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ABSTRACT

he present study seeks to shed further light on the laminarisation phenomena of the
T Ostwald de Waele fluids by critically examining the effects of the centrifugal force induced
by the swirl driven by the rotating pipe wall on the rheological behaviour, mean flow and
thermal quantities, and turbulence statistics. The present investigation also aims to ascertain
the accuracy and reliability of the laboratory code results and to evaluate the reliability of the
DN S and LES approach to predict the rheological behaviour and flow pattern of pseudoplastic
and dilatant fluids.

A direct numerical simulation (D /N S) approach has been carried out in the first study inves-
tigation to study numerically a fully developed turbulent of the pseudoplastic (n = 0.75) and
the dilatant (n = 1.2) fluids through an isothermal axially rotating pipe at simulation Reynolds
number of 5000 and over a rotation rate range of (0 < /N < 3). The numeric resolution is chosen
to be (129 x 129 x 193) gridpoints in axial, radial and circumferential directions, with a domain
length of 20/? in the streamwise direction.

A large eddy simulation (L FS) approach with an extended Smagorinsky model has been car-
ried out in the second study investigation of a fully developed turbulent flow forced convection
of thermally independent pseudoplastic and dilatant fluids through a heated axially rotating
pipe, with a uniform heat flux (¢,,) imposed on the pipe wall as a thermal boundary condition.
This investigation is conducted over a rotation rate range of (0 < N < 3) at a simulation Rey-
nolds number (e, ) of 4500 and a simulation Prandtl number (Pr.) of 1, with a grid resolution
of 65% gridpoints in axial, radial and circumferential directions, respectively, along a domain
length of 20 R in the axial direction.

LES results suggest that the centrifugal force induced by the swirl driven by the rotating pipe
wall causes a pronounced decrease in the shear rate profile of the pseudoplastic and dilatant

fluids along the pipe radius and increases the axial velocity profile in the core region. This trend
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is more pronounced as the rotation rate increases, where these notes align with those of DN S
results.

The predicted results of the D /NS approach indicate that the increased rotation rate results in
a noticeable enhancement in the generation and transport mechanism of turbulence intensities
of the axial velocity fluctuation from the wall vicinity towards the core region. This increased
rotation rate also enhances the transport mechanism of turbulence intensities of the radial
velocity fluctuation from the axial velocity fluctuation.

The LES results also suggest that the swirl driven by the rotating pipe wall results in an
apparent attenuation in the generation and transport mechanism of turbulence intensities of
the axial velocity fluctuation from the wall vicinity towards the core region, resulting in a
pronounced attenuation in the turbulent kinetic energy further away from the pipe wall with
the wall distance.

The predicted results of the DN S and LES approaches suggest that the increased rotation
rate induces a pronounced enhancement in the transport mechanism of turbulence intensities
of the radial velocity fluctuation from the axial velocity fluctuation resulting in the radial heat

flux for dilatant fluid.

Keywords : Direct Numerical Simulation, Large Eddy Simulation, extended Smagorinsky,

fully developed, centrifugal forces, pseudoplastic, dilatant, forced convection.



RESUME

a présente étude vise & mieux comprendre le phénomene de laminarisation des fluides
L d’Ostwald de Waele en examinant de maniere critique les effets de la force centrifuge
induite par le tourbillon entrainé par la paroi rotative du cylindre chauffé sur le comporte-
ment rhéologique, les quantités moyennes de 1’écoulement et les quantités thermiques, ainsi
que sur les statistiques turbulentes. La présente étude vise également a vérifier la précision et
la fiabilité des résultats du code maison et a évaluer la fiabilité des approches DN S et LES
pour prédire le comportement rhéologique et le modele d’écoulement du fluide rhéofluidifiant et
rhéoépaississant.

Une simulation numérique directe (DN S) a été mise en ceuvre dans la premiere étude afin
d’étudier numériquement 1’écoulement turbulent pleinement développé du fluide rhéofluidifiant
(n = 0.75) et rhéoépaississant (n = 1.2) & travers un cylindre en rotation axiale. Le nombre de
Reynolds de la simulation a été supposé étre 5000 sur une plage de taux de rotation (0 < N < 3).
La résolution numérique a été choisie pour étre de (129 x 129 x 193) points de grille dans les
directions axiale, radiale et circonférentielle.

Une simulation des grandes échelles (LFS) avec un modele de Smagorinsky étendu a été
réalisée dans la deuxiéme étude d’un écoulement turbulent pleinement développé d’une convec-
tion forcée du fluide rhéofluidifiant (n = 0.75) et rhéoépaississant (n = 1.25) thermiquement
indépendants a travers un cylindre chauffé en rotation axiale avec un flux de chaleur uniforme
() a été imposé sur la paroi comme condition limite thermique. Cette étude est menée sur
une plage de taux de rotation (0 < N < 3) & un nombre de Reynolds de simulation (Re.) de
4500 et un nombre de Prandtl de simulation (7r) de 1. Les calculs ont été basés sur un schéma
de différences finies, avec une résolution numérique de 65° points de grille dans les directions
axiale, radiale et circonférentielle, respectivement.

Les résultats de L ES suggerent que la force centrifuge induite par le tourbillon entrainé par la




paroi rotative du cylindre provoque une diminution prononcée du profil du taux de cisaillement
du fluide rhéofluidifiant et rhéoépaississant le long du rayon du cylindre et augmente le profil
de la vitesse axiale dans la région centrale.

Les résultats prédits de la DN S indiquent que 'augmentation du taux de rotation entraine
une amélioration notable du mécanisme de génération et de transport des intensités de tur-
bulence de la fluctuation de la vitesse axiale plus loin de la paroi du cylindre vers la région
centrale. Cette augmentation du taux de rotation renforce également le mécanisme de trans-
port des intensités de turbulence de la fluctuation de la vitesse radiale a partir de la fluctuation
de la vitesse axiale.

Les résultats LES suggerent également que le tourbillon entrainé par la paroi rotative du
cylindre entraine une diminution apparente du mécanisme de génération et de transport des
intensités de turbulence de la fluctuation de la vitesse axiale de la proximité de la paroi vers la
région centrale, ce qui entraine une diminution prononcée de ’énergie cinétique turbulente plus
loin de la paroi du cylindre vers la région centrale.

Les résultats prédits par les approches DN S et LES suggerent que I'augmentation du taux
de rotation induit une amélioration prononcée du mécanisme de transport des intensités de
turbulence de la fluctuation de la vitesse radiale a partir de la fluctuation de la vitesse axiale,

ce qui entraine un flux de chaleur radial pour le fluide rhéoépaississant.

Mots clés :Simulation Numérique Directe, Simulation Des Grandes FEchelles, Smago-
rinsky étendu, pleinement développé, forces centrifuge, rhéofluidifiant, rhéoépaississant,

convection forcée.
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Industrial Problematic

uch more often in nature, many fluids exhibit complex non-Newtonian behaviour and
M show a non-uniform viscosity. Practically, in industry, non-Newtonian fluids play a
very significant role; a wide variety of them are used in numerous applications such as the
production of cement, food, paper and paint, as well as in the petroleum, pharmaceutical, and
polymer molten, plastics even in mechanical and engineering fields (heat exchangers, combustion

chambers, nuclear reactors, and turbomachines).

Over the past few decades, a considerable amount of research has been interested in the tur-
bulent forced convection of non-Newtonian fluids through axial pipes due to the vital practical
interest in the various industrial fields of these fluids, such as paper making, petroleum drilling,
refining, combustion chambers, food processing, pharmaceutical and polymer processing indus-

tries.

Recently, the trend of applying the scale resolving simulation (DN S and LFES) has been
focused on the turbulent flows of non-Newtonian fluids in the absence of the experimental data
of non-Newtonian ones. DN S and LFES simulations have become very useful and powerful
tools in computational techniques. Applying the two approaches to study non-Newtonian fluid

turbulent flows focuses on describing the rheological, hydrodynamic, and thermal behaviour.

Purpose

The current investigation aims to shed further light on the laminarisation phenomenon of
the Ostwald de Waele fluids by examining the effects of the centrifugal force induced by the
swirl driven by the rotating pipe wall on rheological, hydrodynamic and thermal quantities,

turbulence statistics (2A/5).
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Scientific Problematic

The first part of the current study concerns direct numerical simulation (DN S) of a fully
developed turbulent flow of pseudoplastic (n = 0.75) and dilatant (n = 1.2) fluids through a
rotating cylindrical pipe over a rotation rate range of (0 < N < 3) at simulation Reynolds num-
bers of 5000. The computations procedures were performed using the finite difference scheme,
second-order accurate in space and time with a numerical resolution of (129 x 129 x 193) grid-
points in axial, radial and circumferential directions, respectively, with a domain length of 20 R

in the streamwise direction.

The second part of the present study focuses on the numerical investigation of a fully deve-
loped turbulent flow forced convection of non-thermo-dependent pseudoplastic (7 = 0.75) and
dilatant (n = 1.25) fluids through a heated axially rotating cylindrical pipe using the large
eddy simulation (LFS) approach with an extended Smagorinsky model. The simulation Rey-
nolds number (Re,) and the simulation Prandtl number (Pr,) of this investigation are assumed
to be 4500 and 1, respectively, at various rotation rates (0 < N < 3). The computations proce-
dures are based on a finite difference scheme, second-order accurate in space and time, with a
numeric resolution of 65° gridpoints in axial, radial and circumferential directions, respectively,
with a domain length of 207 in the axial direction. Uniform heat flux (¢, ) is imposed on the

wall as a thermal boundary condition.

Thesis Structure

The present thesis is structured in five chapters and is organised as follows :

CHAPTER 1 presents the classification of the fluids based on the different rheological models
and the constitutive equations of each type of fluid.

CHAPTER 2 presents the literature of the previous research focused on experimental and
numerical investigations, direct numerical simulation (DN S), and large eddy simulation (LES)
of the fully developed turbulent flow of Newtonian and non-Newtonian fluids through an axially
stationary or rotating pipe.

CHAPTER. 3 sheds further light on the turbulence phenomena, characteristics of turbulence,
and turbulence structure in addition to the well-known Kolmogorov theory. Moreover, section 2
presents the two extremely powerful numerical approaches (DN S) and (L. /S) and the sub-grid
models of LES. Section 3 provides the LES approach’s sub-grid scales (SG'S). The spatial
and temporal resolution requirements, the boundary and initial conditions, in addition to the

rheological properties of the non-Newtonian fluids.
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CHAPTER 4 focuses on the numerical investigation of a fully developed turbulent flow of
pseudoplastic (n = 0.75) and dilatant (n = 1.2) fluids through an isothermal axially rotating
pipe using the DN S approach.

CHAPTER 5 presents the flow governing equations and the mathematical formulations of the
forced convection problem. This chapter devotes the LFS of the forced convection turbulent
flow of the thermally independent pseudoplastic (7 = 0.75) and dilatant (n = 1.25) fluids
through a uniform heated axially rotating pipe over a rotation rate range of (0 < N < 3).

Finally, the Conclusions are drawn from the findings of the research work and recommenda-

tions for future work are made.
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RHEOLOGICAL BEHAVIOUR

What is Rheology 7

heology was first seen as a science in its own right not before the beginning of the 20th
R century. However, scientists and practical users have long been interested in the beha-
viour of liquids and solids, although some of their methods have not always been very scientific.
Rheology is the science of deformation and flow. It is a branch of physics and physical chemistry
since the most important variables come from the field of mechanics : forces, deflections and ve-
locities [1]. The term rheology was invented in 1920 by Professor Eugene Bingham at Lafayette
College in Indiana USA. A colleague, Martin Reiner, a professor in Classical Languages and His-
tory, inspired him. Bingham, a professor of Chemistry, studied new materials with strange flow
behaviour, mainly paints [2]. The term "rheology” originates from the Greek "rhein”, meaning
"to flow”. Thus, rheology is literally "flow science”. However, rheological experiments reveal
information about liquids’ flow behaviour and solids’ deformation behaviour. The connection

here is that a large deformation produced by shear forces causes many materials to flow [1].

I.1 Continuum hypothesis

The matter may take three aggregate forms or phases : solid, liquid, and gaseous. A body of
solid matter has a definite volume and form, dependent on the temperature and the forces the
body is subjected to. A body of liquid matter, called a liquid, has a definite volume but not a
definite form. A liquid in a container is formed by the container but does not necessarily fill it.

A body of gaseous matter, gas, fills any container it is poured into.

o In the liquid phase, the molecular forces are too weak to bind the molecules to definite
equilibrium positions in space. Still, the forces will keep the molecules from departing too

far from each other. This explains why volume changes are relatively small for a liquid.
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o In the gaseous phase, the distances between the molecules have become so large that
intermolecular forces play a minor role. The molecules move about each other with high
velocities and interact through elastic impacts. The molecules will disperse throughout
the vessel containing the gas. The pressure against the vessel walls is a consequence of the

molecular effects.

o In the solid phase, there is no longer a clear distinction between molecules and atoms. In
the equilibrium state, the atoms vibrate about fixed positions in space. The solid phase
is realised in either of two ways : In the amorphous state, the molecules are not arranged
in any definite pattern. In the crystalline state, the molecules are arranged in rows and

planes within certain subspaces called crystals [2].

1.2 Definition of fluids

A common property of liquids and gases is that they, at rest, only can transmit a pressure
normal to solid or liquid surfaces bounding the liquid or gas. Tangential forces on such surfaces
will first occur when there is relative motion between the liquid or gas and the solid or liquid
surface. Such forces are experienced as frictional forces on the surface of bodies moving through
air or water. When it studies the flow in a river, it sees that the flow velocity is most significant
in the middle of the river and is reduced to zero at the riverbank. Tangential forces explain
the phenomenon of shear stresses between the water layers that try to slow down the flow. The
volume of an element of flowing liquid is nearly constant. This means a fluid’s density, mass per
unit volume, is almost constant. Fluids are, therefore, usually considered to be incompressible.
The compressibility of a liquid changes in volume and density comes into play when convection

and acoustic phenomena are considered [2].

All kinds of shear behaviour, which can be described rheologically scientifically, can be viewed
as being between two extremes : the flow of ideally viscous liquids on the one hand and the
deformation of ideally elastic solids on the other. The behaviour of all real materials is based
on the combination of a viscous and an elastic portion ; therefore, it is called viscoelastic. For

example, wall paper paste is a viscoelastic liquid, and a gum eraser is a viscoelastic solid [1].
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Liquids Solids
(ideal-) viscous Viscoelastic Viscoelastic (ideal-) elastic
Flow behaviour Flow behaviour Deformation Deformation
Behaviour Behaviour
Newton’s law Maxwell’s law Kelvin/Voigt’s Hooke’s law
Flow /Viscosity Creep tests, relaxation
curves tests, oscillatory tests

Table 1.1 — Overview of different kinds of rheological behaviour [1].

1.3 Shear stress and viscosity

Isaac Newton gave attention to fluids, and in the "Principia” published in 1687 there appears
the following hypothesis associated with the steady simple shearing flow shown in Figure .1,
The resistance which arises from the lack of slipperiness of the parts of the liquid, other things
being equal, is proportional to the velocity with which the liquid parts are separated from one

another [3].

Surface area A

Figure I.1 — Schematic representation of the unidirectional shearing flow [4].

For the simple shear illustrated in Figure [.1, a ”shear stress” o results in "flow”. In the case
of a Newtonian fluid, the flow persists as long as the stress is applied. In contrast, for a Hookean
solid, shear stress o applied to the surface (y = d) results in an instantaneous deformation as
shown in Figure [.2. Once the deformed state is reached there is no further movement, but the
deformed state persists as long as the stress is applied. The angle v is called the ”strain” and
the relevant ’constitutive equation’ is 0 = G-y where ( is referred to as the "rigidity modulus” .
This lack of slipperiness is what it now calls ”viscosity”. It is synonymous with ”internal friction”
and is a measure of "resistance to flow”. The force per unit area required to produce the motion
is /'/A and is denoted by o and is proportional to the "velocity gradient” or "shear rate” [//d.

The constant of proportionality is called the coefficient of viscosity [3].
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o=puU/d (I.1)
Y‘l Y‘l
.............. . <,
D C D’ c’
N
v
A B P - = e o= o= A’ B, D
X o X

Figure 1.2 — The result of applying a shear stress o to a block of Hookean solid.

Viscosity (/) is just one of several rheological properties that can be used for material charac-
terisation in engineering applications. To define viscosity, consider an element of fluid sandwi-
ched between two parallel plates of area (A) separated by a gap (L) subjected to a steady-shear

force (), on its upper face [5].

<_ moving plate, area 4

/ I\_,[ FV
T

yd
liquid layers ~ //

4
yd
yd |
pd |
Z ]

L, stationary plate, area 4

Figure 1.3 — Fluid under steady-shear, the steady shear force will cause the upper plate to move
with a velocity, 1/, relative to the lower plate [5].

F
_ 1.2
T 14 ( )
and flows with a shear rate :
N 7
4 (L3)

Dividing the shear stress by the shear rate gives a measure of the resistance of the fluid to flow,

that is, its viscosity, defined as [5] :

= (1.4)

249
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1.4 Classification of fluids

The fluids classify in two different ways ; either according to their response to the externally
applied pressure or according to the effects produced under the action of shear stress. The
first scheme of classification leads to the so-called "compressible” and "incompressible” fluids,
depending upon whether or not an element of fluid’s volume depends on its pressure. While
compressibility influences the flow characteristics of gases, liquids can normally be regarded
as incompressible, and their response to shearing is of greater importance. The flow characte-
ristics of single phase liquids, solutions, and pseudo-homogeneous mixtures such as (slurries,
emulsions,gas—liquid dispersions), which may be treated as a continuum if they are stable in
the absence of turbulent eddies, are considered depending upon their response to externally

imposed shearing action [4].

Fluid
SR e
_ eq erfect
@mple H Com PI;C-\)

1 _

 Newtonian ) g N
. hon-Newtonian  — |

| T
Purely viscos
‘ Viscoelastic i \—/
Time- \ Time-

I ( Independent J \ dependent
— I
. pr— —!
( Linear ) Ostwald-de ) Carreau- l
| { Waele Yasuda Thixotropy
p— - 1 1 behaviour
( Non-linear ) ’ i
( Viscoplastic ‘ Cross
l 1 Rheopectic
- behaviour
Carreau Ellis

Figure I.4 — Classification of fluids.

I.4.1 Newtonian fluids

Newtonian fluids are defined to be those fluids exhibiting a direct proportionality between

stress 7 and strain rate 7 in laminar flow, that is :

T = /1,”'/ (1‘5)

The viscosity ;. is independent of the strain rate, it might be affected by other physical
parameters, like temperature and pressure, for a given fluid system. Newtonian fluid’s stress
versus strain rate graph will be a straight line through the origin. In more precise technical

terms, Newtonian fluids are characterised by the assumption that the extra stress tensor, which
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is part of the total stress tensor that represents the shear and extensional stresses caused by
the flow excluding hydrostatic pressure, is a linear isotropic function of the components of the
velocity gradient, and therefore exhibits a linear relationship between stress and the rate of
strain. In tensor form, which takes into account both shear and extension flow components, this
linear relationship is expressed by Equation 1.5 where 7 is the extra stress tensor and 7 is the
rate of strain tensor which describes the rate at which neigh-boring particles move with respect
to each other independent of superposed rigid rotations. Newtonian fluids are generally featured
by having shear and time-independent viscosity, zero normal stress differences in simple shear

flow, and simple proportionality between the viscosities in different types of deformation [6].

1.4.2 Non-Newtonian fluids

Fluids that show a departure from Newtonian behaviour are termed as non-Newtonian fluids.
When a material’s flow behaviour follows the basic law of viscosity proposed by Isaac Newton,
it is said to depict Newtonian behaviour. The constitutive equation for Newtonian fluids, which

show constant viscosity without any yield stress and/or elastic component, is given as :

T = uA (1.6)

Where 7 is the shear stress, 7 is the shear rate, and the constant ;i is the Newtonian viscosity.
In general, for determining velocity distributions and stresses, incompressible Newtonian fluids
at constant temperature can be characterised by two material constants, namely, the shear
viscosity ;. and the density p. Once these quantities are measured, the velocity distribution and
the stresses in the fluid, in principle, can be found for any flow situation. In other words, different
isothermal experiments on a Newtonian fluid would yield a single constant material property : its
viscosity where milli-Pascals seconds (1m./a.5). Some examples of commonly known Newtonian
fluids are : water (u ~ 1mPa.S), coffee cream (i ~ 10mPa.S), olive oil (u ~ 10?mPa.S) and

honey (1 ~ 10*mPa.S).

Non-Newtonian fluids can depict elastic, viscous, or viscoelastic behaviour and exhibit one of

the following features :

o Time-independent fluids are those for which the strain rate at a given point solely depends

upon the instantaneous stress.

» Viscoelastic fluids are those that show partial elastic recovery upon the removal of defor-

ming stress. Such materials possess properties of both viscous fluids and elastic solids.

o Time-dependent fluids are those for which the strain rate is a function of both the ma-
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gnitude and the duration of stress and possibly the time lapse between consecutive stress

applications [7].

1.4.2.1 Ostwald de Waele

The Ostwald de Waele, or power-law model, is one of the simplest time-independent fluid

models as it contains only two parameters. The relation gives the model :

cn—1
p=Ky" (1.7)
Where ;: is the viscosity, /& is the consistency factor, 7 shear rate, and (n) is the flow

behaviour index [6].

Shear-thinning or pseudoplastic fluids

This is behaviour in which an infinitesimal shear stress will initiate flow (that is, the flow
curve passes through the origin) and for which the rate of increase in shear stress with shear
rate decreases with increasing shear rate as is shown in Figure [.5. This behaviour is sometimes
incorrectly termed thixotropy because the equilibrium flow curve of a thixotropic material is

often shear-thinning. However, unlike shear-thinning behaviour, thixotropy is time-dependent

[5].

Shear-thickening or dilatant fluid

This is behaviour in which an infinitesimal shear stress will initiate flow (that is, the flow
curve passes through the origin) and for which the increase in shear stress with shear rate

increases with increasing shear rate. This is shown in Figure 1.5 [5].

1.4.2.2 Viscoplastic behaviour

This type of fluid behaviour is characterised by the existence of a yield stress (7) which
must be exceeded before the fluid will deform or flow. Conversely, such a material will deform
elastically (or flow a masse like a rigid body) when the externally applied stress is smaller than
the yield stress. Once the magnitude of the external stress has exceeded the yield stress value,

the flow curve may be linear or non-linear but will not pass through the origin Figure 1.6 [4].
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Shear stress

\ | Shear-thickening
Shear-thi.ckening \ K fluid
fluid (| Newtonian fluid
5
g H Newtonian fluid
| Shear-thinning é ’ I
fluid =
| Shear-thinning
\ fluid
Shear Rate Shear Rate ]
(a) (b)

Figure 1.5 — Flow curve for fluids exhibiting shear-thickening and shear-thinning behaviour.

Vield psendoplastic

Pseundoplastic flwid

Bingham
[~ plastic

Shear stress

\ »
I I I I

Shear rate

Figure 1.6 — Viscoplastic fluid.

Bingham fluid

The Bingham fluid model is characterised by yield stress 7, which, if exceeded, makes the
material flow like a viscous Newtonian fluid or else behave like a solid at all values below critical

stress. Hence, the equations for this fluid are as follows :

=10+t (%) for |7| > |7

A
i
/

0 for ITI < IT(]I

Here, 11p is called plastic viscosity [7].
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Figure 1.7 — Viscosity and time-independent flow behaviour.
Herschel-Bulkley model
This fluid model was developed by Herschel and Bulkley (1926) specifically for describing
pseudoplastic fluids with yield stress and is given as follows :
T=1+u(H)"  for |7| > |n|
(1.9)
=0 for |7] < |70

It can be seen that when yield stress is absent, this model is akin to the Ostwald de Waele

power-law model and when (n = 1), represents the Bingham plastic model [7].

Casson model

Many foodstuffs and biological materials, especially blood, are well described by these two
constant models :

~

lyx

(‘Tyr\)]ﬂ = ()T()(VDI/Z + (/1(1

1/2
) for |7, > ’7‘()( ’ (1.10)
v=0 for |7, > )m(’) (L.11)
This model has often been used for describing the steady shear stress shear rate behaviour of

blood, yoghurt, molten chocolate, etc. The flow behaviour of some particulate suspensions also

closely approximates to this type of behaviour [4].
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1.4.2.3 Carreau model

This four parameter rheological model can describe shear-thinning fluids with no yield stress.
It is generally praised for its compliance with experiments. The distinctive feature of this model

is the presence of low and high-shear plateaux. The relation gives the Carreau fluid :

= oo + U /j‘xg (I.12)

[1+6 /,(.,)1 ’

Where (. is the fluid viscosity, /i~ is the viscosity at the infinite shear rate, i is the viscosity
at zero shear rate, 7. is the shear rate, . is a characteristic time and 7 is the flow behaviour

index. A generic graph demonstrating the bulk rheology is shown in Figure 1.9 [6].

Low-shear plateaurl Shear-thinning region VHigh-shear plateau

»
-

o

SCOS1

Vi

H,

v

Shear Rate

Figure 1.8 — The bulk rheology of a Carreau fluid on logarithmic scales for finite shear rates (7 > 0).
I1.4.2.4 Carreau-Yasuda model

The Carreau-Yasuda Model is another empirical equation used to fit non-Newtonian data
(Bird et al., 1987), also "describing pseudoplastic flow with asymptotic viscosities at zero and
infinite shear rates, and with no yield stress” (Hackley and Ferraris, 2001). This model is
well suited for fluids that are beginning to shear thin, and can be used to describe emulsions,

biopolymer solutions, protein solutions, and polymeric solutions. [8]

n—1

u(¥) = [L4+ A9 (o — pioo) + oo (1.13)
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1.4.2.5 Cross model

Another parameter model which has gained wide acceptance is due to Cross (1965) which, in

simple shear, is written as :

= foo 1
1o — poo 1+ k(e )"

(L14)

In Equationl.14, (n < 1) and k are two fitting parameters whereas /i) and /.~ are the limiting
values of the apparent viscosity at low and high shear rates, respectively. This model reduces to
the Newtonian fluid behaviour as &£ — 0. Similarly, when ;1 << j0 and, it reduces to the familiar
power-law model. Though initially Cross (1965) suggested that a constant value of n = 2/3 was
adequate to approximate the viscosity data for many systems, it is now thought that treating
the index () as an adjustable parameter offers a considerable improvement over the use of the

constant value of (n) [4].

1.4.2.6 Ellis model

This is a three-parameter model that describes time-independent shear-thinning non-yield-
stress fluids. It is used as a substitute for the power-law model and is appreciably better than
the power-law in matching experimental measurements. Its distinctive feature is the low-shear
Newtonian plateau without a high-shear plateau. According to this model, the fluid viscosity 1
is given by :

= (I.15)

T

Ho
1+ (

a—1
.

Where i is the low-shear viscosity, 7 is the shear stress, 7|/, is the shear stress at which
(= /2 and « is an indicial parameter related to the power-law index by o = 1/n. A generic
graph demonstrating the bulk rheology, that is viscosity versus shear rate on logarithmic scales,

is shown in Figure 1.9 [6].

1.4.2.7 Thixotropy behaviour

In the case of materials showing thixotropic behaviour, the shear rate is a function of the
magnitude and duration of shear and possibly of the time lapse between consecutive applications
of shear stress. These materials exhibit a reversible decrease in shear stress with time at a
constant rate of shear and fixed temperature. The shear stress, of course, approaches some

limiting value [7].
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»
- »
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~ Low-shear | Shear-thinning region
L, lateau |

v

Shear Rate
Figure 1.9 — The bulk rheology of an Ellis fluid on logarithmic scales for finite shear rate (7 > 0).

1.4.2.8 Rheopectic behaviour
Materials showing rheopectic behaviour exhibit a reversible increase in shear stress with time

at a constant rate of shear and fixed temperature. At any given shear rate, the shear stress

increases to approach an asymptotic maximum value [7].

7 (7)
2 Rheopectic fluid
S
|
R
S
=
e : .
Thixotropic fluid
7, ()
>

Time

Figure 1.10 — Thixotropic and rheopectic : variation of the apparent viscosity in function of time at
a fixed shear rate.
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Rheopectic fluid

Thixotropic fluid

Shear stress

Shear Rate

v

Figure 1.11 — Thixotropic and rheopectic behaviour.

1.4.2.9 Viscoelastic fluids

Polymeric fluids often show strong viscoelastic effects. These include shear-thinning,
extension-thickening, normal stresses, and time-dependent rheology. No theory is yet available
to describe the observed viscoelastic phenomena in various flows adequately. Nonetheless, many
differential and integral constitutive models have been proposed in the literature to describe
the viscoelastic flow. What is common to all these is the presence of at least one characteristic
time parameter to account for the fluid memory, that is the stress at present depends upon the
strain or rate of strain for all past times, but with a fading memory. Viscoelasticity is divided

into two major fields : linear and non-linear.

Maxwell model

This is the first known attempt to obtain a viscoelastic constitutive equation. This simple
linear model, with only one elastic parameter, combines the ideas of fluids’ viscosity and the
solids’ elasticity to arrive at an equation for viscoelastic materials. Maxwell proposed that fluids
with both viscosity and elasticity can be described, in modern notation, by the relation :

0 .
T+ /\1(% = oY (1.16)

where 7 is the extra stress tensor, \; is the fluid relaxation time, ¢ is time, 1/ is the low shear

viscosity and 7 is the rate of the strain tensor [6].



1.4. Classification of fluids 19

Jeffreys model

This is a linear model proposed as an extension to the Maxwell model by including a time

derivative of the strain rate, that is :

or . oY
SIS V- R 1.17
+ A1 ot 1o < + A2 0t> (L.17)

Where )\, is the retardation time that accounts for the corrections of this model and can
be seen as a measure of the time the material needs to respond to deformation. The Jeffreys
model has three constants : a viscous parameter 1, and two elastic parameters, A\; and \o. The
model reduces to the linear Maxwell when A\ = 0, and to the Newtonian when \; = Ay = 0.
As observed by several authors, the Jeffreys model is one of the most suitable linear models to

compare with the experiment [6].

Upper Convected Maxwell (UCM) Model

The Upper Convected Maxwell (UCM) is the simplest non-linear viscoelastic model and is
one of the most popular models in numerical modelling and simulation of viscoelastic flow. Like
its linear counterpart, it is a simple combination of the Newton’s law for viscous fluids and the
derivative of Hook’s law for elastic solids. Because of its simplicity does not fit the rich variety
of viscoelastic effects which can be observed in complex rheological materials.

