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Abstract

The study delves into the resolution of weighted fractional operators of variable or-
der in specific spaces. It investigates a boundary value problem involving weighted
fractional derivatives with respect to functions of variable order using Darbou fixed
point, emphasizing the connection between symmetry of transformations for differ-
ential equations and local solvability, which correlates with the existence of solu-
tions. The work also highlights the necessity of existence requirements for weighted
fractional derivatives with respect to functions of constant order Furthermore, the
work discusses the existence of solutions to a boundary value problem of differential
equations of variable order, with results based on the Schauder fixed point theorem.



Contents

Table of Contents 2

1

Preliminaries 6
1.1 Absolutely continuous and continuous functions : . . . . . . .. .. ... ... .. 6
1.2 Properties of real analysis : . . . . . .. ... L 7
1.3 Some elements of topology: . . . . . . . .. oL 7
1.4 Some Special Functions . . . . . . . . . .. 8

1.4.1 Gamma function: . . . . . . . ... Lo 8

1.4.2 Beta function: . . . . . . . ... 9

1.4.3 Mittag-Lefler function: . . . . . .. .. .. ... ... ... .. .. ..., 11
1.5 Riemann-Liouville integral with constant order : . . . . . . . .. .. .. ... ... 11
1.6 Derivative of Riemann-Liouville with constant order : . . . . . . . . .. ... ... 13
1.7 Riemann-Liouville fractional integral of variable order : . . . . . . . . .. .. .. 16
1.8  Riemann-Liouville fractional derivative of variable order : . . . . . . . .. .. .. 16
1.9 Generalized intervals . . . . . . . . ... 16
1.10 Some fixed points theorems: . . . . . . . . . . ... 18

The existence of solutions Lyapunov-type inequalities to boundary value prob-

lems of variable order 22
2.1 Some approximation of solution . . . . . . . ... L oL 23
2.2  Existence result of solutions: . . . . . . . . ... ... ... 27
2.3 Example . . . . .. 31
Boundary value problem of weighted fractional derivative of a function with

a respect to another function of variable order 34
3.1 Existence of Solutions . . . . . . . . .. ... 34
3.2 Example . . . . .. 44



Introduction

Fractional calculus has been applied to a wide range of real-world problems,
including the dynamics of predator-prey relationships, the behavior of com-
plex media like porous materials, and the study of dynamical systems where
traditional methods are ineffective. It has been found that many models
based on ordinary differentiation and integration do not capture the com-
plexity of these phenomena, and fractional calculus provides a more accurate
and comprehensive description.

In recent years, fractional calculus has become increasingly important in
various scientific and engineering fields. The Riemann-Liouville and Caputo
fractional derivatives are commonly used operators, but there are also other
types of fractional operators that have been developed to help researchers bet-
ter understand complex phenomena. Additionally, there has been a growing
interest in fractional integration and differentiation of variable orders.

The solvability of differential equations is a key issue in the study of differ-
ential equations, and various techniques, such as Lie group symmetry, have
been used to analyze their existence. In this paper, integral equivalence is
used to confirm the existence of solutions for boundary value problems with
variable orders. Many researchers have also investigated and solved bound-
ary value problems for different types of fractional differential equations.
Abel, 1923;0ldham and Spanier, 1974 ; Spanier, 1974;Ross, 1977; Samko,
Kilbas and Marichev ,1993;Samko and Ross, 1993;

Samko, 1995; Podlubny,1999; Hilfer, 2000; Klimek, 2001; Coimbra, 2003;
Kilbas, Srivastava and Trujillo,2006; Sun, Chen and Chen, 2009;

Mainardi, 2010; Atanackovic and Pilipovic, 2011; Sheng et al., 2011;
Ramirez and Coimbra, 2011; Chen and Ye, 2011;

Malinowska and Torres, 2011, 2012; Herrmann, 2013;

Odzijewicz, Malinowska and Torres, 2013; Almeida and Torres, 2013;
Odzijewicz, Malinowska and Torres, 2013a; Chen and Yang, 2013;

Oldham and Oliveira and Machado, 2014; Pinto and Carvalho, 2014;
Sierociuk et al., 2015; Li and Liu, 2016; Kumar, Pandey and Sharma, 2017.



So we discuss the existence of solutions to a boundary value problem of
differential equations of variable order,While many other research works on
the existence of solutions to fractional constant order problems have been
carried, the existence of solutions to variable-order problems is infrequently
mentioned in the literature, and there have been only a few research papers
on the stability of solutions. As a result of investigating this intriguing spe-
cial research topic, our findings are novel and notable.

in these memory :

chapter 1 : we will present some definitions(Riemann-Liouville, Generalized
interval ) and theories(Darbou fixed point,Schauder fixed point ) that we have
used in this research, and we will mention the concepts of some special func-
tions(Beta,Gamma, Mittag-Leffler function).

chapter 2 : we consider the existence of solutions Lyapunov-type inequality
to the boundary value problem for differential equation of variable order:

DIYa(t) + f(t,x) = 0,0 <t < T,
z(0) =0,z(T) = 0.

chapter 3 : we will study the boundary value problem for Weighted Frac-
tional Derivative of a Function With Respect T° Another Function with
Variable Order :

DRty = f (t, h(t), I{jj“m(t)) tel,
h(0) = h(e) = 0.



Chapter 1

Preliminaries

1.1 Absolutely continuous and continuous functions :

Definition 1.1. /39/

Let Q = (a,b)(—o0 < a < b < o0) be a finite or infinite interval of R, and
1 <p<oo:

1. If 1 < p < oo the space L,(2)

L,(Q) = {f : Q — R; f measurable and / |f(z)]Pdx < oo} :
0

2. For p = o0, the space Loo(2) is the space of measurable functions, f
bounded almost everywhere on €2, we notice

supess |f(x)] = inf{C > 0;|f(z)| < C p.p on Q}.

e

Definition 1.2. [39]
Let [a,b] (—o00 < a <b< 00) a finite interval. We denote by ACla,b] the
space of primitive functions of integrable functions in the sense of Lebesque

feACa, bl & f(x)=c+ /w e(t)dt (p(t) € L(a,b)),

and we call AC[a,b] the space of absolutely continuous functions on [a, b].

Definition 1.3. /39/
Forn € N, we denote by AC"[a, b] the space of functions f having derivatives
up to order (n — 1) continuous on |a,b] such that

f=Y € AC|a, b]
Ac*(a,b) = { £ : [a,b]) — € and [V € AC((a, b))},

In particular AC[a,b] = AC|a, b].



Lemma 1. /39/
A function f € AC"(Q2),n € N*, if and only if it is represented in the form:

t n—1 (k) a
ﬂw:(ninhla—wwﬁﬂmﬁmf+;;fkf%r—@@

1.2 Properties of real analysis :

Definition 1.4. [The continuity [: [22]
Let f : R — R an application. We say that f is continuous if it is continuous

at any point of R. That mean :
Va e R,Ve e R, Ja e R}, Vz e R, |z —a| < a = |f(z) — f(a)] <e.

Definition 1.5. [ Bounded function [: [22]
A function f: G C R — R is bounded if :

IM > 0,5t € G |f(1)] < M.

Definition 1.6. [ convex function |:[22]
The function f is convex if and only if, for all z,y,z in I C R with
r<y<z fory=tr+ (1+1t)z, we have :

fly) <tf(z) + A+ 1) f(2).

1.3 Some elements of topology:

Definition 1.7. [Norm [:/28]

Let E be a vector space on R. We call a norm on E any application ||.|| :
E — R, checked:

oVrec F:l|z[|=0s2=0.

VN ER Ve E: || Xzl =]|X]]z]-

ovr,y € E: ||z +y| < |z|| + [yl "triangular inequality .

Definition 1.8. [Banach space [:[28]
We call Banach space any vector complete normed space on the body K = R

or C.
Theoreme 1.1. Fubini[23]

Let f(z,y) be a summable function on the product of measurable spaces
(X, p) and (Y,v).



