ziﬂma))k
k=0 k=0
1 — (exp(2imma))”
1 —exp(2iTtma)
thus
1 — (exp(2imma))™| _ 1+ |(exp(2iTma))™]
1 — exp(2imTma) |1 — exp(2imma)|
2
~ |1 — exp(2imma)|
We derive

n—1

1
lim — Z exp(2immka) = 0.
k=0

n—-+4oon

So, according to Weyl’s criterion, the sequence (na),en is equirrepar (mod1). W

2.0.4 Measure of lebesgue in R

Definition 2.2. The exterior measure of any interval I with extrema a < b is the positive real
number b — a, denoted by m*(I).

The exterior measure of an interval I is the same whether the interval is open, closed, or
semi-open; in the following we consider open intervals. We extend the outer measure to all open
R in the following way:

Definition 2.3. Fvery open of R is a disjoint countable union of open intervals |ay,by[ for
n € N. This is unique. The exterior measure of such an open is then

+o0o

Z(bn —ap) .

n=0

Definition 2.4. Let A C R be a bounded part. The outer measure of A is
m*(A) = inf {m*(w),w open and A C Q}
If A C [a,b], the inner measure of A is
my(A) = (b—a) —m*([a, b\ A).
If A is unbounded, then the outer and inner measures of A are
m*(A) =limn — +oom™ (AN [—n,n]) and m x (A) =limn — +ocom * (AN [—n,n])

We say that A is measurable if and only if if m*(A) = my(A) and we note m(A) the common
value. m(A) is the Lebesgue measure of A.
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2.0.5 Koksma’s Theorem

Theorem 2.2. Let (f,),cn be a sequence of real functions continuously derivable on the interval

la,b]. Let (m,n)be € N2, m # n.
Fm,n(t) = fm(t) - f'fl(t)

Assume that the following conditions are satisfied for each pair (m,n).
(1) The derivative function Fy, ,, is monotone and non-zero for all ¢ € [a, b].
(2) There exists an increasing sequence (NN, ),y of integers satisfying

lim Not1 _ 1
v—r+o0 N, B
so that if for N > 2 we have
N n—1
1 1 1
ANy = — E g max{ , } :
N? n=2m=1 Frlﬂvn(a’> Frln,n (b)

the series ) .y An, is convergent. Then the series (f,(t)),cy is evenly spaced (modl) for
almost all ¢ € [a, b] (i.e., the set where the series is not evenly spaced (mod1) is of measure zero
in the Lebesgue sense). To prove this theorem, we need the following two lemmas:

Lemma 3. Let (Ny),cy be a strictly increasing sequence of natural numbers with

Nv+1

li =1
v—tos N, ’
then we can extract a subset (Ny, ), oy with
lim Nows _ 1
k—+o00 va

so that the series .y Ni s convergent.
Yk

Proof For all m € N*, let I, be the interval [mQ,(er 1)2[; We define the sequence
(Nuy,)pen+ as follows: If the interval I, contains at least two terms of the sequence (Ny),cy,
let Ny, be the smaller and N,, ,, the larger. If it contains a single term, let N,, be that term.

Now two terms N,, and N, are either consecutive in the sequence (N, ),y or they satisfy

NUk:Jrl < (m+1)2

1<
Ny, m?

then
lim M =1.
k—+o00 va

Let be the interval -
B= | Im=[1,2
m=1

we have that the interval B; contains at most 2(t — 1) terms of the sequence (N, ),y S0 for all
t > 2 we have

Ny, , > t* and N,,, > t>
and like ) ) . 5
- tyo)e =X E
ng:* No, tgl\;* <N“2t1 Nz th:* 2

. 2 . . . 1 -
The convergence of the series ), . ;z implies that the series » ; - ~, convergent. ll
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Lemma 4. Let (up),cy be a sequence of positive real numbers such that the series ) - un is
convergent. Then there exists an increasing series (Yn),cn With limy, s o vn = +00, so that the
series Zn>1 UnYn 1S convergent.