However, it is largely used as the basis for other more sophisticated viscoelastic models. Like
the linear Maxwell, it represents purely elastic fluids with shear-independent viscosity, Boger
fluids. UCM also predicts an elongation viscosity three times the shear viscosity, like Newtonian,
which is unrealistic for most viscoelastic fluids. The UCM model is obtained by replacing the
partial time derivative in the differential form of the linear Maxwell with the upper convected

time derivative, that is
\v4 .
T+ MNMT = po) (1.18)

where 7 is the extra stress tensor, \; is the relaxation time, /i is the low-shear viscosity, 7 is
v
the rate of the strain tensor, and 7 is the upper convected time derivative of the stress tensor.
This time derivative is given by [6].
v 07

=5 + v V71— (Vo) r— 7.V (I.19)
ot
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Oldroyd-B Model

The Oldroyd model is a simple form of the more elaborate and rarely used Oldroyd-B constant
model which also contains the upper convected, the lower convected, and the corotational Max-
well equations as special cases. Oldroyd-B is the second simplest non-linear viscoelastic model
and is apparently the most popular in viscoelastic flow modelling and simulation. It is the
non-linear equivalent of the linear Jeffreys model, as it takes account of frame invariance in the
non-linear regime.

Oldroyd-B model can be obtained by replacing the partial time derivatives in the differential

form of the Jeffreys model with the upper convected time derivatives

v : v
T+ MT = o (”f + A2 ) (1.20)

\V4
Where 7 is the upper convected time derivative of the rate of strain tensor given by :

\% APy
. )7y . . .
¥ = ((,,% F oV — (Vo)A — 4.V (1.21)

Oldroyd-B model reduces to the UCM when Ay = 0, and to Newtonian when A\ = My =
0. Despite the simplicity of the Oldroyd-B model, it shows good qualitative agreement with
experiments, especially for dilute solutions of macromolecules and Boger fluids. The model can
describe two main features of viscoelasticity : normal stress difference and stress relaxation. It
predicts a constant viscosity and first normal stress difference with zero second normal stress
difference. Moreover, the Oldroyd-B, like the UCM model, predicts an elongation viscosity that
is three times the shear viscosity, as it is the case in Newtonian fluids. It also predicts an infinite

extensional viscosity at a finite extensional rate, which is physically unrealistic [6].
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Model

Constitutive Equation

Viscosity

Rheological Parameters

Newtonian

T =K

1= [N

un (Pa s)

Ostwald de Waele

T=KA4"

o= K;ynfl

K (Pa s™)
n dimensionless

Bingham Plastic

T =17yB + 1By

TyB

5 + uB

M:

TyB (Pa)
ps (Pa s)

Herschel-Bulkley

T="Tyup + K"

= Ty# + K,ynf]

TyHB (PCL)
K (Pa s™)
n dimensionless

Casson

VT = Ty + Ve

(Ve vicd]”

M= 5

Tyc (Pa)
pe (Pas)

Vocadlo

= (Tyvl/n + K,-y)n

= Qv "
) ol

TyV (P (I)
K (Pa s™)
n dimensionless

Prandtl-Eyring

7 = asinh ™1 (b¥)

. [u, sinh~1 (b*/)]
o ¥

a (Pa)
b (s)

Powell-Eyring

T = ¢y + asinh (%)

B [a sinh’l(b"y)]
p=ct ——

(Pa)

b (s)
¢ (Pas)

Cross

— HO—Hoo | <
T = {//LOO + 1+CL’.Y"1' }’Y

H0—Hoo

,u' — ,LLOO + 1+a"y7”

o (Pas)
oo (Pas)
a (S™)

m dimensionless

Sisko

7= (oo + K47 115

n—1

p= oo + K

oo (Pas)
K (Pas™)
n dimensionless

Carreau

M0 — Moo

T = + LB 5 4 = + R Ee
{Uoo [1+(a’;/)2:|1n/2 } 7 M= Moo [1+(m,/)2]m,/2

o (Pas)
oo (Pas)
a (S)

m dimensionless

Van Wazer

= _HO—Hoo | 4
T_{NOO+ 1+a"y+b"ym}’y

— M0 — Hoo
B = oo + Tagpym

po (Pas)
feo (Pas)
a (S)

b (S™)

m dimensionless

Williamson

T = oo+ B2 1

_— M0 — Moo
K= oo + 1+at

o (Pas)
too (Pa s)
a (Pa™t)

Reiner-Philippoff

r={hoo + B 14

MO0 — Moo

ILL - NJOO + 1+a7—2

o (Pas)
oo (Pa s)
a (Pa™?)

Meter

T = {/Loc + gk } gl

_ Bo—pt
= oo T Trgrm

o (Pa s)

fic (Pas)
a (Pa™™)
m dimensionless

Ellis

" .
T = {1+(;7—(')rn71 }’Y

— 1o
lu 7 1+(LT""71

o (Pas)
a (Palfm)
m dimensionless

Table 1.2 — Flow curve models [5].
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Fluid type Definition Typical examples
Blood
Pseudoplastic Fluids that depict a decrease in vis- )10 polymer systems
cosity with increasing shear rate and  pg o0 melts
hence often referred to as shear- Priﬁting inks
thinning fluids.
Aqueous suspension of titanium
Dilatant Fluids that depict an increase in i . ide
viscosity with increasing shear rate ) solutions
and hence often referred to as shear- yy/.¢ <and
thickening fluids.
Certain asphalts and bitumen
Bingham Fluids that do not flow unless the j.jjqs
plastics stress applied exceeds a certain mi- Sewage sludges
nimum value referred to as the yield yickened hydrocarbon greases
stress and then show linear shear . ../ ketchup
stress versus shear rate relationship. Toothpaste
Pseudoplastic Fluids that have non-linear shear Heavy crude oils with high wax
with stress versus shear rate relationship in :

a yield stress

addition to the presence of yield stress.

content Filled polymer systems

Coal-water slurries

Thixotropic Fluids that exhibit a the reversible de- ., 10 ils
crease in shear stress with time at a Drilling muds
constant rate of shear and fixed tem- 1.9 f)olvmer svstems
perature. The shear stress, of course, (.. onnaise '/
approaches some limiting value. S‘Lljld dressing

alad O S
Yoghurt

Rheopectic Fluids exhibit a reversible increase in
shear stress with time at a constant Some clay suspensions
rate of shear and fixed temperature. Ay PHEpesiom
At any given shear rate, the shear
stress increases to approach an asymp-
totic maximum value.

Viscoelastic Fluids that possess the added fea-

ture of elasticity apart from viscosity.
These fluids exhibit process properties
which lie in-between those of viscous
liquids and elastic solids

Filled polymer systems
Polymer melts
Polymer solutions

Table 1.3 — Various types of non-Newtonian fluids [7].
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PREVIOUS WORK

he turbulence state of a fluid is one of the most challenging problems in fluid dynamics
T due to its importance in mechanical and engineering fields. It is often encountered in
engineering applications such as heat exchangers, gas-cooled nuclear reactors and gas turbines,
drilling hydraulics, sewage transport, nuclear reactors, and applications involving relatively high

heat transfer rates.

One of the fundamental problems of fluid mechanics is the incompressible turbulent flow
through smooth straight pipes; circular tubes are one of the most common flow passage geo-
metries in fluid flow mechanics. The turbulent flow of Newtonian fluids through a stationary
cylindrical tube is a critical challenge and significant concern in the mechanical and engineering
industries that has previously attracted much attention. A range of engineering applications,
including flow in turbo engines, heat exchangers, combustion chambers, nuclear reactors, etc.,
include turbulent flow in pipes. The fully developed turbulent flow in the straight pipe of New-
tonian fluids has been extensively studied in the literature. The literature inspection reveals
that many researchers reported acclaimed analytical, experimental, direct numerical simulation
(DNS), and large eddy simulation (L/S) data for describing flow patterns, hydrodynamic
behaviour, turbulent features, mean and turbulence statistics, and instantaneous quantities,

among them [9], [10], [L1], [12].

Orlandi and Fatica (1997) [9] applied the direct numerical simulation in a turbulent pipe
flow with and without rotation, at low Reynolds numbers. The simulation is performed by a
finite difference scheme, second-order accurate in space and in time. A non-uniform grid in the
radial direction yields accurate solutions with a reasonable number of gridpoints, which was
(128 x 96 x 257) in a pipe of length L. = 151 to analyse the results. With L. = 151 and with

257 points in direction (z) and the rotation rate N = 2. The numerical method was tested in
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the non rotating case by comparing the results with the validated simulations by EUW. For
the rotating case, the check of the numeric was performed only at NV = 2, and the check must
be done not only on the resolution but also on the length of the computational domain in the
streamwise direction. If the pipe was too short, it could affect the long helical structures near
the wall and at the centre of the pipe. From these simulations, it also understood that there
is a strong interaction between numerical and sub-grid dissipation. Further details; when the
pipe rotates, a degree of drag reduction was achieved in the numerical simulations just as in the
experiments. Through the visualisation of the vorticity field, the drag reduction has been related
to the modification of the vortical structures near the wall. In contrast, a comparison between
the vorticity in the non-rotating and in the high rotation case has shown a spiral motion leading

to the transport of streamwise vorticity far from the wall.

A subject with significant industrial impact, heat transfer in Newtonian fluids is of practical
importance in many industrial applications. A considerable amount of research in the past
decades has addressed thermally developing turbulent forced convection of Newtonian fluids

through smooth straight pipes, among them [12].

Piller (2005) [12] presented a direct numerical simulations (DN S) investigation of fully de-
veloped turbulent pipe flow and heat transfer at Reynolds number e, = 5300 based on bulk
velocity and pipe diameter, and the friction Reynolds number, based on the pipe diameter, is
Re* = 360 ; the Prandtl number of the fluid is 0.71. This data provides detailed information
on the mean properties and turbulence statistics up to fourth order, the budget and the wave
number spectra of the temperature fluctuations, for three different wall boundary conditions. To
investigate the differences between fully developed turbulent heat transfer in an axisymmetric
pipe and plane channel geometry, the present D/NS results are compared to those obtained
from channel flow simulations. The differences between channel and pipe flow results are mo-
dest and reveal that the temperature fluctuations in the pipe are slightly more intense. The
results show that the mean temperature profile does not conform to the accepted law of the
wall. Then, the boundary conditions affect the turbulence statistics both in the near-wall and
core regions ; this observation complements previous studies concerning different flow and heat

transfer configurations.

Swirl flow is not only crucial for a wide range of real world mechanical and engineering ap-
plications, but it also has a significant theoretical interest. The flow through rotating pipes

is of great practical interest because of the various industrial applications. Several computa-
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tional and experimental experiments have been carried out in recent years to understand the
laminarisation phenomenon better and examine the impact of the rotating pipe wall on the
mean characteristics and turbulence statistics. In addition to the turbulence statistics, such as
the root mean square of fluctuating velocities, Reynolds shear stresses, and the higher order
statistics, emphasis has been placed on how the swirl caused by a rotating pipe wall affects the
friction coefficient and velocity distribution. It is shown that the turbulent and hydrodynamic
properties are influenced by the interaction between turbulence and the centrifugal force caused
by the swirl. A body force that stabilises or destabilises the turbulence may also be inferred
from the swirl produced by a rotating pipe wall’s impact on the flow field and the practical

significance of turbulent flows.

The turbulent flow of Newtonian fluids through an isothermal axially rotating pipe is a pro-
blem of considerable significance. It has received much attention because of its various industrial
applications. Much literature has investigated the turbulent flow characteristics through an iso-
thermal pipe rotating around the axis. The effects of the swirl driven by a rotating pipe wall
on flow characteristics and turbulent features for Newtonian fluids have been studied either
experimentally or numerically by [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31].

Murakami and Kikuyama (1980) [13] conducted one of the first significant investigations to
assess the effects of the centrifugal force induced by the rotating pipe wall on the flow pattern
and hydraulic losses. To this end, Murakami and Kikuyama (1980) [13] studied the turbulent
flow of Newtonian fluid through an axially smooth rotating pipe for different rotation rates
and Reynolds numbers by measuring the pressure and the velocity profile distributions along
the radial direction. As the rotation rate increases, the rotating pipe wall causes a significant
deformation of the mean streamwise velocity profile distribution along the pipe radius. The
increased rotating pipe wall results in a noticeable enhancement of the axial velocity towards
the core region, where the axial velocity profile approaches a laminar shape progressively. This

trend is more apparent as the pipe is rotated, called the laminarisation phenomenon.

To shed further light on the laminarisation phenomenon, Nishibori and Kikuyama (1987) [14]
experimentally investigated the turbulent flow of the Newtonian fluid inside an axially rotating
pipe using the laser Doppler velocimeter (LDV) and flow visualisation techniques. Their results
show that the centrifugal force caused stabilisation of the rotating boundary layer due to the

rotating velocity component, resulting in a laminarisation flow. This phenomenon was more
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observed in the inlet region, where a non-rotating inner core exists in the pipe section. When
the rotation rate was increased to a specific value, a laminarisation phenomenon was observed
in the rotating layer in the inlet region near the entrance. Interestingly, when laminarisation
occurs in the rotating layer near the pipe wall, the axial velocity profile becomes flat near the
pipe axis, similar to that observed in the laminar inlet flow developing in a stationary pipe.
Thus, the flow pattern inside the boundary layer near the pipe wall can be estimated using
the shape factor based on the axial velocity profile. Moreover, under the same rotation rate
conditions, the laminarisation of flow in the inlet region is promoted as the axial Reynolds

number is decreased.

Eggels et al. (1994) [16] carried out one of the most significant experimental and numerical
analyses and discussions of turbulent pipe flow. The experimental one was based on HWA | PIV
and LDA techniques, while the numerical investigation employed direct numerical simulation
(DN S). The numerical study was performed over a pipe length of 51 in the axial direction. The
spatial resolution is (96 x 128 x 256) gridpoints in the radial, tangential, and axial directions,
respectively, at a Reynolds number of 5300 ; these predicted results compared reasonably with
the measured results. In addition to the first study, Eggels (1994) performed several simulations
for turbulent flow inside stationary and axially rotating pipes with a computation length of
5D, employing the Large Eddy Simulation (LFES) with the Smagorinsky model at a Reynolds
number of 40000 and for rotation rates (V) of 0 and 0.71. Their findings suggest that the
centrifugal force induced by the rotating pipe wall results in a pronounced attenuation of the
normal wall and axial velocity fluctuation along the radial coordinates according to the Taylor-
Proudman theorem because a rotating flow tends to become 2D in its plane of rotation. In other
words, the radial and axial velocity fluctuations exhibit an apparent suppression as the rotating
pipe rotates. Moreover, the increased rotating pipe wall induces a marked enhancement of the
mean axial velocity profile in the core pipe region due to the reduction of the total shear stress
and a change in the shear stress profile. In addition, the attenuation of the shear stress also

leads to a reduction of the friction factor.

Yang (2000) [18] sought to reveal the effects of the centrifugal force induced by the rotating
pipe wall on the flow patterns and the turbulence characteristics; LFS with dynamic and
Smagorinsky sub-grid models were employed to investigate numerically the fully developed
turbulent flow of Newtonian fluid through an axially rotating pipe. This study was performed
with a spatial resolution of (192 x 64 x 128) gridpoints in the axial, radial, and azimuthal

directions, respectively, over a computation domain length of 40 in the streamwise direction,
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at a Reynolds number of 20000 and rotation rates of 0,0.5, and 1. The most relevant predicted
results show that the stabilising effect of the centrifugal force induced by a rotating pipe wall
results in a noticeable reduction of the turbulence intensity ; this trend is more pronounced as the
pipe wall rotates. According to Eggels (1994), Yang (2000) [18] argued that the suppression of
radial fluctuations leads to the Taylor-Proudman theorem, which states that in the suppression
of turbulent fluctuations perpendicular to the plane of rotation, the rotating flow tends to

become two-dimensional in its rotation plane.

For different Reynolds numbers and rotation rates, Ould-Rouiss and Feiz [19] conducted
Direct Numerical Simulations and Large Eddy Simulations of fully developed turbulent pipe
flow in an axially rotating pipe. The D /N S has been performed with rotation rates ranging from
0 to 18 at two Reynolds values, e = 4900 and Re = 7400. The dynamic model has been used to
simulate large eddies up to a Reynolds number of 20600. The friction coefficient, Reynolds shear
stresses, mean and fluctuating velocity components, higher-order statistics, and other statistical
turbulence values are all collected and examined. This research aimed to look at how the rotation
number and Reynolds number affect turbulent flow properties. The governing equations are
discretised in cylindrical coordinates on a staggered mesh. A finite difference method that is
second-order accurate in both space and time is used to conduct numerical integration. Time
is advanced using a fractional step technique. Their findings demonstrate that the stabilising
influence of the centrifugal force causes the axial velocity profile to progressively converge into a
laminar form as the rotation rate increases. As a result, the friction factor goes down. The root
mean square is significantly affected by the wall’s rotation, and these effects are stronger for the
streamwise S velocity. The rotation increases the two other stresses, radial and tangential
Reynolds stress and tangential and axial Reynolds stress while decreasing the radial and axial
Reynolds stress component. It is clear how the Reynolds number affects the radial and axial

Reynolds stress distributions as well as the RS of the axial velocity.

The convective heat transfer in swirling flows is often encountered in chemical and mechanical
mixing and separation devices, electrical and turbo-machinery, combustion chambers, pollution
control devices, swirl nozzles, rocketry, and fusion reactors. In these flow fields, the heat trans-
port phenomena in connection with the flow are substantially influenced by the centrifugal force
induced by the swirl. In other words, heat and momentum transport phenomena are suppressed
or promoted by the centrifugal force associated with the swirl. The utilisation of heat transfer
with the turbulent swirling flow has often appeared in many mechanical and chemical enginee-

ring fields; inlet part of fluid machinery, enhancement of mixing and chemical reaction in the
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combustion chamber, etc.

A modified mixing length theory was used by Reich and Beer (1989) [20] to perform fully
developed, turbulent and laminar free and forced convection flows of Newtonian fluids through
axially stationary and rotating pipes. They conducted extensive analytical and experimental
research on the flow and thermal patterns. The fluid temperature along the pipe radius, the
friction factor, and the axial and azimuthal velocity distribution were all examined and critically
discussed by Reich and Beer (1989) [21] in order to reveal the effects of the rotation rate on the
hydrodynamic and thermal characteristics in such a situation. According to Reich and Beer’s
(1989) [21] theoretical and experimental observations, free convection disappears as the rotating
Reynolds number rises. It is also shown that the laminar flow changes to turbulent flow as a
result of the spinning pipe wall’s destabilising influence. However, Reich and Beer’s (1989) [21]
results demonstrate that the spinning pipe wall significantly reduces the flow resistance and
heat transmission due to turbulent radial suppression brought on by the radially increasing
centrifugal forces. Furthermore, there is a clear flow laminarisation seen in both the projected

and actual velocity and temperature profiles.

Satake and Kunugi (2002) [28] applied a direct numerical simulation for fully developed tur-
bulent flow and heat transfer in axially rotating flow. In this study, the Reynolds and Prandtl
numbers of the working fluid were assumed to be respectively 5283 and 0.7, with several grid-
points in axial, radial, and tangential directions, respectively ; and the rotating ratios of a wall
The ratio of velocity to bulk velocity was set to be 0.5, 1, 2, and 3. The turbulent quantities
were obtained, such as the mean flow, temperature fluctuations, turbulent stresses and pressure
distribution, and turbulent statistics. The results show that the turbulent drag decreases with
the rotating ratio increase; the reason for this drag reduction can be considered as the addi-
tional rotational production terms that appear in the azimuthal turbulence component. Then,
the contributions of convection and production terms to the radial scalar flux budget and the
balance with temperature pressure gradient terms are significant. For accuracy, the dissipation

and viscous diffusion terms are negligible at a higher rotating ratio.

Redjem et al. (2007) [29] treated direct numerical simulations of heat transfer in a fully de-
veloped turbulent pipe flow with isoflux condition imposed at the wall for a Reynolds number
based on pipe radius e = 5500. Another interesting is establishing databases of various turbu-

lence statistics of turbulent transport phenomena at different Prandtl numbers (Pr is less than
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or equal to 1). These databases help evaluate and develop turbulence models, especially for
describing heat transfer in turbulent pipe flow with Pr being less than or equal to 1. They are
based on the Prandtl number effects on turbulent heat transfer in pipe flow. They analysed the
different statistical turbulence quantities, including the mean and fluctuating temperatures, the
heat transfer coefficients, and the turbulent heat fluxes. Also, the scaling of mean temperature
profiles is investigated to derive the correct logarithmic law for various Prandtl. The results
are summarised ; the RN S of temperature fluctuations and turbulent heat fluxes are found to
increase when increasing the Prandtl number. The radial distributions of higher order statistics
(skewness and flatness) confirm the intermittent behaviour in the close vicinity of the wall ; this

intermittent behaviour is more pronounced with an increase in the Prandtl number.

In-depth research on the numerical analysis of both hydrodynamic and thermal characteristics
was conducted by Ould-Rouiss et al. in 2010 [30]. The DNS and LES techniques of the fully
developed forced convection heat transfer for airflow through a heated axially rotating pipe are
the focus of this work. In fact, the pipe wall was given a thermal boundary condition of uniform
heat flow, and the Reynolds number was set at 5500 for the range of rotation rates (0 < N < 7).
Additionally, the LFS spatial resolution was based on a mesh of (39 x 129 x 129) gridpoints
in the radial, tangential, and axial directions, while the DN S spatial resolution was based on
a mesh of (129 x 129 x 257) gridpoints. The rise in temperature variations toward the core
of the pipe as rotates is shown to have a clear tendency to increase the turbulence intensity
of temperature fluctuations in the core flow zone. Additionally, as the spinning pipe diameter
rises, the centrifugal force caused by the revolving pipe wall causes a noticeable decrease in the
axial turbulent heat flow and an increase in the azimuthal heat flux. On the other hand, the
flow and the scalar transport seem to be almost independent of the revolving pipe wall with a

larger rotation rate (N > 3).

Bousbai et al. (2013) [31] investigated the turbulent heat transfer characteristics for water flow
in the rotating pipe under iso-flux conditions, using the LES technique for different rotation
rates (0 < N < 14) and a Reynolds number ¢ = 5500. The computational length in the
axial direction L. = 20R with grid resolution this study is to examine the effect of rotation
on turbulent heat transfer to complement existing literature and the effectiveness of the LFS
method for predicting turbulent heat transfer for water flow in a rotating pipe. They have
confirmed that the streamwise turbulent heat flux is significantly reduced when N increases,

whereas the azimuthal turbulent heat flux is damped near the wall for a low rotation rate. It’s
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reduced with increasing N for (N > 3). Therefore, the deviation of temperature profile from
log-law is more pronounced in water flow than in airflow. Then the fluctuating temperature and
turbulent heat fluxes in water flow seem to be more affected by the rotation ratio than those in
airflow. The pipe rotation diminishes the thickness of conductive and dynamic sub-layers. The
effect of the rotation ratio on the peak’s position of fluctuating velocities,turbulent heat fluxes,

temperatures and shear stresses has also been analysed.

Materials exhibiting shear-thinning non-Newtonian behaviour include slurries, pastes, sus-
pended solids in liquids, and emulsions. Shear-thinning materials are frequently encountered in
industries dealing with composite materials, rubber, pharmaceuticals, biological fluids, plastics,
petroleum, soap and detergents, cement, food products, paper pulp, paint, light and heavy che-
micals, oil field operations, fermentation processes, plastic rocket propellants, electro-rheological
fluids, ore processing, printing, and radioactive waste. The characterisation of the turbulent flow
of non-Newtonian fluids inside the circular pipe is of practical importance due to the wide range
of industrial applications of these fluids. There is only a relatively limited amount of research
specifically on them due to their distinctive viscosity characteristics, which vary from those of

Newtonian fluids.

The fully developed turbulent flow of non-Newtonian fluids through a smooth axially sta-
tionary pipe is a problem of considerable significance and has received much attention in the
past ; the literature contains several well-documented experimental and numerical investigations.
These studies have given special consideration to describing this kind of fluid’s rheological and
hydrodynamic behaviour by revealing the effects of various rheological parameters on flow pat-
terns and the turbulence features in such problems [32], [33], [34], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55].

Theoretical and experimental studies of the turbulent flow of non-Newtonian fluid through
axial pipes were performed by Metzner and co-workers during the (1955 — 1959) [32], [33], [34].
Moreover, their work seeks to understand the rheological and hydrodynamic behaviour and flow
of non-Newtonian fluids. The authors have proposed extensive theoretical and experimental
studies for all three flow regions, laminar, transition, and turbulent of Ostwald de Waele fluids
in pipes. Their studies show the relation ships between the generalised Reynolds number and
the friction factor. Both Dodge and Metzner (1959) [34] provide a developed expression for
the pressure drop, the mean flow rate allowing the prediction of non-Newtonian fluid velocity

profiles, and a correlation for the friction factors as a function of the Reynolds number. Other
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measurements were performed in the channel and pipe flow.

Pinho and Whitelaw (1990) [35] carried out an experimental study for non-Newtonian fluids,
power-law (shear-thinning) fluids in a cylindrical pipe. This investigation means measuring
the axial velocity and the three normal stresses with four different concentrations chosen of a
polymer (Sodium Carboxymethyl Cellulose) in an aqueous solution and with water in a range
of Reynolds numbers from 240 to 111000. The shear-thinning fluids show a marked delay in the
transition from the laminar to the turbulent regime. In addition, the decrease in flow index also

results in an obvious reduction in the friction factor at higher Reynolds numbers.

Malin (1997) [36] emphasises this numerical investigation of Bingham, Ostwald de Waele,
and Herschel-Bulkley fluids to improve the predictions for the non-Newtonian behaviour fluids.
Malin (1997) [36] performed a fully developed laminar and turbulent flow of Ostwald de Waele
fluid in smooth circular tubes. Malin (1997) [36] used a modified & — () model (a low Reynolds
number & — () model extended to power-law fluids) to calculate the frictional resistance and
the velocity profile for fully developed laminar and turbulent flows in smooth-walled tubes. The
presented results agreed with experimental data for the turbulent friction and the mean velocity

profiles at various generalised Reynolds numbers and different values of the power-law index.

Direct numerical simulation of turbulent pipe flow of non-Newtonian fluids was carried out
by Rudman et al. (2004) [37] using the Fourier spectral element-Fourier method at a moderate
Metzner-Reed Reynolds number (Reyr ~ 3000 and 4000). Results for a power-law (shear-
thinning) rheology agree well with experimentally determined logarithmic layer correlations
and with other previously published experimental work. The aim of this investigation is the
prediction of the effects of behaviour index on rheological parameters in addition to the in-
fluence of the Reynolds number of non-Newtonian fluids. Their investigation reports the results
obtained numerically from shear-thinning fluids with behaviour index () of 0.5, 0.69, and 0.75.
In addition, to the Herschel-Bulkley model through a pipe has a range of domain lengths from
A D to 87D with different generalised Reynolds numbers. A similar DN S study at a higher
Meztner-Reed Reynolds number (Rejyr = 7500) was also carried out by Rudman and Black-
burn (2012). The emerged results show that in the log-region, the velocity profile agree well with
the experimental data done by Rudman et al. (2004) [37] mentioned that their friction factors
predicted by the simulations are (10 — 15%) higher than the Dodge and Metzner correlations
obtained from experiment and presented in [34].This is most likely related to the imperfect fit

of the experimental fluids with power-law rheology. However, the simulation results show the
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reduction in friction factor is due to the higher core viscosities that reduce the strength of the
near-wall eddies, and hence momentum transfer from the core to the wall. Moreover, the results
obtained also suggest that as the power-law index () is decreased, and the deviation from

Newtonian rheology increases, the value of (?¢,) at which transition occurs will also increase.
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Figure I1.1 — Mean axial velocity profiles for the turbulent flow of three different power-law fluids
at Re, ~ 5500 (n = 0.5, 0.69, and 0.75) [37].

Rudman and Blackburn (2006) [38] reported a direct numerical simulation (DNS) of the
turbulent flow of non-Newtonian fluids using the spectral element Fourier method (SFEM ). The
method is applied to the case of turbulent pipe flow, where simulation results of a shear-thinning
fluid are compared to those of a Herschel-Bulkley fluid at the same generalised Reynolds num-
ber of 7500 with a domain length of 57/). They have also studied the flow of blood using a
Carreau—Yasuda rheology model and the results were compared to those of the one-equation
Spalart-Allmaras RAN S (Reynolds Averaged Navier-Stokes) model through a rectangular chan-

nel with a length of 57D and a height of 27D at the generalised Reynolds number of 3214.

To develop better computer modelling methods for wall turbulence in non-Newtonian viscous
fluids, Ohta and Miyashita (2014) [39] performed the LES with the Smagorinsky model as a
sub-grid scale (5G'S) model extended. They carried out direct numerical simulations (DN S)
and large eddy simulations (LFS) of fully developed turbulent flows of various non-Newtonian
fluids with viscosities described by the power-law model and the Casson model. From the results
obtained, they found that performing the LFS with the Smagorinsky model as a sub-grid scale
(SG'S) model was extended according to the results of the DN S| they evaluated the reliability
of the extended SGS model.
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Gavrilov and Rudyak (2016) [40] focused their studies on the development of a novel Reynolds
Averaged turbulence model for flows of Ostwald de Waele fluids. The fully developed turbulent
pipe flows of power-law fluids were studied by Gavrilov and Rudyak (2016) [40] using direct
numerical simulation at generalised Reynolds numbers of 10000 and 20000. Five different power-
law indexes (n) from 0.4 to 1 were considered, and this new model used the elliptic relaxation
approach to capture the near-wall turbulence anisotropy. Thus, the distributions of components
of the Reynolds stress tensor, averaged viscosity, viscosity fluctuations, and measures of turbu-
lent anisotropy are presented. Gavrilov and Rudyak (2017) [41] went back and redid the same
study. Still, they focused on the energy balance by offering the distributions of the tensor com-
ponents of turbulent stress, shear stress, and turbulent kinetic energy balances. The adequate
results from this investigation suggest that the fluid index decreases, the turbulent transfer of
momentum and velocity fluctuations between the wall and the flow core decrease, while the
turbulent energy flowing to the wall increases. Furthermore, the velocity of the power-law fluid
shows an increase in the radial direction, resulting in the enhancement of apparent viscosity.

The turbulence anisotropy becomes more significant with the decreasing flow index (7).