We have the following assertions:
1) For almost all x € X with respect to p, the function f(x,y) is summable
on'Y and its integral over Y is a summable function on X.
2) For almost all y € Y with respect to v, the function f(x,y) is summable
on X and its integral over X s a summable function on Y.
3) We have:

fladnx o)) = [ ( / f(a:,y>dv<y>) du(z)

= [ ([ st ao

XxY

1.4 Some Special Functions

1.4.1 Gamma function:

Definition 1.9. [13/
the gamma function U (z)is defined by the integral :

400
['(z) = / e 7.
0

which converges in the right half of the complex plans, Re(z) > 0 indeed we
have:

+00 .
Dz +iy) = / ettt
0

400
_ / e—ttx—leiy ln(t)dt,
0

= /O+OO e t" Heos(yIn(t)) + isin(y In(t))]dt.

Proposition 1.1. [13/

1. Satisfies the following functional equation : T'(z+1) = zI'(z) which can
be easily proved by integration by parts:

[(z+1) :/ e "7 dt,
0

= [—e ] + / e 'ttt
0
= z2[(2).



2.T(1) =1 and I'(—m) = oo we have:

I'l) = /000 e ldt = [—e7 ' =1,

and :

which name that .I'(0) = +oc.

5. T(3) = V7

which the changing the variable, s = v/t we will have :

+oo —t
) - [
2 0o Vit
+00 )
= 2/ e % ds
0

NG

= 2 (7> (gauss — integral)
= .

1.4.2 Beta function:

Definition 1.10. /13/
the beta function is usually defined by :

B(zw) = /0 11 —t)"ldt, (Re(z) > 0, Re(w) > 0),

for example:
1
t(1 —t)2dt

1
(t — 2t* + t%)dt

p(23) =

I
| mo— >—

—_
DO

Proposition 1.2. [1/
the relationship between the gamma function and the beta function is :
I'(z) - P(w)

blzw) = iy

8



Evedens 1.1. [1]

400 —+00
/ / Y e te Tt dty
_/ o 1(/ ty e~ (itt) gy )dtl?
0 0

by changing the variable :
Zy =11 + to.

we find :
+00 +00
r@re) = [ 8 [z e taz,
0 0
t1
/ €Z2dZQ/ (Z2 — tl)yilt:fildtl?
0 0
t
if we pose Zy = t_l , we arrive at:

+00
2
+00

1
/ e %2dZ, ( / (Z —1Zy)" 1
0 0

(Zy — leg)ylz2dzl>

. / T Az (2 B )

22 o) YT 1dZ25<$ Y)

0
=I'(z +y)B(z,y).
which produces the intended outcome,

Corollary 1.1. [1]the beta function is symmetrical:

5(277”0) — 5(w7z)7

we have:




1.4.3 Mittag-Lefller function:

Definition 1.11. [15/
the Mittag-Leffler function E, g(z) is defined by :

+00
tn
E, t:E ——— (L€ R,a > 0);

and the generalized Mittag-Leffler function E, 5(t) is definer as follows:

+00 n

Eap(t) = ; Tlhat B)’ (o, 8> 0).

1.5 Riemann-Liouville integral with constant order :

Definition 1.12. [22/
The Riemann-Liouville fractional integrator I, f and Iy f of order a €
C(Re(w) > 0), are defined by:

(12, £) (2) = ﬁ / % >,

b
(B 1) (@) = s [ Gh e <b

respectively. Here T'(a) is the Gamma function. These integrals are called
the left and right fractional integrals.

Proposition 1.3. [22/
Let o and B be two complex numbers and f € C°([a,b)):
i) 10 (If) = I2*°f,  (Re(a) > 0,Re(8) > 0),
d
i) L@ =N o, Rel > 1,
i)  limg o+ (I2f) (t) = f(t), Re(a) >0.
Proof 1.1. [22]

1) For the demonstration we use the Euler Beta function.
Indeed:

1o (12£)] () :m / / (t— $)"Y(s — 7)1 f(r)dtdr.

using Fubini’s theorem, we can permute the order of integration and we
obtain:

1o (19)] (¢) :m / (7) [ / (t— 5)* (s — 7)Yt | dr.
10

And



The change of variables s = T + (t — T)p, gives us:

t 1
J R A e T s B R
T 0

_ _ yorp1 L(@T(B)
== ey

where:

22 (125)] (1) = oz+5 /f 7 = (1970 £ (1),

ii) To justify the second identity we use the classic theorems of derivation
of an integral depending on a parameter and the fundamental relation of the
Fuler Gamma function : T'(a) = (o — 1)I'(a — 1).

ii) For the last identity, we consider the function f € C%([a,b)), we have:

(19F) (1) = ﬁ / (t— ) f(r)dr

From example:

(Lz1) (t) =

s 1 when oo — 0T,

S0:
T Tt 1)f(t)' - ‘ﬁ /:(t A
- ﬁ / (=P ()

1 ' a—1 .
<o / (t— 1) f(r) — f()]dr
1 t—0 o1 B
- o / (t— ) U f(r) — F(B)ldr

+ 50 | =) = f(n

On the one hand, we have f is continuous on [a,b) which allows us to
write:

Vi, 7 € [a,b),Ve > 0,30 >0: |1 —t| <d=|f(T)— f(¥)] <e,
which leads to:

g0

/té(t—T)O‘_ |f(7')—f(t)‘d7'§5/t§<t_7_)a— dr = 5%

«

11



On the other hand,

1 t=0 a—1 . L =0 . a—1
o / (¢ =717 — S0y < / (t =7 (F ()] + £ @)
2 su —7)%" 1d7’
= §€apt |f |/
:2M((t_aa _E) Vt € [a,b)

where :(M = sup |f(£)]).

§€lant]

A combination of above we will have:

(t—a)

200 = g O] < s 00420 (¢ = a)* = 6%
1 « « «
by making o tend towards 07, we obtain:
T |(15£) (1) - %f(t)' <-

m other words:

lim (1f)(t) —f(t)| <eg Ve>0,

a—0+

which means :

lim (15°f) (1) = f(1)

a—0+

1.6 Derivative of Riemann-Liouville with constant order :

Definition 1.13. [22/
Let o € [m — 1, m [ with m € N*. We call derivative of order o in the sense
of Riemann-Liouuville the function defined by

trr - (%) 16 )

1 dm

o e / (t — 7)ot f(r)dr

12



Proposition 1.4. [22/
i) If the fractional derivative EDI"f(t),(m —1 < p < m), of a function f(t)
15 integrable, then:

D (FDPF) = f(t) = Y [FDY ) r(ég_—i)i)

i=1

i) If 0 <m — 1< q<m, we have

R —P (R RPN Ry (t—a)™"
v G =510 55 o], 2

Proof 1.2. [22]
i) we have :

Rpv (RDPf(1)) = ﬁ / (t — 7y RDR f(r)dr

-2t [ o]

the other hand, by performing integrations by repeated parts and exploiting ,
we obtain:

F@i&LL% e (r)dr = pilL/%F”)il{fDﬁm”fﬁ&dT

:F(p—;l+1)/t_7pm{/ D" f }dT

a)p t+1

i s (07 10)] =

-t [ {ED e i

L(p—m+1
- p—t (t —a)y™"
_ 21: DI, T(1+p—1)

_ nDt—(P—m—l) (aRDt—(m—p)f(t)>

a

. p—t (t B a)p—?ﬁ—!—l
- ; [aRDt f(t)]t:a F(l +p— Z)

~ 010~ Y- EDF 0] iy

13



ii) By establishing a relationship from previous results we find:

D" QD) =D (G ((FDYf (1)}

— Ry {f(t) Y [rorre], gt }

_RDIE(f) — i "D (t)}ia DI {r((zicz)i_i) }
— Rparr(p) g{fmz } ar((tlrz?p—i)'

=1

A like integer differentiation and integration, fractional differentiation and
integration do not commentate in general.

Theoreme 1.2. [22] Let 1 < o < 2, f(t) € L(0,b), D¢, f € L(0,b). Then
the following equality holds:

I§. DS f(t) = f(t) + it + cat® 2 1,0 € R,

14



The order a(t) would fall into a more complex category, involving deriva-
tives and integrals whose orders are functions of certain variables. There
are several definitions of variable order fractional integrals and derivatives.
The following are several definitions of variable order fractional integrals and
derivatives: Let —oco < a < b < +00.

