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Notations

1.

10.

11.

12.

13.

14.

N, Z, Q, R and C respectively denote the sets of natural integers, relative integers,

rationals, reals and complexes numbers.

A [z] denotes the ring of polynomials whose coefficients in ring A.
deg(P(z)): polynomial degree P(x).

(Z) binomial coefficient, such that n and k£ two integer where 0 < k < n.

(Z) generalized binomial coefficient, such that z is a complex number and k an

integer.

H,, the harmonic number, defined as
1 1

1
H, =14 —4+ -4 f =
oty

H,, ,» the harmonic number of order m, defined as

11 1
Hypp =14 =+ — 4+ —.
, tomtgmtt—

[z"](P(x)) designates the cofficient of 2" in the polynomial P(z).

B,, the Bernoulli number defined by the recurrence relation

n—1
1 n+1
By=1and B, =— > By, n > 1.
o= an n+%o(k)kn

¢ the Riemann zeta function, defined as :

+0o0
1 1
= — =1 —
H@nﬁm + o

1
+§+--- , where Re(s) > 1.
Lis (z) the dilogarithm function defined by the power series

“+o0

1
Lis (z) = Z mx” for |z| < 1.

n=1

s (n, k) the Stirling numbers of the first kind, defined as

n

a:(a:—l)---(x—n+1):ZS(n,k:)xk.

k=0

LHS is informal shorthand for the left-hand side of an equation.

RHS is informal shorthand for the right-hand side of an equation.



Abstract

The study of the calculus of indefinite integrals concerning logarithms, log-sin integrals
or others is a crucial research topic being widely focused on. In this thesis we have studied

a problem related to an interesting logarithm integral such

In

1
"(1—t

/%dt where n,m € N*.

0

We extend certain sums involving the harmonic numbers and binomial coefficients
which are linked to certain logarithmic integral representations.

Keywords: Harmonic numbers, Binomial coefficients, Logarithm integral.




Résumé

L’étude du calcul des intégrales indéfinies concernant les logarithmes, les intégrales
log-sin ou autres est un sujet de recherche crucial largement focalisé. Dans cette thése,

nous avons étudié un probléme lié & une intégrale logarithmique intéressante telle que

In

1
"(1—t

/%dt where n,m € N*.

0

Mots-clés : Nombres harmoniques, Coefficients binomiaux, Logarithme integrale.
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Introduction

Introduction

In mathematics, an integral is the continuous analog of a sum, which is used to cal-
culate areas, volumes and their generalizations. Integration, the process of calculating
an integral, is one of the two fundamental operations of calculus. Integration began as a
method for solving problems in mathematics and physics, it is used today in a wide variety
of scientific fields. This thesis is devoted to an in-depth study of the main problems seen
in some journals.

Our work has three chapters.

The first chapter is devoted to generalities, we start by defining the binomial coef-
ficients and the generalized binomail coefficients, we study the important and general
properties of these binomial coefficients, then we define in a natural way the sequences of
harmonic numbers H,, and their generalization harmonic numbers of order H,, ,,.

At the end of this chapter due to the important role played the riemann zeta fonction of
the calculation, we given an simple proof of Basel problem and some intersing values of
C(n).

The second chapter constitutes the essential part of this thesis, it is devoted to an in
-depth study on the study of certain properties and theorems concerning more specifically
the sums involving binomial coefficients and sums involving harmonic numbers such

",
k=1 ko
At the end of this chapter, we recall the Cauchy product of tow series and we present

some various series such the development of

In(1-—2)
r)=——7-—7"
to use for solving important integrals in chapter three.
The last chapter of the theses introduces a collection of some problems seen in some

new papers. Most of the problems appeared in some mathematical journals sush MAA .

8



we present various important integrals evaluated using series, combinatorial identities
and harmonic numbers.
The main results of this chapter represent an interesting contribution in integral log-
arithms. They are obtained by using technical operations on binomial coefficients and
harmonic numbers.