As was already noted, reducing fluid index (7) leads to a significant decrease in the radial
and tangential fluctuations of the velocity and a significant enhancement in the level of axial
fluctuations. The growth of axial fluctuations leads to an increase in integral fluctuations and,

consequently, in the kinetic energy of turbulent fluctuations.
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Figure I1.2 — Results of Gavrilov and Rudyak (2016) [40]; n = 1(1), 0.8(2), 0.7(3), 0.6(4), 0.5(5)[40]

One of the studies on the effect of yield stress using direct numerical simulation (DN S)
performed by Singh et al. (2017) [42] on turbulent pipe flow for a generalised Newtonian fluid.
The friction Reynolds number was fixed at 323 in a range of flow index (n) from 0.8 to 1. Here,
simulations were carried out for two types of fluids, Bingham and Herschel-Bulkley, with yield
stress varying between (07) to (20%) of the mean wall shear stress and increasing in the mean
axial velocity, especially in the log region resulting in a decrease of the flow index and even a
reduction in the shear stress tensor. Moreover, the apparent viscosity of shear-thickening fluids
is smaller than shear-thinning fluids. The viscosity increases when approaching the core region

of the pipe. Thus, Ostwald de Waele fluids become more rigid.
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New research and studies were carried out by Zheng et al. (2019) [43] to develop compu-
tational methods and D/NS code better. According to Zheng et al. (2019) [43], the previous
studies of shear-thinning fluids mainly use purpose built codes and simple geometries. Howe-
ver, the geometries are more complex in the practical domain, and more flexible computational
methods are required. Thus, a fully developed turbulent pipe flow of shear-thinning fluids was
undertaken using direct numerical simulation to validate and verify the efficiency of the Open
FOAM library is assessed against a validated high-order spectral element-Fourier D/N.S code —
Semtex. The emerging results of this investigation demonstrate that the predicted velocity and
viscosity profiles are well resolved and predicted, while there is a notable difference in turbu-
lence statistics. As it shall sees, it is important to note that the different Reynolds turbulence
intensities and stress profiles peak at (16%) and (10%), corresponding to the Reynolds numbers
5000 and 7500, respectively. Ultimately, these simulation results agree with the experiment data
and demonstrate that Open FOAM is a viable option for such flows that might be expected in

practice.

It was clear from the above investigations that the study of the turbulent pipe flow of non-
Newtonian fluid was very few using large eddy simulations (LES). Gnambode et al. (2015)
[47] implemented in the laboratory code, a large eddy simulation (LFS) with an extended
Smagorinsky model to perform a numerical study of the turbulent behaviour of power-law
fluids. This study was one of the first investigations to examine in detail the turbulent flow
of shear-thinning and shear-thickening fluids through a pipe at a variable behaviour index (1)
(0.5 <n < 1.4), Prandtl number (1 < Pr < 100) and Reynolds numbers (4000, 8000 and 12000)
and their effects on the rheological and turbulence characteristics. The results show that the
decrease in the flow index result a rise in axial and mean velocity profiles in the log region, due
to the higher viscosity in the pipe centre. Indeed, the same remark is noted for the apparent
viscosity in this region, and the importance of the increase of the flow behaviour index. On
the contrary, the apparent viscosity of the power-law fluids decreases along the centre region.
Moreover, the reduction in the friction factor with the flow behaviour index leads a noticeable

enhancement in Reynolds number for both shear-thinning and shear-thickening fluids.

More recently, Abdi and co-workers offered extensive investigations of the turbulent flow
of non-Newtonian fluids using the L /S approach ; these investigations provided an important
opportunity to advance the understanding of the rheological behaviour heat transfer mechanism
on the non-Newtonian. Abdi and co-workers employed the LF S with an extended Smagorinsky

model to investigate numerically the fully developed turbulent flow of Ostwald de Waele fluid
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Figure I1.3 — Axial velocity profiles of Gnambode et al. (2015) [47].

through a straight cylindrical pipe with a length of the domain of 20 R in the axial direction and a
numerical resolution of 65° gridpoints in the axial, radial, and circumferential directions. Their
predicted findings results were in excellent agreement with those of experimental and DN S
data available in the literature. The mathematical model was implemented in the laboratory
code, and the computational procedure was based on a finite difference scheme and second-
order accuracy in space and time. The time-advancement employs a fractional-step method.
A third-order Runge-Kutta explicit scheme and a Crank-Nicholson implicit scheme were used
to evaluate the convective and diffusive terms. Overall, these papers aimed to ascertain the
accuracy and reliability of the large eddy simulation laboratory code predicted results and
assess the LFS approach’s capability for resolving and predicting the scales motions of the
turbulence. In addition, these papers evaluated the extent to which the L /S with the extended

Smagorinsky model can characterise the scales motions, especially in the wall vicinity.

Abdi et al. (2019) [50] provided the first extensive investigation of the heat transfer of a shear-
thinning using L FS with an extended Smagorinsky model. They numerically investigated the
forced convection fully developed turbulent flow of the pseudoplastic (7 = 0.75) and Newtonian
fluids through a heated axially rotating pipe over a rotation rate range (0 < N < 3) at simulation
Reynolds and Prandtl numbers 4000 and 1, respectively. This study aimed to shed more light
on the laminarisation phenomena and examine the effects of the centrifugal force induced by
the swirl driven by the rotating pipe wall on rheological behaviour, thermally characteristics,
and turbulence characteristics, particularly in the vicinity of the wall. Abdi et al. (2019) [50]
found that the centrifugal force induced by the rotating pipe wall significantly enhanced the

mean axial velocity profile (towards the pipe centre) as the pipe rotated due to the diminution
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of the apparent fluid viscosity in the core region. Moreover, the rotating pipe wall led to a
noticeable reduction of the temperature profile along the radial coordinates, and this trend was
more pronounced as the rotation rate increased. The predicted results also revealed that when
the pipe rotated, the RS of temperature fluctuations and axial turbulent heat flux profiles
exhibited a marked reduction : they became less intense and flattened further away from the
wall vicinity. This indicates that the increased rotation rate reduced the transfer mechanism of
the temperature fluctuations between the flow layers. The results also showed that the Nusselt
number was reduced when the rotation rate varied from 0 to 0.5, while it was enhanced with

increasing (V) for NV > 1.
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Figure I1.4 — Turbulent axial velocity profile [50].

In 2022 Abdi and co-workers performed extensive investigations of pseudoplastic and dilatant
fluids through a heat stationary cylindrical pipe to provide more details about the rheological
and hydrodynamic behaviour in addition to the turbulence feature via analysing and discus-
sing the effects of the flow behaviour index and Reynolds number on the mean flow, thermal

quantities, and statistical turbulence quantities, especially in the vicinity of the wall.

Abdi et al. (2022) [51] and [52] performed a numerical analysis of the fully developed turbulent
flow of pseudoplastic and dilatant fluids in an isothermal stationary pipe using a large eddy

simulation, and a conventional dynamic model was presented in this work over a wide range of
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Figure I1.5 — Mean temperature profile [50].
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50].

flow behaviour indexes 0.75, 0.8, 1, 1.2, 1.4, and 1.6 at a simulation Reynolds number of 12000.

Abdi et al. (2022) [53] and [54] carried out a LE'S investigation pseudoplastic and dilatant
fluids for three simulations of Reynolds values (Re, = 4000,8000 and 12000). The flow beha-

viour indices used in this research primarily examined pseudoplastic and dilatant fluids were
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0.75, 1, and 1.4, respectively.

More recently, Abdi et al. (2023) [55] employed the LES approach with an extended Sma-
gorinsky model to investigate numerically the fully developed turbulent flow of pseudoplastic
fluid with a flow behaviour index of 0.75 through an isothermal axially rotating cylinder at
simulation Reynolds number of 4000 and over a rotation rate range of (0 < N < 3). This
investigation aimed to assess the influence of the centrifugal force induced by the swirl on the
mean flow quantities, turbulent statistics, and instantaneous turbulence structure to describe
the rheological behaviour and the turbulence features. Abdi et al. (2023) [55] found that the
centrifugal force induced by the swirl flow induced a marked enhancement in the shear rate
of the pseudoplastic fluid far away from the vicinity of the pipe wall, resulting in a noticeable
reduction in the apparent viscosity of the shear-thinning fluid in the logarithmic region, where

this trend was more prominent as the rotation rate increase.
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Figure I1.7 — Behaviour of mean dimensionless shear rate [55].

In other words, the pseudoplastic fluid behaved like a liquid approaching the pipe centre as
the pipe wall rotated. It should be noted that the variation in the apparent viscosity led to a
redistribution of the axial velocity profile along the pipe radius. The decreased apparent viscosity
of the pseudoplastic fluid in the logarithmic layer with an increasing rotating rate results in a

gradual enhancement in the axial velocity profile far away from the pipe wall towards the core



region as the pipe wall rotated, as pointed out by Abdi et al. (2019) [50].
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Figure I1.8 — Apparent viscosity behaviour [55].

Abdi et al. (2023) [55] found that the swirl driven by the rotating pipe wall resulted in an
apparent attenuation in the generation and the transport mechanism of turbulence intensities of
the axial velocity fluctuation from the wall vicinity towards the core region for the pseudoplastic
fluid. This reduction in the 2/ S of the axial velocity fluctuations led to a decrease in the kinetic
energy of turbulent fluctuations and, consequently, in the turbulent Reynolds shear stress of the
axial-radial velocity fluctuations as the pipe wall rotates. In turn, the turbulence intensities of
the radial and tangential velocity fluctuations exhibited a pronounced enhancement when the
pipe wall was rotating. This trend was more evident as the rotation rate increased. In other
words, the centrifugal force induced by the swirl flow resulted in a noticeable amelioration in
the transport mechanism of the energy fluctuations from the axial one to the other as the pipe
wall rotated. Furthermore, the friction factor for the pseudoplastic fluid exhibited a reduction
when the rotation rate varied from 0 to 0.5 and enhancement when N > 1 with an increasing

rotation rate.
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It is clear from the above literature survey done that there is very few research and investi-
gations employing L FS for non-Newtonian fluids despite their vital role. The convective heat
transfer in swirling flows is often encountered in chemical and mechanical mixing and separa-
tion devices, electrical and turbo-machinery, combustion chambers, pollution control devices,
swirl nozzles, rocketry, and fusion reactors. The flow through rotating pipes is of great practi-
cal interest because of the various industrial applications and is often encountered in various
furnaces and combustors, as well as in rotating machinery. Among all these studies there is no
work employing the characterisation of the turbulent flow of non-Newtonian fluids inside the
circular rotating pipe, especially on shear-thickening fluid.

The current study is based on rheological, hydrodynamic behaviour and thermally developing
turbulent forced convection of non-Newtonian fluid in an axially rotating pipe. This data deals
with direct numerical simulation and direct numerical simulation large eddy simulation using
an extended Smagorinsky model. The aim of the current research is to investigate the effects
of the turbulent and hydrodynamic properties, and the effect of stabilisation or destabilisation

force from the swirl produced by a rotating pipe wall.
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TURBULENT FLOW AND
NUMERICAL MODELLING

Why Turbulence ?

t may seem somewhat peculiar to begin the introduction of a thesis on turbulence with the
I question "Why turbulence 7”. A specialist on turbulence theory will be surprised by this
question and wonder "Why turbulence” again ? We, at least I, know everything about it, Others,
familiar with fluid dynamics in general, might be interested to know why it considers turbulence
in particular and not one of the other interesting aspects of fluid dynamics. Finally, any layman
on the area of fluid dynamics will return the appropriate question "What is turbulence?” .
These three questioners, with their totally different questions, have one thing in common. When
reading and learning about turbulence, they all will find out that turbulence is one of the most
interesting areas of fluid dynamics and that far from everything is known about it (this makes

working on turbulence even more challenging) [56].

III.1 Turbulence phenomenon

III.1.1 Understanding Turbulence

Turbulent flows can be commonly observed in numerous natural and industrial cases. Howe-
ver, a precise definition is somewhat difficult and all that can be done is a listing of some of its
characteristics [57]. The most significant characteristic of all turbulent flows is the associated
irregularity or randomness. Consequently, a deterministic approach to the study of turbulence is
impossible, and statistical methods have to be relied on [57]. From the point of view of industrial
applications, turbulent flows are immensely important in many diverse fields. Consequently, it
is important to understand the phenomenon of turbulence and correctly predict its effects. In
engineering applications turbulent flows are prevalent, but less easily seen. In the processing of
liquids or gases with pumps, compressors, pipe lines, etc., the flows are generally turbulent. Si-
milarly, the flows around vehicles, airplanes, automobiles, ships, and submarines are turbulent.

The mixing of fuel and air in engines, boilers, and furnaces, and the mixing of the reactants
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in chemical reactors take place in turbulent flows. For engineering applications, the diffusivity
of turbulence is an important factor. The diffusivity leads to rapid mixing, thereby increasing
transfer rates of momentum, heat and mass through the flow domain. For example, turbulence
can delay boundary layer separation on aerofoils at large angles of attack, increase heat transfer
rates, provide resistance to flow in ducts, increase momentum transfer between currents, and

so on [58].

Turbulence, the pseudo-random and apparently unpredictable state of a fluid, is one of the
most challenging problems in fluid dynamics. Turbulent flows show a marked increase in mixing
and friction ; predicting these phenomena is important in practical engineering applications.
Consequently, numerous scientists have invested much effort in observing, describing, and un-
derstanding turbulent flows. One of the first attempts at quantifying turbulence was made by
Reynolds, who showed that the flow regime changes from its orderly laminar state to a turbulent
one when a critical parameter (Reynolds’ number) is exceeded. Another important discovery
was that turbulent flows incorporate a hierarchy of eddies or whirls, which range from large
scales to very small in size. Energy is transferred between these scales, generally from the larger
to the smaller, until the smallest scales are finally dissipated into heat by molecular viscosity.
The Russian scientist Kolmogorov formulated this energy cascade theory into physical laws for

the various scales present in a turbulent flow [58].

An important characteristic of turbulence is its ability to transport and mix fluid much more
effectively than a comparable laminar flow. This is well demonstrated by an experiment first
reported by Osborne Reynolds (1883). Dye is steadily injected into the centreline of a long
pipe flowing with water. As Reynolds (1894) later established, this flow is characterised by
a single non-dimensional parameter known as the Reynolds number. In general, it is defined
by Re = ul/v where u and | are characteristic velocity and length scales of the flow and is
the kinematic viscosity of the fluid. For pipe flow, « and [ are taken to be the area-averaged
axial velocity and the pipe diameter, respectively. In Reynolds pipe-flow experiment, if Re is
less than about 2300, the flow is laminar the fluid velocity does not change with time, and
all streamlines are parallel to the axis of the pipe. In this (laminar) case, the dye injected on
the centreline forms a long streak that increases in diameter only slightly with downstream
distance. If, on the other hand, Re exceeds about 4000, then the flow is turbulent. Close to
the injector, the dye streak is jiggled about by the turbulent motion ; it becomes progressively
less distinct with downstream distance, and eventually mixing with the surrounding water

reduces the peak dye concentration to the extent that it is no longer visible. The effectiveness
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of turbulence for transporting and mixing fluids is of prime importance in many applications.
When different fluid streams are brought together to mix, it is generally desirable for this mixing
to take place as rapidly as possible. This is certainly the case for pollutant streams released into
the atmosphere or bodies of water, and for mixing different reactants in combustion devices
and chemical reactors. Turbulence is also effective at "mixing” the momentum of the fluid.
Consequently, on aircraft’s wings and ships hulls the wall shear stress (and hence the drag)
is much larger than it would be if the flow were laminar. Similarly, compared with laminar
flow, heat and mass transfer rates at solid—fluid and liquid—gas interfaces are much enhanced
in turbulent flows. The major motivation for the study of turbulent flows is the combination of
the three preceding observations : the vast majority of flows are turbulent ; the transport and
mixing of matter, momentum, and heat in flows is of great practical importance ; and turbulence

greatly enhances the rates of these processes [59].

I11.1.2 Turbulence Structures

As a first step in studying turbulent flows, a distinction must be made between small scale
turbulence and large scale motion. At high Reynolds numbers, there exists a separation of
length-scales wherein the geometry of the flow domain strongly influences large scale motion
while the small scale motion is almost entirely independent of the geometry. This range of
length scales is limited at the large scale end by the overall dimensions of the flow field and
at the small scale end by the diffusive action of molecular viscosity. Turbulent transport and
mixing are controlled by large scale motion or large eddies, which are of a size comparable to
the overall dimensions of the flow field. Consequently, the relevant length scale for the analysis
of the interaction of the turbulence and the mean flow is the flow dimension. The small length
scales are limited at the smallest end by the diffusive action of the molecular viscosity. These

small scales become progressively smaller with increasing Reynolds numbers [60].

The starting point is the Navier—Stokes model for a Newtonian incompressible fluid with dyna-

mic viscosity /, in the absence of body forces :

Vau=0 (I11.1)

9, ‘
p(% +u.Vu) = —VP + uViu (IIL.2)

where u denotes the velocity field, p the density and P the pressure field.
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Figure II1.1 — Instantaneous vorticity contours in isotropic turbulence at Re, = 732 (DNS in a
periodic cube on a 41096° gridpoints) [61].

Note also that it must add initial and boundary conditions to get a well-positioned problem.
The non-linear term appearing in the left-hand side (LLHS) of Equation I11.1 leads to most of the
complex and rich phenomena of fluid mechanics. In particular, this quadratic term is the reason
why fluids become turbulent. When this term gets much larger than the diffusive term, the flow
becomes unstable, and large flow structures break up in smaller and smaller eddies until these
are diffused into heat by viscous effects. This important process is called the Energy Cascade.
Note that two-dimensional turbulence is not considered. It is now worth looking at the energy

relation that occurs in turbulent flows of an incompressible fluid. By taking the product of

Equation I11.3 with « (by noting u? = w.u) and after some algebraic manipulations, it gets :
WP oy —via  + VG —wsis auy
— = — V.|[|—/u — V. l—)u Al )UTy — UV : .

ot 2 p p ——
— N e’ ——— (IV)>0

(I) advection (IT) work by pressure forcecs  (III) work by viscous stresses

The LHS represents the local change of kinetic energy per unit of mass and time. The term
(1) + (II) may be interpreted either as the work due to the total pressure I + pu” or as the
change in transport of the total energy F = % I %uQ (per unit mass) through advection by
the velocity. Term (/1) represents the work done per unit mass and time by the viscous shear
stresses of the turbulent motion. Furthermore, this equation tells us that the last term (IV) on

the RHS represents the rate of dissipation of mechanical energy per unit mass to heat :

(O

=28:8 (IIL.4)
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By noting w = V x u, the vorticity field, € can also be expressed as :

£ = vw? (IT1.5)

() = w?/2 is the enstrophy.

Note that Equation I11.4 and II1.5 indicate firstly that turbulence produces gradients and

vorticity and secondly that the rate at which energy is dissipated is particularly pronounced in

regions where the instantaneous velocity gradients are large in the smallest eddies [61].

IT1.1.3 Characteristics of Turbulence

It regards as turbulence is therefore better to express as a list of properties and attributes

that can help us to identify turbulent flows :

1. Randomness : Turbulent flow is unpredictable in the sense that small random pertur-

bations during a particular period of time are amplified to that level, and after a certain
period of time deterministic prediction of further development becomes impossible. This
fact could seem to conflict with the fact that turbulent flow is describe in thorough detail
by Navier-Stokes equations, which of course are of a deterministic character. The effect
of their non-linear nature can under certain circumstances cause a situation in which
perturbations of a certain type are very strongly amplified in time. Such perturbations
could be related to the lack of precision of the assignment of initial conditions or related
to Brownian motion of fluid particles, which is not modelled by the equations, because
the fluid in this case is considered a continuum. The consequence of this situation is the
unpredictable behaviour of a specific turbulent flow. Of course, in a statistical sense, the
development of turbulence can be considered predictable, since it involves deterministic

chaos.

. Diffusivity : Mixing of transported scalar quantities occurs relatively more quickly than

during molecular diffusion. This characteristic obviously has important practical conse-
quences, and an increase in mixing of fluids characterizes turbulence. The intensity of this
mixing can be several orders of magnitude greater than mixing occurring as a result of
molecular diffusion. It can estimate that the coefficient of molecular diffusion of fluids is in
technical applications at least two orders smaller than the typical value of the coefficient of
turbulent diffusion, and in the case of planetary flows (atmospheric phenomena or ocean

streams), this difference can be significantly greater typically up to 7 orders greater.
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6.

. Vorticity : Turbulent flows are characterised by high local values of vorticity related to

the presence of vortex structures. The field of vorticity is generally non-homogeneous and
changes dynamically in time. Vortex structures tend to be referred to as coherent vortices

or more generally coherent structures.

Scale spectrum : Vortex structures, which occur spontaneously in a turbulent flow field,
are characterised by a wide scale of length measuring units. Their size is limited from the
top by the dimensions of the shear areas in which they occurred and from the bottom
by the size of vortices subject to dissipation in direct connection with the viscosity of
the fluid. Thus, the size of the structure is characterised by a dense spectrum typical for
fractals. Related to this is the fact that the turbulent flow field can be characterised as a

dynamical system with a “very high” number of degrees of freedom.

3D structure : Vortex structures occur in the space of a turbulent flow field in random
locations and with random orientation. The 3D structure of the vector field of velocity
fluctuations originates from this situation. During certain boundary conditions, structures
greater than the certain limit size can be spatially arranged ; for example, they can have a
planar character. This relates, for example, to flows in thin layers, where the dimensions
of the area enable the occurrence of vortices of larger scales than the thickness of the layer

only with vorticity oriented across the layer and not in parallel with it.

Dissipation : Turbulence is a dissipative process, which means that the kinetic energy
of the motion of a fluid is dissipated at the level of small vortices and changes to heat.
Therefore, in order for turbulent flows to be conserved over the long term, it is necessary
to supply energy to the system from the outside. This is done in the area of large scales;
energy is collected from the mainstream. The energy is then transferred towards smaller

scales with the help of cascade transfer.

non-linearity : Turbulent flows are basically non-linear, and their occurrence is condi-
tioned on the application of non-linearities when growth of small perturbations occurs.
The development as well as the interaction of individual structures in the turbulent flow

field can be described only with a non-linear mathematical model [62].
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I1I1.1.4 Isotropic and Homogeneous Turbulence

Isotropic homogeneous turbulence is perhaps the simplest turbulent flow, but is rarely encoun-
tered in real-life applications. Isotropic turbulence means that the flow is statistically invariant
to the rotation of the coordinate system, while homogeneity means statistical invariance to the
translation of the coordinate system. For modelling applications, isotropy is important as the
high Reynolds number hypothesis states that fine scale motions are unaware of the nature of
the mean flow and large scale turbulence, thus the fine scale structure in any kind of turbulent
flow is similar to what is found in isotropic turbulence. In parallel shear flows, such as channel
flow, the main source of anisotropy is shear stress. Near the walls, the Reynolds stresses, i.e.

the velocity fluctuations, exhibit large anisotropy due to the presence of the wall.

A plane channel flow is homogeneous in streamwise and spanwise directions, in terms of sta-
tistics, the flow field has a one-dimensional solution. However, when obstacles such as roughness
elements are introduced, the flow becomes inhomogeneous in the streamwise direction. Thus,
statistical means depend on streamwise location, and the solution becomes two-dimensional

[63].

I11.1.5 Kelvin-Helmholtz instability

This is the simplest illustrated case of shear flow, in relation to which loss of stability can
occur. Nonetheless, this type of instability very often occurs in practice, such as during the
surrounding of wings, during tearing away of the boundary layer or in a layered atmosphere.
It often occurs at the boundary of two fluids with different physical properties. The situation
is illustrated schematically in Figure II1.2. In the stream near the boundary of the occurring
perturbation of pressure, overpressure () and sub-pressure (—), a deformation of the boundary

occurs in the form of periodic vortex structures [62].
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Figure II1.2 — Scheme of Kelvin-Helmholtz instability origin [62].

Mathematically, the stability of this free shear layer can be solved in a manner similar to
the case of the boundary layer. It can consider the initial velocity profile wg(zy) = tanh(zs).
Then the Orr-Sommerfeld equation can be applied, which leads to a stability diagram, which is

schematically shown in Figure [11.3. According to this diagram, the free shear layer is unstable
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Re,

Figure I11.3 — Stability diagram for a free shear layer [62].

for the random Reynolds number value Re; = w.. - d/v (d is the transverse dimension of the
shear area). For growing Re; the interval of unstable wave numbers k is increased until for

sufficiently high Reynolds numbers it reaches its maximum asymptotic values.

The rate of the growth of perturbations w; in this case drops with the dropping Re,. Unlike in
the case of a boundary layer, in this case the upper branch of the neutral curve continues to rise.
The friction in the free shear layer acts against the loss of stability, and due to perturbations
with large wave numbers (small interruptions), the flow is stable. The actual experimentally
obtained view of the free shear layer under the conditions of Kelvin-Helmholtz instability is

shown in Figure II1.4 [62].

Figure I11.4 — Kelvin-Helmholtz instability [62].

I11.1.6 Energy Spectrum and Kolmogorov Cascade

The first concept in Richardson’s view of the energy cascade is that the turbulence can
be considered to be composed of eddies of different sizes. Eddies of size / have a characteristic
velocity «(/) and time scale 7(/) = //u(/). An ”eddy” eludes precise definition, but it is conceived
to be a turbulent motion, localised within a region of size, that is at least moderately coherent
over this region. The region occupied by a large eddy can also contain smaller eddies. The
eddies in the largest size range are characterised by the length-scale /; which is comparable

to the flow scale L, and their characteristic velocity uy = wu(/y) is on the order of the r.m.s.
1/2

u = (%k’) turbulence intensity which is comparable to [/. The Reynolds number of these
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eddies Reg = wuply/v is therefore large (i.e., comparable to /7.), so the direct effects of viscosity

are negligibly small [59].

Richardson’s notion is that the large eddies are unstable and break up, transferring their
energy to somewhat smaller eddies. These smaller eddies undergo a similar break-up process, and
transfer their energy to yet smaller eddies. This energy cascade in which energy is transferred to
successively smaller and smaller eddies continues until the Reynolds number 7. (/) = w (/) (/v is
sufficiently small that the eddy motion is stable, and molecular viscosity is effective in dissipating

the kinetic energy. Richardson (1922) succinctly summarised the matter thus :

. Big whorls have little whorls,
. Which feed on their velocity,
. And little whorls have lesser whorls,

. And so on to viscosity (in the molecular sense) [59].

Let us look more closely now at the flow of energy in developed isotropic flow. From an energy
point of view, the flow of fluid represents an open system. Energy is carried into the system
from the mainstream, and through the mechanism of loss of stability, large vortex structures
are created. Their specific form can be attributed to the boundary conditions of the particular
case. These vortices characterised by the scale and the corresponding wave number stand at the

top of the energy cascade and represent the energy area of the wave numbers [62].

This is followed by the transfer of energy from large scales towards lower speeds ¢ inside

3

the inertial sub-range. This is an energy cascade during which quick growth of the isotropy
of the topology of vortex structures occurs. The mechanism for the transfer of energy is the
stretching of vortices, as has already been stated. The process ends in the area of dissipation on
the Kolmogorov scale. A diagram of the entire process is shown in Figure I11.5. According to
the original Kolmogorov theory, vortices at all levels of the cascade evenly fill the entire space.

However, situations can occur when boundary conditions disable the motion of fluid in one
direction, and then the motion must be two-dimensional in particular scales. This involves, for
example, motion in thin layers of fluid, and the case of the earth’s atmosphere also resembles this
situation. Flow under these conditions may be spatial only for certain scales, which are smaller
than the thickness of the layer. The structures of larger scales can occur only in directions

without limiting effects, and their vorticity is oriented in the direction of the smallest dimension
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the thickness of the layer. The stretching of these vortices and generation of vorticity cannot

occur, and the value of vorticity in these scales is conserved [62].
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Figure I11.5 — Energy Cascade.
The Kolmogorov theory

Several fundamental questions remain unanswered. What is the size of the smallest eddies

that are responsible for dissipating the energy ?

As / decreases, do the characteristic velocity and time-scales u (/) and 7 (/) increase, decrease,
or remain the same? (The assumed decrease of the Reynolds number « (£) ¢ /v with / is not

sufficient to determine these trends.)

These questions and more are answered by Kolmogorov’s theory, which is stated in the form
of three hypotheses. A consequence of the theory that Kolmogorov used to motivate the hy-
potheses is that both the velocity and time scales « (/) and 7 (/) decrease as / decreases. The
first hypothesis concerns the isotropy of small scale motions. In general, the large eddies are
anisotropic and are affected by the boundary conditions of the flow. Kolmogorov argued that
the directional biases of the large scales are lost in the chaotic scale-reduction process, by which

energy is transferred to successively smaller and smaller eddies [59].

In 1941 Kolmogorov published a fundamental article that gives a mathematical apparatus to
Richardson’s idea of an energy cascade. Kolmogorov theory is based on three hypotheses : a

hypothesis of local isotropy and the first and second similarity hypotheses. [62].
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The hypothesis of local isotropy relates to small scale vortices. The largest vortices have
approximately the dimension of shear area L , and the topology of these vortices is anisotropic,
which can be attributed to specific boundary conditions (often very regular). The mean size
of energy vortices is somewhat smaller, and it will refer to it as /y. The more or less chaotic
process of the transfer of energy towards small scales is leading to a gradual increase in the
isotropy of smaller scales. This is the basis for the Kolmogorov hypothesis of local isotropy :
During sufficiently high Reynolds numbers, the motions of small scales / << ¢ are statistically

isotropic [62].

The scale 7z is the boundary between small isotropic vortices and large non-isotropic vortices.
For a better idea, let us consider /z; ~ 1/ 6 /. In the area of occurrence of small isotropic
vortices /) < {p; two mechanisms of energy transfer dominate : transfers from large scales to
small scales and viscous dissipation. The parameters that manage these processes are the rate
of energy transfer from large scales to small $5; and kinematic viscosity v. In a settled state,
the rate of dissipation ¢ is in balance with the rate of production : ¢ = ;. It is apparent from
this that the universal statistical state of small scales is determined by viscosity » and the rate
of the transfer of energy from the area of large scales Sp;.

This outcome formulates Kolmogorov first similarity hypothesis, which says that in a
turbulent flow with a sufficiently high Reynolds number, the statistics of motions of small scales
(¢ < pr) have a universal formulation and depend only on scale / , viscosity » and dissipation

rate ¢ [62].