1.7 Riemann-Liouville fractional integral of variable order :

Definition 1.14. [35, 27]
Let p : [a,b] — (0,400), the left Riemann-Liouville fractional integral of
order a(t) for function x(t) are defined as the following two types :

a(t)x B t (t . S)a(t)—lx s .
() = [ Sy etz a
1

_— t — 5)*O-1y(5)ds a.
Ty J, (9 et >

1.8 Riemann-Liouville fractional derivative of variable order :

Ioa(t) =

Definition 1.15. /35, 27]

Let a : [a,b] — (n — 1,n] ( n is a natural number), the left Riemann-
Liouville fractional derivative of order a(t) for function x(t) are defined as
the following two types:

DO () = <%>n / t (?zns)_n;;g)lx(s)ds,t > a.

DMy (t) = (%)nm / t(t— )"0 1z(5)ds, t > a.

Remark 1.1. :
Note that the semigroup property is satisfied for a standard Hadamard inte-
gral with constant orders but it s not fulfilled for the general case of variable

orders u(t),v(t), i.e., H]iﬂ(t) (Hlfit)> x(t) # H[fﬁt)ﬂ(ﬁ)x(t).

1.9 Generalized intervals

Definition 1.16. /7, 37, 38/
A generalized interval is a subset I of R which is either an interval (i.e., a
set of the form [a,b], (a,b),a,b) or (a,b]); a point {a}; or the empty set (.

15



Definition 1.17. [7, 37, 38]
If I is a generalized interval. A partition of I is a finite set P of generalized
intervals contained in I, such that every x in I lies in exactly one of the
generalized intervals J in P.

Example 1.1. The set P = {{1},(1,6),[6,7),{7},(7,8] | of generalized
intervals is a partition of [1,8].

Definition 1.18. /7, 37, 38]

Let I be a generalized interval, let f : I — R be a function, and let P a
partition of 1. f is said to be piecewise constant with respect to P if for
every J € P, f is constant on J.

Example 1.2. The function f : [1,6] — R defined by

(

3, 1< x<3,
4, x =3,
T) = <
/@) 5, 3<x<6,
\2, r = 06,

is piecewise constant with respect to the partition {[1,3],{3},(3,6),{6}} of
[1,6]. The following example illustrates that the semigroup property of the
vartable order fractional integral doesn’t holds for the piecewise constant func-
tions p(t) and q(t) defined in the same partition of finite interval [a, b].

Example 1.3. :

Let J = [1,2] and the function x(t) = 1 for t € J. Consider the following
functions as orders of Hadamard fractional integral: v(t) = 2 and u(t) =t
fort € J. Then for anyt € J we obtain for the Hadamard fractional integral

defined by (2)
t 1-1
H () 1 t 1
I,.7h(t) = — In - —ds = 1Int
00 =g [ (m3) S =
u v 1 t t\"'ins

Hp Oy = / (it tlds
I Lt+1) s) s

Fort = 1.5 we obtain

H i) (H Jff)x(t)) L_l 0027916

and

and

HpOp | ~0.0418739

t=1.5

16



1.10 Some fixed points theorems:

Definition 1.19. Let T be an application of a set S in it self. We call fixed
point of T any point s € S that T'(s) = S

Theoreme 1.3. [Schauder fized point [:[24]
Let X be a subset of E, and f : X — E a continuous function, with X
compact, convex, and E a Banach space. Then , f has a fized point in X.

Theoreme 1.4. [Darbou fixed point theorem]/9]
If F 1s nonempty, bounded, conver and closed subset of a Banach space X,
and Q) : F'— F' is a continuous operator satisfying

(QA)) < k(WA),VA£O C F, k€ [0,1),

i.e., Q0 is k-set contractions.
Then, € has at least one fixed point in F.

17



In addition, we will provide some necessary background information
about the Kuratowski measure of non compactness:

Definition 1.20. (/9/)

Let Mx the bounded subsets of a Banach space X . The Kuratowski
measure of non compactness ¥ is a mapping ¢ : Mx — [0,00] initially
derived from a construction as laid out in the following format

W(D) = inf{e > 0: D(€ My) C U, D,, diam(D,) < e},

where
diam(D,) = sup{||lz — y|| : =, y € D,}.

Proposition 1.5. [}/ Let E be a Banach space and 2, €y, Qs be finite sets.
The Kuratowski or Hausdorff MNC' is noted. Then 1 checks the following
properties:

1) Regularity: 1¥(2) = 0 if and only if Q) is relatively compact.

2) Non-singularity: ¥ () = 0 if Q is a singleton.

3) Monotony: if Qy C Qo then ¥ (1) < ¢ (Qy).

4) Semi-additivity: ¥ { U Qy} = max {¢ (1) ,9 (Q2)}.

5) Semi-homogeneity: ¥ (tQ)) = [t|1(Q2) for any real t.

6) Semi-additivity algebraic : 1 (Q + Qo) < (1) + ¢ (Qa).

7) Translation invariance: 1 (2 4 x9) = (), for all xg € E.

Proof 1.3. This proposition is only demonstrated for the MNC a.. The proof
15 simalar for x:

1) . Suppose that Q) is relatively compact, then, according to theorem (let E
be complete metric space. A subset A € E is relatively compact if and only
if it is precompact.).. Ve > 0, there ezists a finite family {x1,--- ,zn.} of
elements of E such that Q C UjV:al B (zj,e). Then a(2) = 0. Conversely,
if: a(Q) = 0, according to the same theorem, we can conclude that € is
relatively compact.

2. FEvery singleton set is relatively compact. .
3) . Let {Q%, e ,Q%} recovery of €29 such us diam (QZQ) <d,
t = 1,---,n. then it is clear that it is a recovery of Qiand consequently
Oé( 1) S « (Qg)
4) . Let Q= UQy and a = max {a (1), (Qa) }.such as ; C €,
i = 1,2. from the monotony of a we will have a(82;) < (), therefore
a < alf).
Conversely, let us show that () < a. For any € > 0, and for all {21,
there exists a covering {Q,--- QL } of Q; such that

18



diam(Qé-) <a()+e<a+e, fori =12 andj=1,---,n; Note
that these sets §;form a overlay S, then a(Q) < a+ ¢, and consequently
a(Q) < a since ¢ is arbitrary.

5) . is trivial for t =0. Ift # 0, then:

1=1

a(t2) = inf {d >0:10 C UQi,diam () < d}

=inf{d>0: QCU QZ,|t\d1am<

{ 1=1
1 1
1nf{d>0 QCU —();, diam (tQ> < Hd}

1
=inf < [t|d > 0: QCU Qz,dlam<tQ><d’},d’:—d

= [tla(92)

6) . Let {Ql, e ,Q}n} recovery of 21 and {Q%, e ,QEL} recovery of €s.
So the sets Q) + Q? form a overlay of 21 + €y, moreover

diam (€ + ) < diam (£2;) + diam () and consequently

« (Ql + Qg) S « (Ql) + « (QQ)

7) . The property is deduced from the fact that diam (2 + x¢) = diam(€2).

Theoreme 1.5. [26/
Hausdorff’s MNC' s invariant through closure and convex coverage, i.e.

X(Q) = x[co()] = x ().
Proof 1.4. If S is a finite E-network of ) then S is also a finite E-network
of Q, hence the invariance of x per pass to closure . On the other hand, coS

15 a compact e-con network. Indeed, let € > 0 such that the set
S ={x1, 29, -+ ,x,} constitutes a finite E-network of Q. If y € co(QY), then

yzz)\iyia <)\z’ € [0,1],2)\¢: 1,y EQ) .

i=1 i=1
Like y; € Q, there exists x; € S such that ||y; — x;|| < e. Let
x = Yo, Nz, where the coefficients N, (i = 1,2,--- ,n) are the same
defined in (1.1). Then x € coS and we have.

n
ly — | < ZN |z —yill <e.

i=1
We deduce that the compact set coS is a e-resent of cof).
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Lemma 2. ([14]) Let X be a Banach space. If U is an bounded and equicon-
tinuous subset of the the space C(L, X) of continuous function , then

(Z;) v(U(.)) € C(L,R), mean that the function ¥(U(t)) is an continuous
function fort € L , and

D(U) = sup (U (1)),

tel

Where 1//;([]) 15 the Kuratowsk: measure of non compactness on the space
C(L, X).