Proof. Let S =}, -, u, and for any integer n, R, = 3 ;~,, 1 ux. The sequence defined by

VS
’771: 7n21
\/Rn—l+ \/Rn

and an ascending sequence with lim,, 400 7 = +00. We have

: s VR - VR
Zuk% ZUkF+F S; R~ R

VS (V- ) = VS (5 V).
It follows that the series anl UpYn is convergent. M

Proof (of Theorem 2.2) Assume that the conditions of Theorem 2.2 are satisfied. Let

N
1
op(N,t) = N Zexp (2imth fy,(t)) where h € Z*
n=1

We now construct a zero-measure part E of the interval [a,b] in the Lebesgque sense, such that
for any t € [a,b]\E,

lim op(N,t)=0,Vh e Z*
N—+o00

We have:

N
lon (N, t)| (1 Zexp 2imh f(t) ) < Zexp —2imth fp, (¢ )))
n=1

N
S lilv z exp (20h (fu(t) — ful0))) + xp 2ith (fult) = fnl0))]

L N
N N2 Z Z cos (2mhEy, n(t))

3

2\
2\

n=2m=1
then
b b—a 2 N onl b
i lon(N, )2 dt = N+mnzmzl/a cos (2mhFyp, n(t)) dt
We set

Lpn(h) = / " cos (2mhEyn(8)) di

Knowing that the sign of the derivative F}, , remains constant on the interval [a,b], then the
function F,, has an inverse function ®,,,,, we have

B
Lpun(h) = / &, (1) cos(2mhu)du with & = Fyy (), 8 = Fyu(b)
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Since the function @], ,, is monotone, the second formula of the mean theorem gives

Lnn(h)] < |1h| max (|, ()], |©),..(8)])

and then
N n-—1 1
/ |on (N, 1) N2zz7r\h\ <| ’ ‘ ’)
N n—1 1
_ zz(< e
So

b 2 b—(l
/ lon(N, )" dt < T+AN

Thanks to condition (2) and Lemma 3, we can successively extract a sequence of (Ny),cy, again
denoted (NNy),c such that the series

b—a
> (5t
veEN

converges.
According to Lemma 4, there exists an increasing (), such that the series

> (S an) v

veEN

converges.

We now define the set FE.

To do this, let’s put: Vv € N,Vh € Z*

Eu(h) = {t € [0,8]/ on(Noy )| > }}

The Lebesgue measure of E,(h) satisfies

)

b b—a
m(B0) <% [ lon (0P e < (5

Let’s say: Vh € Z*

Fu(h) = U2 1 B (h).

It is a countable collection of measurable sets, so it is measurable and the sequence (Fy(h)),cn
is a decreasing sequence of sets.
Let m (Fy(h) be the measure of Fy,(h), then we have
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= R b—a
m<Fu(h)§ Z m (Ey(h)) < Z %< N, +AN'U>

v=u+1 v=u+1
and So

lim m (Fy(h) =0

U—>+00
The set N> F,(h) has Lebesgue measure zero, and the same is true for the set E defined by

E = Upez [NE Fu(h)]

because F is a countable union of sets of measure zero.
If ¢ does not belong to E, then for any h € Z*,t does not belong to N> F,(h) and there
exists some p1(h) such that for u > pi(h) we have

1
op (N, t)| < ——
lon (Ny, t)] N
it follows that

ung on (N, t) =0.

For any integer N > Ny, there exists p such that

N, <N < Ny

then we have

N
lon(N,8)| = |+ Zexp(mhfn(t))‘
n=1
1 N
< > exp (2imhfu(t)
Nu n=1
1 Ny+1
< — | > exp(2imhfa(t))
Nu n=1
1 Ny 1 Nyt1
<+ 2o expQinhfu(t)| + 5 D lexp(2imhfn(D))|
Hin=1 H n=N,+1
Nyt — N,
S Oh (N,UJ t) = Nu =

we get whatever h € Z*

lim O'h(N,t) =0

N—+o00

The sequence (fy(t)),,cn is therefore evenly spaced (mod1) .l

Remark 5. In Koksma’s theorem, we replace condition (2) with the following stronger condition

(3):
(3) There exists a real K > 0 such that

22



|} n ()] > K, Vi € [a,b]

Let t be in [a,b]. For any integer N > 1, order the sequence (f},(t));<,<x in ascending order.
In the new order we have

frt) = fl_1(t) > K where 1 <n <N
and therefore Vt € [a, b]
fu® = fu)= 3 - fia)= Y K
i=n-+1 i=n+1