It is apparent from this that the energy spectrum F (x) has a universal formulation and
depends only on » and . If it uses these quantities for expressing the energy spectrum, then from

the direct dimension analysis it is apparent that this dependency must have the formulation :

E(k) = (ev®) " o (kn) (IIL6)

Where ¢(kn) is the Kolmogorov spectrum function. However, for the purposes of the dimen-

sion analysis, it can also use ¢ and ~, and then it gets :

E(k) = 2P k™53 (kn) (I1L.7)

Where (k7)) is the compensated Kolmogorov spectrum function [62].
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The area of scales / < /p; is usually referred to as the universal equilibrium range. In this
area, the scales / < w (/) are small in comparison with /y/u,, and small vortices can quickly
adapt in order to conserve dynamic equilibrium with the rate of energy transfer &7, which is
determined by large vortices « (/) is the typical value of fluctuations in velocity for perturbation

of scales / and u( and then for 7 [62].

From the dimensional analysis, it is possible to specify clearly (except the non-dimensional
constant) the values of the resulting Kolmogorov scales. The relevant quantities are only the
rate of dissipation = [ /s?| and kinematic viscosity  [1m”/s], length, velocity and time based

Kolmogorov scale 7)[m], u,[m/s] and 7,[s] and then it can define the following relationships [62] :

n=3/e)! (IIL8)
uy = (ev)/4 (I1L.9)
= (v/e)'/? (I1L.10)

Two identities are apparent from these definitions. First the Reynolds number based on
Kolmogorov parameters is a unit figure : 7w, /v = 1. This fact is in accordance with the claim
that the cascade transfer continues in the direction towards continuously smaller scales until the
Reynolds number is so small that it enables dissipative processes. Also, from the relationships

Equation II1.8 and Equation II1.10 it can express the rate of dissipation [62].

_Y v (ITL.11)

1/"1 v 7'2,,

m

From which specific characteristics for the velocity gradient of dissipating vortices are appa-

rent :

(un/m) =1/, (IIL.12)

It can also introduce non-dimensional coordinates and non-dimensional speeds with the use of
corresponding Kolmogorov scales, in which the following applies for non-dimensional coordinate

y and velocity w :

y =x/n, w=u/uy, (I11.13)

In the area of small scales, according to the hypothesis above all turbulent flow fields are

statistically similar, and following the transformation with the help of Kolmogorov scales, they
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are then identical in a statistical sense.

If it considers that = ~ u,* /(o then it can express the relationship of the sizes of the smallest

and largest scales in the particular turbulent flow

A Re /4, O Re /4, T Re1/2 (II1.14)
A o 70

Kolmogorov second similarity hypothesis states that in every turbulent flow during a
very high Reynolds number approaching infinity, the motions of turbulent scales ¢ are such that
¢ > [ > n applies, there is a universal formulation, and it is dependent only on the rate of

dissipation ¢ and not on viscosity.

If it introduces the scale /), (its size is approximately 607) it is such that Kolmogorov second
hypothesis applies in the extent {; > ¢ > /. Such defined scale divides the area of universal
equilibrium into two sub-ranges : the inertial sub-range, where ¢,; > ¢ > /;; and the dissipation
range, where /; > (. The dissipation range is the only range where there is a significant effect

of viscosity, and only Kolmogorov first detailed hypothesis applies for it [62].
The last area remains, which is the area of the largest vortices and which is usually referred

to as the energy containing range. The division into individual areas is labelled on Figure I11.6,

where the axis of scales is logarithmic [62].

Universal equilibrium range

‘ Inertial subrange>

| Oy, .| |
EI
l, £

Dissipation range

Energetic range>

Figure II1.6 — Scales of turbulence ranges after Kolmogorov.

In the inertial sub-range, the effect of the viscosity is insignificant, and the coefficient kn < 1
is insignificantly small. Therefore, in the inertial area, the compensated, Kolmogorov spectrum
is defined Equation I11.7 approximately by constant /(k7)) = (', and the relationship can express

the energy spectrum :
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E(k) = C*3,=5/3 (LIL.15)

Where ~ is the wave number and ' is the universal constant (~ 1.5) [62].

Figure IT1.7 — Planar images of concentration in a turbulent jet : (a) e = 5000 and (b) e = 20000.
From Dahm and Dimotakis (1990) [59].
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Figure II1.8 — A schematic diagram of the energy cascade at very high Reynolds number.
III.2 Turbulence Modelling

The study of turbulent flows can be divided into three main categories : analytical theory,
physical experiments and numerical simulations. The analytical approach to turbulence has
faltered against the complexity of the problem that is stochastic and strongly non-linear in
nature and is consequently of limited use as a general tool. Experimental fluid dynamic research
has always been of great significance. It still remains the benchmark for the validation of new
models and for the foreseeable future will continue to be of fundamental importance in the
field. Also, the advent of new measuring techniques that allow single and multi-point sampling

of flow characteristics, such as Laser-Doppler velocimeters and multiple wire anemometers, have
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Figure I11.9 — Schematic Representation of Turbulence Energy Spectrum.

significantly increased the utility and range of experimental measurements [58].

From the theory of dynamical systems, it is known that many connected systems can be
modelled with a system of partial and differential equations, which must then be resolved
numerically. Such dynamical systems theoretically have a never ending number of degrees of
freedom, and for their resolution initial conditions are required that are characterised by a never
ending number of conditions located in the particular space. The dynamic behaviour of spatially
connected systems can be variable both in space and in time, as a result of which both regular
and chaotic structures can occur [62]. Let us call turbulence numerical modelling any numerical
approach allowing us to predict the evolution of instantaneous or mean quantities associated

with turbulence and that can be applied to shear flows [64].

I11.2.1 Scale Resolving Simulation (SRS)

IT1.2.1.1 Direct numerical simulations (DNS)

In 1922, the meteorologist Richardson proposed numerical schemes to solve the equations of
fluid mechanics applied to the atmosphere in a deterministic fashion. This marked the beginning
of direct numerical simulations of turbulence, which are deterministic time advancing numerical

solutions of fluid mechanics equations with a proper set of initial and boundary conditions.

This is possible provided the two following conditions are fulfilled :
o The numerical schemes are accurate enough.

o All the scales of motion, from the largest to the smallest, are captured.
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There is some evidence that small scale turbulence is not far from isotropy even if large
scales are not, and thus A\ may be evaluated even for anisotropic flows : Jimenez stresses that
R, =~ 3000 in the boundary layer of a commercial aircraft, 10" in the atmospheric boundary
layer, and higher values are present in astrophysics. It finds that this entails, respectively, using
more than 10'° and 10'® points in computer simulations for the two cases. At present, to avoid
excessive computing times on even the biggest machines, one has to restrict calculations to
about (2 x 107) gridpoints, which are many orders of magnitude shy of these estimates. Even
with the unprecedented improvement of scientific computers, it may take several decades (if
it ever becomes possible) before D /NS permits us to capture situations at Reynolds numbers
comparable to those encountered in natural conditions. This demonstrates the immense interest

in LES techniques [64].

Once discretised, the Navier-Stokes equations are integrated in time. Doing so without further
approximations is called Direct Numerical Simulation (DN S). DN S is the most accurate and
reliable fluid dynamics simulation tool available. However, to obtain an accurate solution using
DN S requires that the mesh or cell size captures all relevant scales of motion in the problem.
If the flow to be simulated is turbulent, then the mesh or cell size must be within one order
of magnitude from the Kolmogorov length scale, the smallest length scale at which turbulence
exists. Dominated by viscosity, these small scales are largely responsible for the dissipation
of turbulent motion into heat. Capturing Kolmogorov scales implies solving the Navier-Stokes
equations on many cells or a very fine mesh. The computational work required may take a

prohibitively large amount of time even on the best available super computer [65].
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Figure II11.10 — Dissipation of kinetic energy.
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IT1.2.1.2 Large eddy simulation (LES)

Large eddy simulation (LFS) of turbulent flows are extremely powerful techniques consis-
ting in the elimination of scales smaller than some scale Ax by a proper low-pass filtering to
enable suitable evolution equations for the large scales to be written. The latter maintains an
intense spatio-temporal variability. Large eddy simulation (L. /S) poses a very difficult theore-
tical problem of sub-grid scale modelling, that is, how to account for small scale dynamics in
large scale motion equations. £ S is an invaluable tool for deciphering the vortical structure of
turbulence since it allows us to capture the formation and ulterior evolution of coherent vortices
and structures deterministically. It also permits the prediction of numerous statistics associated
with turbulence and induced mixing. L.F'S applies to extremely general turbulent flows (isotro-
pic, free-shear, wall-bounded, separated, rotating, stratified, compressible, chemically reacting,
multiphase, magnetohydrodynamic, ect). LES has contributed to a blooming industrial deve-
lopment in the aerodynamics of cars, trains, and planes, propulsion,turbo-machinery, thermal
hydraulics, acoustics, and combustion . An important application lies in the possibility of si-
mulating systems that allow turbulence control, which will be a major source of energy savings
in the future. L/S also has many applications in meteorology at various scales (small scales
in the turbulent boundary layer, mesoscales, and synoptic planetary scales). Use of LS will
soon enable us to predict the transport and mixing of pollution. L./S is used in the ocean for
understanding mixing due to vertical convection and stratification and also for understanding
horizontal mesoscale eddies. LES should be very useful for understanding the generation of
Earth’s magnetic field in the turbulent outer mantle and as a tool for studying planetary and
stellar dynamics. It is clear that the study of large eddy simulations of turbulence has become

a discipline by itself [64].

The history of LES began in the 1960s with the introduction of the famous Smagorins-
ky’s eddy viscosity proposed in 1963. Smagorinsky, a meteorologist like Richardson, did work
in the famous mathematical modelling group founded by Von Neuman. In fact, Smagorinsky
wanted to represent the effects on a quasi-two-dimensional, large scale atmospheric or oceanic
flow of three-dimensional sub-grid scale turbulence following a Kolmogorov direct cascade. It is
interesting to remark that Smagorinsky’s model was a total failure as far as atmospheric and
oceanic dynamics are concerned because it overly dissipates the large scales. Therefore, large
scale atmospheric or oceanic numerical modelers turned toward hyper-viscous sub-grid models.
Nonetheless, Smagorinsky’s model was extensively used by people interested in industrial ap-

plications (and also small or mesoscale meteorology), which shows that the research outcome
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may be as unpredictable as turbulence. One should mention the important contribution of Lilly,
another meteorologist and Smagorinsky’s collaborator, who calculated the value of the Smago-
rinsky constant in terms of the Kolmogorov constant in three-dimensional isotropic developed
turbulence. In fact, in 1962 Lilly published a LES of buoyant convection in the atmosphere
using Smagorinsky’s model. The first application of the latter to engineering flows was the
pioneering study of a plane channel done by Deardorff, another meteorologist, who with his
collaborators started at the same time an impressive series of works on large eddy simulations
of the planetary boundary layer [64].

In LES, the large energy carrying length scales of turbulence are resolved completely and
the small structures are modelled. The separation of these large and small scales is performed
by applying a low-pass filter to the Navier-Stokes equations and the effect of the small scale
turbulence on the resolved scales is modelled using a sub-grid scale (SG'S) model. The SG'S
model commonly employs information from the smallest resolved scales as the basis for mo-
delling the stresses of the unresolved scales. Consequently, it is imperative that the resolved
length scales are captured accurately by the numerical scheme. This, in turn, requires that the
numerical error of the scheme is sufficiently small and hence, high-order numerical schemes are
necessary. The SG'S model is an integral component of the LF£S calculations and is therefore
an influential factor in the accuracy of the predictions. In contrast to expectations, in some
cases, the classical (standard) Smagorinsky model performs better than the dynamic Smago-
rinsky model. Therefore, it is evident that there is a need of experimental and numerical work
to assess the performance of LFES and the underlying SGS models in complex engineering
flows. The advances in construction of SG'S models for LFES of a range of engineering flows
encompass improvements not only in numerical solution but also in the process representations

for accurate system definition [60].

I11.2.1.2.a Sub-grid Scale Modelling

Smagorinsky Model

LES can be divided into three distinguished categories or approaches in the context of sub-
grid scale (SG'S) modelling : the eddy-viscosity model, similarity model and mixed model,
where the last one is a combination of the former two models. The main goal in all these
three approaches is to provide and implement an effective model to account for the majority
of unresolved scales in the turbulent flow. Eddy-viscosity models are more popular than other
available models in the L./~S. This model is based on the Boussinesq assumption in bridging the

turbulent and molecular transports through a so-called turbulent or eddy-viscosity, an artificial
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viscosity. Considering this fact, the SGS stress tensor can be defined as :
G L )
Tij = —20Sij + 3 Tkk0ij (I11.16)

where v represents the sub-grid scale eddy viscosity :

= 1 ( '7,' O ;
Sii =5 <d“ T “-/) (II1.17)

() .’f]' () T i

The first SG'S model or LES was proposed by Smagorinsky [66] based on the idea that the
energy produced in resolved scales is equal to the energy dissipation on unresolved/small scales.
The mechanism is such that the large eddies carrying the major fraction of turbulent energy
transfer this energy to smaller scales. There is no doubt that physically, the viscous action is
associated with the energy dissipation process. Since in an /S formulation the larger scales
are resolved, it appears that the turbulent SG'S stresses are smaller than their counterpart in
RANS. The point is how much burden could be put on the SG'S modelling that determines
the key success to the LFS. This aspect should be taken into account regardless of the energy

transfer.

In the Smagorinsky model the turbulent eddy-viscosity is related to the grid filter width and

strain rate :
v = ((7,5.&)2 5] (IIL.18)

where the velocity scale is proportional to the modulus of the filtered strain rate tensor :

(111.19)

Cy , is the Smagorinsky constant. The filter width A can be computed as the size of mesh

spacing in the x, y and z directions :

A = (AAA,)

(I11.20)

The Smagorinsky constant can be varied from one flow case to another flow case and also
depends on the Reynolds number of the flow. Several studies reported that C's , can take different

values (0.05 < Cs < 0.5).
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In order to obtain the correct behaviour close to the walls, a Van Driest type damping function

is introduced near the solid boundaries that account for the reduction of small fluctuations at

those locations. This damping function is defined as : (1 — exp (,2? ))

where =" is the dimensionless distance from the wall. Thus, the full eddy viscosity term in

the Smagorinsky model takes the form :

- -zt
Vg = [CSA <l —exp ( 25 ))

The Smagorinsky model is a popular SG'S model due to its simplicity, robustness and its

2

S

(I11.21)

ability to reproduce the global energy flux from the re- solved to small scales. However, it suffers
from a few shortcomings, firstly because of the Smagorinsky constant in the viscosity term,
requiring a priori information on the flow topology (which varies for different flow problems).
This issue can create excessive dissipation in certain types of flow. Another issue is that it needs
an ad-hoc wall damping near the solid walls to correct the near-wall behaviour of the model

[67].

Smagorinsky-Lilly Model

The Smagorinsky-Lilly model is the simplest and probably the most widely used model.
Originally, this model was derived for meteorological purposes by Smagorinsky (1963) and soon

applied in academic and industrial flows. In this model, the SG'S viscosity is defined as [66] :

v = (CsA)? S

(111.22)

Where C is the Smagorinsky constant, /A is the filter width and ‘5’ ) is the magnitude of

resolved scale strain rate tensor defined as :

(I11.23)

The Smagorinsky constant was derived by Lilly (1966) to be 0.18 in homogenous isotropic
turbulence (HI'T) for the inertial subrange. However, this value has been found to cause excessive
dissipation. For most of the flows, a value of 0.1 has been found to give the best results when
the grid filter is assumed to be equal to 1V'/%. There are also examples where the filter width is
assumed to be 21/'/%, for which case the coefficient is taken as 0.065 Kim (1983). Regardless of

the filter width, this model has two major drawbacks. Laminarisation and transitional effects
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are not sufficiently captured since the SG'S viscosity is always positive, thus the Smagorinsky
model is always dissipative. Secondly, the model coefficient needs to be reduced near the walls
in order to capture the true behaviour of the flow near the wall boundaries. This is commonly
accomplished by multiplying the model coefficient with a damping function proposed by van

Driest (1956) :
a3\ 1/2
Cd = (1 - el /A (I11.24)
Here A'is 25 and vy is the non-dimensional wall coordinate [66].

Dynamic Smagorinsky-Lilly Model

Germano et al. (1991) [44] proposed a modified version of the Smagorinsky model (S1/) in
which the constant C', is computed dynamically varying in time and space. Like the S/, the
DSM also benefits from the Boussinesq approximation for the stress tensor term. In order to
dynamically compute the eddy viscosity term, the DSM applies (along with the grid filter)
an additional explicit secondary filter called the “test filter”. The grid scale of this test filter
is denoted by A = aA; the test-filter width A must be greater than the grid-filter width A

J.e., & > 1. Applying the test filter result in the Germano identity requiring :

Lij = T — 75 = ity — Uy — (u,;uj- — '11,,-,(1,J-> = U;Uj — Ul (I11.25)

where 7;; is the SG'S stress on the test-filter level. The stress components ;; can be in-
terpreted as the stress associated with the smallest resolved scales between the test-filter scale

(A) and the grid-filter scale (A). The stress tensor L,; is called the Leonard stress and can be

directly computed from the resolved scales.

If C'g, is assumed not to change significantly from the grid-filter to the S test-filter scales,

the error generated by using the Smagorinsky model in the Germano identity is :

i _ o 1= =
E,,'j = L,’j - %LMA — CSA\[,J y ﬂ'[,jj - QA_) < S S,'J' - (YQI’/‘S

SZ,-) (I11.26)

with 1 = C,/C.. Generally o = 2 and the scale variance 1) — 1 is assumed. Following Lilly’s
idea, the model coefficient (g, is obtained by seeking a value for C's, which minimises the square
of the error F?. Therefore, taking /7% /0C's, and setting it to zero gives :
— LZ/A\L]

Cg =94 111.27
57 M, M, (IL.27)
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Thus, the model coefficient is a local quantity, varying in time S and space in a fairly wide
range with positive and negative values. Although a negative C's, (and therefore a negative /)
is often interpreted as the flow of energy from the sub-grid scale eddies to the resolved eddies
(referred to as "back-scatter”) and regarded as a desirable attribute of the dynamic model;
too large a negative v causes numerical instability, which lead to divergence of the numerical

solution. To avoid this, (s is simply clipped at zero [67].

I11.2.1.2.b  Filter(Filtering Approach)

Large eddy Simulation (LF£S) is a numerical technique used for solving transient and turbu-
lent flows. It is based on resolving the larger scales, which characterise most of the energetic
structures and are problem dependent, and modelling the smaller ones, which are assumed to
be universal. In this sense, LF'S can be regarded as a compromise between the Direct Numeri-
cal Simulation (DN S) and Reynolds Averaged Navier-Stokes (RANS) approach. In DN S| all
relevant turbulent scales are directly resolved, whereas they are modelled in R AN S approach.

To perform true DN S, the spatial resolution has been estimated to be order of R(‘,?/ t

This requirement is an important restriction for the high Reynolds number flows and hence
engineering applications. The RAN S approach, on the other hand, offers significant savings of
computational time with the underlying assumption that the instantaneous flow is composed of
mean and fluctuating components. This assumption leads to a set of transport equations with
numerous, empirical based model constants. To be considered an alternative to both RANS
and DN S, the Navier-Stokes equations are processed via a filtering operation, by which the
larger scales are isolated from the smaller scales. There are two filtering approaches : implicit and
explicit filtering. In implicit filtering, the flow equations do not explicitly contain the information
on the filter shape or width. The information is contained implicitly in the sub-grid scale (SG'S9)
model for the unfiltered stresses. Practically, the discrete grid cell acts as a filter width; the
scales larger than grid cell are resolved and the scales smaller than grid cell are modelled via a
SGS model. This approach is adopted in this thesis. In explicit filtering, a second explicit filter
is applied to the non-linear terms to reduce truncation and aliasing errors. As explained Lund
(1997), the explicit filtering operation is in general different from filtering the entire flow field

which amounts a slight definition of SG'S' stress [68].

In LES, any flow variable, f(z), can be decomposed into a resolved scale component f(x),

and a sub-grid scale component :
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f'(x), f(z) = f(z) + f'(x) (IT1.28)

The resolved scale component is filtered from the sub-grid scale component via the filter

function, (&, throughout the flow domain, D as :

f(z) = / f(2") G (z,2") da’ (III1.29)

D
The filter function must satisfy the normalisation function [ G (x,2’)dz" = 1. Filter functions

D

have a wide variety to choose from, including Gaussian filter, Fourier cut-off filter and box
filter. In this thesis, the filtering operation is performed in physical space; therefore, the box
filter is employed. For the box filter, the filtering is adopted by invoking the volume of the
computational cell V' as :
1/Vx eV

G (z,2') = (I11.30)
0 otherwise

Substitution of Equation I11.29 into Equation II1.30 results in,
7 L[ ) .
flx) = v / f(@)dd' x eV (IT1.31)
7

Since the application of L./S to compressible flow is a new research area and still not well
developed in terms of the numeric and modelling of various extra terms that arise due to the
variation of density, LS is mostly applied to incompressible flows. The governing filtered

continuity and momentum equations for the incompressible Newtonian fluid takes the form :

0,
=0 1I1.32
ox; ( )
u  O(ww) _ _10p 0 ) O (I11.33)
ot Ox;j pOx;  Oxj Ox;j

The term 7;1; can be extracted in terms of resolved scale and sub-grid scale components as :

Uu; = ('f[,j + ?1,/,[)(’171]‘ + U,/J') = U;Uj + 771,1"11/'/ + ’II’,',"I?j + 'll/ﬂl,/lj

= UsUj + UU; — UjU; + 'ﬁj"llly‘ + ’U,/,jﬁ,j + /11,/7"11/7‘ (11134)
= wiuj + Lij + Cij + Rij

Where L;;, C;; and [7;; are known as the Leonard stress tensor, cross stress tensor and

sub-grid scale Reynolds stress tensor, respectively.



1I1.2. Turbulence Modelling 68

L,J — {7,17J - {7,{7J
Cij = ugtl; + ;i (II1.35)
Rjj = lL/,i’lL/j
The Leonard stress involves only filtered scales which are known. The cross stress can be
specified in terms of the filtered scales, and hence is also known. However, the sub-grid Reynolds

stress remains unknown. Therefore, sub-grid modelling is required for the closure. Commonly,

the three stresses are defined in terms of the sub-grid scale stress 7,7 defined as [68] :
7,39'*’ = Lij + Cij + Ryj (I11.36)
Substituting Equation I11.36 into Equation [11.37, becomes :
7% = g — Uy (II1.37)

Then, the filtered form of the Navier-Stokes equations becomes :

du; 0 (uiy) 19p 0 [ ou or;{°
— +t—FF " =——F -+ V- -
ot Ox; pOx; Oxj \ Ox; Ox;

(I11.38)

In the case of rotation, the Coriolis and centrifugal forces take place in Equation I11.39 as :

du; 0 (ugiiy) 10p 8 <I f)uj> _on)” (1T1.39)

, : + €320 = —— - — | v- .
ot Ox; R pOx; Ox; \ Ox; Ox;
The third term on the left-hand side of Equation II1.39 is the Coriolis force, represented
by Levi-Civita’s alternating tensor. Centrifugal force is combined with the pressure gradient
term, since it is conservative type of force. The resulting pressure is referred to as the modified
pressure, p. The last term of Equation I11.39 represents the sub-grid scale stress (SGS), which

needs to be modelled. The SGS stress tensor is modelled based on the Boussinesq assumption.

sgs 1 0u; c sgs o
7 Loyl = —2uSy (II1.40)

T, S
i35t

Where 0;; is the Kronecker-delta, v; is the sub-grid scale eddy viscosity and S'ij is the resolved

scale strain rate tensor which is given as [68] :

= 1 C?’FL»,‘ 0’(_1,]'
= : 111.41
Sij 2 <8.’1,'j N 0:17,;) ( )
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In DN S, the velocity field U (x, ) has to be resolved on length scales down to the Kolmogorov
scale 7). In LE S, a low-pass filtering operation is performed so that the resulting filtered velocity
field U (2, t) can be adequately resolved on a relatively coarse grid. Specifically, the required
grid spacing h is proportional to the specified filter width A. In the ideal case the filter width
is somewhat smaller than the size of the smallest energy containing motions. For then the grid
spacing is as large as possible, subject to the condition that the energy containing motions are

resolved [68].

I11.2.1.3 Detached Eddy Simulation (DES)

Detached Eddy Simulation (D FES) is a hybrid method which combines LS and RANS. As
LES becomes extremely computationally expensive within the near wall region, one method
used to reduce this expense is to use another formulation. DFS uses the LFES formulation
for the majority of the domain and switches to the RAN S formulation near wall boundaries.
The switch between the two formulations can be accomplished using turbulence length scales,

distance variables or specified by the user within certain zones known as zonal DES [69].

The description D FS was originally coined by Spalart et al. and refers to an approach where
unsteady RANS turbulence modelling and mesh spacing is used in the boundary layer, while
LES is employed in the core and separated regions of the flow. In the near wall regions, the
RANS turbulence model, which has been calibrated in thin shear layer flows, has complete
control over the solution. In the LES region, the turbulence model changes to an SGS formu-
lation. The turbulence modelling in the L /S regions thus has a comparatively small influence
compared to that in the RANS region, since the larger energy carrying eddies are resolved,
allowing for smaller margin of error and providing more realistic core conditions for the RAN S
portions of the flow. Thus, the streak instability cycle, the inertial layer and most of the wake
region are subsumed by the RANS portion of the model. In fact, the DFES solution should
in theory reduce to the equivalent RANS result, unless the flow contains some feature that

introduces large scale unsteadiness into the outer flow [58].

I11.2.1.4 Wall-modelled LES (WMLES)

In order to avoid the expensive resolution of fine near-wall structures at high Reynolds num-
bers, wall-modelled /S employs modelling approximations over the inner region of the boun-
dary layer and switches to LFES for the outer region and beyond. Thus, near-wall resolution

requirements for LES and DN S are similar. The cell count in the first few per cent of the flow
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nearest the wall often accounts for the vast majority of the overall grid numbers, even when the
most important physical features occur well away from the wall. Resolving this issue has led to

a great deal of effort in the LS community [70].

The near-wall turbulence length scales increase linearly with the wall distance, resulting
in smaller and smaller eddies as the wall is approached. This effect is limited by molecular
viscosity, which damps out eddies inside the viscous sub-layer. As the /2. number increases,
smaller and smaller eddies appear since the viscous sub-layer becomes thinner. In order to
avoid the resolution of these small near-wall scales, RANS and LES models are combined
such that the RANS model covers the very near-wall layer, and then switches over to the
LES formulation once the grid spacing becomes sufficient to resolve the local scales. Where the
RANS layer extends outside of the V.S, thus avoiding the need to resolve the inner “second”

row of eddies depicted in the sketch [69].

It should be noted that reductions in grid resolution similar to W A LES can be achieved
with classical L.FS models when using L £S wall functions. However, the generation of suitable
grids for L /S wall functions is very challenging as the grid spacing normal to the wall and
the wall parallel grid resolution requirements are coupled and strongly dependent on Reynolds
number (unlike 2AN S where only the wall-normal resolution must be considered). In ANSYS
Fluent, the WM LES formulation can be selected as one of the LFES options; in ANSYS CFX
it is always activated inside the LFES zone of the Zonal Forced LES (ZFLES) method [69].

I11.2.2 Quality and Reliability of Numerical Simulation

The numerical fluid flow analysis has been a well-reviewed subject for almost a century.
However, it is only in the last decade that a lot of concern about the reliability of numerical
simulation has been cited. Available literature can be classified as targeting different aspects
of numerical simulation. The relevant aspects for the current study are quality and reliability
in CFD, formal policies on numerical uncertainty in general, and concerning LFS, the grid
resolution, accuracy limitations and error estimation. CF'D techniques commonly used to predict
turbulent flow properties are inherently susceptible to modelling and numerical errors. As CED
is brought into widespread use, it is important to limit these errors in solution without an
excessive increase in computational cost. Therefore, a prior assessment of the quality of the
particular CEFD technique is necessary. CF'D has now more or less become a standard tool

for fluid flow investigations, however a quality assessment of the results is often unavailable,
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particularly for L./ S. Quality control in CED can be implemented with guidelines for calculation
with sufficient accuracy and reporting results with sufficient information to judge the result
quality. RANS methods are widely used in industry, chiefly because of their speed, and lower
sensitivity to numerical and grid issues. Methods of assessing quality of results obtained from
RAN S simulations are well established. However, RAN S methods can yield erroneous results
for certain flow geometries. Furthermore, they do not provide an instantaneous time history of
the flow, which may be required to correctly model flow features such as combustion or acoustics.
LES can offer more accuracy in such scenarios, providing not only the full-time history of the

flow, but also resolving small scale, energetic eddies [60].

I11.2.2.1 DNS criteria

Three criteria have been formulated and tested, which allow for the selection of grids adequate

for direct numerical simulation :

Criterion (1) requires great periodicity lengths in the horizontal directions to record the
longest wave-lengths observed. The grids with short periodicity lengths exactly meet this cri-
terion at the lowest Rayleigh number. Nevertheless, the skewed varicose instability found by
starting from random initial conditions cannot develop the expected wave-length because of the
wave-length restrictions by the grid. The periods of the bimodal travelling waves observed at the
next higher Rayleigh number are also slightly too short. The simulations with large periodicity
lengths show none of these deficiencies. Thus, for simulation in the transition range, one should

use periodicity lengths about two times the expected values.

Criterion (2) requires a time resolution of the region near the wall due to the linear wall
approximations introduced. The grids applied to simulations of turbulent convection use bet-
ween | and 5 nodes within the thermal boundary layer thickness. It must be concluded from the
numerical results that the calculated Nusselt number reacts sensitively to increasing the node
number from 1 to 3 within. Further increases have no significant influence on the accuracy of
the numerical results. Thus, for, it is sufficient to use about three nodes in the vertical direction
within the thermal boundary layer thickness. If it is the purpose of a simulation to investigate
statistical data of turbulence, about the same number of nodes should also be used within each
of the next two thermal boundary layer thicknesses to record adequately the sharp peaks or
transitions in many statistical data of turbulence in this range. For Prandtl numbers consi-
derably below unity, one must consider the viscous sub-layer thickness instead of the thermal

boundary layer thickness.
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Criterion (3) in general requires very fine grids to resolve the smallest scales of turbulence,
because the sub-grid scale terms have been neglected. The numerical simulations performed at
the highest Rayleigh number show only small deficiencies in case of grids which are too coarse.
For these coarse grids, the Nusselt number and the rms values of velocity and temperature
fluctuations, which have been found to be the most sensitive results, both increase only slightly
with decreasing node number. The three finest grids sufficiently resolve the smallest scales
of turbulence. The “Kolmogorov criteria” of the equation and prescribe very low values for
the required mean grid widths. The isotropic grid criteria” of equation and predict larger
required grid widths, which allows for more efficient simulation of comparable accuracy than

the “Kolmogorov criteria” [71].