(Ty) ¥ (/ng(e)de e U) < /ng(U(Q))dQ,

where
Ut)=A{z(t): €U}, teL.
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Chapter 2

The existence of solutions
Lyapunov-type inequalities to boundary
value problems of variable order

In this work, we will observe and study the unique existence of approximate
solution to the Lyapunov-type inequality to the following boundary value
problem for differential equation of variable order by following :

{Dgg)x(t) + f(t, J,‘) =0,0<t<T, (2‘1>
2(0) = 0,2(T) = 0,

where 0 <T' < +o0, Dggf) denotes derivative of variable order defined by:

d? t (t . S)lfq(s)
D(J(t) — /
ot (1) i ), T@ = q(s)) x(s)ds, t>0,

and, t )

2—q(t) _ (t—s)

I " x(t) _/0 mx(s)ds, t>0,
denotes integral of variable order 2 — ¢q(t),1 < q(t) < 2,0 <t < T.
f:(0,T] x R — R is given continuous function satisfying some assumption
conditions.
Lyapunov’s inequality :[38]
is an outstanding result in mathematics with many different applications.
The result, as proved by Lyapunov in 1907, asserts that if h : [a,0] — R
is a continuous function, then a necessary condition for the boundary value
problem
{ y' () + h(t)y(t) =0,a <t <D,
y(a) = y(b) = 0,

to have a nontrivial solution is given by

g 4
[ s> =
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2.1. Some approximation of solution

where —o0o < a < b < 4+00.

Remark 1. When examining the existence of differential equation solutions
for the Riemann-Liouville fractional derivative, the theorem (1.2) is cru-
cial. The semigroup property, however, does not hold for generic functions
h(t),g(t); that is Mo # 1M0T90 - As g result, it causes us great dif-
) ’ > ta+ Ta+ a+ ?
ficulty because we are unable to obtain these features for the variable order
fractional operators (integral and derivative) as stated in Propositions 1.5.
We can scarcely consider the presence of solutions of differential equations
for variable order derivative by means of nonlinear functional analysis (e.g.,
some fixed point theorems) without these qualities for variable order frac-
tional derivative and integral.

2.1 Some approximation of solution

Hypotheses 2.1. (H;)

Let n* € N be an integer, P = {[0,T1], (T1, T3], (To, T3] ,- - -, (Ty+—1,T]} be
a partition of the interval [0,T], and let q(t) : [0,T] — (1,2] be a piecewise
constant function with respect to P, 1.e.:

(Ch, 0<t<1Ty,

N
@, T <t<T,
a) =Y alit)=4" (2.2)
k=1 ’ ’
\QH”H T <t <1y = T;
where 1 < qp, < 2(k=1,2,---,n*) are constants, and I}, is the indicator

of the interval [Ty—1,Tg], k = 1,2,--- ,n* (here Ty = 0,T,« =T), that is,
Ti(t) =1 fort € [Ty_1, Tk] and Zi(t) = 0 for elsewhere.
by (Hp)In order to obtain our main results, we firstly carry on essen-

tial analysis to the boundary value problem (2.1). By definition (1.15), the
equation of the boundary value problem (2.1) can be written as:

& /t (=) (st f(tx) =00 <t<T (2.3)
dt* Jy T(2 = q(s)) T ’ |
According to (Hy),Eq(2.3) in the interval (0,7}] can be written as
Ditx(t)+ f(t,x) =0,0 <t <Th. (2.4)

Equation (2.3) in the interval (77, T3] can be written by

d2 T (t _ S)l_ql Ty (t _ S)l—fh B
o </O s g (s + /T oo x(s)ds) +f(ta) =0, (25)
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2.1. Some approximation of solution

and Eq(2.3) in the interval (75, T3] can be written by:

d2 Ty (t _ 3)1—(]1 Ty (t _ S)l—q2 Ts (t _ 8)1—Q3
dt? (/0 AR /T F@g) /T T2 —q) x(s)ds)
+ f(t,x) = 0.
(2.6)
In the same way, Eq(2.3) in the interval (7;_1,7;],j = 4,5,--- ,n* — 1
can be written by:

d—2 Tl—(t_s)l_qlajs S+ - " —(t_s)l_qjajs S T) =
dt? (/0 I'(2—q) (s)ds + +/Tj_1r(2_qj) ()d>+f(t, ) =0.
(2.7)

As for the last interval (7,1, T'), similar to above argument, Eq (2.3) can
be written by:

([T S N G iR A PR
i ([ Tatapes o [ pgT e )<0)'
2.8

Hypotheses 2.2. (H,)
Let t"f : [0,T] x R = R be a continuous function (0 < r < 1), there exist
constants ¢c; > 0,co > 0,0 < v < 1 such that:

I f(t,z(t)] < e+ eolz(t)],0 <t <T,z(t) € R.

Remark 2.1. From the arguments above, we find that, according to con-
dition (Hy), in the different interval, the equation of the boundary value
problem (2.1) must be represented by different expression. For instance, in
the interval (0,T1], the equation of the boundary value problem (2.1) is repre-
sented by: (2.5); in the interval (11, T/, the equation of the boundary value
problem (2.1) is represented by (2.6); in the interval (Ty, T3], the equation
of the boundary value problem (2.1) is represented by (2.7), etc. But, as
far as we know, n the different intervals, the equation of integer order or
constant fractional order problems may be represented by the same expres-
sion. Based these facts, different than integer order or constant fractional
order problems, in order to consider the existence results of solution to the
boundary value problem (2.1), we need consider the relevant problem defined
in the different interval, respectively.

Definition 2.1. We say the boundary value problem (2.1) has a solution, if
there exist functions x;(t),j = 1,2,--- ,n* such that x1 € C'[0,T] satisfying
equation (2.4) and z1(0) = 0 = z1 (T}) ;29 € C|0,T3] satisfying equation
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2.1. Some approximation of solution

(2.5) and z2(0) = 0 = a9 (13) ;23 € C'[0,T5] satisfying equation (2.6) and
23(0) = 0 =23 (13) ;2 € C'[0,T5] satisfying equation (2.7) and

2(0) =0=uz,;(T;)(j=4,5,--- ,n* = 1); x,- € C[0,T] satisfying equation
2.11 and z,+(0) = x,+(T) = 0.

Lemma 3. Assume that condition (Hy)and (Hy)hold. for t € [0,T1] the
following two-point boundary value problem:

Dy a(t) + f(t,x) =0, 0<t<Ti,
{ 2(0) =0,z (T1) = 0. (2.9)

15 equivalent to the integral equation

1
I (Q1)

Generally, fort € [T;_1,T;] the boundary value problem:

T
2(t) = dit" ™t 4 dot" 7 — / (t— )17 f(s,x(s))ds, 0<t<Ty.
0

4q; —
{ DY | a(t)+ f(t,x) = 0,Tj <t <Tj, (210

z(Tj—1) =0,z (T3) = 0.
15 equivalent to
l’(t) - (T _ 7}_1)1—% (t _ Tjj—l)qj_l I%fﬁf(Ta .I') - I%flq-f(t? ZL’)

Proof 2.1.

In the proof we take account the solution in each integral:

i) According the above analysis, the equation of the boundary value problem
(2.1) can be written as Eq(2.3).