Firstly, we solve some problems concerning logarithmic integrals related to the har-

1
/ln Ida: and /de
0

monic series like

xm

and we have also given some properties of the dilogarithm function Lis (z) .
Finally, in this chapter, many of these integrals invite the use of combinatorial math-

ematical techniques that involve elegant connections between integrals and infinite series.




Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we recall the definitions and some properties of the binomial coefficients,
generalized binomial coefficients, the harmonic numbers, we also recall the riemann zeta

functions and we give some values of rieman zeta like ¢ (2), ¢ (3), ((4).

1.2 Binomial coefficients

Binomial coefficients are involved in many areas of mathematics: binomial development
in algebra, enumeration, series expansion, laws of probability, etc.

For any natural integer n and for any polynomial P(z) of Alx], where A [z] denotes
the ring of polynomials whose coefficients in ring A.

The notation [2"](P(x)) designates the coefficient of 2™ in the polynomial P(x). So if

P(z) = Z apr,

we write

[z"|P(x) = ay,.

With this notation, we define the binomial coefficient (Z), where n and k are two natural

(Z) =1+ 2) =[]y (Z) o,

k>0

integers by

For all natural numbers n and &, the binomial coefficients satisfy

10
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1.
(i) =)+ () &

2.
(0)-562)

3.
020

4.

() ()= ()G ) w9

Remark 1.1 Andreas von FEttingshausen introduced the motation (Z) i 1826, although

the numbers were known centuries earlier as C(n, k), CX, and C, .

1.3 Generalized binomial coeflicients

Mathematicians often generalize definitions, and the binomial coefficients are no excep-
tions. The typical way to generalize (Z) is to let n be an arbitrary complex number.

Let « € C et k € Z, We define the generalized binomial coefficient (z) as follows

k—1
(Z) :Jl—!)(a_]):a(a—l)--él(a—k‘jtl) for k> 0.

(Z‘):o for k < 0.

The binomial coefficients intervene in the development in whole series of (1 + 2)® for

and

|z] < 1. we have
o0

(1+27 =Y (Z‘)z’“ for |2] <1

k=0
In the case where o € Q, (rep Z, N), we have (:) € Q, (rep Z, N) For « = n with n € N,

we also find the definition of the binomial coefficient classic (Z)

We have the following properties
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1. Pascal’s Identity for general binomial coefficients

Z z—1 z—1
<k‘+1>_(k—l—1)+( I > keNand ze€C (1.6)

2. Chair Identity

z z(z—1 %
(k:) _E(k—l) for z€eC and ke N (1.7)

3. Transformation

(—;) = (-1 <z + I; —~ 1) for € C and k € N (1.8)

4. Cancellation Identity

() =GIDE) mreecmirnenay

5. Vandermonde formula

3 (0;) (f) _ (O‘Zﬁ) for a,3€Cand k € N (1.10)

itj=k
1.4 Harmonic numbers

Harmonic numbers have been studied since antiquity and are important in various branches]

of number theory. They are sometimes loosely termed harmonic series, are closely related

to the Riemann zeta function, and appear in the expressions of various special functions.
In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n

natural numbers, defined as :

, for n € N*.

x| =

Hy=0, H,= En:
k=1

Recall that harmonic numbers of order m are given by
Hy,, =0, H,,= 2”: 1 for n € N*
0,77’1 - ) n,m km, .

k=1

with H, ; = H, are the classical harmonic numbers.

An integral representation given by Euler is
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Lemma 1.1 Let n € N, the following identity holds

i, /1 - (1.11)

1—x

Proof. we have

1 1 1
H, = 1+2+ ot
= /da:+/:cda:+/x2dx+ /”1dx
0 0 0

= /(1+x+x 42" da,
0
using the sum of a geometric sequence, the proof is complete. m

1.5 Some values of Riemann zeta function

The Riemann zeta function or Euler-Riemann zeta function, denoted by the Greek letter
¢ (zeta), is an analytic function defined, for any complex number s such that Re (s) > 1,

by the Riemann series

“+oo
1 1 1
= — 14— 1 =
¢ (s) - +25+3$+

n=1
Euler calculated (as part of his solution to the Basel problem) the value of the function ¢
for even strictly positive integers; he deduced the formula

=1 Bop| (27)*™
C(2m) =D o = | 2(‘2(771)!)

n=1

where Bernoulli numbers (B,,), . are defined by the recurrence relation:

n—1
1 |
By=1land B, —— "B 1
n+ — k

B,, is called the n-th Bernoulli number.