I11.2.2.2 LES criteria

II1.2.2.2.a Spatial Grid Resolution

In general, LFES results are in better agreement with experimental evidence compared to
RANS if a sufficiently fine grid is employed. However, without a prior knowledge of flow cha-
racteristics, it is difficult to ascertain the “sufficient” resolution. As claimed by Celik (2005), a
good LES is almost a DN S, i.e. for correct resolution of wall layers and prediction of transi-
tion, LES requires an extremely fine grid. It was pointed out by Speziale that a good LFES,
as the grid resolution tends to the smallest scales, i.e. the Kolmogorov scales, tends to DNV S.
As a consequence, grid independence cannot really exist in LFES as a grid-independent LS is
actually a DN S and therefore the systematic grid convergence studies offer no great benefit.
The LES philosophy loses its meaning if it achieves grid independence and the advantage of
LES being more economical than D /NS on account of resolving only the most energetic eddies,
is lost. Physical phenomena, including mixing and combustion depend strongly on the intensity
of turbulent fluctuations and the convection of these fluctuations, exhibited as turbulent dissi-

pation ; the accurate prediction of turbulent statistics becomes important. This makes quality

assessment measures imperative for /25 in engineering applications [60].

In (1990), a number of attempts were made at reducing the computational requirements of
LES for wall-bounded flows. Most of these were attempts at manipulating the grid such that all
the near-wall eddies could be resolved without having a large number of gridpoints in the outer
layers. In wall-bounded flows, the near-wall flow structures are extremely small when compared
to the overall flow dimensions. However, these small structures play a very important part in

the turbulent boundary layer dynamics and therefore need to be well resolved.
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In typical mean flow computations, the large mean velocity gradients are resolved using grid
stretching in the wall-normal direction. In turbulence simulations, however, a fine near-wall
mesh is also required in the direction parallel to the wall. This fine resolution was normally
extended into the outer layers. This was not necessary ; consequently, the attempts at lowering

computation cost by modifying the grid employed were largely successful [60].

II1.3 Computational domain and numerical requirements

The adequacy of the computational domain is assessed later by examining the streamwise
two-point correlations which must be large enough to include the largest length scale struc-
tures, periodic boundary conditions for the velocity components were applied in streamwise
and circumferential directions, whereas no-slip boundary conditions were imposed at the wall,
in additional to the Neumann boundary conditions were used for the pressure. Periodic boun-
dary conditions were imposed in the streamwise and the spanwise directions since the turbulent
pipe flow is fully developed. The periodic boundary in the streamwise direction can be justified
provided that the flow can be considered homogeneous in that direction and that the length
of the computational domain was sufficiently large to include the largest scale of the turbulent
motions in the flow. This can be checked by ensuring the streamwise two-point correlation co-
efficients are uncorrelated at a separation of one-half period in the homogeneous directions and

this is when these correlations fall of to zero value, according to this equation [72].

, (' (r,0,z,t)a (r,0,z+1/2 L, ,t))
R,(1/2L, )= ~ 0 111.42
(1/ ) (a'(r,0,z,t)a (1,0, z,t)) ( )

A domain independence study has largely carried out for the moderate Reynolds number :
the main findings indicate that the adequate domain length is . = 50 in the Newtonian fluid.
For the shear-thinning power-law fluids, according to Singh et al. [42], the flow index affects the
long helical structures near the wall and at the centre of pipe, where the range of length scales
in the flow increases with decreasing flow index, where Singh et al. [42] choose 47 as domain
length for the flow index 0.6 < n < 1, and 16D for n = 0.4. In the present study, it kept the
length domain of Singh et al. [42] : was set to be 12D for 0.6 < n < 1, and 16D for n = 0.4;

these domain lengths are further checked for it adequacy via two-point axial correlations [72].

In order to achieve a realistic numerical simulation of a turbulent flow, the adequacy of nu-

merical resolution in the direct numerical resolution is still one of the greatest challenges, where
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the spatial and temporal resolutions must be sufficient fine to resolve the smallest length scale
structures in turbulent flow. In other word, the Kolmogorov length and time scales must be
resolved by the spatial and temporal network distribution : the distance between two sequential
points in space and time should be proportional to the Kolmogorov scales. In this end, a num-
ber of criteria have been deduced to estimate this required numerical resolution. As mentioned
above, the Grotzbach’s criteria [71] are one of the large commonly used techniques for evaluating
the spatial resolution, where he formulated three criteria. The first one concerns the compu-
tational domain which should be large enough to include the largest length scale structures,
the second one requires that the vertical grid width distribution must be able to fully resolve
the thin vortical layers in the vicinity of the wall responsible for the wall friction and for the
turbulence production, which can be met by ensuring that at least three gridpoints within the
viscous sub-layer. The last one requires the mean grid widths must be smaller than the smallest
relevant turbulence elements. As for the temporal resolution, a more restrictive criterion must
be applied to ensure that the time step is enough to resolve the smallest time scale structures
in turbulent flow and to avoid numerical instabilities : This can be achieved by assuring that

the imposed time step must be smaller than the Kolmogorov time scale [72].

Computations have been carried out on a finite difference scheme, second-order accurate in
space and time. The numerical resolution is (129 x 129x193) gridpoints in radial, circumferential,

and axial directions, respectively, with a domain length of 207 [72].

In large eddy simulations (L F/S), numerical spatial resolution is always one of the biggest
challenges. Indeed, the mesh imposed on the computational domain should be fine enough to
capture and resolve the smallest scale structures in the turbulent flow, and limit the influence
of the mesh on the accuracy of the results. A uniform distribution of gridpoints must be ap-
plied in the axial and circumferential directions (periodic directions) to use the trigonometric
development elements in the pressure equation. A non-uniform distribution must be imposed
in the normal direction of the wall where a refinement of the mesh near wall region is necessary
for a better resolution in the zone close to the wall. In fact, in the viscous sub-layer, at least

three gridpoints must be arranged so that the first grid point must be located at (Y < 1).

In order to ensure the precision of the spatial grid resolution, a study of the mesh independence
is necessary. To this end, Gnambode et al. [73] performed this study with the LES code used
in the present study for an Ostwald de Waele fluid with a flow index of 0.8 at a simulation

Reynolds number of 8000, with different numbers of gridpoints in the circumferential, axial and
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radial directions, presented respectively in (@), (b) and (¢) in Figure I11.11. They found that the
grid of (65 x 65 x 65) gridpoints in the axial, radial and circumferential directions, respectively,
and admitting an adequate resolution is considered as a good compromise between the required

precision and the CPU time [72].
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Figure I11.11 — Gnambode mesh independence study [73].

Note that in their investigations, Gnambode et al. [73] used a length domain in the flow
direction (axial direction) of 207. The primitive variables will be calculated at different points,
located on the faces of the cells for the velocity components or in the centre of the cells for
the scalars Figure II1.12. The variables ¢y = rVp,q, = vV, and ¢, = V. (where Vj,V,, V. are

the velocities of the fluid in the three directions) and they are considered in order to avoid the
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problem of the singularity on the axis of the driving. The positions of the variables are defined

by the following spatial coordinates :

1 1
qo — <’i.,j + 2 k+ 5 where (0.(1), 7, (7). 2 (k)

)
G = <7: + % ikt ;) where (0, (i), re(j), zm(k))
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Figure I11.12 — Staggered mesh [72].
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(I11.49)

Note that in the radial direction, a non-uniform grid resolution specified by a hyperbolic

function has been applied in the radial () direction, where the gridpoints in this direction are

closest together at the cylinder wall and progressively spaced away from the wall towards the

centre of the cylinder Figure I11.13.

The mesh refinement is given by the hyperbolic equation :

y;j = |rjlsin[m + (j — 1)6] (j=1,.....,m;)

(111.50)
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Figure I11.13 — Grid Mesh [72].

zj = rjlcos[m + (j — 1)0] (II1.51)

™

0= —-— II1.52
40(my, — 1) (IL.52)

tanh(ag;)

=T II1.53

9= Ta tanh (o) (IIL.53)

i ) — 1 ,

§—1+2—— (I11.54)

m; — 1
1 1+t
a=3hn <1 f ;) (I1L.55)
1 g

Ta = 5(7'0'117‘,(;1’ - rinn(«tr) (IIID())

Parameter b is used to control the extent of the grid to the walls and typical values for this
study are between 0.7 and 0.95. The parameters 17,7, are the number of vertices in the
axial, radial, and tangential directions respectively. o is the adjustable parameter to determine

the concentration of gridpoints in the flow region near the wall.

It should be mentioned that thanks to the hyperbolic function implemented in the radial
direction, it was possible to obtain many mesh points in the viscous sub-layer (V= < 5) (a
minimum of 26 gridpoints) where the first point near-wall grid in all simulations is located at
(Y < 1) at the highest rotational speed (N = 3). The resolution along the radial direction in
wall units (Ar ") varies from 0.0506 to 12.4 in the stationary case, while it varies from 0.0511

to 12.5 in the rotating case with the highest rotation rate (N = 3) [72].
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Time is rendered dimensionless using the cylinder radius (/?) and the maximum laminar flow
velocity, Uc . The calculations were carried out at a constant C'/'L and not at a constant time

step [72].

Gnambode (2015) [73], performed a time-step independence study of the Ostwald de Waele
fluid with a flow index of 0.75 through a no rotating pipe Figure [11.14. The study considers
CFL of 0.04R/U¢y, or 0.01R/Uc for stabilise the solutions and avoid the divergence problem.

However, the time step which varies is limited by the value At = 0.01 for n = 0.75.

The statistics are calculated by averaging in the periodic directions and over time. The final
data are obtained by ensemble average over the time interval from the scaled time ¢ = 250 to
t = 8000 for the smallest rotation rate. At the highest rotation rate, statistics are sampled from

scaled time ¢ = 250 to t = 10000 [72].
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Figure I11.14 — Gnambode Time Step [73].

I11.3.1 Extended Smagorinsky Model

Ohta and Miyashita (2014) [39] carried out DN S and LES with an extended Smagorinsky
sub-grid model of turbulent flow of non-Newtonian fluids with a viscosity described by the model
of Ostwald de Waele and Casson’s model. Their extended Smagorinsky model better describes
turbulence in non-Newtonian viscous fluids. In order to assess the reliability of the extended
SGS model used, the authors compared their results of the large eddy simulation with those
of the DN S and showed that their predictions obtained using the LFES agree reasonably with
those of the DN S. The average velocity profiles obtained by these LS simulations with the
extended Smagorinsky model rather than the L /S simulation with the standard Smagorinsky



1I1.3. Computational domain and numerical requirements 79

model closely matched those obtained by D/N .S as shown in Figure I11.15.

The effects of SG'S motions on resolved scales are modelled using a turbulent viscosity closure
and the sub-grid stress tensor 7;; is related to the strain rate tensor 5“1-.7-, by 7;; = —21,',51-']-. In the
non-Newtonian Smagorinsky model of Ohta and Miyashita (2014) [39], the turbulent viscosity
is calculated by vy = (C,g,f',g,f7,LA)2§,'.,', where is the calculation filter, C'; the constant of the
model [ , the van Driest wall damping function [/ = 7,,/7, and f, (which is an additional
function defined as 7),,/7), and 7),, being the wall viscosity which is the same as the viscosity of

the Newtonian fluid) is the correction function for the change in viscosity.

(II1.57)

Where A" is the dimensionless parameter (A" = 25)

It notes that when the spatial filter is applied to the Navier-Stokes equations, in non-
Newtonian viscous fluid flows (whose viscosity characteristics vary in space), additional terms
(see terms 7:‘1;.7-, in filtered Equation) are generated because the stress tensor is a non-linear func-
tion of the strain rate tensor. These additional terms, when using an Ostwald de Waele model,

are written as Ohta and Miyashita (2014) [39].

I 7o) G - v o V5o = s\ T &
T,/ = Tij (S,‘j) — Tij (S,/> = 2K {(23;,[3];,) 2 b,j./‘ - (Qbmbj;f) B b,‘j} (11158)

In the present study of LFS, the additional terms are ignored. Indeed, Ohta and Miyashita

(2014) [39] showed that these terms are much smaller than the sub-grid scale constraint (SG'S).

These authors demonstrated this result by comparing stress profiles (SG'S) with additional
terms estimated from filtered DN S results for Ostwald Waele’s fluids and Newtonian fluid.
Therefore, in their study they focused on modifying the (5G'S) model for the viscosity charac-
teristics of the non-Newtonian fluid and ignored the additional terms to derive an SG'S model

for the non-Newtonian fluid [72].
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Figure II1.15 — Validation de Ohta et Miyashita (2014) [39].

I11.3.2 Rheological Modelling

The fluid modelled in this study is shear thinning power-law fluid, the shear stress is rela-
ted to the shear rate by : 7 = K(5)", where 7 is the shear rate /A is the consistency index n
is the flow behaviour index. The apparent viscosity 77 is not constant for the power-law fluid
is a function of the magnitude of the shear rate and is written in the form : 7 = K37 !,
For (n < 1), the apparent viscosity decreases with increasing shear rate and fluid is called
pseudoplastic or shear-thinning. For (n > 1) , the apparent viscosity increases with shear rate
increase and fluid is termed dilatant or shear-thickening. For (n = 1), Newtonian flow be-
haviour is expected. Metzner and Reed (1955) [32] were the first to propose a definition of
the generalised Reynolds number for the power-law fluids that based on the effective viscosity
e = K (3n +1/4n )"(8U/D )", it thus follows that the Metzner and Reed Reynolds num-
ber defined as Rey;p = pU? " D" /8" LK (3n 4+ 1/4n )" . Another commonly used generalised
Reynolds number which reflects the flow behaviour in the vicinity of the wall region that plays
an important role in transition and the development of turbulence in wall-bounded flows of
fluids, which based on the apparent viscosity of the fluid at the wall 7, = Ix"(”}r“,)nfl. In addi-
tional, friction Reynolds based on the wall friction velocity and the mean viscosity on the wall
Re; = pu;D/n, . Also, the wall units are presented in a similar manner to the Newtonian ana-
lysis, the dimensionless velocity or the power-law fluid is /" = U/ /u, , where u, is the friction
velocity and is defined as 1, = /7,,/p . Whereas the distance from the wall in wall units is also
based on the viscosity of the fluid at the wall, it thus follows that v = pyu, /1. [72].
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I11.3.3 Boundary conditions and initial conditions

In the present study, it is interested in a fully developed turbulent flow of Ostwald de Waele
fluid driven by a pressure gradient in the direction (z) at a simulation Reynolds number of 4000
through a cylinder in rotation around its axis. As the flow is homogeneous in the axial and
circumferential directions, it is necessary to apply periodic boundary conditions in these two

directions in order to use a smaller calculation domain [72].

The periodicity conditions are applied in the axial and azimuthal directions :

G(0,7,2) = (0,7, + L)
(I11.59)
G (0,1, 2) =G (0 + 2m,7r, 2)

Indeed, the length of the adequate computational domain must be large enough to include the
largest length-scale structures in the flow, which can be checked by calculating the two-point
correlation coefficients of the velocity fluctuations in the direction of flow. These coefficients
must be uncorrelated with a half-period separation in the homogeneous directions and that is
at this time that these correlations fall to zero according to this equation :

(a/(r,0,z,t)a'(r,0,2 +1/2L,,t))

R,(1/2L,) = ~ 0 I11.60
ta(1/2Ls) (a'(r,0,z,t)a (1,0, z,t)) ( )

All current numerical calculations have been performed with a sufficient computational do-
main length of 20 in the (z) direction according to Gnambode et al. [73] with periodic boundary
conditions along the axial and azimuth directions. While a boundary condition of non-slip is
imposed on the pipe wall (adhesion condition). According to the assumption of the absence of
slip, the fluid is supposed to adhere to the walls. The fluid velocity components cancel out at

the pipe wall :

Cor o (IIL61)

It should be noted that the velocity field was initialised according to the formulation of
Orlandi and Fatica [9], which states to add a perturbation of specified zero divergence to the

Poiseuille laminar profile :

Tzt =0) = ﬁ,) + Rlewy ()€ + gy (r)e @9 (111.62)
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Indeed, the disturbance must verify the adhesion conditions and the periodicity imposed on
the speed. Its average must be zero so that the bit rate is not modified. This condition is
achieved for the chosen disturbance by taking wave numbers o and [ respectively, equal to the

inverse of the domain size in the periodic axial and azimuthal directions [72].
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ABSTRACT

he purpose of the present investigation is to ascertain and accurately the reliability and
T effectiveness of the DN S laboratory code to predict the flow quantities and turbulence
statistics of the Ostwald de Waele fluid. This study also reveals the centrifugal force induced
by the swirl driven by the rotating pipe wall on the flow pattern, rheological behaviour, and
turbulence statistics. The present study investigates numerically a fully developed turbulent
flow of pseudoplastic (n = 0.75) and dilatant (n = 1.2) fluids through an isothermal axially
rotating pipe by means of the direct numerical simulation (DN S) approach at simulation Rey-
nolds numbers of 5000 over a rotation rate range (0 < N < 3). The numerical integration has
been performed by the finite difference scheme, second-order accurate in space and time with
a numerical resolution of (129 x 129 x 193) gridpoints in axial, radial and circumferential di-
rections, respectively. The governing equations have been discretised on a staggered grid using
cylindrical coordinates with a computational domain length of 20 in the axial direction. The
predicted results suggest that the decreased flow behaviour index results in an enhancement in
the turbulent axial velocity in the core region. Furthermore, the radially growing centrifugal
force induced by the swirl driven by the rotating pipe wall causes a supplemented force to
the inertia force, which results in a noticeable reduction in the apparent fluid viscosity and a
noticeable increase in the streamwise velocity of pseudoplastic and dilatant in the core region.
The increased rotation rate results in a noticeable enhancement in the generation and trans-
port mechanism of turbulence intensities of the axial velocity fluctuation from the wall vicinity

towards the core region.
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This increased rotation rate also enhances the transport mechanism of turbulence intensities
of the radial velocity fluctuation from the axial velocity fluctuation. Moreover, the tangential
turbulence intensities exhibit an apparent attenuation in the transport mechanism of turbulence
intensities from the axial velocity fluctuation with increasing rotation rate for the pseudoplastic
and dilatant fluids.

Keywords : DNS, centrifugal forces, fully developed, turbulence statistics, pseudoplastic, di-

latant.

IV.1 Introduction

The flow through rotating pipes is of great practical interest because of the various industrial
applications and is often encountered in multiple furnaces and combustors, as well as in rotating
machinery. Several computational and experimental experiments have been carried out in recent
years to understand the laminarisation phenomenon better and examine the impact of the

rotating pipe wall on the mean characteristics and turbulence statistics.

The turbulent flow of Newtonian fluids through an isothermal axially rotating pipe is a pro-
blem of considerable significance. It has received much attention because of its various industrial
applications. Much literature has investigated the turbulent flow characteristics through an iso-
thermal pipe rotating around the axis by [13], [14], [15], [16], [17], [18], [19]. The research of
Eggels et al. (1994) [16] performed one of the most important experimental and numerical
analyses and discussions on turbulent pipe flow. Their findings suggest that the centrifugal
force induced by the rotating pipe wall results in a pronounced attenuation of the normal wall
and axial velocity fluctuation along the radial coordinates according to the Taylor-Proudman
theorem because a rotating flow tends to become 20D in its plane of rotation. In addition, the

attenuation of the shear stress also leads to a reduction of the friction factor.

In-depth research on the numerical analysis of hydrodynamic and thermal characteristics
was conducted by Ould-Rouiss et al. in (2010) [30]. This work focused on the DN'S and LES
techniques of the fully developed forced convection heat transfer for airflow through a heated
axially rotating pipe. The pipe wall was given a thermal boundary condition of uniform heat
flow, and the Reynolds number was set at 5500 for the range of rotation rates (0 < N < 7).
The LES spatial resolution was also based on a mesh of (39 x 129 x 129) gridpoints in the
radial, tangential, and axial directions. In contrast, the D /NS spatial resolution was based on
a mesh of (129 x 129 x 257) gridpoints. The rise in temperature variations toward the core

of the pipe as the pipe rotates showed a clear tendency to increase the turbulence intensity
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of temperature fluctuations in the core flow zone. Additionally, as the spinning pipe diameter
raised, the centrifugal force caused by the revolving pipe wall caused a noticeable decrease in
the axial turbulent heat flow and an increase in the azimuthal heat flux. On the other hand,
the flow and the scalar transport seemed to be almost independent of the revolving pipe wall

with a larger rotation rate (/N > 3).

Materials exhibiting shear-thinning non-Newtonian behaviour include slurries, pastes, sus-
pended solids in liquids, and emulsions. Shear-thinning materials are frequently encountered in
industries dealing with composite materials, rubber, pharmaceuticals, biological fluids, plastics,
petroleum, soap and detergents, cement, food products, paper pulp, paint, light and heavy che-
micals, oil field operations, fermentation processes, plastic rocket propellants, electrorheological
fluids, ore processing, printing, and radioactive waste. The characterisation of the turbulent flow
of non-Newtonian fluids inside the circular pipe is of practical importance due to these fluids’
wide range of industrial applications. There is only a relatively limited amount of research due

to their distinctive viscosity characteristics, which vary from those of Newtonian fluids.

Rudman and Blackburn (2006) [38] reported a direct numerical simulation (DN S) of the
turbulent flow of non-Newtonian fluids using the spectral element Fourier method (SFEM ).
The procedure is applied to the case of turbulent pipe flow, where simulation results of a
shear-thinning fluid are compared to those of a Herschel-Bulkley fluid at the same generalised
Reynolds number of 7500 with a domain length of 57. They have also studied the flow of
blood using a Carreau—Yasuda rheology model, and the results were compared to those of the
one-equation Spalart-Allmaras RANS (Reynolds Averaged Navier—-Stokes) model through a
rectangular channel with a length of 57/ and a height of 27D at the generalised Reynolds
number of 3214.

Gavrilov and Rudyak (2016) [40] focused their studies on the development of a novel Reynolds-
Averaged turbulence model for flows of Ostwald de Waele fluids. The fully developed turbulent
pipe flows of power-law fluids were studied by Gavrilov and Rudyak (2016) [40] using direct
numerical simulation at generalised Reynolds numbers of 10000 and 20000. Five different power-
law indexes from 0.4 to 1 were considered. The adequate results from this investigation suggest
that the fluid index decreases, the turbulent transfer of momentum and velocity fluctuations
between the wall and the flow core decrease, while the turbulent energy flowing to the wall
increases. Furthermore, the velocity of the power-law fluid shows an increase in the radial di-

rection, resulting in the enhancement of apparent viscosity. The turbulence anisotropy becomes
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more significant with the decreasing flow index.

New research and studies were carried out by Zheng et al. (2019) [43] to develop computational
methods and DN S code better. According to Zheng et al. (2019) [43], the previous studies
of shear-thinning fluids mainly use purpose-built codes and simple geometries. However, the
geometries are more complex in the practical domain, and more flexible computational methods
are required. Thus, a fully developed turbulent pipe flow of shear-thinning fluids was undertaken
using direct numerical simulation to validate and verify the efficiency of the OpenFOAM library
is assessed against a validated high-order spectral element-Fourier D/NS code—Semtex. The
emerging results of this investigation demonstrated that the predicted velocity and viscosity
profiles are well resolved and predicted, while there was a notable difference in turbulence
statistics. As it shall see, it was important to note that the different Reynolds turbulence
intensities and stress profiles peak at 16% and 10%, corresponding to the Reynolds numbers

5000 and 7500, respectively.

Although non-Newtonian fluid flow is relevant in the engineering discussed above, there still
needs to be more specifics in such a problem. To date, a relative need for studies treating D/N .S
of turbulent flows of non-Newtonian fluid through cylindrical pipes. There has yet to be research

the turbulent flow of Ostwald de Waele fluids through axially rotating pipes through DN S.

IV.2 Problem Description

The present work deals numerically with a fully developed turbulent flow of pseudoplastic
(n = 0.75), dilatant (n = 1.2), and Newtonian (n = 1) fluids through a rotating cylindrical
pipe over a rotation rate range of (0 < N < 3) at simulation Reynolds number of 5000 by using
the DN S approach. The computational domain length was chosen to be in the streamwise

direction (Figure IV.1).
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Figure IV.1 — Computational Domain.
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IV.3 Mathematical Formulation

The conservation of mass and momentum equations govern the thermal flow of a non-Newtonian

fluid are presented and written in dimension and dimensionless form as :

Continuity equation :
ou;*

- =0 V.1
Ox; ( )
Momentum equation :
ou;*  O(ui*u;™) , 1 Op* 0 ou;*  Ou;*
— + I L4 2 Quty = —— = + - — 4 V.2
ot* ox;* CL A pox;*  Ox;* v Ox;*  Ox;* ( )

The filtered continuity and filtered momentum equations governing 3/ incompressible non-
Newtonian fluid are written in a cylindrical coordinate system and are made dimensionless.

These equations are detailed in the mathematical formulations in CHAPTER 5.

IV.4 Results and Discussion

The present investigation tends to reveal the effects of the flow behaviour index and the swirl
driven by the rotating pipe wall on the mean flow characteristics to shed further light on the
laminarisation phenomenon and to provide an accurate, complete, and detailed description of
the flow patterns and rheological behaviour of the Ostwald de Waele fluids along the radial
coordinate, especially in the core region, where it is still difficult for experimental methods to
get reliable data for certain variables, especially for rheological flows, despite improvements in
experimental techniques. That is via analysing the effects of the rotation rate and the flow
behaviour index of the Ostwald de Waele fluids on the streamwise velocity distribution along
the radial coordinate and the generation and transport mechanism of the velocity fluctuations
between the different turbulent layers. Moreover, the present investigation seeks also to ascertain
the accuracy and reliability of the DN .S laboratory code predicted results and to evaluate the
reliability of the D/N'S approach to predict the main flow quantities and turbulence statistics

of Ostwald de Waele fluid.

A Direct numerical simulation has been carried out to study the fully developed turbulent
of pseudoplastic (n = 0.75), Newtonian (n = 1), and dilatant (n = 1.2) through an isother-
mal axially rotation pipe at a simulation Reynolds number of 5000 and over a wide rotation
rate range of (0 < N < 3). The turbulent streamwise velocity and turbulence intensities of the

streamwise velocity fluctuations are analysed and discussed in detail in the current chapter.
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To ascertain the accuracy and reliability of the results, The emerged D /NS predictions were
validated by comparing the turbulent axial velocity of Newtonian fluid with those available in
the literature in the following cases : The LES and DN S data of Ould-Rouiss et al. (2010) [30]
and Abdi et al. (2019) [72] respectively. The Figure IV.2 compares the predicted profile of the
turbulent axial velocity of a Newtonian fluid at simulation Reynolds number of 5000 with the
DNS data performed by Ould-Rouiss et al. (2010) [30] and the LES of Abdi et al. (2019) [72]
for generalised Reynolds and simulation Reynolds number of 5500 and 4500, respectively. As
seen in Figure [V.2 no significant difference was observed between them, where the turbulent
axial velocity collapsed very well with those of Ould-Rouiss et al. (2010) [30] and Abdi et al.
(2019) [72] over the entire flow region. It should be noted that there is a little minor difference
between numerical predictions (whether LFS or DNS) and the difference in the Reynolds

number and/or numerical methods.

30

O DNS Ould-Rouiss et al.(2010), n=1, N=3, Reg:5500
19  Present DNS , n=1, N=3, Reg=5000
25 4O LESofdbdietal (2019), n=1,N=3, Reg=4000

Figure I'V.2 — Validation.

IV.4.1 Average velocity profiles

The current subsection tends to reveal the effects of the centrifugal force induced by the swirl
driven by the rotating pipe wall on the mean flow pattern of the Ostwald de Waele fluids along
the radial coordinate. As well as to critically evaluate the accuracy and effectiveness of the D /NS
technique to predict and provide more details of axial velocity distributions in the viscous sub-
layer buffer region and logarithmic regions. Via critically analysing and discussing the turbulent

streamwise velocity distributions of the pseudoplastic (n = 0.75), Newtonian (n = 1), and
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dilatant (n = 1.2) fluids over a wide rotation rate range (0 < N < 3) at a simulation Reynolds

number of 5000.

Figure 1V.3 depicts the turbulent axial velocity profiles along the pipe radius (F), scaled
by the friction velocity ([/; = \/7,,/p ) against the distance from the wall in wall units (V).
Furthermore, the dashed lines represent the universal velocity distributions in the viscous sub-
layer (0 < Y™ <5) and the logarithmic layer (30 < Y™ < 200).

As shown in Figure V.3, the axial velocity profile is distributed linearly in the viscous sub-
layer ; this velocity obeys the universal law (/" = ¥ ) in the vicinity of the wall (0 < V= < 5).
The axial velocity of the pseudoplastic and dilatant increases gradually with the wall distance

towards the core region.

It can be seen from Figure IV.3 that the hydrodynamic characteristics of the pseudoplastic
and dilatant fluids are significantly affected by the rheological behaviour of the Ostwald de Waele
fluids along the radial coordinate, especially outside the near-wall region. The flow behaviour
index strongly influences the DN S streamwise velocity profiles of the power-law fluid over the
viscous sub-layer buffer and logarithmic regions. As shown in Figure [V.3, the velocity profile
of pseudoplastic fluid lies above the universal law in the logarithmic region. These notes align
with those of previous studies Rudman (2004) [37], Gnambode et al. (2015) [47], and Gavrilov
and Rudyak (2016) [40]. In contrast, the profile of the dilatant fluid lies down the universal law
in the logarithmic region. It should be noted that the decreased flow behaviour index results
in an enhancement in the turbulent axial velocity profile with the distance from the wall (V')
away from the wall towards the core flow region, where this trend is more pronounced in the

logarithmic region for all rotation rates.

It is interesting to note that this discrepancy is due to the influence of the apparent viscosity
and shear rate of the Ostwald de Waele fluid in this region, as pointed out by Abdi et al. (2019)
[72] : the shear rate of shear-thinning fluid (n» = 0.75) is higher than the dilatant one (n = 1.2)
along the pipe radius, the increase in fluid’s shear rate induces a noticeable increase in the
movement of the fluid layers past each other away from the wall towards the core region with
the wall distance, resulting a pronounced enhancement in the mean axial velocity along the

pipe radius especially in the logarithmic layer and core region (Figure IV.3).
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The predicted DN S profile of the streamwise velocity profile of the Newtonian fluid through
stationary pipe collapses very well with the universal laws of (/" = ¥ ") and (U = 2.5In Y " +

5.5) in the viscous sub-layer and logarithmic regions, respectively.