Equation ( 2.3 ) in the interval (0,T1] can be written as:

Ditx(t)+ f(t,x) =0,0 <t <T.
Now, we consider the following two-point boundary value problem:

{ D¥x(t)+ f(t,x) =0, 0<t<Ty,

z(0) = 0,2 (1T1) = 0. (2.11)

Let x € C'[0, T3] be solution of the boundary value problem (2.11)
Now, applying the operator I, to both sides of the above equation. By Propo-
sitions (ref the theorem), we have:

Ty
o(t) = dit?t + dot™? — / (t —8)2 1 f(s,z(s))ds, 0<t<Ty.
0

I'(q1)
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2.1. Some approximation of solution

By x(0) = 0 and the assumption of function f, we could get do = 0. Let
x(t) satisfying x (Ty) = 0, thus we can get di = Ij, f (11, x) T, ™. Then,
we have:

w(t) = I8 f (T, ) Ty — 18 f(t,2),0 <t < T (2.12)

ii) we have obtained that Eq(2.3) in the interval (T1, Ty ] can be written by
(2.6). In order to consider the existence result of solution to this formula,
we rewrite (2.6) as following:

d2 Ty t— 1—qo d2 Ts t— 1-92
— &x(s)ds—l— - / (t —s)
dt 0 r (2 — CJQ) dt T I (2 — Q2)

For 0 < s <Tj, we take x(s) = 0, then, by the above equation, we get:

x(s)ds = f(t,x).(Ty <t <)

Dpx(t)+ f(t,z) =0,Ty <t < Ts.

Now, we consider the following boundary value problem.:

q1 _
{ Dia(t) + f(t.x) =0Ty <t < T, (213

z(Ty) =0,z (1T3) =0,

let x € C[T1.Ts] be solution of boundary value problem (2.13), now operators
both sides of equation to boundary value problem (2.13) and by Propositions
1.4, we have:

s(t)=d (t —T)% " +dy (t —T))2 2 — = (1q2) /T 2(t — )27 f (s, 2(s))ds,

T <t <Ts.

Byx (T1) = 0,2 (13) = 0, we have dy = 0 and d; = [%4_]0 (Ty, ) (T — Tl)lfqz.
Then, we have:

£(t) = Igif@z,x)m—ml@(t—m%1—@ / (=)= f (s, 2(s))ds,

Ty <t<Ts.
iii) By the similar way, in order to consider the existence of solution to Eq
(2.11) defined on [T;_1,T}] of (2.3), we can investigate the following two-
point boundary value problem:

{ DY x(t)+ f(t,x) =0,Tj_ <t <Tj,

7j—1

2 (Tj—1) = 0,2 (Tj) = 0. (2.14)
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2.2. Existence result of solutions:

By the same arguments previous, we obtain that the Eq(2.11) defined on
[T5-1,T;] of (2.3) has solution:

{0, 0<t<Tj,

~ (2.15)
xj(t)a Tj1 <t <1Tj,

z;(t) =
where T; € Q with & (Tj_1) =0=2;(1}),5 =4,5,--- ,n* — 1. Similar to
the above argument, in order to consider the existence result of solution to
Eq (2.12), we may consider the following boundary value problem:

{ D w(t)+ f(t,x) =0Ty <t <Tp =T

x (Tp—1) = 0,2(T) = 0. (2.16)

So by the same considering, for T, 1 <t <T we get:
2(t) = (T = Tyoa) ™ (¢ = T 18 f(T,0) = 18 f(t,2).

—1+
2.2 Existence result of solutions:

Theoreme 2.1. Assume that conditions (Hy) and (Hs) hold, and by the
Definition (2.1) then the boundary value problem (2.1) has one solution.

Proof 2.2. :
First proof :

Conversely, let x € C'[0,T1] be solution of integral Eq (2.12), then, by the
continuity of function t" f and Proposition (1.3) , we can easily get that x is
the solution of boundary value problem (2.11). Define operator

W C0,Ty] — C[0,T1] by:
a(t) = I8 f (Ty,x) TL 00 — I8 f(t, (1), 0<t<T.

It follows from the properties of fractional integrals and assumptions on
function f that the operator v : C'[0,T1] — C'[0,T1] defined above is well
defined. By the standard arguments, we could verify that
Y C0, 7] — C0,T1] is a completely continuous operator. In the next
analysis, we take:

2 2 2
Mir,g) = mox { A= (@) =T (@)~ O=nr <Qn*>} |

Let Q = {x € C[0,T1] : ||z|| < R} be a bounded closed convex subset of
C'[0,T1], where:

R = max {QClM(r, q) (1 + 1)%, (2coM (r, q) (¢ + 1)2)1‘17} .
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2.2. Existence result of solutions:

For x € Q and by (Hs), we have:

Tll—fh tQ1—1

palt)] < s

/0 (T — ) (s, ()| ds

(t = )" f(s,2(s))|ds

_|_
}1
N
o\ﬂ

2 /Tl 1
< T, — )" | f(s,z(s))|ds
o [ @ s
< 2 /T1 (T, — s)ql_l s "(c1 + eolz(s)]")ds
—I'(q) Jo
2Tq1*1 T1
< = / s " (e +coR")ds
— I'(q1) Jo (@ +eft)
2TQ1—1T1—T
< 71 1 c1 + R
S T (g @ Tk
< M(r,q)T{" " (c1 + e R7)
< M(r,q)(¥ +1)* (&1 + @RR™)
R R
<2
=5 + 5 R,

which means that () C Q. Then the Schauder fived point theorem assures
that the operator v has one fived point x1 € €2, which is a solution of the
boundary value problem (2.11).

Second proof:

Conversely, let x € C [Ty, Ts] be solution of integral equation above, then,
by the continuity assumption of function t" f and Proposition (1.3), we can
get that x is solution solution of the boundary value problem (2.13). Define
operator T : C' [T, Ty — C[Th, T3] by/

a(t) = I8 f (Ty,x) (Ty — T1)' ™% (t — T1)qr1—F (1%) /T (t—s)2 1 f(s,2(s))ds.

It follows from the continuity of function t” f that operator
Y O[T, Ty — CTh,Ts] is well defined. By the standard arguments, we
know that T : C'[T1, T3] — C[T1,Ts] is a completely continuous operator.
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2.2. Existence result of solutions:

For x € Q and by (Hs), we get:

o] = LI ZEET [P gyt s sl

['(q2)

1 ' q2—1
+ /ﬂ(t—s) F(s,2(s))|ds

T

<2 / (T — )= f(s, 2(s)|ds

F(QQ) T
< : /T2 (Ty — )27 577 (1 + eo|a(s)]) ds
B F(QQ) T,
2TQ2*1 T
< =2 / s (c; +caR")ds
~ I'(g) Jn (@t eR)
2T (Ty " =T )
= c1+ R
Tt atef)
2TQ2*7"
< 2 c1 + R
ST @ TR
< M(r,q)(¢ +1)* (¢1 + aRR7Y)
R R
<4+ _—=R
- 2 + 2 ’

which means that T'(2) C Q. Then the Schauder fixed point theorem assures
that operator T' has one fixed point o € 2, which is one solution of the

following integral equation, that is,

To(t) = I f (To,@2) (T = T0) ' (6 = T0)™

T (1%) /Tl(t =)= f (5, 3a(s))ds, Ty <t<T.

(2.17)

Applying operator D%lﬁ on both sides of (2.17), by Proposition 1.2 , we can

obtain that:
D%Jr.fg(t) + f (t,fg) =0, T <t< TQ,

that is, To(t) satisfies the following equation:

d? 1 t
/ (t— s) " ®ay(s)ds + f (t,2) = 0, Tj <t<Th

dt2T (2 — QQ)
We get:

T

07 0 <t< T17
zo(t) = 9 .
ZCQ(t), T <t <T
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2.2. Existence result of solutions:

hence, from (2.18), we know that x4 € C'[0,Ts] defined by (2.19) satisfies
equation

d2 Ty (t _ S)l—Ch Ty (t . 8)1_q2

dt? T )28 To oy re(s)d t,xy) =

dt? </0 I['(2—-aq) wals)ds /T1 ['(2—q) 72(s) S) + f(t,29) =0,
which means that xo € C'[0,Ts] is one solution of (2.6) with x9(0) =
0,22 (T2) = 22 (12) = 0.

final proof:

Define operator ¢ : C [Ty—1,T] — C[Ty—1,T)] by:
Yr(t) = (T = T )70 (¢ = Ty Yo I8 (T, )

- / (t — )0 f (s, a(s))ds,

F(Qn*) Thx_q
T <t <T. It follows from the continuity assumption of function rf that
operator ¢ = C[Ty—1,T) — C|T,+_1,T)] is well defined. By the standard
arguments, we note that T : C[Ty_1,T] — C|[Tp_1,T] is a completely
continuous operator.
For x € Q and by (Hy), we get:

(T — Tn*—l)liq; (t — Tn*_l)qn*_l /T
' (gn-)

b [ = (s a(e)ds

[Yat)] < (T — )™~ f(s,2(s))|ds

Tn*—l

< mo ) @9 s
2

T
< T — )™ 157" (¢ + eolx(s)]7) ds
F(qn*)/Tn“( ) (1 + eale(s))

2an*—1 /T
< s (1 +caR")ds
F (qn*) Tn*71 ( )

O n*—1 (Tlfr . Tl—r ) (

-

2(T + 1) .
1= (g @t el
(r,q)(¥ +1)* (1 + 2RR"™)

1+ CQRFY)
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2.3. Example

which means that () C Q. Then the Schauder fized point theorem assures
that operator v has one fized point x,- € €, which is one solution of the
following integral equation, that is,

Epe(t) = (T = Toeo1) ™ (t = Do) ™~ 1P (T, 50e)

L[ s ) s Ty <1 ST (220
— —5)t S, T (8))ds, Tpeq <t <T.
F(Qﬂ*) T 1 !