These values of ((2k) are therefore expressed using the even powers of m,for example

72 w2 72

C(2) =531 (M) =555 C6) =gz
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1.5.1 Basel problem ( (2)

The Basel problem is an important problem in number theory that was first posed by
Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734. The Basel problem so is
named for the Swiss city in whose university two of the Bernoulli brothers successively
served as professor of mathematics (Jakob, 1687 - 1705, and Johann, 1705 - 1748).
Coincidentally Euler was born in Basel.

The Basel problem asks whether the infinite sum
SEETERENY
pt k2 32

has a closed form solution, that is, does it converge to a finite number and if it does, what
number does it converge to?
The Basel problem resisted solution for some 84 years until the then 26 year old Euler

finally solved it. Euler’s surprising solution is
2= g
k=1

This result has been proven by many mathematicians using different methods and here
we have provided a simple proof presented in 2017 by A. Novac [21]
Let

1 oo

1
I= [ [|————dyd
//1+y2—%’2y2 -

00
It follows that

1 o0
I:// // _dydu
1+y 001+yM)

/@/ht\;\/gf

dydx

/\/%ﬂ [arctan (ym)]zodx
0

T 1

50/ﬁdx

™ farcsinal} =
= — |arcsinx = —,
2 0 4
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then

1=~ (1.12)

and on the other nother hand by changing the order of integration and using the

1 1

/ 1 J 1/ 1 i 1 d
—aj = —_ .ZU
1 — a222 2) 1+axr 1—ax

0 0

1 1+az\]" 1 1+a
= — |In = —1In
2a 1—ax 0 2a l1—a

we have

With the substitution
y = sht

we find that:

n (sht + cht) an (sht + cht)
I = chtdt = [ ———=
/ shtcht bt / sht dt

0

[t
=2
using the developement series — Z 2" we obtain

n=0

integration by parts
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using the remark

n 1 +i 1 _2n+11
e 2k +1)° £ (2k)? k2
we have
> 1 1 11 3ex 1
I=2y —— =29 — =N | =) —. 1.13
2 G 1 ( Z) P

Egs. (1.12) and (1.13) conclude the proof of Euler’s formula.

1.5.2 Apéry’s constant ( (3)

In mathematics, Apéry’s constant is the sum of the reciprocals of the positive cubes. That

is, it is defined as the number
1
CB) =) =
k=1
where ( is the Riemann zeta function. It has an approximate value

¢(3) = 1.202056903159594285399738161511449990764986292 . . .

((3) was named Apéry’s constant after the French mathematician Roger Apéry, who

proved in 1978 that it is an irrational number.



Chapter 2

Sum involving harmonic numbers

and binomial coeflicients

Investigation of the harmonic numbers properties traces it is history back to Ancient
Greece and has the fundamental importance to the several fields of mathematics. These
numbers are closely related to Riemann zeta function and appear in many expressions of
other special functions.

Sums involving numbers numbers and binomial coefficients have been of considerable
interest throughout the 20th century. We extend certain sums involving the harmonic
numbers and binomial coefficients which are related to certain logarithmic integral rep-

resentations.

In order to prove the main problems of chapter 3 , we need some auxiliary results

given by the following lemmas.

2.1 Sums involving binomial coefficients

Lemma 2.1 Let n be positive integers, then

and

17
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Proof. By induction on n.
Let

We have, LHS of P (1) is

| =

1
1LY
S () =1
k=1
and RHS of P (1) is
_Hl = _17
so P(1) is true.

Now assume P(n) is true, for some natural number n > 1, i.e. by recurence suppose that

n

>0y (3) =~

k=1
and deduce P(n + 1).
We have

k=1 k=1
n n+1
1/n 1 n+1
_ 1)k 2 1)
U ) T )(k)
k=1 k=1
1
= —H, —
n—+1
= —IIp4

Using the integral representation of harmonic number and the the substitution r = 1 —u,

we have
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Example 2.1 Show that the above identity (2.2) holds.