The streamwise velocity profiles of the pseudoplastic and dilatant seem independent of the
rotation pipe wall effects in the vicinity of the pipe wall; these profiles are almost identical in
the near-wall region and are consistent with each other in the viscous sub-layer (5 < V") due to

the limited effect of the centrifugal forces compared to the viscous force in the near-wall region.

The swirl driven by the rotating pipe wall considerably influences the hydrodynamic charac-
teristics of the pseudoplastic and dilatant fluids outside the near-wall region. The streamwise
velocity distributions depend strongly on the rotating pipe wall along the radial coordinate,
especially at the pipe centre ; the swirl driven by the rotating pipe wall significantly influences
the axial velocity distribution beyond the buffer region with the wall distance (Y ). It should
be noted that this discrepancy is due to the influence of the centrifugal force induced by the
swirl driven by the rotating pipe wall on the shear rate of the pseudoplastic and dilatant fluids
with the wall distance beyond the buffer region (transitional region). This discrepancy is attri-
buted to radially growing centrifugal forces with the wall distance further away from the viscous

sub-layer.

It can be seen from Figure IV.3 that the axial velocity profiles of the rotating pipe differ
significantly from that of the stationary pipe outside the viscous sub-layer with the wall distance
towards the logarithmic region ; the profiles of the rotating pipe lie down that of stationary pipe
in the region (10 < ¥ © < 100) for the pseudoplastic and dilatant. In contrast, the streamwise
velocity profiles of the rotating pipe are somewhat higher than that of the stationary pipe
beyond (Y = 100) ; the pipe wall rotation induces a pronounced decrease in the axial velocity
of the pseudoplastic and dilatant fluids in the buffer region, resulting in a noticeable increase
in the velocity in the core region, this trend is more pronounced as the rotation rate increases.
As the pipe wall rotates, the apparent viscosity of the pseudoplastic and dilatant fluids reduces
significantly in the logarithmic region, as pointed out by Abdi et al. (2019) [72], resulting in
a marked increase in the streamwise velocity profile in the core region. This trend is more

noticeable as the rotation rate increases, known as the laminarisation phenomenon.
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It can be said that the radially growing centrifugal force induced by the swirl driven by the
rotating pipe wall causes a supplemented force to the inertia force, which results in a noticeable
reduction in the apparent fluid viscosity, resulting in a noticeable increase in the streamwise

velocity of pseudoplastic and dilatant in the core region.
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Figure IV.3 — Turbulent axial velocity profiles.
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IV.4.2 Turbulent intensity

The current subsection seeks to highlight the effects of centrifugal force induced by the swirl
driven by the rotating pipe wall and the flow behaviour index of Ostwald de Waele fluid on the
turbulence feature and the generation and transport mechanism of turbulence intensities of the

velocity fluctuation from the wall vicinity towards the core region.

Figure IV.4, Figure IV.5, and Figure IV.6 depict, respectively, the root mean square (RM.S)
distribution of the axial, radial and tangential velocity fluctuations of the pseudoplastic
(n = 0.75), Newtonian (n = 1), and dilatant (n = 0.1.2) fluids, scaled by the friction velocity
U, = \/7u/p along the pipe radius (1?), versus the distance from the wall in wall units (V") at

a simulation’s Reynolds number of 5000 and over a rotation rate range of (0 < N < 3).

Figure V.4 shows that the turbulence intensities of the axial velocity fluctuations profiles
exhibit the same trend along the pipe radius for all studied cases. In Figure V.4, the RM S
of the axial components of the pseudoplastic, Newtonian and dilatant fluids increase gradually
with the wall distance in the viscous sub-layer. The axial turbulence intensities seem more
affected by rotation rate, where these profiles differ significantly beyond the near-wall region.
As shown in Figure V.4, these profiles gradually increase and deviate from each other away
from the near-wall towards the core region; this deviation becomes more distinct with the
distance from the wall (V' ), especially in the buffer region. They drop rapidly and fall to lower
values beyond approximately (Y = 35) for fluids all and rotation rates. This means that axial
velocity fluctuations generated in the near-wall region and transported far away from the pipe

wall to vanish near the pipe centre for all considered cases.

As shown in Figure [V.4 that the axial turbulence intensities profiles of the stationary pipe
lie down those of the rotating pipe wall along the pipe radius for the pseudoplastic and dilatant
fluids, especially in the buffer region ; this trend is evident as the pipe wall rotates. The RN S
profiles reach their peak values, drop rapidly and fall to lower values in the logarithmic region. It
can be said that the swirl caused by the rotating pipe wall results in a noticeable enhancement in
the generation and transport mechanism of turbulence intensities of the axial velocity fluctuation
from the wall vicinity towards the core region for the shear-thinning, Newtonian and shear-

thickening fluids.

Figure I'V.5 shows the turbulence intensities of the radial velocity fluctuations. These profiles

are nearly linear and equal to zero value along the near-wall region (¥ < 3) for the different
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Figure I'V.4 — Intensities of the axial velocity fluctuations.

fluids (0.75, 1 and 1.2) for all rotation rates (0 < NV < 3). It can be said that the 275 of the

radial component is almost independent of the rotation rate and flow behaviour index due to

the absence of the generation of the axial velocity fluctuations in this near-wall region for all

rotation rates.
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The pseudoplastic, Newtonian, and dilatant profiles exhibit a significant enhancement further
away from the wall towards the logarithmic region. In the buffer region (5 < Y™ < 35), these
profiles increase significantly with wall distance for all rotation rates; this increase is related to
the increase in the turbulence generation of the axial velocity fluctuations in the buffer region
for all rotation rates. Beyond (Y~ = 40), in the core region, the radial turbulence intensity
profiles fell rapidly to lower values after reaching their maximum values due to the vanishing of

axial velocity fluctuations.

Figure IV.5 shows that the radial turbulence intensities profiles of the stationary pipe lie
down those of the rotating pipe wall in the viscous sub-layer for the three fluids. This trend is
the same as in the buffer region of the shear-thinning and Newtonian fluids. Even though ; the
rotation rate of dilatant fluid induces a decrease in peak value, the peak value in the stationary
pipe is somewhat higher than the corresponding peak value in the rotating case. In the core
region, they drop rapidly and fall to lower values beyond approximately (V" = 40) for all
behaviour indices and rotation rates. It can be said that the increased rotation rate induces
a pronounced enhancement in the transport mechanism of turbulence intensities of the radial

velocity fluctuation from the axial velocity fluctuation.

Figure IV.6 illustrate the distribution of turbulence intensities of the tangential velocity
fluctuations. These profiles had the same trend over the pipe radius for pseudoplastic, Newtonian
and dilatant fluids and for all rotation rates. The R S profiles of the tangential fluctuations are
almost neglected in the near-wall region ; this is ascribed to the molecular shear stress being the
dominant force compared to the turbulent one in the near-wall region. These profiles gradually
increase and deviate from each other away from the near-wall region with the distance from the
wall (Y"). They drop rapidly and fall to lower values beyond approximately (¥ " = 35) for all

flow behaviour indices and rotation rates.

The turbulence intensities of the tangential velocity fluctuations of the rotating pipe are
consistent with those of the stationary pipe near the wall region. These profiles differ signifi-
cantly from each other with the wall distance towards the buffer region for the shear-thinning,
Newtonian and shear-thickening fluids, where the 2/ S profiles reach the peak, and the rotating
pipe lies above those of the stationary pipe in the buffer region for all fluids. These profiles drop
rapidly and fall to lower values in the core region. It can be said that the increased rotating pipe
wall results in a pronounced reduction in the turbulence intensities of the tangential velocity

fluctuations along the radial coordinates. This means that the increased rotation rate induces
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Figure I'V.5 — Intensities of the radial velocity fluctuations.

a noticeable attenuation in the transport mechanism of turbulence intensities from the axial

velocity fluctuation to the tangential ones of the pseudoplastic and dilatant fluids.
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Figure IV.6 — Intensities of the tangential velocity fluctuations.

IV.5 Conclusion

The present investigation assessed to shed further light on the laminarisation phenomenon

of Ostwald de Waele fluids by examining the effects of the centrifugal force induced by the

swirl driven by the rotating pipe wall on the streamwise velocity distribution along the radial

coordinate and the generation and transport mechanism of the velocity fluctuations between

the different turbulent layers. Moreover, the present investigation seeks also to ascertain the
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accuracy and reliability of the DN S laboratory code predicted results and to evaluate the
reliability of the D/N .S approach to predict the main flow quantities and turbulence statistics of
Ostwald de Waele fluid. The current study focused on the numerical analysis of a fully developed
turbulent flow of pseudoplastic (7 = 0.75) and dilatant (n = 1.2) fluids through an isothermal
axially rotating pipe using the direct numerical simulation (DN S) at simulation Reynolds
number Re, = 5000 over a rotation rate range of (0 < N < 3). The finite difference scheme
performed the numerical integration, second-order accuracy in space and time with a numerical
resolution of (129 x 129 x 193) gridpoints in axial, radial and circumferential directions. The
governing equations were discretised on a staggered grid using cylindrical coordinates with a

computational domain length of 207 in the axial direction.

The major conclusions of this research will be summarised :

o The swirl driven by the rotating pipe wall considerably influenced the hydrodynamic
characteristics of the pseudoplastic and dilatant fluids outside the near-wall region. The
streamwise velocity distributions depend strongly on the rotating pipe wall along the
radial coordinate, especially at the pipe centre ; the swirl driven by the rotating pipe wall
significantly influenced the axial velocity distribution beyond the buffer region with the
wall distance (Y 7). The radially growing centrifugal force induced by the swirl driven by
the rotating pipe wall caused a supplemented force to the inertia force, which resulted
in a noticeable reduction in the apparent fluid viscosity and a noticeable increase in the

streamwise velocity of pseudoplastic and dilatant in the core region.

o The radially growing centrifugal force resulted in a noticeable enhancement in the gene-
ration and transport mechanism of turbulence intensities of the axial velocity fluctuation
from the wall vicinity towards the core region, and this trend was more pronounced as the
rotation rate increased. The increased rotation rate also enhanced the transport mecha-
nism of turbulence intensities of the radial velocity fluctuation from the axial velocity fluc-
tuation. Moreover, the tangential turbulence intensities exhibited an obvious attenuation
in the transport mechanism of turbulence intensities from the axial velocity fluctuation

with increasing rotation rate for the pseudoplastic and dilatant fluids.
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ABSTRACT

he present study aims to shed further light on the laminarisation phenomena of the Ost-
T wald de Waele fluid by critically examining the effects of the centrifugal force induced by
the swirl driven by the rotating pipe wall on rheological, hydrodynamic and thermal quantities,
in addition to the turbulence characteristics. This study concerns a fully developed turbulent
flow of thermally independent pseudoplastic (7 = 0.75) and dilatant (n = 1.25) fluids through
a heated axially cylindrical pipe, using a large eddy simulation (L/S) approach with an ex-
tended Smagorinsky model. This investigation is conducted over a wide range of rotation rates
(0 < N < 3) at a simulation Reynolds number (Re,) of 4500 and a simulation Prandtl number
(Pry) of 1. Computations were based on a finite difference scheme, second-order accurate in
space and time, with a numeric resolution of 65° gridpoints in axial, radial and circumferential
directions, respectively, with a domain length of 207 in the axial direction. Uniform heat flux
(qu) was imposed on the wall as a thermal boundary condition. The emerging results suggest
that the centrifugal force induced by the swirl driven by the rotating pipe wall causes a pro-
nounced decrease in the shear rate profile of the pseudoplastic and dilatant fluids along the pipe
radius, resulting in a marked increase in the axial velocity profile in the logarithmic region ; this
trend is more pronounced as the rotation rate increases. The swirl driven by the rotating pipe
wall results in an apparent attenuation in the generation and transport mechanism of turbu-
lence intensities of the axial velocity fluctuation from the wall vicinity towards the core region
for both flow behaviour indices, resulting in a pronounced attenuation in the turbulent kinetic
energy further away from the pipe wall with the wall distance ; this trend is more pronounced
as the rotation rate increases.
Keywords : LES, extended Smagorinsky, fully developed, turbulent flow, pseudoplastic, dila-

tant.
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V.1 Introduction

he turbulence state of a fluid is one of the most challenging problems in fluid dynamics
T due to its importance in mechanical and engineering fields. It is often encountered in
engineering applications such as heat exchangers, gas-cooled nuclear reactors and gas turbines,
drilling hydraulics, sewage transport, nuclear reactors, and applications involving relatively
high heat transfer rates. Swirl flow is crucial for many real-world mechanical and engineering
applications and has a significant theoretical interest. The flow through rotating pipes is of
great practical interest because of the various industrial applications and is often encountered

in various furnaces and combustors, as well as in rotating machinery.

Several computational and experimental experiments have been carried out in recent years to
understand the laminarisation phenomenon better and examine the impact of the rotating pipe
wall on the mean flow characteristics and turbulence statistics. It is shown that the turbulent
and hydrodynamic properties are influenced by the interaction between turbulence and the
centrifugal force caused by the swirl. A body force that stabilises or destabilises the turbulence
may also be inferred from the swirl produced by a rotating pipe wall’s impact on the flow field

and the practical significance of turbulent flows.

The effects of the swirl driven by a rotating pipe wall on flow characteristics and turbulent
features for Newtonian fluids have been studied experimentally or numerically by [13], [14], [15],
[16], [17]. The research Eggels et al. (1994) [16] performed one of the most important experi-
mental and numerical analyses and discussions on turbulent pipe flow. Their findings suggest
that the centrifugal force induced by the rotating pipe wall results in a pronounced attenuation
of the normal wall and axial velocity fluctuation along the radial coordinates according to the
Taylor-Proudman theorem because a rotating flow tends to become 20 in its plane of rotation.

In addition, the attenuation of the shear stress also leads to a reduction of the friction factor.

Non-Newtonian fluids play a vital role in mechanical, technical applications and engineering
fields nowadays, as well as in petroleum, cement, pharmaceutical, polymer and food processing,
and an extensive range of applications. According to the last literature survey, non-Newtonian
fluids through axial pipes have attracted much attention recently. These investigations focused
on studying the rheological and hydrodynamic behaviours of this type of fluids either experi-
mentally [32], [33], [34], [48], [49], [35], [23], [37], [39], [47], [40], [42].



V.1. Introduction 102

The research of Metzner and co-workers (1955—1959) [32], [33], [34] remains to understand the
rheological and hydrodynamic behaviour and flow of non-Newtonian fluids through a smooth
pipe, they predicted the turbulent velocity profiles of non-Newtonian fluids, and they also
derived a correlation for friction factor as a function of the generalised Reynolds number. On
the other hand, Pinho and Whitelaw (1990) [35] carried out an experimental study of power-
law (shear-thinning) fluids in a cylindrical pipe, measuring the axial velocity and the three
normal stresses with four different concentrations chosen of a polymer (Sodium Carboxymethyl
Cellulose) in an aqueous solution and with water in a range of Reynolds numbers from 240 to

111000.

Malin (1997) [23] employed a modified version of the Lam-Bremhorst /& —¢ in his numerical in-
vestigation of Bingham, Ostwald de Waele, and Herschel-Bulkley fluids for different generalised

Reynolds numbers, with various values of the power-law index (7).

Rudman et al. (2004) [37] applied a direct numerical simulation to pseudoplastic fluids over a
wide range of flow behaviour indexes (n) 0.5, 0.69, 0.75, and Herschel-Bulkley (7 = 0.52) fluids
has undertaken different generalised Reynolds number through a pipe using a spectral element-
Fourier method. Rudman et al. (2004) [37] mentioned that the decrease of the flow behaviour
index () induces a reduction in the friction factor, and their predicted friction factors are

10 — 15% higher than the Dodge and Metzner correlations [34].

The convective heat transfer in swirling flows is often encountered in chemical and mechanical
mixing and separation devices, electrical and turbo-machinery, combustion chambers, pollution
control devices, swirl nozzles, rocketry, and fusion reactors. The utilisation of heat transfer with
the turbulent swirling flow has often appeared in many mechanical and chemical engineering
fields ; inlet part of fluid machinery, enhancement of mixing and chemical reaction in the com-
bustion chamber. Some experimental and numerical literature works focused on the effects of
the rotation rate on the fluid flowing inside the heated axially rotating pipe experimentally or

numerically [21], [22], [36], [24], [26], [27], [28].

Satake and Kunugi [28] applied a direct numerical simulation for fully developed turbulent
flow and heat transfer in axially rotating flow. The results show that the turbulent drag decreases
with the rotating ratio increase; the reason for this drag reduction can be considered as the
additional rotational production terms that appear in the azimuthal turbulence component.

The DN S and LFES techniques of the fully developed forced convection heat transfer for airflow
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through a heated axially rotating pipe were performed in 2010 by Ould-Rouiss et al. [30]. The
rise in temperature variations toward the core of the pipe as the pipe rotates shows a clear
tendency to increase the turbulence intensity of temperature fluctuations in the core flow zone.
Additionally, as the spinning pipe diameter rises, the centrifugal force caused by the revolving
pipe wall causes a noticeable decrease in the axial turbulent heat flow and an increase in the

azimuthal heat flux.

The fully developed turbulent flow of non-Newtonian fluids through a smooth axial pipe is
a problem of considerable significance and has received much attention in the past; the litera-
ture contains several well-documented experimental and numerical investigations. These studies
have given special consideration to describing this kind of fluid’s rheological and hydrodynamic
behaviour by revealing the effects of various rheological parameters on flow patterns and the

turbulence features in such problems [35], [38], [39], [40].

Gnambode et al. (2015) [47] carried out a LFE S with an extended Smagorinsky model to study
the turbulent flow of shear-thinning and thickening fluids through a pipe at various behaviour
index (0.5 < n < 1.4) and Reynolds numbers (4000, 8000 and 12000) and their effects on the
rheological and turbulence characteristics. The results show that the decrease in the flow index
results in a rise in axial and mean velocity profiles in the logarithmic region due to the higher
viscosity in the pipe centre. Indeed, the same remark is noted for the apparent viscosity in
this region and the importance of increasing the flow behaviour index. On the contrary, the
apparent viscosity of the power-law fluids decreases along the centre region. Moreover, reducing
the friction factor with the flow behaviour index leads to a noticeable enhancement in the

Reynolds number for both shear-thinning and shear-thickening fluids.

Recently, Abdi et al. (2019) [50] studied the forced convection of a fully developed turbulent
flow of the pseudoplastic (n = 0.75) and Newtonian fluids through a heated axially rotating
pipe using LFS with an extended Smagorinsky model. The simulation Reynolds number and
Prandtl number were assumed to be Re, = 4000 and Pr, = 1, respectively, with rotation rate
(V) ranging from 0 to 3. This investigation aimed to explore the effects of the flow behaviour
index of the shear-thinning fluids on the rheological properties, particularly the viscosity and
shear rate of fluids. The results show that the decrease in the kinetic energy of turbulent
fluctuations and the turbulent Reynolds shear stress of the axial-radial velocity fluctuations is
due to the reduction in the M S of the axial velocity fluctuations in the case of a rotating pipe.

On the other hand, the turbulence intensities of the radial and tangential velocity fluctuations
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marked enhancement in the rotating pipe wall. This trend is more evident as the rotation rate
increases. In addition, the rotating pipe wall cause a significant decrease in the temperature
distribution along the radial coordinates, and this trend is more pronounced when the rotation

rate increases.

More recently, Abdi and co-workers (2023) [55] offered an extensive investigations of the tur-
bulent flow of non-Newtonian fluids using the L ES approach ; these investigations provided an
important opportunity to advance the understanding of the rheological behaviour heat transfer
mechanism on the non-Newtonian. Abdi and co-workers (2023) [55] employed the LES with an
extended Smagorinsky model to investigate numerically the fully developed turbulent flow of
Ostwald de Waele fluid through a straight cylindrical pipe with a length of the domain of 207
in the axial direction and a numerical resolution of 65°gridpoints in the axial, radial, and cir-
cumferential directions. Their predicted findings results were in excellent agreement with those

of experimental and DN S data available in the literature.

In recent decades, increasing attention and no study has been carried out on the turbulent
flows of non-Newtonian fluids with related heat transfers through rotating cylindrical pipes.
The current research aims to investigate the effects of turbulent and thermal properties. Toward
this end, a large eddy simulation (L /5) with a standard dynamic model was devoted to a fully
developed turbulent flow of shear-thinning (7 = 0.75) and shear-thickening (n = 1.25) fluids
through a heated axially rotating pipe. This study was performed at a simulation’s Reynolds
and Prandtl numbers of 4500 and 1, respectively. The present investigation set out to reveal
the effects of swirl driven by the rotating pipe wall on the turbulent and thermal statistics and

to ascertain the accuracy and reliability of the LFES predicted results of our code.

V.2 Problem Description

The present study focuses on the numerical investigation of a fully developed turbulent flow
forced convection of non-thermo-dependent pseudoplastic (7 = 0.75), dilatant (n = 1.25) , and
Newtonian (n = 1) fluids through a heated axially rotating cylindrical pipe over a rotation rate
range of (0 < /V < 3) at simulation’s Reynolds and Prandtl numbers of 4500 and 1, respectively.
The pipe wall is subjected to constant uniform heat flux (¢,,) , where the computational domain

length was chosen to be 20R in the streamwise direction.
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V.3 Mathematical Formulation

The conservation of mass and momentum equations govern the thermal flow of a non-

Newtonian fluid are presented and written in dimension and dimensionless form as :

Continuity equation :

(9’11[*
=0 V.1
Ox; (V1)
Momentum equation :
ou;*  O(ui*u;™) , 1 Op* 0 ou;*  Ouj*
- _— 2eiiliuty = ——— : : - V.2
ot* - ox;* + 2Cigkt Lk p Ox;* N ox;* g Oz j* N ox;* (V:2)

The notation with (%) refers to dimensional quantities. The kinematic viscosity is determined

from the Ostwald de Waele model defined by :

n=K5y"tand v =n/p (V.3)

The filtered continuity V.1 and filtered momentum V.2 equations governing 3 /) incompressible
Non-Newtonian fluid are written in a cylindrical coordinate system and are made dimensionless
using the centreline axial velocity of the analytical fully developed laminar profile (Ur; =

(3n+1).U/(n+ 1)) as a reference velocity where (U;) is the average velocity, the pipe radius

(R) as a reference length.

= — = — Z = — “l

r= Y=g and 7 (V.4)
U

u = V.5

U 0, (V.5)
p*

p= V.6

/)U(:L ( )



V.8. Mathematical Formulation 106

t* R U.r
t = — where f., = , = —A"
ten o U(:L , R :

(V.7)

By introducing the dimensionless quantities defined above into equations V.1 and V.2, it be-

comes :
(‘)/Il,i
05, 0 (V.8)
Ouj  O(uiuj) R Op 1 0 |.,_1[0u Ou;
et} 2eiik UL = AT V.9
ot - ox; “ijk Ucr, e ox; - Res Ox; | Ox; - ox; (V-9)

Where N, = 20;R/Uc; is defined as the rotation rate, and (2; is the rotational velocity of

the pipe wall. Re; is the Reynolds number of the simulations and is defined as :

U(’ 2771Rn
Re, = ”L? (V.10)

Where 7, 5, are the shear rate and the strain rate respectively,

’-y’ = 252"57']' (V.ll)

Equations V.8 and V.9 are filtered using a generic spatial average filter on a cylindrical control

volume :

1
q(r.0,z) = AT AOAS ﬂfq(r’,Ql,zl)r’Ar’A@/Az’ (V.12)
Ay -

The filtered equations are written as :

o
=0 V.13
@L(fj ( )
du;  Ouu QR op 1 0 |——(0u; 0uj oTy; | 07
L . 251 Ly = — An—1 J J | J V14
ot ox; + gk Ucr, Uk ox; * Reg 0x; | Ox; + o0x; ox; ox; ( )

Where 7,; = ¢:q; — ¢;q; is the sub-grid stress tensor and 7;; = ﬂ'/”*lg—;]; - %,571(0)% is the
additional sub-grid stress tensor for a non-Newtonian fluid. The above dimensionless equations
V.10, V.11 and V.12 are written in cylindrical coordinate system are written with the following

change of variables

Qr =T0r, Qg =TVg, Gz =z (V.15)
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This change of variables V.16, taken from the work of Verzicco and Orlandi (1996) [9], was
chosen to avoid the singularity on the axis of the pipe ( = 0). Explaining equations V.14 and

V.15 in terms of the variables ¢,, ¢y and ¢., it obtains :

dQT ()q9 . ()qZ _ 0 (V, 16)

or * 00 o 0z

Dt _02+Res rdr ryn ! dr +r2d0 d@ - 2\ dz *
10, 10T, 0I.] 107, 107%. 0%
rar () + 2 ()] -

(V.17)

r or 12 00 0z

Dgq, 8/’ 1 [0 0q. - dr - 2 704y
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,
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. 19 (10 _ ) Lo ( ()qr ﬂ 9 (()Tr,> e e O
200\ a0 ") oz \7 or \ r 90 0z | 12
(V.18)
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or \ r r2 00 0z r
The energy equation as well as the thermal boundary conditions of the non-Newtonian fluid
flow with heat transfer, this energy equation in tensor form in cylindrical coordinates, is written :
or  oT vl oT O°T 10T | 10*T  0°T

or 9 or _ . |oT Lot o V.20
o s T T e T Y e Trar T e T 92 (V-20)

Where « is the thermal diffusivity of the fluid is considered constant and independent of shear
and temperature. This is because variations in thermal diffusivity with temperature or shear

rate are small compared to those of viscosity.

A heat flux density is imposed on the wall. This heat flux density condition requires that the

wall temperature averaged in the azimuthal direction (¢) increases linearly in the flow direction

(2)-

The energy Equation V.20 of the non-Newtonian fluid is made dimensionless using the refe-

rence temperature, 7,.; = ¢,,/pC,Ucy, . The dimensionless temperature is defined as :

O = (T () = T (6,7.2,1))/Tre (V.21)
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T..s presents the reference temperature and is defined as 7).y = q.,/pC,Ucr , where T, is
the pipe wall temperature and (7, (2)) is an average in time and periodic directions. Uc, is
the centreline axial velocity of the analytical fully developed laminar profile and defined as

Ucp=@Bn+1).Uy/(n+1).

Using the definition of temperature (given by Equation V.21), the dimensionless form of the

energy equation is as follows :

0 10 10 0 o (Tp 1
2 (4:0) + == (990) + ~ (¢:0) — gz -
ot T rar IO T 5p @0+ 5, (4:0) ~ap (Tf> Re,Pr, -~
10(@);@?%@?@ |
ror \ Or r2 962 022
By filtering Equation V.22, the filtered energy equation is written :
00 10 /- 10 /_ - O~ _0(Tp 1
— +—-——(¢© —— (®© — (:0) — @z — =
ot N r or (q ) + r 06 <q0 ) - 0z (q” ) 1 0z (Tm/) Re,Pry (v.23)
10 ((06) 1%  0°0) 10f, 19Tes 10% N
ror \ Or r2 002 022 r Or r or r Or
Where the sub-grid terms or sub-grid heat fluxes are defined by :
7o =40 — 30,790 = 49O — O, 7.0 = ¢:0 — 7.0 (V.24)
The simulation Prandtl number is given by :
K
Prg = (V.25)

apRnfl UCLlffL

With K the consistency at temperature (7p). In Equation V.23, the tensors 7,0, 9o and T.o

are the sub-grid heat flux tensors.
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The details of equations is mentioned in [72] and [73].

V.4 Results and Discussion

V.4.1 Rheological and Hydrodynamic Behaviours of Ostwald De Waele Fluid

The accuracy and reliability of the predicted results and the reliability and accuracy of the
LFES code laboratory have been ascertained and confirmed decisively by comparing the current
prediction findings to those found in the literature. The results of the fully developed turbulent
flow of shear-thinning and Newtonian fluid across stationary and rotating pipes have been com-
pared reasonably well with those of the experimental and DN S data available in the literature

Figure V.2 and Figure V.3.

Figure V.2a compares the turbulent axial velocity profiles of the shear-thinning (n = 0.75)
fluid through a stationary (N = 0) with LES of Abdi et al. (2019) [50] at the simulation
Reynolds number of 4000, DN S and experimental data of Rudman et al. (2004) [37] for a gene-
ralised Reynolds number and Reynolds of Metzner and Reed of 7027 and 3935, respectively. As
shown in Figure V.2a , the predicted turbulent axial velocity profiles are in excellent agreement
with those of Abdi et al. (2019) [50] and Rudman et al. (2004) [37] over the pipe radius. It
can be seen from Figure V.2a that no significant differences were found between the predicted
profile and those of Abdi et al. (2019) [50] and Rudman et al. (2004) [37]; these profiles are

consistent very well with the compared results over the three layers.

Figure V.2b reasonably compares the turbulent axial velocity profiles of the Newtonian
(n = 1) fluid through an axially rotating pipe (N = 1 and N = 3) with the LES of Abdi
et al. (2019) [50] at the simulation Reynolds number of 4000, experimental of Eggels (1994)
[16], DN S of Redjem et al. (2007) [29] and DN S of Ould-Rouiss et al. (2010) [30] at Reynolds
number equals to 5500. It can be seen in Figure V.2b that there is no noteworthy discrepancy
between the present streamwise velocity profile and those of the literature. The predicted ve-
locity distribution of the Newtonian profiles is in excellent agreement with the universal linear
law (/" = Y ") and universal logarithmic law (/" = 2.5InY " +5.5) over the viscous sub-layer
and logarithmic layer, respectively. It should be noted that there is a little minor difference bet-
ween numerical predictions (whether L/S or DN S) and the difference in the Reynolds number

and/or numerical methods.
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Figure V.2 — Validation of turbulent Axial velocity profiles.

Figure V.3 compares the mean axial velocity distribution of the Newtonian fluid with the
rotation rate of 0, 1 and 3, with those of Abdi et al. (2019) [50] at the simulation Reynolds
number of 4000, experimental data of Reich and Beer (1988) [20] at Reynolds number of 5000,
and DN S data of Ould-Rouiss et al. (2010) [30] at a Reynolds number of 5500. As shown
in Figure V.3, there is a good agreement between the predicted velocity profiles and those of
the literature over the entire pipe radius with a little difference. It should be noted here that
this marked discrepancy may be due to the difference in the Reynolds number value and the

numerical solution procedure.