Applying operator D%”i_ﬁ on both sides of (2.20), by theoreme(1.2), we
can obtain that:

D% G () + f (t,Fpe) = 0, Ty < t < T,

Tn* 1+

that is, T,+(t) satisfies the following equation:

d? 1 t
de2T (2 q ) / (t — 3)1—qn*jn* (s)ds + f (t, ;fjn*) — O’ Tn*—l <t<T.
T 4nr) T
(2.21)

We let:

(1) = (2.22)

T, T <t< T,
hence, from (2.21), we know that x,~ € C[0,T] defined by (2.22) satisfies

equation:
d2 (/T1 (t . 8)1—(]1
— X (dS + - - -
a2 \Jy T(2—gq) """

t o\ 1—gs
+/T %xn*(s)ds) + f (t,xp) = 0.

for T <t <T, which means that x,, € C[0,T] is one solution of (2.12)
with 2,+(0) = 0,2, (T) = Z,+(T) = 0.

As a result, we know that the boundary value problem (2.1) has a solution.
Thus we complete the proof.

{L 0<t< T,

Remark 2.2. For condition (Hs), if v > 1, then using similar way, we can
obtain the ezistence result of solution to the boundary value problem (2.1)
provided that we impose some additional conditions on ¢y, co.

2.3 Example

Let us consider the following linear boundary value problem

DIVz(t) + 104 = 0,0 < t < 3,
u(0) = 0,u(3) =0,

30



2.3. Example

where
1.2, 0<t<1,
q(t) =¢1.5, 1<t<2,
1.8, 2<t<3.

We see that ¢(t) satisfies condition (H) ;
f(t,z(t)) =t"1:]0,3] x R — R is continuous. Moreover,
|f(t,z(t)] = t04 < 3%4 thus we could take suitable constants to verify
f(t, ) = t*4 satisfies condition (Hs). Then Theorem (2.1)assures the bound-
ary value problem (2.3) has a solution. In fact, we know that equation of
(2.3) can been divided into three expressions as following

Dylz(t) +t°4 =0, 0<t<1.
For 1 <t <2,

5—:2 </01 (tF_(TSi)é;)O-Qx(s)ds -+ /lt %x(s)ds) + % = 0.

For 2 <t < 3,

d2 1 (t . 8)_0'2 2 (t . S)_O'5 t (t . S)_0'8 4
7 ([ Tog et [ Crpa s [ gt =0

By [22], we can easily obtain that the following boundary value problems

Di2x(t) +t*1 =0,0 <t <1,
2(0) =0 m(l) =0

{zﬁ — [T P ()ds + 104 =0, 1<i<2
(1) = 0,2(2) = 0
{Dﬂx — L P 2 (s)ds + 194 = 0,2 < £ < 3,
(2) =0,z(3) = 0
respectively have solutions
mngggﬁw t'%) e Co,1]
- oy D14 | 1 .
To(t) = F(2.9) (=D = -1") e O, 2];
@@):%%%%«r—m“—wr—m”)ecpﬁy

It is known by calculation that

0, 0<t<1, 0, 0<t<2,
xl(t),0§t§1, xg(t):{§2(t) l<t<9 .Ig(t):{
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2.3. Example

are the solutions of (5.3)-(5.5), respectively. By Definition 3.2 and (5.6), we
know that

)
a’,‘l(t) — % (t0.2 . tl.G) , 0 S " S 1’
) 0, 0<t<1,
€T —
w(t) =4 T\ HE (- - 1)), 1<t<2,
=Y 0<t<2,
T3(l) = 4 ra.4
\ FE3.2§ (=2 = (t-2)*?), 2<t<3

is one solution of the boundary value problem (5.2).
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Chapter 3

Boundary value problem of weighted
fractional derivative of a function with
a respect to another function of
variable order

Definition 3.1. Let the function p € C (L,R,). The Boundary value prob-
lem of weighted fractional deriwative of a function with a respect to another
function of variable order is Ulam Hyers Rassias Stable. with respect to p

if there exists a constant ¢y > 0, such that for any € > 0 and for every
z € C(L,R) such that

DOy — f (t, 2(b), Ifj(t)z(t))‘ <epl(t),t e L, (3.1)

there exists a solution h € C'(L,R) of Boundary value problem of weighted
fractional derivative of a function with a respect to another function of vari-
able order with

2(t) — h(t)| < ¢pep(t),t € L.

3.1 Existence of Solutions

The weighted fractional derivative of a function of constant order operators
have recently gained popularity. In this paper we will study the boundary
value problem for weighted fractional derivative of a function with respect

to another function with variable order boundary value problem weighted
fractional derivative variable order (BVPWFDVO)

Dy "h(t) = f(t,h(t)),t € L,
{ h(0) = h(e) =0, (BVPWFDVO)

where L = [0,¢],0 < ¢ < oo,a(t) : L — (1,2] is the variable order of
the fractional derivative equation, f : L Xx R x R — R is a given function
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and Iﬁf(t) and fo}(t) are the left Weighted Fractional Derivative and Weighted
Fractional Integral (respectively) of a Function With Respect To Another
Function of Variable Order a(t) for function x(t).

The Weighted Fractional Integral of a function f with respect to the func-
tion ¢ (in Riemann Liouville settings) of variable order a(t) : L — (1, 2] has
the form

w (1)
[(a(t))

The corresponding Weighted Fractional Derivative is

LY f(t) =

/0 (6(8) — () O w(s) f(s) (s)ds, £>1, (3.2)

a(t) — w(¢) D \" w t () D" Ly(s) F(s) (5)ds
DYOF0) = et (s ) (w0 [ Ol () F5)0 (),

1
where w(t) > 0 is a continuous weighted function, w!(¢) = —— and

w(t)
Y € C(L,RY") satisfied ¢'(t) > 0, for all t € L.
Theoreme 3.1. [20] Let a > 0,n = —[—«a]. Then

(I3Dg f) (1) = F(t) —w (1) Y axtba(t,0).
k=1

First let proceed with the following assumption:

Hypothesis 1 (H1). Let n € N be such an integer and a finite point
sequence {tj}?:o begiveninsuchaway0 =ty < j<t,=¢,j=1,...,n—1.

Denote L; := (tj_1,t;],7 =1,2,...,n. Then P = Uj_1L; is a partition
of the interval L.

Foreachl =1,2,...,n, thesymbol E; = C, (L;, R), indicates the weighted
Banach Space of Continuous Functions x : L; — R equipped with the norm

]|z = sup [w(t)z(t)].

tel,

Let a(t) : L — (1,2] be a piecewise constant function with respect to
P, ie., a(t) = > 1;(t), where 1 < oy < 2 are constants and 1; is the
indicator of the interval L;,l =1,2,...,n:

1, fortel,
1,(t) =
0, elsewhere.

Then, for any t € L;,l = 1,2,...,n, the Weighted Fractional Derivative of
a Function With Respect To Another Function of Variable order «(t) for
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function h(t) € C,(L,R), defined by (3.3), could be presented as a sum
of Weighted Fractional Derivative of a Function With Respect To Another
Function Constant Order o, 7 =1,2,...,L

_F@au»[;;ﬁwﬁ> (<®[¥¢1%w> <w<ww>d>

t () (w ;lwlaxasnmsvw@¢«sym>].