2.2 Sums involving harmonic numbers

. Recently, many other remarkable finite sum identities involving the harmonic numbers
have been developed by many authors in different forms using a variety of methods.

In this section we intersting to calculate the following sums.
Lemma 2.2 Let n > 1 be integers. The following identity holds
"~ H, H?+H,,
ko 2

k=1

(2.3)

Proof. We proceed as follow

n—1 n n n—1
ZH%WLHZ = ZH,%zZH,?zZH,?H
k=0 k=0 k=1 k=0

k=0
n—1
H 1
-y <H,3 +2o L. 2)
k=0 +1 (k+1)
n—1 n—1 n—1
H;, 1
= D Hi+2) > :
k=0 kzok—i_1 ko<k+1)
n—1 n—1 b1 n—1 1
- SapaF tE S
k=0 k=0 k t1 k=0 (k + 1)
Therefore
n—1 n—1 n—1 H n—1 1
DOHEHHD = Y Hp+2) oo - ;
k=0 k=0 k=0 k+1 k=0 (k+1)

the proof is complete.



20

Lemma 2.3 For n be integers we have

Proof. We proceed as follow

Ben( - Eori(a-;

S o) (e i)
- eeom (e S ()i
S (g (3
then ) )
E (- e (i
and since

the proof is complete. m

Corollay 2.1 The following equality holds:

k=0

Corollay 2.2 By the Binomial inversion formula

n n

" (=1)" /n 1 < i1 (n+1
A - __ - _ H —
2t () e n+1k0( D7y n) e

a = (-1 (Z) be = b= (~1)F (Z) a

k=0 k=0
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are two complexe sequences, we have

() == R (=

where (a), and (b)

n n

k=1
2.3 Some applications of Cauchy product

In mathematics, more specifically in mathematical analysis, the Cauchy product is the
convolution of two infinite series. It is named after the French mathematician Augustin-

Louis Cauchy.

2.3.1 Cauchy product of two infinite series

Let > a,, Y b, be two infinite series with complex terms. The Cauchy product of these
n>0 n>0
two infinite series is defined by

(Zaj) (Z@) => ¢, where ¢, = é ibp_i.

>0 >0 n>0

2.3.2 Cauchy product of two power series

Let Y an,z™, > b,z™ be two power series, with complex terms.
n>0 n>0
The Cauchy product formula of these two power series is defined by

(Z(Ijl’i> (Zb]l'j> = Z (Zn: aibn_i) . (25)

Jj=20 j=>0 n>0 \i=0

The generalat forumula is

(Zajx‘) (ijxj> = Z (”Z_f aibni> " or = Z (”_T anjbj> " (2.6)
j>r j>s n>r+s \ i=r n>r+s \j=s

Lemma 2.4 we have

In (1 —l—l') o S n+1 n
i HEZI (—1)"" H,x lz] < 1, (2.7)
In(1-—2) = "

1o anﬁ Hya" a| < 1. (2.8)



Proof. Stating from the known expansion of two series

In (1 + )—E ( 1)n+1” d L _ (-D)"z", |z <1
n ) = 2" an = x x

n 1+ ’

n>1 n>0

from the relation (2.6), we have

lnl(lTZx) - <Z %I) (Z(—l)”x”> = ( <—1i>’ (_m_i) -

n>1 n>0 n>1 =1
1
. _q\n+1 - n
- X (31
n>1 i=1
= Z (=)™ Hyzm,
n>1
Stating from the known expansion of two series
1 1
In(l—2)=-— —z" and —— = " <1
n(l—ux) nz;lnx and -— ;x, ||

and from the relation (2.6), we have

Corollay 2.3 We find by integration of relation (2.7)

%m? (1+a)=> (-1

n>0

H,

n+1
—X
n+1

then

In® (1 + ) ni1 Hn
METY 9N ()t
x nZZO( ) n—l—lx

Also we have

then




Chapter 3

A binomial formula for evaluating

some Logarithmic integrals

3.1 Introduction

This chapter constitutes the essential part of this thesis, contains some techniques of
integration which are not found in standard calculs and advanced calculus book. it can

be considered as a map to explore many classical approaches to evaluate integrales.