Figure V.4 compares the normalised root mean square (/71/S) of the axial, radial and tan-
gential velocity fluctuations of the shear-thinning (n = 0.75) and Newtonian fluids along the
pipe radius for the stationary pipe. These profiles have been compared reasonably with the
LES of Abdi et al. (2019) [50] at the simulation Reynolds number of 4000 and the DN S of
Redjem et al. (2007) [29] at a Reynolds number equal to 5500.

As shown in Figure V.4a, the predicted RN S profiles of the shear-thinning are in excellent
agreement with those of Abdi et al. (2019) [50] along the pipe radius. It can be seen from Figure
V.4b that a reasonable agreement between the Newtonian predicted axial, tangential velocity

fluctuations and those of Abdi et al. (2019) [50] and the DN S of Redjem et al. (2007) [29]
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Figure V.3 — Validation of mean axial velocity profiles.

along the pipe radius. As shown in V.4b, a little difference is observed between the predicted
profiles of the radial and tangential velocity fluctuations and those of the DN S of Redjem et
al. (2007) [29] in the core flow region ; this marked discrepancy may be due to the difference in

the Reynolds number value and the numerical solution procedure.
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V.4.1.1 Shear rate and apparent viscosity

The present subsection aims to shed light on the effects of the swirl driven by a rotating
pipe wall and the flow behaviour index on the rheological behaviour of the pseudoplastic and
dilatant fluids. The following paragraphs analyse and discuss various rheological properties,

such as apparent fluid viscosity and shear rate.

Figure V.5 illustrates the normalised shear rate and apparent viscosity distributions of the
pseudoplastic (n = 0.75), Newtonian (n = 1), and dilatant (n = 1.25) fluids along the pipe
radius (/7) at a simulation Reynolds (Re.) number equals to 4500 and over a rotation rate
range of (0 < N < 3). It can be seen from Figure V.5 that the shear rate is nearly linear
and remains constant along the viscous sub-layer (0 < Y= < 5), for all rotation rates and flow
behaviour indices. The shear rate profiles begin to decrease gradually with the distance from the
wall far away from the near-wall region towards the logarithmic region, where this reduction is
sharped in the buffer region (5 < V" < 30), for all cases. As shown in Figure V.5, the rotating
pipe wall affects significantly the shear rate distributions of both fluids in the viscous sub-layer
(0 < Y™ < 5), the shear rate profiles of non-rotating pipe lie above those of rotating one along
the pipe radius. It can be said that the increased rotation rate (/V) induces a pronounced increase
in the shear rate for dilatant fluids. As shown in Figure V.5, the effect of the flow behaviour

index on the shear rate is more significant in the near-wall region, where the shear-thinning
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profiles lie above those of the shear-thickening along the near-wall region, for all rotation rates.
It can be said that the decreased flow behaviour index results in a marked increase in the shear

rate distributions over the vicinity of the pipe wall.
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Figure V.5 — Shear rate profiles.

Figure V.6 presents the distribution of the apparent viscosity of the shear-thinning (1 = 0.75),
Newtonian (n = 1) and shear-thickening (n = 1.25) fluids. It is apparent that in Figure V.6
the apparent viscosity profiles of the shear-thinning, shear-thickening, and Newtonian fluids are
linear and equal to the apparent viscosity in the near-wall region for all rotation rates. Beyond
the buffer region (¥ " > 5),the apparent viscosity profiles begin to increase gradually far away
from the pipe wall towards the core flow region with the distance from the wall (V' "), where
the shear-thinning fluid becomes more viscous in the buffer (5 < V" < 30) and logarithmic

(30 <Y <200) regions.

The apparent viscosity of the shear-thickening fluid lies above the Newtonian fluid near the
pipe wall. For the dilatant fluid, the apparent viscosity drops gradually with the distance from
the wall far away from the near-wall region towards the logarithmic region for all rotation rates.
As shown in Figure V.6, the rotation rate significantly affects the apparent viscosity over the
three regions (sub-layer, buffer, and logarithmic), where this effect is more pronounced near the

pipe wall. The apparent viscosity profiles of the rotating pipe lie down that of the stationary one
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along the pipe radius. The apparent viscosity of shear-thickening reduces significantly when the
pipe wall rotates. This decrease in the viscosity is more obvious as the rotation rate increases,

especially in the sub-layer.

For the pseudoplastic fluid, the apparent viscosity seems independent of the rotation rate in
the near-wall region. The viscosity profiles are identical and equal to the apparent viscosity at
the pipe wall (7),,) over the viscous sub-layer (0 < Y " < 5), for all rotation rates. The apparent
viscosity profiles are consistent with each other in the vicinity of the pipe wall, where it is
apparent that no significant noteworthy differences were found between them over the sub-layer
and buffer regions. As shown in Figure V.6, the apparent viscosity profiles begin to deviate
from each other only beyond (V" = 35) towards the core region ; this deviation becomes more
distinct with the distance from the wall (Y ), especially in the logarithmic region. As shown in
Figure V.6, the shear rate decreases gradually with the wall distance far away from the pipe wall
towards the core region ; this reduction results in a gradual increase in the apparent viscosity
of the pseudoplastic fluid beyond the sub-layer region where the pseudoplastic fluid tends to
behave like a solid when approaching to the pipe centre. On the contrary, the decreased shear
rate far away from the vicinity of the wall induces a marked decrease in the apparent viscosity
of the dilatant fluid with the wall distance towards the logarithmic region.

The apparent viscosity profiles of the rotating pipe lie down that of the stationary one along
the logarithmic region, where this trend is more pronounced as the rotation rate increases.
The increased rotation rate results in a marked reduction in the apparent fluid viscosity of the

pseudoplastic in the logarithmic region.

The Figure V.7 presents the distribution of apparent fluid viscosity normalised by viscosity
at the wall (7),,), against the shear rate scaled by the shear rate at the pipe wall (5,,). As seen
in Figure V.7, the apparent viscosity of the Newtonian fluid is constant linear and equal to
the apparent viscosity along the pipe radius, which means the Newtonian apparent viscosity is

independent of the shear flow rate.

The apparent viscosity of the shear-thinning and shear-thickening fluids is not constant,
which is a function of the shear rate, where the apparent viscosity varies with the shear rate
along the pipe radius. As shown in Figure V.7, the apparent viscosity of the pseudoplastic fluid
decreases gradually with the shear rate; the apparent viscosity of the pseudoplastic fluid is
inversely proportional to the shear rate : as the shear rate increases as the apparent viscosity

decreases considerably for all rotation rates. It should also be noted that this finding confirms the
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Figure V.6 — Apparent viscosity profiles.

association between the apparent fluid viscosity and the shear rate of the power-law fluids where
7 = 4"~ '. On the contrary, the apparent viscosity of the dilatant fluid increases gradually
with the shear rate, and the apparent viscosity of the dilatant fluid is directly proportional
to the shear rate : as the shear rate increases the apparent viscosity increases significantly for
all rotation rates. It should also be noted that this finding confirms the association between
the apparent fluid viscosity and the shear rate of the pseudoplastic and dilatant fluids where

n =Ky L

V.4.1.2 Average velocity profiles

The present subsection aims to shed further light on the laminarisation phenomena of the
power-law fluid, that by critically examining the effects of the centrifugal force induced by
the swirl driven by the rotating pipe wall in addition to the effects of flow behaviour index
on hydrodynamic and the turbulence characteristics, especially in the vicinity of the wall. Via
analysing and discussing the effects of the rotation rate (/V) and flow behaviour index (7) on
the distribution of the turbulent axial velocity, mean axial velocity, and tangential velocity of
the pseudoplastic (n = 0.75), Newtonian (n = 1), and dilatant (n = 1.25) fluids at a simulation

Reynolds number of over a rotation rate range of (0 < N < 3).
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Figure V.7 — Apparent viscosity against the shear rate profiles.

Figure V.8, illustrates the turbulent axial velocity profiles along the pipe radius , scaled by
the friction velocity (I/, = \/7.,/p ) against the distance from the wall in wall units (V" *). The
dashed lines represent the universal velocity distributions in the viscous sub-layer (0 < V" < 5)

and the logarithmic layer (30 < Y < 200).

The turbulent axial velocity strongly depends on the flow behaviour index and the rotation
rate along the pipe radius. The velocity profile of the pseudoplastic and dilatant fluids exhibits
a gradual increase with the wall distance far away from the pipe wall towards the core region.
This increase is more evident in the logarithmic region for all rotation rates.

As illustrated in Figure V.8, the turbulent streamwise velocity seems independent of the
flow behaviour index and rotation rate in the near-wall region; the velocity profiles of the
pseudoplastic, Newtonian, and dilatant fluids are consistent with each other in the viscous sub-
layer (0 < Y " < 5). Moreover, these profiles collapse very well with the universal law (/' © = V')
in the vicinity of the wall (0 < V" < 5), denoting a linear axial velocity distribution over the
viscous sub-layer.

Beyond (V" = 10), the velocity profiles begin to deviate from others with the wall distance
(V") far away from the near-wall region towards the core region. This deviation becomes more
obvious in the logarithmic region for all rotation rates. The turbulent mean axial velocity profile

of the Newtonian fluid collapses totally with the universal logarithmic law /" = 2.5[nY " +
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5.5 in the logarithmic layer. In contrast, the turbulent axial velocity profiles of pseudoplastic
and dilatant fluids are somewhat larger than the Newtonian fluid and lie above the universal

logarithmic law.

As shown in Figure V.8, the effects of the centrifugal force induced by the swirl driven by the
rotating pipe wall on the axial velocity distributions of pseudoplastic and dilatant fluids become
more significant with the wall distance outer the buffer region, the profiles of the rotating pipe
begin to deviate slightly from those of the stationary pipe, and this trend is more pronounced
in the logarithmic region.

When the pipe rotates, the axial velocity profile of the dilatant fluid increases gradually in the
logarithmic region, which is more noticeable as the rotation rate (/V) increases. It can be said
that the centrifugal force induced by the swirl-driven results in a marked increase in the axial
velocity profile in the core region, where which is known as the laminarisation phenomenon.

It should be mentioned that the centrifugal force induced by the swirl driven by the rotating
pipe wall induces a pronounced decrease in the shear rate profile of the pseudoplastic and
dilatant fluids along the pipe radius, resulting in a marked increase in the axial velocity profile

in the logarithmic region, this trend is more pronounced as the rotation rate increases.

Figure V.9, presents the streamwise velocity profiles along the pipe radius of the pseudoplastic
and dilatant fluids, in addition to the analytical velocity profile in the laminar regime for
both fluids scaled by the analytical laminar centreline velocity (Ucy = (3n+ 1)U,/ (n+ 1)),
against the distance from the wall, normalised by the pipe radius (/?). It is evident that the
predicted velocity profiles of the pseudoplastic and dilatant fluids are similar to the laminar
profile, where a parabolic shape characterises these profiles ; the velocity profile in the laminar

flow is pronouncedly higher than the others in the turbulent flow.

As shown in Figure V.9, the effects of the flow behaviour index on the mean axial velocity
distributions are more marked along the pipe radius. The profiles of pseudoplastic lie above
those of Newtonian and dilatant fluids over the three regions (sub-layer, buffer, and logarithmic),
especially in the core region. The decreased flow behaviour index results in a pronounced increase
in the axial velocity profile for all rotation rates. It should be noted that the increased flow
behaviour index induces an apparent decrease in the shear rate along the pipe radius, resulting
in a marked increase in the mean axial velocity profile in the core region.

As discussed above, the effects of the rotating pipe wall on the velocity distribution are

pronounced along the pipe radius; the velocity profiles of the rotating pipe are located above
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Figure V.8 — Turbulent axial velocity profiles.

the corresponding stationary pipe, where this trend is more pronounced as the rotating pipe wall

rotates. The axial velocity profile of the pseudoplastic and dilatant fluids increases significantly

as the pipe wall rotates for all flow behaviour indices. The increased axial velocity is due to the

decrease in the shear rate caused by the swirl driven by the rotating pipe wall.

Figure V.10, shows the tangential velocity distribution scaled by the rotation velocity at the

wall, against the distance from the wall, normalised by the pipe radius (7?). It can be seen from
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Figure V.9 — Mean axial velocity profiles.

Figure V.10, that the mean circumferential velocity has a parabolic profile shape, the profiles of

the pseudoplastic and Newtonian fluids are almost identical along the radial coordinate for all

rotation rates, with a little discrepancy between them. As shown in Figure V.10, the tangential

velocity distributions of the dilatant fluid seem more affected by the rotation rate along the

pipe radius, and these profiles appear more curved as the rotation rate increases. It can be said

that the centrifugal force induced by the swirl driven by the rotating pipe wall leads to a curve

of the tangential velocity distributions along the pipe radius. This trend is more noticeable as
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Figure V.10 — Tangential velocity profiles.

V.4.1.3 Turbulent intensity

The present subsection aims to explore the effects of the centrifugal force induced by the
swirl driven by the rotating pipe wall in addition to the effects of the flow behaviour index of
pseudoplastic and dilatant fluids on the turbulence feature and the generation and transport
mechanism of turbulence intensities of the velocity fluctuation from the wall vicinity towards
the core region. The current subsection analyses and discusses the effects of the rotation rate
and flow behaviour index on the main turbulence statistics, such as turbulence intensities of

the velocity fluctuations, turbulent kinetic energy and the Reynolds stress.

The Figure V.11, Figure V.12 and Figure V.13 depict the root mean square (RMS) distri-
bution of the axial, radial and tangential velocity fluctuations, respectively, of pseudoplastic
(n = 0.75) and dilatant (n = 1.25) fluids, scaled by the friction velocity U, = /7,,/p along the
pipe radius (1), versus the distance from the wall in wall units (V") at a simulation’s Reynolds

number of and over a rotation rate range of (0 < N < 3).

As shown in Figure V.11, the distribution of turbulence intensities of the axial velocity fluc-
tuations of the pseudoplastic and dilatant fluids exhibit a similar trend along the pipe radius; a

clear oscillating trend is observed over the radial direction of these profiles. The R\ S profiles



V.4. Results and Discussion 121

increase gradually with the wall distance (Y ") far from the pipe wall towards the core region
for all considered cases. This means the axial velocity fluctuations are generated in the near
wall region and transported from the viscous sub-layer towards the core region. At a large wall
distance, RN S of the axial velocity fluctuations of the pseudoplastic and dilatant fluids begin
to drop rapidly and fall off to lower values in the buffer (5 < V" < 30) region for all rotation
rates ; this means that the axial fluctuations become to vanish gradually in this flow region.

It can be said here that the M S of the axial component is almost independent of the flow
behaviour index and the rotation rate (/V) in the near-wall region. The RN S of the axial
components of the pseudoplastic and dilatant fluids are almost identical in the vicinity of the
wall ; they are consistent up to approximately (Y~ = 7) for all rotation rates. As seen in Figure
V.11, the turbulence intensities profiles of the axial velocity fluctuations begin to deviate from
each other further away from the wall towards the core region ; this deviation becomes more
distinct with the distance from the wall (V' 7), especially in the buffer region. The 21/ S profiles
of the pseudoplastic fluid are larger than the dilatant one along the pipe radius for all rotation
rates. It can be said that the decreased flow behaviour index results in a pronounced decrease

in the R\ S of the axial velocity fluctuations beyond the buffer region (5 < Y < 30).

On the other hand, the R\ S profiles of the axial velocity fluctuations seem strongly affected
by the rotation rate along the pipe radius for the pseudoplastic and dilatant fluids. The RA S
profiles of the rotating pipe are consistent with those of the stationary pipe near the wall region.
These profiles differ significantly from each other with the wall distance towards the buffer region
for the pseudoplastic and dilatant fluids, where the R\ S profiles of the stationary lie above
those of the rotating pipe and where this discrepancy becomes more distinct with increasing
rotation rate (/V). Looking at Figure V.11, it is apparent that the RS of the axial velocity
profiles flattens in the peak region with an increase in the rotation rate. Moreover, the predicted
peak location shifts away from the wall when the pipe rotates. For pseudoplastic and dilatant
fluids, the rotation rate induces a decrease in peak value, with the peak value in the stationary
pipe being somewhat higher than the corresponding peak value in the rotating case. It can be
said that the swirl caused by the rotating pipe wall results in a noticeable attenuation in the
generation and transport mechanism of turbulence intensities of the axial velocity fluctuation

from the wall vicinity towards the core region for the pseudoplastic and dilatant fluids.

The (RMS) profiles of the dilatant fluids begin to deviate from each other out of the viscous

sub-layer, where this deviation becomes more distinct far away from the wall towards the core
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Figure V.11 — Root mean square of the fluctuating axial velocity profiles.

region with wall distance, where beyond (V" = 2) the profiles of the radial turbulence intensities
exhibit a significant increase further away from the wall towards the core region. This increase
is related to the increase in the turbulence generation of the axial velocity fluctuations in the
buffer region for all rotation rates, as shown in Figure V.12. At the large wall distance; the
radial turbulence intensity profiles decrease noticeably after reaching their peak values in the
logarithmic region (30 < Y < 200), for all rotation rates. As a result of vanish of axial velocity
fluctuations. As shown in Figure V.12 that the radial turbulence intensities profiles of the
stationary pipe lie down those of the rotating pipe wall along the pipe radius for both fluids,
where this trend is evident as the pipe wall rotates, where the increased rotating pipe wall
results in an enhancement in the radial turbulence intensities. It can be said that the increased
rotation rate induces a pronounced enhancement in the transport mechanism of turbulence
intensities of the radial velocity fluctuation from the vicinity of the wall towards the core flow

region.

As shown in Figure V.13, the turbulence intensities of the tangential velocity profiles exhibit
the same trend along the pipe radius for the pseudoplastic and dilatant fluids for all rotation
rates. The RN S profiles of the tangential fluctuations are almost neglected in the near-wall
region ; this is ascribed to the molecular shear stress being the dominant force compared to the

turbulent one in the near-wall region. The tangential turbulence intensities seem more affected
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Figure V.12 — Root mean square of the fluctuating radial velocity profiles.

by rotation rate, where these profiles differ significantly beyond the near-wall region. As shown
in Figure V.13, these profiles gradually increase and deviate from each other away from the
near-wall region with the distance from the wall (V). They drop rapidly and fall to lower
values beyond approximately (Y " = 20), for all rotation rates.

As shown in Figure V.13, the turbulence intensities of the tangential velocity fluctuations of
the rotating pipe are significantly higher than the RN/ S profile of the stationary pipe along
the pipe radius, especially in the buffer region ; this trend is evident as the pipe wall rotates. It
can be said that the increased rotating pipe wall results in a pronounced enhancement in the
turbulence intensities of the tangential velocity fluctuations along the radial coordinates. This
means that the increased rotation rate induces a pronounced enhancement in the transport
mechanism of turbulence intensities from the axial velocity fluctuation to the tangential ones

of the pseudoplastic and dilatant fluids.

V.4.1.4 Turbulent kinetic energy

Figure V.14 presents the turbulent kinetic energy of the pseudoplastic (n = 0.75), Newtonian
(n = 1), and dilatant (n = 1.25) fluids along the pipe radius (/?), versus the distance from the
wall in wall units (V' ), at a simulation’s Reynolds number of 4500 and over a rotation rate

range of (0 < N < 3).
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Figure V.13 — Root mean square of the fluctuating tangential velocity profiles.

As shown in Figure V.14, the kinetic energy of turbulent fluctuations exhibits almost the
same trend of the turbulence intensities of the axial velocity fluctuations Figure V.11. The
kinetic energy is almost independent of the rotation rate and equal to zero in the near-wall
region, there is no difference between the kinetic energy profiles, and they are consistent with
each other in the viscous sub-layer for all rotation rates. This trend is attributed to the absence
of axial, radial and tangential velocity fluctuations in the vicinity of the pipe wall, where the

molecular shear stress is the dominant force in this region.

Far away from the pipe wall, the turbulent kinetic energy gradually increases with the wall
distance (Y ) ; this increase is due to the enhancement in the turbulence generation turbulence
intensities of the axial, radial and tangential velocity fluctuations in the buffer region. The
turbulent kinetic energy profiles reach their peak values, beyond approximately (V" = 20),
these profiles drop and fall off rapidly to the zero value in the core region ; this reduction is due
to the vanish of the axial, radial and tangential turbulence intensities in the buffer region for
all rotation rates.

It is evident that the turbulent kinetic energy profiles of the stationary pipe are higher
than those of the rotating pipe over the pipe radius, especially in the buffer region ; this trend
is pronounced as the rotation rate increases. It can be said that the increased rotation rota

results in a pronounced suppression in the turbulent kinetic energy along the pipe radius; this
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attenuation is due to the reduction in the generation of the turbulence intensities of the axial
velocity fluctuations far away from the wall with increasing rotation rate. It is interesting to
note that the swirl driven by the rotating pipe wall results in an apparent attenuation in the
generation and transport mechanism of turbulence intensities of the axial velocity fluctuation
from the wall vicinity towards the core region for both flow behaviour indices Figure V.11,
resulting a pronounced attenuation in the turbulent kinetic energy further away from the pipe
wall with the wall distance. It should be noted that this trend is more pronounced as the rotation

rate increases Figure V.14.
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Figure V.14 — Turbulent kinetic energy profiles.

V.4.1.5 Reynolds tensor

Figure V.15 depicts the turbulent Reynolds shear stress distributions of the axial and radial
velocity fluctuations along the pipe radius scaled by the friction velocity [/, = /7., /p , against
the distance from the wall in wall units (V' ), for pseudoplastic (n = 0.75), Newtonian (n = 1),
and dilatant (n = 1.25) fluids at simulation’s Reynolds number of 4500 and rotation rate range

of (0 <N <3).

It can be seen from Figure V.15 that the Reynolds shear stress profiles of the axial and radial
velocity fluctuations are identical and equal to zero in the viscous sub-layer; this is due to
the absence of the velocity fluctuations near-wall region. Beyond the buffer layer, the Reynolds

stress profiles differ from each other and increase sharply to reach their peak value in the buffer
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region ; this increase is related to the generation of the axial fluctuations further away from the
wall Figure V.11, as well as to the ameliorate the turbulence transport of the radial velocity
fluctuation from the axial velocity fluctuation in the buffer region Figure V.11. As shown in
Figure V.15, the Reynolds shear stress profiles of the axial and radial velocity fluctuations fall
off rapidly to zero value in the core region, where this is attributed to vanish of the axial and
radial velocity fluctuation in this region Figure V.11 and Figure V.12. It is worth noting that
when the flow behaviour index decreases the Reynolds shear stress of the axial, radial velocity

fluctuations reduce considerably along the pipe radius.

As seen in Figure V.15, the axial and radial velocity fluctuations’ Reynolds shear stress
profiles seem affected by the pipe wall’s rotation rate for dilatant along the pipe radius. These
profiles decrease with an increase in wall pipe rotation due to the stabilising effect of the
centrifugal force. It is worth noting that this attenuation in the Reynolds stress profile is also
due to the reduction in the generation and transport mechanism of turbulence intensities of the
axial velocity fluctuation from the wall vicinity towards the core region for both flow behaviour

indices, caused by swirl driven by the rotating pipe wall Figure V.11.
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Figure V.15 — Reynolds stress (UU/,.U’.) profiles.

Figure V.16 depicts the turbulent Reynolds shear stress distributions along the pipe radius
scaled by the friction velocity U, = /7,,/p , against the distance from the wall in wall units
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(V") for pseudoplastic (n = 0.75), Newtonian (n = 1), and dilatant (n = 1.25) fluids at

simulation’s Reynolds number of 4500 and rotation rate range of (0 < NV < 3).

Figure V.16 presents the turbulent Reynolds shear stress of the tangential and radial velocity
fluctuations along the pipe. The predicted profiles of Reynolds shear stress are equal to zero
value along the viscous sub-layer (0 < V" < 5) in the near-wall region; the molecular shear
stress is the dominant force. At larger distances from the wall, turbulent Reynolds shear stress
profiles deviate significantly from each other and exhibit a gradual enhancement with the wall
distance far away from the wall for all rotation rates; this enhancement is due to the generation
of the axial velocity fluctuations Figure V.11 in the wall vicinity in addition to the transport
of these fluctuations to the radial and tangential components from the wall towards the core

region.

As observed in Figure Figure V.16, the Reynolds stress of the tangential and radial velocity
fluctuations of the stationary pipe are lower than those of the rotating pipe along the pipe radius
for both fluids, where the profiles of the rotating pipe lie above that of the stationary this trend
is more pronounced as the rotation rate increases. It is worth noting that the increased rotation
rate induces in a marked enhancement in the profile of the Reynolds stress of the tangential
and radial velocity fluctuations, where as shown in Figure V.12 and Figure V.13, the increased
rotating pipe wall results in an enhancement in the radial and tangential turbulence intensities,
this increase results in a pronounced enhancement in the transport mechanism of turbulence
intensities of the radial and tangential velocity fluctuation from the vicinity of the wall towards
the core flow region. It is clearly apparent in Figure V.16 that beyond the logarithmic region
(30 < ¥" < 200), the Reynolds stress of the tangential and radial velocity fluctuations profiles
drop and fall off to zero values in the core region. It can also be seen that the turbulent Reynolds
shear stress profile decreases after reaching the peak value in the core region ; these profiles fall
off rapidly to zero value in the core region, which indicates the fluctuations of the tangential

and radial velocity vanish in this region.
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Figure V.16 — Reynolds stress (U/yU/’,) profiles.

V.4.2 LES of Forced Convection of Dilatant Fluid

To validate the present study, the predicted results of the current study have been compa-
red reasonably well with those of LES of Abdi et al. (2019) [50] available in the literature
Figure V.17 and Figure V.18 in order to ascertain the reliability and accuracy of the L./S code

laboratory.

Figure V.17 compares the dimensionless temperature distributions of the shear-thinning and
the Newtonian fluids through a rotating pipe wall with the LES of Abdi et al. (2019) [50] at
the simulation Reynolds number of 4000 . As shown in Figure V.17, dimensionless temperature
profiles are in excellent agreement with those of Abdi et al. (2019) [50]; these profiles are

consistent very well with the compared results over the pipe radius.

Figure V.18 reasonably compares the predicted root mean square (/217 5) distributions of the
temperature fluctuations of the shear-thinning (7 = 0.75) and Newtonian fluids along the pipe
radius for the rotating pipe. These profiles have been compared reasonably with the LES of
Abdi et al. (2019) [50] at the simulation Reynolds number of 4000. As shown in Figure V.18,
the predicted RN S of the temperature fluctuations of the shear-thinning turns out to be in

excellent agreement with those of Abdi et al. (2019) [50] along the pipe radius.
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Figure V.18 — Validation of root mean square of temperature.

V.4.2.1

Temperature profiles

The present subsection aims to shed light on the influence of the centrifugal force induced by

the swirl driven by the rotating pipe wall on the fluid temperature by analysing and discussing

the effect of the rotation rates.
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Figure V.19 illustrates the dimensionless temperature distributions (©7) of the dilatant
(n = 1.25) fluid through an axially rotating heated pipe over various rotation rates (0 < N < 3)
at a simulation Reynolds (Re;) number and Prandtl number (Pr) equal to 4500 and 1 res-
pectively. It should be noted that the dimensionless temperature is the mean temperature

(© = ((Tw(z)) —T(0,r,2,t)) /Tres) scaled by the friction temperature (77).

Apparently, there is a clear trend of increase in the temperature profile (0’ )" along the radial
direction, where the temperature profile (0’ )+ begins to enhance gradually wall with the wall
distance far away from the pipe wall, for all cases. It can be seen from Figure V.19 that the
profiles of the dilatant fluid begin to deviate slightly from each other with the wall distance (V')
further away from the pipe wall towards the core region. As for the flow behaviour index effect,
Abdi et al. (2019) [50] argued that the decreased flow behaviour index results in a pronounced
reduction in the temperature profile over the radial coordinate. In other words, the decreased
flow behaviour index induces an obvious attenuation in the heat transfer between the pipe wall

and the fluid, this trend is more pronounced as the flow behaviour index is decreased.

On the other hand, Figure V.19 provides a minor dependence of temperature profile on the
rotation rate (/V) over the near-wall region ; indeed, the temperature profiles of dilatant fluid
are very close to each other for all rotation rates over the conductive sub-layer (O <Yt< 5).
The centrifugal force induced by the rotating pipe wall considerably affects the temperature
distributions for the dilatant fluid with the wall distance further away from the pipe wall
as the rotation rate (/V) increases. As shown in Figure V.19, the temperature profiles begin
to deviate significantly from each other beyond approximately ¥V ~ 10; the temperature
profiles of the stationary pipe lie above those of the rotating pipe ones. It can be seen that
the increased rotation rate induces a noticeable reduction in the temperature profile along the
radial coordinates, especially in the logarithmic region for the dilatant fluid. One could infer
that the temperature attenuation results from the lower fluid apparent viscosity further away
from the pipe wall, where the fluid becomes less rigid in the core region when the rotation rate
increases. It is interesting to note that this reduction is due to the smaller residence time of the
fluid particles away from the pipe wall. The fluid flow is more accelerated due to the centrifugal
force induced by the pipe wall rotation; this trend is more pronounced as the rotation rate

increases.
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Figure V.19 — Temperature profiles.

V.4.2.2 Root mean square of temperature and turbulent heat flux

The purpose of the current subsection is to explore the effects of the centrifugal force induced
by the swirl driven by the rotating pipe wall in addition to the effects of the rotation rate on
the turbulence intensities of the temperature fluctuations from the wall vicinity towards the

core region.

It can be seen from Figure V.20 that the effect of the flow behaviour index (n) is almost
limited in the vicinity of the pipe wall where the R\ S profiles have the same tendency along
the pipe radius; these profiles coincide with each other near the wall region (Y " < 1). At
around (V" = 1), these profiles differ considerably in the buffer and logarithmic regions with
the distance from the pipe wall (Y 7). As shown in Figure V.20, the R/ S profiles are enhan-
ced gradually further away from the wall towards the core region with the distance from the
wall (Y7); these profiles drop rapidly after reaching the peak locations, indicating that the
temperature fluctuations are generated in the vicinity of the wall and propagated progressively
towards the core region. It should be noted that beyond (Y ~ 7), the temperature fluctuations
intensities ultimately fall off to lower values, indicating that the temperature fluctuations vanish

gradually far away from the wall for all rotation rates.
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As for the flow behaviour index effect, Abdi et al. (2019) [50] argued that the decreased flow
behaviour index induces an apparent attenuation of the generation and the transport mechanism
of the temperature fluctuations between the flow regions due to the difference in the apparent
fluid viscosity. As shown in Figure V.20 reveals that the RN/ S profiles of the temperature
fluctuations become higher further away from the wall with increasing rotation rate (V). It
can be noted that the centrifugal force induced by the rotating pipe wall results in a noticeable
amelioration of the temperature fluctuations out of the viscous sub-layer (0 < ¥ < 5). In other
words, the increased rotation rate results in a pronounced increase in the turbulent transfer
mechanism of the temperature fluctuations between the flow layers; this deviation is related to
the smaller relative apparent fluid viscosity towards the pipe centre with an increasing rotation

rate.
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Figure V.20 — Root mean square of temperature profiles.