Thus, the equation of the Boundary Value Problem of Weighted Fractional
Derivative of a Function With Respect To Another Function of Variable
Order can be written for any t € L;,l =1,2,...,n in the form

00 [ (PN (e [ o sl (s (s)ds
IXZQ@»[;;(¢KQ> ( “Xlwﬁﬁaxt> (Vw)w()d>

J

+ () (w0 L, vt hulswe)as) | = 1 @m0,

(3.4)
Let the function h € C (Jy,R) be such that h(t) = 0on t € [1,t,_1] and it
solves integral Equation (3.4). Then (3.4) is reduced to

DR = £ (L0() € L
Taking into account the above for any £ = 1,2, ...,n, we consider the follow-
ing auxiliary Boundary Value Problem for Weighted Fractional Derivative of
a Function With Respect To Another Function of Constant Order

e DYh(t) = f(t,h(t) , t €L
{ h(ti1) =0,h(t) =0. ‘ (BVPWFEDCO)

Lemma 4. Let ¢ € {1,2...,n} be a natural number, f € C' (L; x R x R, R)
and there exists a number § € (0,1) such that
w(t) () — B F(t) € C (Ly x R x R,R).

Then the function hy € Ey is a solution of : Boundary Value Problem
Weighted Fractional Derivative Constant Order if and only if hy solves the
integral equation

Cw(te)i—a,(te, te-1)

( 1
w(t)wl—az (tv tﬁ—l)
+ tg_llgf (f (tv h(t) )

h(t) - teqlgz (f (t7 h(t)))t:te (35>
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Proof 3.1. Let hy € E,y be a solution of the problem Boundary Value Prob-
lem Weighted Fractional Derwative Constant Order . Using the operator
to_ Lot to both sides of the equation in the problem Boundary Value Problem
Weighted Fractional Derivative Constant Order, we find (see Theorem (3.1)

he(t) = — arw™ (E)Ya,-1(t, te-1) — asw™ () a, —2(t, t1)
+ teqlgz (f (tv h(t)))

where ay, as are two constants.

Based on the operating environment h as well as the boundary condition
h(te—1) =0, we conclude that ay = 0.

Based on the boundary condition h (ty) = 0 we obtain

a1 = w(te) V1o (teste-1) o Ly (f (8 R(2))),—,

Then, we find hy solves integral Equation (3.5).

In contrast, suppose hy € Fy be a solution of integral Equation (3.5). In
respect of the continuity w(t)is(t,0) f(t), we deduce that hy is the solution of
problem Boundary Value Problem Weighted Fractional Derivative Constant

Order .

Theoreme 3.2. Let the conditions of Lemma (4) be satisfied and there are
constants V > 0 such that

¢5(t70> ‘f(taxlayl) _ f(t7x27y2)‘ S V |$1 - $2| ) Liy Yi, € R7Z - 1727t S Lf

and the inequality
d<1. (3.6)

holds, where

_ 2¢a,1(te, to—1)(V1-5(tr,0) — Y1-5(t¢-1,0))

! (1—0)(ar)

v

Then, the Boundary Value Problem Weighted Fractional Derivative Constant
Order does have least one solution in E,.

2fw¢aé (tf? tﬁ_l) ’w'l,th fz; = Ssup ‘w(t>f(t7 07 0)' CO']’L'

Proof 3.2. Let 1} —
roo T ATt D) s

sider the set
By ={h e By, |hl5 <.

Its clear that the set By is a nonempty, bounded, closed convex subset of Ey,

Ve e {1,2,..,n}.
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We introduce the operator F defined on Ey by

(;’:fll ze ?;Zﬁll / lbag 1 tg, ( )¢( )f (S,h(s)) ds
‘(1)

/ Gy (£, s (s)8/ () f (5. h(s)) ds

Fh(t) =

(3.7)

Out from qualities of: Fractional Integral and from the continuity of func-
tion ¥s(-,0)w(-) f(+), the above operator F : Ey — Ey is clearly defined.

From the definition of the operator F and Lemma (4 ), we perceive that the
fized points of F are solutions of problem boundary value problem weighted
fractional derivative constant order . For this reason, it suffices to verify the
axioms of Theorem 1.4, it is done in four steps.

Step 1, F(By) C By Let € By using ( H1), we have

[l F ()| <~ i et [ st 9l O s

1

b | et Ol s
2 te ,

< Ty . et C L 5, h(s) s

< g | et () Als) = (5. 0)lds
) Jt,
2 [ /

. et )1, O

<y | it )05, 0V () s
Q) Jty
2fu "

Ty /), Yap-1(te, s)1'(s)ds

20,1 (te, Lo 1)
< 2o LD ) [ 0 e)0s(s. 00

2f

=+ m¢a/(t67t€ 1)
23

F(Ckg + 1)

<dry+ Yo, (e, te-1)

which means that F(By) C By
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Step 2, F is continuous.
Let hy € Ey, k = 1,2,--- Presume the sequence {hy},—, is convergent to
h € Ey. Then for any k =1,2,--- we have

w(t)|Fhi(t) — Fh(t)]

V1—a,(te, te1) te ,
= T T (@)t oLt ) / Va1 (te, s)w(s)' () f (s, hu(s)) = f (s, h(s))lds
+F(1 ) ¢ae—1(t; s)w(s)gb’(s)\f(s, hk(s)) — f(s, h(S))‘dS
Q) Sty

<2¢a¢—1(7f, ti—1)

<2 Bt [ sy (8)| (s huls) = Sl )

<Hectlblon) [T (s 0yu(s)w!(s) (VIiw(s) — h(s)| — h(s)]) ds

a F(aﬁ) to—1
2ta,-1(t, te-1) e /
Bty [* 4o, 00u/ st~ il

< 20ar(te, te) (W15, 0) = ¥15(tr1,0))
B (1 —0)(ar)

Vi — bl &,

1.€., We acquire
|\Fhy — Fhllg, — 0 as k — o0

As a result, the operator F is continuous on Ey.

Step 3, F is Bounded and equicontinuous.
By the first step for h € By we obtain||Fh| g, < re, which confirm that F(By)
is bounded. Rest to prove that F(By) is equicontinuous. Let t1 < ty € Ly
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and h € By. Then
w(t)|Fh(t) — Fhits)|
U1, (te, te-1) (Yay—1(t2, to—1) — Va,-1(t1,t-1))

IA

['(ay)
X ¢a€_1(t€’5)w<s>’wl(s)|f(3,h(8))|d8
tell " / , ]
* I'(ay) /te—l (ag—1(t2, 8) = tha,—1(t1, 8)) w(s)P'(s)|f (s, h(s)) |ds
ta
+ Var—1(t2, s)w(s)Y'(s)|f (s, h(s)) |ds
F(Ckg) tq
< ,¢1—a4(7§€, tﬁ—l) (wag—l(t% tf—l) _ wag—l(tla tf—l))
['(ay)
te
“ )i Ya,—1(te, )Y (8)Y—5(s,0) (Vw(s)|h(s)]) ds
n _qu;wl—lf(fo(z)’ ti) (Yap—1(t2: te-1) = Yap—1(t1, te-1)) /tjl Ya,-1(te, $)U'(s)ds
b [ a0 (5)i6s(5,0) (Vao(s) [B(s)]) ds
F(O@) to—1
fao " , w (" ,
+ F(Oég) - waz—l(t% t1)¢ (S)dS + F(O{g) " wae—l(t% SW (S)dS
o [ (e ) ()65, 0) (Vao(s) [B(s)]) ds
F(Ckg) tq
gwl_w(w’ te-1) (Vap—1(t2, te-1) — Yap-1(t1, te-1)) Ya,—1(te, te-1)
['(ay)
ty
xVhlg, [ ¥'(s)-s(s,0)ds
BB (1) b t0)
Vay—1(t2, t1)
+ (1 — 6)F(a£) (wl—(S(tl) 0) - wl—é(tf—la O)) VHh”Ee
Uit te1) fo
+ F(Oég i 1) wag—l(t%tl) + F(Oég T 1)¢ae(t27t1)
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Va,—1(t2, 1)
+(1 i 5)F(&€)V|\h\|m (P1-5(t2,0) = P1-4(t1,0))

As an outcome, we acquire

lw(t)Fh(ty) — Fh(ts)|
(Y1-5(te,0) — Y1-5(te-1,0))

< | gV inl

X (Ya,-1(tas te-1) = Ya,-1(t1,te-1))

+ [2 (?7/}175(t17 O) - wlf(s(tgfla 0))V||hHE‘e + ,le(tl) tel)fu)]

Tain(ty, te—1)]
F(Cw + 1)

(1 — 5)F(Oég) F(O&g + 1)
[
X wae—l(t% tl) + m¢az(t27 tl)a

Hence |Fh(t2) — Fh(t2)| — 0 as |ty — t1| — 0. It signifies that F(By) is
equicontinuous.
Step 4, F 1is k-set contraction.