1 1
3.2 values of /xm In(1—x)dr and /xm In* (1 — ) dx
0 0

The follwing formula (3.1), which is quite old, is recorded in various tables of definite
integrals. It appears as formula 865.5 in [10] , It is worth mentioning that the origin of
such integrals dates back to the time of the English mathematician Joseph Wolstenholme
(1829-1891), and the first proposed integral appeared in his book with mathematical

problems.

Problem 3.1 Letn > 1 be an integer. The following identity holds
H,

—

/:U"l In(l—2z)de=— (3.1)

Proof. .
First proof

23
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Let
1

I, = /:13”_1 In(1—x)dx.
0
Using integration by parts

n—1

u = 2"t —u' =(n—1)2"?

vV = Imn(l—2z) —v=(rx—1)In(l—-2)—2z

then

1

I, = [a:”_l((x—l)ln(l—x)—x)](l)—(n—l)/m”_Q((x—l)ln(l—x)—x)dx

= =)= L)

which yields the recurrence relation in £,

~1
Bl — (k= 1) Loy = ——.

1
Giving values to k from k = 2 to n and using that / In (1 —z)dx = —1, we obtain that

0

-1
2[2-[1 = 7
-1
3_[3—2]2 - ?
(=) 1oy~ (0 —2)1 =
n — n—1 — (N — n— =
1 2 n—1
-1
Li—(n—11,_, = —
n (n—1) I 0
then - )
In_I:_ — — —

the proof of relation (3.1) is given.

Second proof
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we have

o —

1
" In(l—2)dx = /(1 —2)" ' Inxda
0

using the formula (2.4) the proof of formula (3.1) is given. =

the following problem is proved in 2016 by Vilean [27]

Problem 3.2 Letn > 1 be an integer. The following identity holds

1

/a:”l In® (1 — ) dx

0

_ H2+H,,
- n

Proof. Let

1
Iy = /x"l In? (1 — 2)dx
0

using integration by parts as in above problem , we obtain the recurrence relation in £,

H
kJy— (k—1) Jy_y = 2?’“.

1

Giving values to k£ from k£ = 2 to n and using that / In? (1 — z) dz = 2, we obtain that

0

k=1

using the relation (2.3), the proof is complete. m
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1
3.3 Values of / " 70

142
0

Problem 3.3 Let m be a positive integer. Then the following equality holds

1

m o m+1 | __om o0
/ln tdt:(l) m! (1 2)2 1

1 + t 2m nerl

0 n=1

Proof. We have

1

1 1
/1+tdt=/1n tE%(—l) thdt =Y (-1 /t In™ tdt
0 n= 0

0 n=0

using the subtitition ¢ = e and using
+o0o

0

we have by part

u = t" —u =nt"!
1
1o ef(erl)t v = ef(erl)t

/l} J—
m—+1

hence, we have the identity

n n!

]nm = —In— m =
) k+1 1, n+1

(m+1)
we immediately have
0

1
/t" In™tdt = —/e”x(—a:)m e “dx
0

+oo
+o0

= (—l)m/xme_("ﬂ)xdx
0

(=)™ m!

(n+1)""

then

In™¢ B m ) o m+1 = (—1)"
/tht = (-1) mlzm—(—l) my

n=1
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and by the remark

400 n 400 400
(-)"+1 11 1
2 T2 G T (3:2)

n=1 n=1
we have
1
In™ ¢ 1R 1 X1 (=)™l (1—2m) &K1
dt = (=1)"""'m! | = — =
[igi = com (3 - 3k ) < EIOS S
0 n= n= n—
|
Corollay 3.1 As an application for some values of m we have
1
Int -1 X1 1
At = — B 3.3
/1+t 2 Lepz 12" (3:3)
0 n=
[ 1o’ 31 3
dt = 23 = =2¢(@3 3.4
[T R o0
0 n=
[t 21 <X 1 21
I]. — JR—
dt = — —=—C4 3.5
/l—l—t 4 L= nt 4 ) (3:5)
J —
1
In"™(1—t¢
3.4 Some values of / %dt
0

The College Mathematics Journal is an expository magazine it publishes well-written and
captivating articles exploring new mathematics, or old mathematics in a new way. Most
of its articles are accessible to upper-level undergraduate students.