> K(m—n) wherel <n<m<N

This gives us

Il
==
3
L
S|
IN
==
~/
—
+
[]=
3
&+ | =
S
N——

S
Il
—

<i 1+/N1dt <i(1+lo N)
=K LYK &
and then

4 <N(1—|—logN)_(1+logN)
N="KN2 KN

We now define the sequence (Ny),~o by

N, = v?
then we have
M T =1

It follows that

Ax, < (1 +;ng v)
If we assume for x > 1 that

fla) = (1+ i;og x)
we know that

frrime () = _41;596 <0

then the series
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1s of the same kind as the integral

Ka?
and since
0 (1+2logz) (1+2logz)]+™ teo 2
LT L08T) gy = | AT 208T) 4
/1 Kz? N [ Kz ]1 * 1 Ka? v
_3
K

Therefore > AN

v

vEN is convergent, so condition (2) is satisfied.

Theorem 2.3. Let A be a non-zero real number; the sequence (Aa™), .y is equiregular (mod 1)
for almost all real numbers o > 1.
Proof. Assumingt > 1, f,(t) = M"™ (n € N*), we have

@) = fr () =X (nt" T —mt™ ) forn £m

where

o) = ()] Z [\ >0

Applying Koksma’s theorem, we deduce that the sequence (M"), o is (modl) equirreparable
for almost all t € [k, k+ 1] (k € N*).

Let Ey, C [k,k + 1] be the set of real numbers o such that: the sequence (Aa™), oy is not
ordered (mod1), then Ey has Lebesgue measure zero. Let’s posit

E = Ugen-Ej,

ince a countable union of sets of Lebesgue measure zero is of measure zero, the sequence
Si tabl jon of sets of Leb s of th
(M"),en 18 equirect (mod1) for almost all real t > 0.1
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Chapter 3

Some properties of exceptional sets

3.1 Characterization of subset S of algebraic integers

We’re going to introduce a special set of numbers, which we’ll call U. To do this, we’ll need the
following theorem:.

Theorem 3.1. [7] Let « be a real > 1. Suppose there exists a real X > 1, such that

B ¥neN (3.1)

<
I'= 2ea(a+1)(1+log )

Then « is an algebraic integer; its conjugates have modulus less than or equal to 1 and X\ belongs
to the field Q(«) , generated on Q by «.

Remark 6. We see that the sequence (Aa™),, .y verifying condition (8.1) above is non-equivalent
( modl) : indeed since

2ea(a+1)(1+1ogA) >8

then ]
A < g,Vn eN

so the sequence of integers of the general term

1
ap(n)—Card{keN,k<n,8 < A{ug} < ;},VTLGN

. 7T_1_3 '
is zero, so p(n)/n 2 0# ¢ — 5 = 3 and the sequence (Aa"), oy is not equal to (mod1).

To prove this theorem, we need some auxiliary results.
Let’s say:

up, = E' (Aa") e, = e (Aa™) oru, +e, = Aa™,¥n € N,
Let’s introduce the linear form Vi, defined on R**! by

S
Vo(z) = Zunﬂ-xi or s € N
i=0
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and suppose there exists a = (ag, ;as) € Z°T1\(0) and A € N* so that
sup |a;| < A.
0<i<s

Lemma 5. if V,,(a) =0 and

1

&l < Gi DA

VieN (3.2)

then Vy41(a) = 0.
Proof. We have:

s

[Vat1(a) — aVi(a)| = Z i (Unt14i — QUnyi)

=0
== Z a; ((}\O{n+1+i — 5n+1+i) — ()\O/H_i — 5n+i))
=0
or s
Vat1(a) — aVu(a)] < lai (ent1es — aeni)] -
=0
Or
|ai (Ent1+i — a€n+i)| < A (lent1+i| + alenta])
1+a)A 1
(s+D(a+1)A  (s+1)
SO
° 1
n - n = 1
‘V +1(a’) aV, (CL)‘ <§(S+1)

Since by hypothesis, V,,(a) = 0, we obtain |V,,+1(a)| < 1 and since V,,+1(a) is an integer, then
Vn+1 (a) =0. 1

Lemma 6. if

1
; Vi€ N

Sl < e DernAa " ©

and

A>2\5a -1 (3.3)

then there exists a € Z5T\(0) such that Vo(a) = 0.