For H € By. We denote by 9, the Kuratowski Measure Of Non Compactness
on Ey, by utilizing Lemma 2 and the third step, we get

Vo(FH) =supd (w(t)FH(t)),

tely
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Where H (t ) {h(t) he H}.
9 (w(t)FH(t)) =9 (w(t)Fh(t),h € H)
wl o tg,tg 1) te
19{ FO‘E ¢1 ar (L te1) toy
F( ) ) 17%4 1(t, s)' (s)dw(s) f(s, h(s))ds, h e H}

wl Oég(t€7t€ 1)
I'(ap)i—a,(t, te—1)

/ Yoo (te, SV ()55, 0) [V, (H)] ds

@Dazq(tz; SWI(S)T%U(S)JB(S; h(8)7 )dS

+F( )%w 1(t tﬂ 1)

x [ (s)d-s(s, 0) [V (H)] ds

te—1

<2150, 0) = ¢15(tr1, 0)]
— (1= 0) I ()thr—a,(t, te-1)

Vi (H),

Thus

2 [1-5(ts, 0) — h1-5(ts-1,0)]
(1 = ) () thr—a,(t, tr-1)

According to inequality (3.6), F is a k-set contraction.

As a matter of fact, all Theorem 1.4 requirements have been met, so as side

effect F admit an fixed point .7-"(};4) — Wl where h € By, which is a solution of

the Boundary Value Problem for Weighted Fractional Differential Equation

of Constant Order , Since By C Ey, Theorem (3.2) claim is established.

U (FH) < Vi, (H)

We're now going to demonstrate the existence of Boundary Value Problem
for Weighted Fractional Differential Equation of Constant Order.
Consider the following Hypothesis :
Hypothesis 2 (H2). Let f € C(L x R x R,R) and there exists a number
§ € 2(0,1) such that w(t)((t) — ¥ (1))°f(t) € C (L x R x R,R) and there
are constants V' > 0 such that

wfs(t)o) ‘f(tvxlayl) - f(t7x27y2)‘ S vV |LU1 - I’Ql ) X, Yi, € R7Z = 1727t € L7

Theoreme 3.3. Let the conditions (H1), (H2) and inequality 3.6 be satisfied
forall 0 € 2{1,2,--- ,n}. Then, the Boundary Value Problem for Weighted
Fractional Differential Equation of variable Order incorporates at least one

solution in C'(L,R).
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Proof 3.3.

For any ¢ € {1,2,...,n}, according to Theorem (1.4 )the Boundary Value
Problem for Weighted Fractional Differential Equation of Constant Order
possesses at least one solution he € Ey. For any £ € {1,2,...,n} we define

the function
t e [O, tgfl] ,

0,
e = { ilg,t € Ly.

Thus, the function hy € C([0,%4],R) solves the integral Equation 3.5 for
t € Ly, which means that he(1) = 0,hs (ts) = he(t)) = 0 and solves 3.5 for
te Ly, (e€{l,2,...,n}. Then the function
hl(ﬁ), te Ly
h(t) hg(t), t € Ly

15 a solution of the Boundary Value Problem for Weighted Fractional Differ-
ential Equation of variable Order in C(L,R).
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3.2 Example

Let L:=10,2],n=0,m =1, 7o = 2. Consider the scalar BVPWFDVO

ht) | 9(£:0) gy
t4+7 34207

a 3
DROR(E) = T=ta(£,0) + ¥4 (£,0) ht), tel

h(0)=0, h(2)=0,

(3.8)
1
Such that where w(t) = 1 + 2, (t) = —arctan1 7 this implies that
1
'(t) = ———— and
YO = ™
(14, teL =01,
alt) = { 1.8, te L :=|1,2, (3.9)
Denote
3 h ¥(t0)
t,h,z) =— t 1 (T t,h 2| xRxR.
f( ) 72) 17¢0¢(t)( 70)+¢—5( 70)t+7+t3+2)27 ( ) 72) S [07 ]X X
1 1 1 :
For § = = V= = and W = 5 the assumption (H2) holds. Indeed

hq ¢g <t> 0) ho ¢g (ta 0)
+ z1 — — Z
t+7 3+ 2 t+7 t3 42

1 s (t,0)
<—|h—h :
S i hlt 5

1 1
§ ?|h1 — h2| + §|Zl — ZQ‘,

‘f(n7 hl?'zl) - f(n7 h2722)‘ -

2

|21 — 29|

By (3.9), according to BVPWFDCO we consider two auxiliary boundary
value problem of weighted fractional differential equation for function with
respect to another function of constant order

Ae) |, (0

IMu), tel
t+7 34270 (®), !

DY) =~ a(1,0) + 64 (1,0)
h(l)=0, h(2)=0,
(3.10)
and

Dyh(t) = %%.g(t, 0) +¢_1(,0) ht)  w(t.0)

t+7 t3+2
h(1) =0, h(2) =0,

I&;Sh(t), t € Ly

(3.11)
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Secondly, we demonstrate that the requirement (3.6) is satisfied for £ = 1.
Consequently

200, —1(t1, t0) (Y1-5(t1,0) — ¥1-5(0,0)) Vo, (t1, o)
(1 —0)T () <V+WF(041 n 1))
~ (.162691784641 < 1.

Let p(t) = vs(t,0) Secondly, we attain

IE000) = e | P 90+ D (5,000 ()

(1.4
1.03
T'(2.4)

= M /Ot V' (s)oa(t, s)ds
(t,0

)
¢g ) ):App(t)a

where \, = T (2 0 Then, assumption (H3) is satisfied.

By Theorem 1.4, the boundary value problem 3.10 has a solution hi € Ey. we
demonstrate that the requirement (3.6) is satisfied for ¢ = 2. Consequently

290,—1(t2, 1) (P1-5(t2,0) — 1-5(1,0)) Vo, (ta, 1)
(1 —0)T(a9) (V + WF(OQ + 1))
~ (0.0117027930094 < 1.

As a result, the condition (3.6) is satisfied.also we attain

1
(12 + 1)T(1.8)
5 3 t70 t
_ %/1 ' (s)thos(t, s)ds
1.03
[(2.8)

Io(t) = [ st ) + s (5,000 (5)as

[S3{[SV)

<

03 (£,0) = Ap(t),

where \, = T (2 3 Then, assumption (H3) is satisfied.

By Theorem 1.4, the boundary value problem 3.11 has a solution hy € Ey.
Hence, Theorem 3.3 provides a solution for the BVP (3.9).

M) = h(t), te L,
B h2(t>, tGLQ,
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where

(0 tel
hall) = { ho(t), t€ Ly

According to Theorem , the boundary value problem for weighted fractional
deferential equation of function with respect to another function is Ulam
Hyers Rassias stable with respect to p.
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Conclusion

In this study, we obtained two existence results for the approximate solution
of a boundary value problem for a fractional differential equation of variable
order. We introduced the concept of approximate solutions by discussing
the properties of variable order calculus. Using the Schauder and Bnach
fixed point theorem, we established unique existence results and presented
two examples as applications. Future research will focus on the stability
and convergence of approximate solutions for singular fractional differential
equations of variable order and explore the properties of solutions in broader
settings. The study of variable order fractional differential equations presents
a challenging research area with applications in mathematics and engineer-

ing.
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