In this section we have detailed the proof of the problem 1117 (College Mathemat-
ics Journal 2018), proposed by C. I. Vilean (Romania). Solution given by Khristo N.
Boyadzhiev, Ohio Northern University Department of Mathematics and Statistics.

Problem 3.4 Let n and m be a positive integer. Then the following equality holds

1
In" (1 —z) R 1 (mAk—2
/x—md:c:(—l) n!zkn+1( L ) (3.6)
0 k=1
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Proof. We have by the substitution z = 1 — ¢~* we write

/W(xl—m_‘”)dx — (1) 7%& _ (1) 71”“5: (_;n) et
— (—1)”§ (_1)k (_kt”) :/ozne(k—i-l)tdt

_ (-1)%!}2%(?”)
_ (—1)”n!im<m+:_l).

k=0
m-+k—2
k—1 '

+oo
= (-1)"nl)_
k=1
Corollay 3.2 As an application for this problem we have

1
kn+1

1

/ wa@ — () (3.7)
/1 MT_@dx = 2 (3) (3:8)
/1 (W)Qda@ = 2(2) (3.9)
/1 MT_@UZI = —6¢(4) (3.10)

0

Problem 3.5 Let n be a positive integer. Then the following identity holds

1
n

/de:n ; (—1)" 's(n—1,k)C(n+1—k).
9 v k=1

where s (n — 1, k) is the Stirling numbers of the first kind defined as

n

x(m—l)---(w—n+1):Zs(n,k)a:k.

k=0
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Proof. For the proof we shall transform both sides of this equation to one and the same
expression.

Left hand side. Taking n = m in relation (3.6), we get

1
In(l—xz)\" WX 1 nt+k—2 n+k—1
J () = oy s () = e nvz ()
0 k=1

Right hand side

n—1 n—1 +o0o -k
DS (D) s(n—1,k)C(ntl—k) = nZ(—n’f*ls(n—m) .
k=1 j=1 J"
-1
0> mz D st 10

nn

- nz n+ )TH-k ' (n_17k).]k

By using the definition of s (n — 1, k), we get

+

A3 (1) s(n—1,k)C(ntl—k) = Z n+f+”_2>
k=1 =1
_ *ZJH (j+2)-(j+n—1)
= j+1)n+1
“+o00

which is exactly the expression above. The proof is completed. =

3.5 Some properties of dilogarithm function Li; ()

The dilogarithm function is the function defined by the power series

+o0

1
Lis (z) = Z ﬁm" for |z| <1

n=1
is a classical function of mathematical physics. Introduced by Leibniz in 1696 [[15],
p. 351] and thoroughly discussed by Euler some seventy years later [[11], pp. 124—
126], it has subsequently been well studied in the literature (for further historical details
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concerning the function see, for example, [18]). The canonical integral representation for

the dilogarithm is

xT

Liy (1) = — / wdt. (3.11)

The first work on it seems to have been done by Landen and published in 1760. Inde-
pendently Euler studied it, and they obtained results such as

7.‘.2

Liy(z)+ Li; (1 —2) = i Inzln (1 —xz) Euler’s reflexion formula

1
Li, (z) + Li, ( ’ 1) = -3 In? (1 —2z) Landen’s identity
x —

The first book on this function was by Spence [24] in 1809. Considering the importance

of this fonction, where he aded

1
Lis (z) + Lis (—z) = §Li2 (z*), duplication formula
. . -1 w2 1 2 . .
Li, (—x) + Li —) = %3 In“z, inversion formula.

Firstly, we given simple proof of Euler’s reflexion formula.

we have by the substitution z = 1—¢ and integration by part in the following secondary

integrale
—t 1—t
Liy (z) + Liy (1 — ) = _/¥dt—/¥dt
0 0
13 1—=2
0 1
= —/Mdt—[lnzln(l—z)]f+/udz
z