Proof. Let Vj be the linear form defined by

Vo(z) = ES: Ui T
=0

and let be the set
Dy ={z = (20, ., 2;) € 27,0 < <A}

We have:
Card (D(a ) = (A +1)°*!
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and

1
= DA + Do — Da® + ——.
(s+1)(A+ 1)’ — (s + 1) +a—|—1

We also have

a>1l,s>1let XA>1,

then
L land — s 1aat < -2
ariSgan s o <
or
—(s+ DI’ + . <-1
a+1
S0

0< Volz) < (s + 1)(A + 1DAa® — 1

and according to (3.3)

(A+ 1) > 25(A+1)Aa® > (s + 1) (A + 1A

or
0 < Vo(z) < (A4 1) —1.

Since the linear form used above is defined on the set D4 ,) to (A + 1)**! elements and takes its
values from the whole {0, co (A1) - 2} to (A +1)*T! — 1 elements, the drawer principle

ensures that there are two different points b and by in

Dias) such as Vo(b) = Vo (bo). So, for a = b — bgwe obtain that a € Z*+t'\(0) with

SUPp<;<s |ai| < A and Vp(a) =0. B

Definitions of numbers S and A [4]

Thanks to condition (3.1), we can determine S and A and, consequently, build a a dans ZT1\ (0)

satisfying the condition

Vo(a) =0,Vn € N.
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Lets ask

5—1§10g)\<sandA<2)\%a§A+1

and consider the continuous and derivable function on [s — 1;s] :

T 14z
:1—* 1 .
() o 1+s
We hayve:
1
ga(s—l):—log<1+s> >0,0(s) =0
and
'(z) 1—i— <0Owithz>s—1
= —— W —_
14 s x+17~ -

so ¢ is strictly decreasing in the interval [s — 1;s], or
p(s—1) > p(log ) > ¢(s) =0.

SO

log A 1+ log A

>0
1+s

p(logA) =1

+ log

done

log A
B2 log(1+5) < 1+ log(1 +log )

Passing to the exponential, we find

(s + 1))\% < e(l+logA) (3.4)

Let’s now check that condition (3.1) and the definition of A imply conditions (3.2) and (3.3).
We have:

INT < A +1 that is to say Nia—1 < Aor (3.3).

Also

A< 2)\%04, d'oAz A(s+1) < 2)\%a(s +1),

or according to (3.4)
A(s+1) < 2ea(l +log)) (3.5)
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Furthermore, according to (3.1)

1

2ea(l +log\) < —
( &) (@+1) |en

(3.6)

it follows from (3.5) and (3.6) that

1
(s+ )(a+ A’

len| <

which is fine (3.2).

Proof.(of theorem 3.1) From the two previous lemmas we can find an a = (a;)y<;<,, with
non-zero a; in Z, such that

agUn + @1Up41 + ... + astinges = 0,Vn € N.

Then according to criterion 1.1.1 and lemma 1.1.1 the series

E Up 2"

n>0

is rational, hence the existence of two polynomials B and @ prime to each other, with Q(0) = 1,
with integer coefficients such that

B(z) :Zunzn: Z()\an_gn)zn

Q( ) n>=0 n>0

= Z a2zt — Z eni’.

n>=0 n>0

We hayve:

then

lim sup \)\a”\% = o and limsup ’e’fn‘% <1
n—-—+oo n—»—4o0o

Thus, the series
Z Aaz2" and Z eni”
n>0 n>0

are convergent on disks D(0.1/«) and D(0.1) respectively, then

B(z) A
Q(z) 1-az

- anz",v,z € D(0,1/a).

n>=0
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The series,

g eni”

and being analytic on D(0,1), the function f such that

has the number 1/« as its unique pole (of order 1) on D(0,1).