Figure V.21 and Figure V.22 show the turbulent axial and radial heat fluxes distributions
of the dilatant (n = 1.25) fluid against the distance from the wall (V") in wall units, over a

various rotation rate (0 < N < 3) at Rey = 4500 and Pry = 1.

It can be noted that the axial, radial and tangential heat fluxes profiles of the dilatant fluid
are identical and equal to the zero in the viscous sub-layer (Y < 1), which indicates that the

absence of the fluctuation in this region, where the molecular shear stress is the is the dominant
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force in this region. In turn, these heat flux profiles enhance gradually further away from the
wall towards the central region before reaching the peak location. The heat flux components
start to damp progressively in the logarithmic region. The axial, radial and tangential velocity
fluctuations and the temperature fluctuations begin to decrease gradually until they fall off to
zero value in the core region. It can be said that the axial velocity and temperature fluctuations
generated at the vicinity of the wall exactly in the viscous sub-layer and propagated to the
logarithmic layer, these fluctuations begin to vanish in the remaining region after reaching their

maximum values.

As shown in Figure V.21, the turbulent axial heat flux profiles of the rotating pipe lie obviously
down those of the stationary pipe for both fluids; the turbulent axial heat flux profiles decrease
and become more flattened beyond the buffer region as the rotation rate increases for dilatant
fluid. Indeed, the increased rotation rate induces a noticeable reduction in the turbulent axial
heat flux, especially in the logarithmic region ; this trend is more pronounced as the pipe wall
rotates. It can be said that this reduction is related to the considerable suppression of both axial
velocity and temperature fluctuations further away from the wall with increasing the rotation
rate. It can be said here that the swirl driven by the rotating pipe wall results in a pronounced
attenuation in the generation and transport mechanism of turbulence intensities of the axial
velocity and temperature fluctuation from the wall vicinity towards the core region for the

dilatant fluids ; this trend is more pronounced as the rotation rate is increased.
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Figure V.21 — Axial turbulent heat flux profiles.
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As shown in Figure V.22, the radial heat flux profiles of the dilatant fluid are almost identical
in the vicinity of the wall, indicating that the rotation rate’s effects in this region are limited.
On the contrary, away from the wall toward the core region of the pipe, the predicted profiles
begin to deviate remarkably from each other with increasing (/V); the rotation rate (/V) affects
the heat flux beyond this region, indicating that the effect of the rotation becomes to be critical
towards the core region with the wall distance. The radial heat flux profiles of the rotating
pipe exhibit larger values in the logarithmic region; the stationary profiles lie down those of
the rotating pipe for dilatant fluid, where this trend is more pronounced as the rotation rate
increases.

It can be said that the increased rotation rate results in a marked enhancement in the radial
velocity fluctuations, consequently, in the radial heat flux for dilatant fluid. In other words, the
swirl driven by the rotating pipe wall results in a pronounced enhancement in the generation
and transport of radial velocity fluctuations; consequently, in the radial heat flux profiles for

dilatant fluid, this trend is more pronounced as the rotation rate is increased.
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Figure V.22 — Radial turbulent heat flux profiles.
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V.5 Conclusion

A critical examination of the effects of the centrifugal force induced by the swirl driven by the
rotating pipe wall on rheological, hydrodynamic, and thermal quantities, as well as turbulence
characteristics, especially near the wall, was the goal of the present study to shed further light
on the laminarisation phenomenon of power-law fluids. The present study was also intended to
provide detailed information on mean and turbulence statistics in the vicinity of walls and the
hydrodynamic and rheological behaviour of power-law fluids.

The present investigation study assessed to ascertain the accuracy and reliability of the la-
boratory code predicted findings and to examine the large eddy simulation approach with the
extended Smagorinsky effectiveness for predicting the turbulent flow of this kind of fluids. In ad-
dition to knowing to what extent the extended Smagorinsky model can characterise the scale’s

motions, especially in the wall vicinity.

The present investigations were devoted numerically to a large eddy simulation (LF£S) with
an extended Smagorinsky model of the fully developed turbulent pipe flow of pseudoplastic
(n = 0.75) and dilatant (n = 1.25) fluids through a heated axially rotating pipe, over a rotation
rate range of (0 < NV < 3), at a simulation Reynolds number of and a simulation Prandtl number
of . With an adequate grid resolution of 65 gridpoints in 7, ¢ and = direction, respectively, and
a domain length of 207 in the streamwise direction. Uniform heat flux (¢, ) was imposed on

the wall as a thermal boundary condition.

The mathematical model was implemented in the laboratory code ; the computational proce-
dure is based on the finite difference scheme, second-order accurate in space and time. The time-
advancement employs a fractional-step method. A third-order Runge-Kutta explicit scheme and
a Crank-Nicholson implicit scheme were used to evaluate the convective and diffusive terms,

respectively.

The major conclusions of this research will be summarised :

o The pseudoplastic fluids behaved more like solids when approaching the pipe centre as the
shear rate increased beyond the sub-layer region. On the contrary, the decreased shear
rate far away from the vicinity of the wall induces a marked decrease in the apparent

viscosity of the dilatant fluid with the wall distance towards the logarithmic region.
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o The streamwise velocity profiles of the pseudoplastic and dilatant were affected strongly
by the centrifugal force induced by the swirl driven by the rotating pipe wall ; the increased
rotation rate resulted in a pronounced decrease in the shear rate profile of the pseudoplastic
and dilatant fluids along the pipe radius, resulting in a marked increase in the axial velocity

profile in the logarithmic region.

o In pseudoplastic and dilatant fluids, swirl generated by rotating pipe walls attenuated the
generation and transport mechanism of turbulence intensities of the velocity fluctuations
from the wall vicinity to the core region. This increased rotation rate also induced a
pronounced enhancement in the transport mechanism of turbulence intensities from the
axial velocity fluctuation to the tangential and radial ones of the pseudoplastic and dilatant
fluids. This resulted in a pronounced attenuation in the turbulent kinetic energy further
away from the pipe wall with the wall distance. This trend was more pronounced as the

rotation rate increased.
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GENERAL CONCLUSION

he present study aimed to shed further light on the laminarisation phenomena of the
T Ostwald de Waele fluids by critically examining the effects of the centrifugal force induced
by the swirl driven by the rotating pipe wall on the rheological quantities (shear rate and the
apparent viscosity), the mean flow and thermal quantities such as the streamwise velocity
profiles, the tangential velocity distribution and the fluid temperature profiles. In addition to,
the flow and thermal statistical turbulence quantities such as the turbulent kinetic energy, root
mean square (/71/5) of the axial, radial and tangential velocity fluctuations, turbulent Reynolds

shear stress, turbulent heat flux.

The present investigation also tended to reveal the effects of the flow behaviour index on the
mean flow characteristics to provide an accurate, complete, and detailed description of the flow
patterns and rheological behaviour of the Ostwald de Waele fluids along the radial coordinate,
especially in the core region, where it is still difficult for experimental methods to get reliable
data for certain variables, especially for rheological flows, despite improvements in experimental
techniques.That is via analysing the flow behaviour index effects of the Ostwald de Waele fluids
on the streamwise velocity distribution along the radial coordinate and the generation and

transport mechanism of the velocity fluctuations between the different turbulent layers.

The present investigation aimed to ascertain the accuracy and reliability of the DN S labo-
ratory code predicted results and to evaluate the reliability of the /NS approach to predict
the main flow quantities and turbulence statistics of the Ostwald de Waele fluid. On the other
hand, the present study objected to ascertaining the accuracy and reliability of the laboratory
code predicted findings and examining the LFS approach with the extended Smagorinsky ef-

fectiveness for predicting the turbulent flow of this kind of fluids. In addition, to know to what
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extent the extended Smagorinsky model can characterise the scales motions, especially in the

wall vicinity.

The computational procedure was based on a finite difference scheme, second-order accurate
in space and time. The time-advancement employs a fractional-step method. A third-order
Runge-Kutta explicit scheme and a Crank-Nicholson implicit scheme were used to evaluate the

convective and diffusive terms.

The first study investigation has been devoted numerically to a Direct Numerical Simulation
(DNS) of a fully developed turbulent flow of pseudoplastic (1 = 0.75) and dilatant
(n = 1.2) fluids through an isothermal axially rotating pipe over a rotation rate range
(0 < N < 3), where the simulation Reynolds number was assumed to be 5000 with a com-
putational domain length of 207 in the streamwise direction. The finite difference scheme has
performed the computational procedure, second-order accurate in space and time with a nume-
rical resolution of (129 x 129 x 193) gridpoints in axial, radial and circumferential directions,

respectively.

The second study investigates numerically a fully developed turbulent flow of forced convec-
tion of non-thermo-dependent pseudoplastic and dilatant fluids through a heated axially rotating
cylindrical pipe using the L /7S approach with an extended Smagorinsky model at simulation
Reynolds and Prandtl numbers of Re, = 4500 and Pry = 1, respectively. The numerical resolu-
tion was chosen to be 65° gridpoints in axial, radial and circumferential directions, respectively,
with a domain length of 2072 in the axial direction. A uniform heat flux (¢, ) was imposed on
the wall as a thermal boundary condition. The present predicted results were to be in excellent

agreement with the experimental and D /NS data available in the literature.

The major conclusions of this research will be summarised as follow :

o The predicted results of the DN S and LFES approaches suggested that the flow pattern
and hydrodynamic characteristics of the Ostwald de Waele fluids were significantly affec-
ted by the centrifugal force induced by the swirl driven by the rotating pipe wall. The
rotation rate of the pipe wall strongly influenced the DN .S and LFS streamwise velocity
profiles of the pseudoplastic and dilatant fluids over the viscous sub-layer, buffer and lo-
garithmic regions. The radially growing centrifugal force induced by the swirl driven by

the rotating pipe wall caused a supplemented force to the inertia force, which resulted
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in a noticeable reduction in the apparent fluid viscosity and a noticeable increase in the

streamwise velocity of pseudoplastic and dilatant in the core region.

o The predicted results of the D/N S approach indicated that the increased rotation rate
resulted in a noticeable enhancement in the generation and transport mechanism of tur-
bulence intensities of the axial velocity fluctuation from the wall vicinity towards the core
region. This increased rotation rate also enhances the transport mechanism of turbulence
intensities of the radial velocity fluctuation from the axial velocity fluctuation. On the
contrary, in L FS results, the swirl driven by the rotating pipe wall resulted in an appa-
rent attenuation in the generation and transport mechanism of turbulence intensities of
the axial velocity fluctuation from the wall vicinity towards the core region, resulting in a
pronounced attenuation in the turbulent kinetic energy further away from the pipe wall
with the wall distance. It should be noted that the discrepancy between DN S and LES
approaches may be due to the difference in the Reynolds number value and the numerical

solution procedure.

o The predicted results of the D/N S and LS approaches suggested that the increased ro-
tation rate induced a pronounced enhancement in the transport mechanism of turbulence
intensities of the radial velocity fluctuation from the axial velocity fluctuation resulting

in the radial heat flux for dilatant fluid.

o The increased rotation rate induced a noticeable reduction in the temperature profile

along the radial coordinates, especially in the logarithmic region for the dilatant fluid.

Further research could also be conducted to determine the rotation rate’s effect on another
non-Newtonian fluids model. As for the thermal behaviour, it would be interesting to assess
the thermo-dependence influence of the pseudoplastic and dilatant properties on the turbulence

statistics and rheological behaviour.



STATISTICAL ANALYSIS OF
TURBULENCE

urbulent flows exhibit random structures with variable behaviour in time and space, which
makes it difficult to study turbulence exhaustively. These behaviours can be described

from theories based on one-point statistics. The first statistics that provide information about
turbulent flow are the moments related to the random variable. These are the mean or first-
order moment (the time average and the ensemble mean) and the high-order moments that

provide more information about the vortex structures [72].

A.1 Variability

It is interested in systems whose statistical variables depend only on space. These systems are
said to be statistically stationary. For any random variable b(z;, ), the Reynolds decomposition
for this variable is the sum of its mean value and a fluctuating quantity as shown in the following

equation [72] :

b(xi,t) = b(w;) + b'(4,1) (A1)

With b(2;) the mean value of the variable b(x;,7) and ¥'(x;,t) its fluctuation. The variance o

or standard deviation o for this variable is given by :

o2 =b?(z;,t) (A.2)

In turbulence, the standard deviation represents the RA/S (root mean square). It provides
information on the dispersion of the values of the variable around the mean. It describes the

evolution of the intensity of the turbulence [72].
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A.2 Skewness coefficient

The Skewness coeflicient or third order moment is calculated by :

pd v

S(b’)_waﬁ

(A.3)

It provides information on the relative magnitude of positive and negative fluctuations in
relation to the mean value. Positive fluctuations are predominant if S(0') is positive. If it is

negative, negative fluctuations predominate [72].

A.3 Flatness coefficient

The flatness coefficient or fourth order moment is calculated by :

74 14
F) = bi = b— (A4)

{b?(l‘z)}z ot

It provides information on the relative flatness of the distribution of fluctuations compared to

the normal distribution [72].

A.4 Correlation coefficient

If it considers two variables o'(z;,¢) and 0/ (x;. ), the correlation coefficient is defined by :

a'b! (x;)

— }1/2

Royy = J—
{(L/2 (z) % (x;)

(A.5)

This coefficient varies between (—1) and (+1). It is (+1) if the two variables are perfectly
correlated, (—1) if they are perfectly uncorrelated and 0 if there is no statistical link between

the two variables for normal laws [72].






BIBLIOGRAPHY

[10]

[11]

Thomas Mezger. The rheology handbook : for users of rotational and oscillatory rheometers.

European Coatings, 2020.
Fridtjov Irgens. Rheology and non-newtonian fluids, volume 1. Springer, 2014.

Howard A Barnes, John Fletcher Hutton, and Kenneth Walters. An introduction to rheology,

volume 3. Elsevier, 1989.

Raj P Chhabra and John Francis Richardson. Non-Newtonian flow and applied rheology : engi-

neering applications. Butterworth-Heinemann, 2011.

NJ Alderman. Non-newtonian fluids : guide to classification and characteristics. London : ESDU,

1997.
Taha Sochi. Non-newtonian flow in porous media. Polymer, 51(22) :5007-5023, 2010.

Aroon Shenoy. Heat Transfer to Non-Newtonian Fluids : Fundamentals and Analytical Expres-

stons. John Wiley & Sons, 2018.
Eden Reid and RheoSense Senior Sales. Viscosity of battery mixtures.

Paolo Orlandi and M Fatica. Direct simulations of turbulent flow in a pipe rotating about its

axis. Journal of Fluid Mechanics, 343 :43-72, 1997.

JMJ Den Toonder and FTM Nieuwstadt. Reynolds number effects in a turbulent pipe flow for
low to moderate re. Physics of Fluids, 9(11) :3398-3409, 1997.

Murray Rudman and Hugh M Blackburn. Large eddy simulation of turbulent pipe flow. In Se-
cond International Conference o CEFD in the Minerals and Process Industries CSIRO, Melbourne,
Australia, pages 6-8, 1999.



BIBLIOGRAPHY 145

[12]

[13]

[14]

[17]

18]

[19]

[20]

[21]

[22]

[23]

Marzio Piller. Direct numerical simulation of turbulent forced convection in a pipe. International

journal for numerical methods in fluids, 49(6) :583-602, 2005.
Mitsukiyo Murakami and Kouji Kikuyama. Turbulent flow in axially rotating pipes. 1980.

Kenji Nishibori, Koji Kikuyama, and Mitsukiyo Murakami. Laminarization of turbulent flow in
the inlet region of an axially rotating pipe : fluids engineering. JSME International journal, 30

(260) :255-262, 1987.

Shuichiro Hirai, Toshimi Takagi, and Masaharu Matsumoto. Predictions of the laminarization

phenomena in an axially rotating pipe flow. 1988.

Jack GM Eggels, Friedemann Unger, MH Weiss, Jerry Westerweel, Ronald J Adrian, Rainer
Friedrich, and Frans TM Nieuwstadt. Fully developed turbulent pipe flow : a comparison between

direct numerical simulation and experiment. Journal of Fluid Mechanics, 268 :175-210, 1994.

Shigeki Imao, Motoyuki Itoh, and Takeyoshi Harada. Turbulent characteristics of the flow in an
axially rotating pipe. International journal of heat and fluid flow, 17(5) :444-451, 1996.

Zhiyin Yang. Large eddy simulation of fully developed turbulent flow in a rotating pipe. Inter-
national journal for numerical methods in fluids, 33(5) :681-694, 2000.

AA Feiz, M Ould-Rouis, and Guy Lauriat. Large eddy simulation of turbulent flow in a rotating
pipe. International journal of heat and fluid flow, 24(3) :412-420, 2003.

G Reich and H Beer. Fluid flow and heat transfer in an axially rotating pipe—i. effect of rotation

on turbulent pipe flow. International Journal of heat and mass transfer, 32(3) :551-562, 1989.

Gerhard Reich, Bernhard Weigand, and Hans Beer. Fluid flow and heat transfer in an axially
rotating pipe—ii. effect of rotation on laminar pipe flow. International Journal of heat and mass

transfer, 32(3) :563-574, 1989.

JN Cannon and WM Kays. Heat transfer to a fluid flowing inside a pipe rotating about its
longitudinal axis. 1969.

MR Malin and BA Younis. The prediction of turbulent transport in an axially rotating pipe.

International communications in heat and mass transfer, 24(1) :89-98, 1997.

Brian Edward Launder, G Jr Reece, and W Rodi. Progress in the development of a reynolds-stress

turbulence closure. Journal of fluid mechanics, 68(3) :537-566, 1975.

MR Malin and BA Younis. Calculation of turbulent buoyant plumes with a reynolds stress and
heat flux transport closure. International journal of heat and mass transfer, 33(10) :2247-2264,

1990.



BIBLIOGRAPHY 146

[26]

[34]

[35]

[36]

[37]

[38]

MM Gibson and BA Younis. Calculation of swirling jets with a reynolds stress closure. The

Physics of fluids, 29(1) :38-48, 1986.

Charles G Speziale, Sutanu Sarkar, and Thomas B Gatski. Modelling the pressure—strain corre-
lation of turbulence : an invariant dynamical systems approach. Journal of fluid mechanics, 227 :

245-272, 1991.

Shin-ichi Satake and Tomoaki Kunugi. Direct numerical simulation of turbulent heat transfer
in an axially rotating pipe flow : Reynolds shear stress and scalar flux budgets. International

Journal of Numerical Methods for Heat & Fluid Flow, 2002.

L Redjem-Saad, Meryem Ould-Rouiss, and Guy Lauriat. Direct numerical simulation of turbulent
heat transfer in pipe flows : Effect of prandtl number. International Journal of Heat and Fluid

Flow, 28(5) :847-861, 2007.

Meryem Ould-Rouiss, A Dries, and A Mazouz. Numerical predictions of turbulent heat transfer

for air flow in rotating pipe. International journal of heat and fluid flow, 31(4) :507-517, 2010.

M Bousbai, Meryem Ould-Rouiss, A Mazouz, and A Mataoui. Turbulent heat transfer characte-
ristics of water flow in a rotating pipe. Heat and Mass Transfer, 49(4) :469-484, 2013.

AB Metzner and JC Reed. Flow of non-newtonian fluids—correlation of the laminar, transition,

and turbulent-flow regions. Aiche journal, 1(4) :434-440, 1955.

AB Metzner. Non-newtonian fluid flow. relationships between recent pressure-drop correlations.

Industrial € Engineering Chemistry, 49(9) :1429-1432, 1957.

DW Dodge and AB Metzner. Turbulent flow of non-newtonian systems. AIChE journal, 5(2) :
189204, 1959.

FT Pinho and JH Whitelaw. Flow of non-newtonian fluids in a pipe. Journal of non-newtonian

fluid mechanics, 34(2) :129-144, 1990.

MR Malin. Turbulent pipe flow of power-law fluids. International communications in heat and

mass transfer, 24(7) :977-988, 1997.

Murray Rudman, Hugh Maurice Blackburn, Lachlan JW Graham, and L. Pullum. Turbulent pipe
flow of shear-thinning fluids. Journal of non-newtonian fluid mechanics, 118(1) :33-48, 2004.

Murray Rudman and Hugh M Blackburn. Direct numerical simulation of turbulent non-newtonian

flow using a spectral element method. Applied mathematical modelling, 30(11) :1229-1248, 2006.



BIBLIOGRAPHY 147

[39]

[41]

[42]

[43]

[44]

[47]

[48]

[49]

[50]

Takashi Ohta and Masahito Miyashita. Dns and les with an extended smagorinsky model for wall
turbulence in non-newtonian viscous fluids. Journal of Non-Newtonian Fluid Mechanics, 206 :

29-39, 2014.

Andrey A Gavrilov and Valeriy Ya Rudyak. Reynolds-averaged modeling of turbulent flows of
power-law fluids. Journal of Non-Newtonian Fluid Mechanics, 227 :45-55, 2016.

AA Gavrilov and V Ya Rudyak. Direct numerical simulation of the turbulent energy balance and

the shear stresses in power-law fluid flows in pipes. Fluid Dynamics, 52 :363-374, 2017.

J Singh, M Rudman, and HM Blackburn. The influence of shear-dependent rheology on turbulent
pipe flow. Journal of Fluid Mechanics, 822 :848-879, 2017.

EZ Zheng, M Rudman, J Singh, and SB Kuang. Direct numerical simulation of turbulent non-

newtonian flow using openfoam. Applied Mathematical Modelling, 72 :50-67, 2019.

Massimo Germano, Ugo Piomelli, Parviz Moin, and William H Cabot. A dynamic subgrid-scale

eddy viscosity model. Physics of Fluids A : Fluid Dynamics, 3(7) :1760-1765, 1991.

John Kim and Parviz Moin. Application of a fractional-step method to incompressible navier-

stokes equations. Journal of computational physics, 59(2) :308-323, 1985.

Thomas A Zang. Numerical simulation of the dynamics of turbulent boundary layers : Perspectives
of a transition simulator. Philosophical Transactions of the Royal Society of London. Series A :

Physical and Engineering Sciences, 336(1641) :95-102, 1991.

PS Gnambode, P Orlandi, Meryem Ould-Rouiss, and Xavier Nicolas. Large-eddy simulation
of turbulent pipe flow of power-law fluids. International Journal of Heat and Fluid Flow, 54 :

196-210, 2015.

V Vidyanidhi and A Sithapathi. Non-newtonian flow in a rotating straight pipe. Journal of the
Physical Society of Japan, 29(1) :215-219, 1970.

RW Gunn, B Mena, and K Walters. On newtonian and non-newtonian flow in a rotating pipe.

Zeitschrift fir angewandte Mathematic and Physic ZAMP, 25 :591-606, 1974.

Mohamed Abdi, Abdelkader Noureddine, and Meryem Ould-Rouiss. Numerical simulation of
turbulent forced convection of a power law fluid flow in an axially rotating pipe. Journal of the

Brazilian Society of Mechanical Sciences and Engineering, 42(1) :17, 2020.

Mohamed Abdi, Khaled Chaib, Meryem Ould-Rouiss, and Slimane Benferhat. Large eddy si-
mulation of turbulent flow of pseudoplastic and dilatant fluids : rheological and hydrodynamic

behaviour. DESALINATION AND WATER TREATMENT, 279 :85-89, 2022.



BIBLIOGRAPHY 148

[52]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[62]

[63]

[64]

Mohamed Abdi, Meryem Ould-Rouiss, Fatima Zohra Nedjda Bouhenni, and Abdelfettah Me-
nouer. Large eddy simulation of turbulent flow of pseudoplastic and dilatant fluids : turbulence

characteristics. DESALINATION AND WATER TREATMENT, 279 :109-114, 2022.

Mohamed Abdi, Meryem Ould-Rouiss, Manel Ait Yahia, and Amina Ould-Mohamed. Large eddy
simulation investigation of reynolds number effects on rheological behavior of ostwald-de waele

fluids. DESALINATION AND WATER TREATMENT, 279 :168-172, 2022.

Mohamed Abdi, Meryem Ould-Rouiss, Lalia Abir Bouhenni, Nour Elhouda Beladjine, and Bel-
houari Abdelkarim Bekhtaoui. Effect of reynolds number on turbulence characteristics of tur-
bulent ostwald-de waele fluids. DESALINATION AND WATER TREATMENT, 279 :173-177,
2022.

Mohamed Abdi, Meryem Ould-Rouiss, and Abdelkader Noureddine. Hydrodynamic and rheologi-
cal characteristics of a pseudoplastic fluid through a rotating cylinder. Numerical Heat Transfer,

Part A : Applications, pages 1-20, 2023.

Jacobus Gerardus Maria Eggels. Direct and large eddy simulation of turbulent flow in a cylindrical

pipe geometry. 1995.

Hendrik Tennekes, John Leask Lumley, Jonh L Lumley, et al. A first course in turbulence. MIT
press, 1972.

FEugene De Villiers. The potential of large eddy simulation for the modeling of wall bounded

flows. Imperial College of Science, Technology and Medicine, 2006.
Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press, 2000.

Ulka Gaitonde, Y Gong, and FX Tanner. Quality criteria for large eddy simulation. First Year
Transfer Report, School of MACE, University of Manchester, 2008.

Pierre Sagaut, Marc Terracol, and Sebastien Deck. Multiscale and multiresolution approaches
in turbulence-LES, DES and Hybrid RANS/LES Methods : Applications and Guidelines. World
Scientific, 2013.

Viéclav Uruba. Turbulence handbook for experimental fluid mechanics professionals. Skovlunde :

Dantec Dynamic, 2012.

Tor Holan Marstein. Direct numerical simulation of turbulent flow in a channel with transverse

ribs. Master’s thesis, NTNU, 2015.

Marecel Lesieur. Turbulence in fluids, volume 593. Springer, 2008.



BIBLIOGRAPHY 149

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Francois Cadieux. Large eddy simulations of laminar separation bubble. PhD thesis, University

of Southern California, 2015.

Joseph Smagorinsky. General circulation experiments with the primitive equations : I. the basic

experiment. Monthly weather review, 91(3) :99-164, 1963.

Javad Taghinia et al. Sub-grid scale modeling in large eddy simulation with variable eddy-viscosity

coefficient. 2015.

Kursad Melih Guleren. Large-eddy simulation of wall-bounded flows subjected to curvature and

rotation. PhD thesis, University of Manchester, 2007.

Florian R Menter. Best practice : scale-resolving simulations in ansys cfd. ANSYS Germany

GmbH, 1, 2012.

Kemal Hanjali¢ and Brian Launder. Modelling turbulence in engineering and the environment :

second-moment routes to closure. Cambridge university press, 2011.

Gunther Groétzbach. Spatial resolution requirements for direct numerical simulation of the

rayleigh-bénard convection. Journal of computational physics, 49(2) :241-264, 1983.

Mohamed Abdi. Simulation numérique a grande échelle (LES) de l’écoulement turbulent pleine-
ment développé d’un fluide non newtonien dans une conduite cylindrique en rotation. PhD thesis,

University of Science and Technology of Oran Mohamed Boudiaf, 2020.

Sourou Gnambode. Simulation des grandes échelles des transferts thermo-convectifs dans les
écoulements turbulents d’un fluide non-newtonien en conduite cylindrique. PhD thesis, Paris Est,

2015.



	DEDICATION
	ACKNOWLEDGMENTS
	ABSTRACT
	RESUME
	FIGURES LIST
	TABLES LIST
	NOMENCLATURE
	GENERAL INTRODUCTION
	Industrial Problematic
	Purpose
	Scientific Problematic
	Thesis Structure

	RHEOLOGICAL BEHAVIOUR
	Continuum hypothesis
	Definition of fluids
	Shear stress and viscosity
	Classification of fluids
	Newtonian fluids
	Non-Newtonian fluids
	Ostwald de Waele
	Viscoplastic behaviour
	Carreau model
	Carreau-Yasuda model
	Cross model
	Ellis model
	Thixotropy behaviour
	Rheopectic behaviour
	Viscoelastic fluids



	PREVIOUS WORK
	TURBULENT FLOW AND NUMERICAL MODELLING
	Turbulence phenomenon
	Understanding Turbulence
	Turbulence Structures
	Characteristics of Turbulence
	Isotropic and Homogeneous Turbulence
	Kelvin-Helmholtz instability
	Energy Spectrum and Kolmogorov Cascade

	Turbulence Modelling
	Scale Resolving Simulation (SRS)
	Direct numerical simulations (DNS)
	Large eddy simulation (LES)



	Smagorinsky Model
	Smagorinsky-Lilly Model
	Dynamic Smagorinsky-Lilly Model
	Detached Eddy Simulation (DES)
	Wall-modelled LES (WMLES)
	Quality and Reliability of Numerical Simulation
	DNS criteria
	LES criteria


	Computational domain and numerical requirements
	Extended Smagorinsky Model
	Rheological Modelling
	Boundary conditions and initial conditions


	DNS OF OSTWALD DE WAELE FLUIDS
	ABSTRACT
	Introduction
	Problem Description
	Mathematical Formulation
	Results and Discussion
	Average velocity profiles
	Turbulent intensity

	Conclusion

	LES OF THERMALLY INDEPENDENT DILATANT FLUID
	ABSTRACT
	Introduction
	Problem Description
	Mathematical Formulation
	Results and Discussion
	Rheological and Hydrodynamic Behaviours of Ostwald De Waele Fluid
	Shear rate and apparent viscosity
	Average velocity profiles
	Turbulent intensity
	Turbulent kinetic energy
	Reynolds tensor

	The LES of convected heat transfert of dilatant fluid Thermally
	LES of Forced Convection of Dilatant Fluid
	Temperature profiles
	Root mean square of temperature and turbulent heat flux


	Conclusion

	GENERAL CONCLUSION
	Annexe STATISTICAL ANALYSIS OF TURBULENCE
	Variability
	Skewness coefficient
	Flatness coefficient
	Correlation coefficient

	BIBLIOGRAPHY