1
T

0
x 0
= —/h‘(l%t)dt—lnxlnu—xw/de/wdz
z
0 1

z
0

1

= —lnzln(l—2) _/—ln(lz— Z)dz

0

by the identity (3.7) the proof is complete of Euler’s reflexion formula is complete.
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Substituting = = % into Euler’s reflexion formula leads to the special value

1 21 1
Lig (=) =2 - “m?-.
2 122 2

The following theorem is proved In 2022 by S. M. Stewart ”Some simple proofs of Lima’s

two-term dilogarithm identity.

Theorem 3.1 For |z| <1 the following dilogarithms holds

1-— 1- 2 1
Lig( x) —Lig( x) :W—+Li2(—a:)—Li2(x)+ln:1:ln e

1+ 14z 4 1—2x

Proof. In view of (3.11) it is immediate that

%Liz (x):——ln(lx 2l
Consider
i{Li2<1—x)_Li2(_1—w)] _ 2 o 2z 2 o 2
dx 1+z 1+ 1—22 2z+1 1—22 2o+1
2
= 1_x21nx.

Integrating the above expression with respect to = gives
1—2z 1—2z 2
Li —Liy | — = Inzdx +C
12<1—|—x) 12( 1+$) /1—952 nraxr +
| 1
= / iy —|—/ S +C
1—2z 1+x

after a partial fraction decomposition has been employed. Here C' is an arbitrary constant

of integration. Making the change of variable x = 1—1, we see that the first above integral

1
/1” dz = Liy (1 — 2)

— X

appearing is

integrating by parts followed by a change of variable of x = —t leads to

Inz .
/1 +xdx =Inzln(1+ )+ Liy (—2)

then

1 1
Li2(1+i) ~ Li, (_1+i> = Liy(1— )+ Lis(—2) + Inzln (1 +2) + C

To find the constant C, we set x = 0, we find then
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1
3.6 Values of /ln(lx)IHQ(Hx)dx

T

0

In this section we have detailed the proof of the problem 11993 (American Mathematical
Monthly, Vol.124, August-September 2017), this problem is proposed by C. I. Valean (Ro-
mania). Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit‘a
di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Problem 3.6 The following identity holds

1
/ln (1—z)In?( 1+:L‘)d mt

r=——

0

Proof. By letting a =1In (1 — ) and b = In (1 4 z) in the following identity
6ab* = (a +b)* + (a — b)* — 2d°,

we get
1

/1n(1—:1:)1n2(1+x)d L +1,—2I3
xTr =
x 6

I =

0

where
1 1 1

131_2 ln?’l__x 131_
Ilz/wd:v, 5:/%@ and [;;z/wdx.

T T
0 0 0

By the substitution ¢ = 1 — 22 and the relation (3.10)

L /1111 (- /

0 0
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and by the substitution (t = =%, dt = ﬁ, z = 1=*) and the relations (3.5), (3.10)

1 1
In 1= In ¢
I, = /ﬂdx:2/n—dt
x 1—1)(1+¢)
0
1

0
1 1 1
In® In3 In® (1 — In®
- /ntdt—%/ntdt:/wdwr/ntdt
1—1¢ 1+t t 1+¢
0 0 0

0

= 6E(4) - ) =~

finaly
L+ 1213

6

I _ —gg (4) = -7

3.7 Some applications of Logarithmic Integrals

A variety of identities involving harmonic numbers and generalized harmonic numbers
have been investigated since the distant past and involved in a wide range of diverse fields
such as analysis of algorithms in computer science, various branches of number theory.
Here we show how one can obtain certain infinite series involving harmonic numbers.

We have detailed the proof of the problem 11682 (American Mathematical Monthly,
Vol.119, December 2012) Proposed by Ovidiu Furdui (Romania).

Problem 3.7 The following identity holds

Zﬂ:2§°(3).