Thus the polynomial ()(z) has the unique zero 1/« in the disk D(0, 1), the number o and an
algebraic integer; the conjugates 1/a; of 1/«, being outside D(0,1) in C, the a; are of modulus
<1

Moreover, the residue of f in é is

1 1 A
Res(f,a): lim <Z_a> 1_az—anz” = (3.7)

1
z—r= =0

| >

on the other,

So the number A is indeed an element of Q(c). W

3.2 Sab set of integer numbers

Definition 3.1. /5] A Pisot number is any real algebraic integer greater than 1 whose conjugates
have modulus strictly less than 1 .
The set of Pisot numbers is denoted S; it is a subset of the set U introduced earlier.

Remark 7. Any relative integer greater than 1 belongs to S.

3.2.1 Of theus numbers
Proposition 3.1. Let 0 € S. The sequence (||0"(), o v converges to 0 .

Proof. Let P(X) = X*+c;_1X* 1 +... 4 co be the irreducible polynomial in Z[X] such
that P(6) = 0.

Consider its companion matrix
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0o 0 . 0 —Co
1 0 ... 0 —C1
¢ = 01 . 0 —e
0 O . 1 Cs—1

It’s a matrix with integer coefficients, and its characteristic polynomial is P.
Since P is split in C[X], we can triangularize € and obtain the following matrix:

0 a2 .. a1s-1 Qi

0 92 .. . a/275
D= 0 O

: : . . As—1,s

o 0 .. 0 0,

Or (aj)je{2 s} are the conjugates of 6 and by construction ¢ and (0;)
of the matrix. We then obtain that:

je{2,.,s) are the eigenvalues

Tr(€) = Tr(®) and Tr(€") = Tr (D").
We deduce that:

Tr(D") € Z and Tr (D") = 6"+ ) 67,

j=2
Note that
d= sup |§;] <1,
2<j<s
we have .
Tr (D7) — 0" <> |67] < (s — 1)d".

j=2

Now

lim (s—1)d"=0

n—-+o0o

therefore 6™ tends to wards an integer, which means by definition of &, that [|6"| will tend
towards 0. W

This Proposition leads us to the following question: could we find a necessary and sufficient
condition for membership of S through a convergence of the same type as in proposition 3.17

To answer this question, we will first demonstrate a proposition borrowed from complex anal-
ysis.

Proposition 3.2. Let ¢ be a meromorphic function on an open Q0 containing D(0,1).
Suppose ¢ has a Taylor series expansion in 0 on the disk D(0,1)

o(z) = Zanz" with  lim a, = 0.

n—-+0o00
n>0
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Then ¢ has no pole on the circle C(0,1).

Proof. From Proposition 1.1.3, the function ¢ is analytic on D(0, 1), so we deduce that the
radius of convergence of the series is R > 1.

1°€* case: if R > 1 then ¢ has no pole on the circle C(0,1).

2°me case: if R =1 then ¢ has at least one singular point on the circle C(0,1). (otherwise,
R > 1 and by hypothesis, this is not the case).

We can assume, without loss of generality, that this singularity lies at z = 1. Let € > 0, there
exists ng such that for n > ng, |a,| < €. So for 0 < r < 1, we have:

no—1

E anz"
n=0

with M a constant. We therefore have:

+o00 rno
+ ) Jan| 1" < M e,

n=ng

lp(2)] <

()1 =7) < M(1—7) +e

hence

lim |p(r)[(1 —r) =0.

r—1,

This contradicts the fact that 1 is a pole of . Indeed, if 1 is a pole of order m > 1 of the function
©, we have on a neighborhood of 1

p(r) = (g(?“l)m where g(1) # 0

(r)

and the limit gives us that lim,_q (l_grm = 0 then g(1) = 0. This is absurd, so we have R > 1.l

We can now state the following theorem:

Theorem 3.2. An algebraic real number theta > 1 belongs to S if and only if there exists a real
A # 0 such that

lim [[A0"] =0

n—-+00

Proof. Since 6 is algebraic, we can find a polynomial with integer coefficients that cancels
out at 6. Let > "7 ¢; X" be this polynomial. Then we have:

zs: ¢i0" = 0 and iqi)ﬁ”” =0,Vn € N.
0 0
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By decomposing A"t into the sum of Upyi = EPTIMe ()\9"‘”) and g,4; =€ ()\G"H), we can
write

S S
Z Qilnti = — Z Gi€nti, Vn € N.
0 0

We have, by hypothesis,

lim &, =0.
n—-+00

So, for n > ng we have:

<1

S
E qiUn+i
0

And consequently

S
Z Giun+i = 0 where n > ng
0

then the series

ZunX”

n>0

is rational. As in the proof of theorem 3.1.8, the set is equal B/Q with B and @ polynomials
with integer coefficients. with B and ) polynomials with integer coefficients, prime to each other
with Q(0) = 1. We then have:

B(z) _ n_ A n
Q0) —Zunz =1"0, —Zenz ,Vz € D(0,1/0)

n>0 n>0

Using the previous property, from the condition

lim ¢,=0
n—-+00

it follows that the series - €n2" has no pole on D(0,1). Q has a unique zero in D(0,1) and
0 € S, the other part of the demonstration is given by theorem 3.1. B
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3.3 Appendix: Table of Pisot numbers below 1.6

The table below gives the 12 Pisot numbers below 1.6 in ascending order and their minimal
polynomials.

Number of Pisots Polyn A’ me minimal
1 | 1.3247179572447460260 | 2° —z — 1
2 | 1.3802775690976141157 | 2* — 2% — 1
3 | 1.4432687912703731076 | 2° —a* — 23 + 22 — 1
4 | 1.4655712318767680267 | 2° — 22 — 1
5 | 1.5015948035390873664 | 20 — 2° — 2% 4+ 22 — 1
6 | 1.5341577449142669154 | 2° —2® — 22 —x — 1
7 | 1.5452156497327552432 | 27 — 28 —2° + 22 — 1
8 | 1.5617520677202972947 | 2% — 225 + 2% — 22 + 2 — 1
9 | 1.5701473121960543629 | 2° — 2% — 2% — 1
10 | 1.5736789683935169887 | 2% — 2" —ab + 22 — 1
11 | 1.5900053739013639252 | 2" —a® —z* — 23 — 22—z — 1
12 | 1.5911843056671025063 | 27 — a8 — a7 + 22 — 1

3.4 On the exceptional Weyl set

We denote p the Lebesgue measure on R. Further, given (z,,),,cy a sequence of real numbers, N
a positive integer and E a subset of 0,1, we set:

A(E;N;(zy)) =#{neN|n<Nand <z, >€ E}.

For r > 1, let E,, D, and W, denote respectively: the set of the real positive numbers A
satisfying

1
Ar <~ (¥n € N)

the set of the real positive numbers A for which the sequence (Ar"), . is not dense modulo
1 and the set of the real positive numbers A for which the sequence (Ar"),, . is not uniformly
distributed modulo 1.

Theorem 3.3. (Weyl, 1916) : Let x > 1 be a real number. Then for almost any real &, the
sequence {xix"} is equidistributed.

Theorem 3.4. [6] For any real number r > 1, the set E, is uncountably infinite.

proof. When r < 3, it is obvious that E, =] 0, +oo[ is indeed uncountably infinite.
Let’s assume that r > 3. To show that the set E, in the theorem is uncountably infinite, we will
construct an injective function ¢ from N to 0,1 into E,..
Initially, to any f € {0,1}N, we associate the sequence of positive integers u, (f) defined by:
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up(f) =1
Unt1(f) = [7-un(f)] + f(n) (Vn €N) (1)

Given f € {0, 1} fixed, set u, = u,(f) for all n € N. Equation (1) implies that we have:

rup — 1 <upyy <rup,+1 (VneN)

Then, using this last double inequality, we can easily verify that the two real sequences (x,,),,

and (yp),, defined by :

Up, 1

e . |
= e
Unp, 1

Yn 1= — +

are adjacent, more precisely: (z,),, is increasing, (yn),, is decreasing, and x, — y, — 0 as n
tends to infinity. These two sequences thus converge to the same limit A = A(f) (depending on
f), which necessarily satisfies:

Tn <A<y, (VneN)

This gives:

1

Now since r is assumed to > 3, we have i < %, and equation (2) shows that for any n € N,
the integer u, is the integer closest to the real number Ar™. Consequently, we have:

1
Ar't| = A" — < —
A = e = ] < ——

that clearly demonstrates that A = A(f) belongs the set E, of the theorem. We have thus
established a application

o:{0,1}N = E,

which associates any f € {0,1}N with the real number A(f). By equipping the set {0, 1}
with the usual lexicographic order and the set E, with the induced order from the usual order of
R, we will show in the following that o is strictly increasing with respect to these orders, which
will imply its injectivity and conclude this demonstration. Let f and g be two arbitrary elements
of {0,1} such that f < g in the lexicographic order. Therefore, there exists k € N such that
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we have f(i) = g(i) for 0 <i <k —1 and f(k) < g(k). Hence, we certainly have f(k) = 0 and
g(k) = 1. Consequently, a simple recurrence starting from the very definition of the sequences
(un(f)),, and (un(g)),, shows that we have:

un(f) =un(g) forne{0,...,k} and
up1(f) — ues1(g) = f(k) — g(k) = -1

o E+l ola)rht1 —
O'(f) —o(g) = (f)T rk+1Uk+1(f) - o)r Tk+luk+1(9) B T.k1+1

o0t —wa ()] oot w1
= prEs] s R
< 2 _ 1
= orktl(pr —1)  pktl
- 3—r

= -1

(using (2) With n =k + 1 For f and g)

<0 (carr>3)

This gives o(f) < o(g), demonstrating that o is strictly increasing as required. The proof is
complete.l

Corollary 3.1. For any real numberr € [3, 400 [U {2, %} , "The set D, is infinite and uncount-
able.

proof We distinguish the following four cases:"

e Case r > 3: In this case, the result of corollary 3.1.1is an immediate consequence of that
of Theorem 3.4 . Indeed, let r > 3 be a fixed real number and A be an arbitrary element of the
set E, from Theorem 3.4 . By the very definition of E,, each term of the sequence (Ar"), _y is

r—17r—1
interval has a length of —2; < 1 (because r > 3), its complement in ] — 1/2,1/2 [ is indeed
a non-empty open set disjoint from the set of representatives (in [—1/2,1/2[) of the modulo 1
classes of the terms of the sequence (Ar"), . Consequently, the sequence (Ar™), . is not dense
modulo 1. This implies that E, C D, and since E, is infinite and uncountable (according to

Theorem 3.4), then the same holds (a fortiori) for D,.

congruent modulo 1 to some real number in the closed interval [— - } Since this latter

e Case r = 2: It is easily verified (by distinguishing the cases of even and odd n) that any
real number A > 0 can be written in the form

i=0

S
S

)

W

(with a; € {0,1} for all i € N) satisfying < A2" >< 2(Vn € N). Such a Ais therefore an element
of D,. Since the set

—| a; = 0.0orl for all z}
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is evidently infinite and uncountable, then D,. is consequently infinite and uncountable.

e Case r = 3: It is immediately verified that any real number A > 0 can be written in the
form X\ = 7%, g (with a; € {0,1} for all 4 € N)satisfying < A3") < 2(¥n € N). Such a Ais
therefore an element of D,. Since the set

(5

1=0

a; = 0.orl for all z}

is evidently infinite and uncountable, then the same holds a fortiori for D,..

e Caser = g: Let s := 73 > 15. We will show in what follows that D, contains E,. Since E,
is infinite and uncountable (according to Theorem 3.4), we will conclude that D, is also infinite
and uncountable. Let A be an arbitrary element of F,. By the very definition of the set F,, we
have:

1
[Ar3™ || = [[As™| < P (¥n € N)

This implies that the sequence (< )\r3">)n o traverses the union of the two intervals [0, 5%1}

and [1 — 5_%, 1[ whose sum of lengths is S_% Now, using the elementary fact asserting that:

"When the fractional part of a real number x traverses a finite union of intervals whose sum of
lengths is < a(a > 0), then, given p, ¢ € N*, the fractional part of the real number %x traverses
a finite union of intervals whose sum of lengths is" < pa",

we deduce that the Sequence(<)\r3"_1>)n o+ traverses a finite union of intervals whose sum
of lengths is < 5%1 and that the sequence (< )\T3"_2>)n cny+ traverses a finite union of intervals
whose sum of lengths is < % and that the sequence (< Ar")), .y traverses a finite union of
intervals whose sum of lengths is < 2 + 8% + 2 = 81_—41 < 1 (because s > 15 ). It follows
from this that there exists a non-empty open C [0,1[ which does not meet the set