2
n
n=1

Proof. We proceed as follow

“+oo

+o00 +o00 !
2%:2%%:_2%/1;%1111(1—@@
n= n= 0

3
—_
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by the relations (3.1), (2.9) and (3.8) we have

+oo +oo
H, 1H,
n :_E: /”lln 1—2)de

2
n
n=1 n= 1

1 +o00

1
= —/ln(l—x)g —a"
0 n:ln
11 (1 )+oo
n(l—=x z"
- —E Z.d
/ T —n v
0 n=

— ]de
2¢ (3).
]

Problem 3.8 The following identity holds

Sy (Z cL ) -7 (312)

Proof. Let

S-S (S 5HE)

And starting again from the representations

then
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we continue this way

too 1 2 teo 1 1
n " n x" y"
S = . —1 d = —1 d d
2 (1) /1+x$ 2 (=1 /1—|—x$ /1+yy
n=0 0 n=0 0 0
11

- fH)n //(1+%y(>:+y>dxdy
- S e} et

- //1—|—$y Cix—iyx)(lﬂLy)

Here we set u = £ to get

1
:/ / du dz.
14+ u)( u+a:) r+1

0

Using partial fractions

1 1 1 1
(14+u)(ut+z) x—1 <(u+1) B (u—i—x))

we can evaluate the inside integral. The result is

1
1 2
= 1 .
S /m2_1n1+xdx
0

The substitution (2= = 1+t, x = {74, dz = (1+t

>dt) transforms this integral into a more

transparent one

5oL [Rin,,

By the relation (3.2) and the folowing remark

1 1 +o0o (_l)k—l 1 +o0
5—5/{2 ; }z —52

k=1

the proof is complete of this problem. m

Remark 3.1 The proof of the above problem (3.12) is given in 2022 by K. N. Boyadzhiev
(see [8))
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3.8 Example and problem

In this section, we solved an example and left one problem unsolved, out of curiosity to

look for the solution.

Example 3.1 I-Prove the following equality holds

/11n(1 ) LY ) PR T

8
2- Deduce .
X H 5
L
I
Let

I:/ln(l—x)ln(l—i-:v)dx‘

T
0

By letting a = In (1 — z) and b =1In (1 + x) in the following indication

dab = (a+b)* — (a —b)*,

we get
1
I:/ln(l—m)ln(1+x)dm:Il—Ig
T 4
0
where
112(1_ 2) 11n21—_r
]1:/udx and_fg:/ﬁcm.
T T
0 0

by the substitution t = 1 — x* and the relation (3.8)

1 1
In? (1 — 22 1 [ 1n’t
Io— /de:_/n gt
T 21 1—1t
0
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and by the substitution (t = 1;—2, dt = ﬁ, T = 1—:;) and the relations (3.4), (3.8)

1 1
1n21—x 12t
I = /ﬂdx:Q/n—dt
p TEDIED
0

0
1

1 1
In?t In?t In? (1 —t) In?t
dt dt = | ——=dt dt
¢ +/1+t / 7 +/1+t
0 0

I
O"\H

= 26(3) + 2003) = £ (3),
then I, — I 3) — I&(3) 5
7 — 1;2 f()_4§ :_§C(3)

2- By the relations (3.1), (2.9) and (3.8) we have

Jr2.0(—1)"% = f(_i)n%:—f(_;)n/m"lln(l—x)dx

_ _/ln(l — ) *i (—g;)”dx

0 n
1
B /ln(l—:c)ln(l
B x
0
0

= —2B).

1
+x)d.r

Problem 3.9 1-Prove the following equality holds

1

m(l-2)ln(l+z), 1 5 5
/ - dm—ﬂ(SIHZ—ﬂlnél—i—?)C(?))).

0
2- Deduce
+oo H2 1
> (-1 = o (7°In2—4In*2 —9¢ (3)) .



Conclusion

The main results of last chapter represent an interesting contribution in integral log-
arithms. They are obtained by using technical operations on binomial coefficients and
harmonic numbers.

Even today, the study of the calculation of indefinite integrals concerning logarithms,
log-sin integrals or others is an important research topic have been widely studied in many
papers.

Many questions arise, how to evaluate the integral or calculate the partial sum of the

series such
+oo m
Hn,l
Z ns

n=1
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