{< A" >|n e N}

Therefore the sequence (Ar"), oy is not dense modulo 1, i.e. A € D,. The inclusion Es C
D, is thus proved, which completes the proof of the corollary for this case and ends this
demonstration.ll

Corollary 3.2. For any real number r > 1, the set W, is infinite and uncountable.

proof Given a real number r > 1, let’s choose an integer k > 1 such that
> 2k +1

According to Theorem 3.4, the set E,« is infinite and uncountable. We will show in the following
that this latter set is included in W,, which will consequently imply the uncountable infinitude
of the set W,.. Let A be an arbitrary element of E,«. For any positive integer n that is a multiple
of k, say n = km for some m € N, we have:

e = A ()" < Tkl_ (car ) € Byx)
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In other words :

1
<)\Tn>¢]rk171,1— 3 1[
Therefore, we conclude that for
1 1
1= 1-—
]’I“k -1’ rk—1 [

we have :

i A(L;N;(Nr™)) 1 2 i

1 — Y Ll -—<1- = I< > 2k 1).

lmNil—Ii-)oo N < ’ e () (carr +

This implies that the sequence (Ar"), . is not equidistributed modulo 1, hence A € W;.. There-
fore, we indeed have E.» C W,, completing this demonstration. l

If we restrict the assumption of Corollary 3.1 to r > 2, a similar approach to that of the
proof of Theorem 3.4 allows us to show that the set of real numbers A > 0 for which the sequence
(Ar™),en is not dense modulo 1 is infinite; however, it does not indicate whether this set is
countable or uncountable.

Theorem 3.5. For any real number r > 2, the set D, is infinite.

proof.- We associate with every k € N, the sequence of positive integers (u,(k)),,cy defined
by:

uo(k) =1
Upt1(k) = [r-un(k)] +k (Vn eN)

This last relation implies that we have:

run (k) + k — 1 < upy1(k) <run(k)+k (Vk,neN)

This allows us to easily verify that for any & € N, the two sequences with general terms

 up(k) kE—1
on(k) := rn ro(r —1)
and
up(k) k
Bn(k) = rn + ro(r—1)

are respectively strictly increasing and decreasing. Furthermore, since (for all & € N)ay, (k) —
Bn(k) — 0 when n ttends to infinity, these two sequences (ay(k)), and (B,(k)), are adjacent,
and consequently, they have the same limit A(k) satisfying:

an(k) < A(k) < Bn(k)(Vn € N)
. This implies:
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k-1 k
< AR — un (k) <

r—1 T —

(Vk,n € N) (3)

This shows that for any k& € N, each term of the sequence (A(k)r"), oy is congruent modulo

k=1 kl ; but since this interval has a length of Tfll <1

1 to some real number in the interval | /=, =5

(because r > 2), then the sequence (A(k)r"™), .y is not dense modulo 1 for any value of k € N.
Finally, by setting n = 0 in (3), we see that

k—1 k
)\(k‘)e:|1+r_1,1+r_1:|

(for all k£ € N). Since the intervals

k—1 k
1 1
] +r—1’ +r—1]

(for k € N) are evidently pairwise disjoint, the real numbers A\(k) (for £ € N) are pairwise

distinct, and consequently, the set of real numbers A > 0 for which the sequence (Ar™), . is not
dense modulo 1 is indeed infinite. This completes the proof..H

39



Bibliography

[1] D. W. Boyd. Transcendental numbers with badly distributed powerss. Ann. Scuola Norm.
Sup. Pisa, pages p. 205-248., 7 (1938).

[2] J.Coquet. Remark on the numbers of pisot-vijayeraghavan,acta aritmetica. , Acta arith-
metica., pages p. 79-87, 32.1 (1977).

[3] J. F. Koksma. A set-theoretic theorem on the uniform distribution modulo one. Composite
mathematics, 2, pages , p.250-258., (1935),.

[4] ias LAIB. On pisot numbers. page ., 2016.
[5] Ch. Pisot. Study of some algebraic integers.
[6] C. R. Acad. Sci. Paris. pages .p. 441-445., SAfer. I 343 (2006.

[7] H. Weyl. Uber die gleichverteilung von zahlen mod eins. Math. Ann, pages p. 313-352., 77
(1916).

40



