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Introduction

The theory of inequalities is an important subject of research where sev-
eral mathematical situations call on these inequalities. On the other hand, integral
inequalities have known a great development in several fields such as real analysis,
numerical analysis and differential equations, etc. They represent a powerful and
indispensable tool.

The Interest in the study of integral inequalities has steadily grown to an abundant
literature has been developed on this subject and for full details see the work of
Pachpatte [3], Burton, Pecaric[5], S.S Dragomir [18], where we can find a very good
description of the historical evolution of inequalities.

Many researchers have generalized the classical and fractional operators by intro-
ducing parameters about ten years ago.

Recently many researchers have presented new dierential operators and fractional
integrals and they have generalized by iteration procedure and introducing new
strictly positive parameters.

In [6], Belarbi and Dahmani presented theorems related to Chebyshev’s inequality
for fractional integral operators of Riemann-Liouville ([16, 17, 19]).

In our memory we are interested to the Chebyshev type inequalities which have been
applied almost to all kinds of functions and applicable in several fields such as in
numerical integration and in nonlinear. The objective of this memory is to make a
small synthesis concerning the Chebyshev-type integral inequalities for functions of

single variables, and for functions of several variables.



CONTENTS

This memory is divided as follows:

Chapter 1 is dedicated to a reminder of fractional integration [13] presents some
preliminary notions, which will be used later in the demonstrations, and some defi-
nitions of functional analysis.

In the second chapter, we will present some integral inequalities of classical and frac-
tional Chebyshev type for functions of one variable. While the last chapter will be
entirely devoted to new integral Chebyshev-type inequalities for functions of several

variables [20].




Chapter 1

Basic Notions

We mention fundamental notions and resuls of the functionnal analysis .

1.1 Functional Spaces

1.1.1 Spaces of Integrable Functions

Definition 1.1.1. For 1 < p < oo we denote by L, := L,(0,00) the set of all

Lebesgue measurable functions f such that

151 ([ 1) < oo

Definition 1.1.2. We denote by L*(Q2)the space of essentially bounded functions
on (),

L*(Q) ={f:Q— R measurable and Jc¢>0, |f(z)|<caeon Q}
such that
| fll oo () = essiug\f(tﬂ =inf{M >0:|f(z)| <M a.e on Q}.
S

Theorem 1.1.1. Let Q2 = (a, b)finite or infinite interval of R.
For 1 < p < 400 the space LP(Q2) is a Banach space.



1. BASIC NOTIONS

1.1.2 Space of Continious Functions

Definition 1.1.3. Let 2 = (a,b)(—00 < a < b < +00) and n € N, we denote by

C™(Q) the space of functions f such that ™ s continuous on € .

Theorem 1.1.2. The space C"(Q2) normed by
1 llow =321 lle = 3- max|f©], n € N.
k=0 k=1 "

is Banach space.
Especially, if n = 0 C9(Q) = C(Q) the space of continuous functions f on Q

normed by
1 £lle = max] ()]

is Banach space.

1.1.3 Absolutely Continuous Functions

Definition 1.1.4. Let f : [a,b] — R and ([ag, b])ken a finite suite of under in-
terval disjoint of [a, b],we say that fis absolutely continuous on |a,bl, if for all real
€ >0, it existe a §(§) > 0 such as

n

Do low — ax] < (€)

k=1
then
oIf(or) = f(ow)] < €
k=0

1.1.4 Weighted Continuous Functions

Definition 1.1.5. A real valued function f : [a,00) — R is said to be in the space
Cy.p € R, if there exists a real number p > p such that f(x) = 2P fi(z), where
f1 € C[O, OO)




1. BASIC NOTIONS

1.2 Probability Density Function

The function f defined On [a, ] is called a probability density function if it is

continuous, positive and

/abf(x):l.

Example 1.2.1. The function f(x) = defined on R is probability density

(1 + 2?)
function.

1.3 Inquality of Holder

1 1
Theorem 1.3.1. Let f € LP(Q2) and g € LY(2) with 1 <p < oo and —+ — =1, so
D

q
fiso@ie s (f1swpa) " ([ wra) "

Remark 1.3.1. If p=1, ¢ = oo, then

1 fallzr ) < I fllzr@)-lgllz=@

and reciprocally if g =1 , p = oo, then

1 fgllzr ) < llgllr@)- I fllz=@

1.4 Theorem of Fubini

Let ((a,b) € R™) and ((¢,d) C R™) measurable sets and the function f(z,y)
is integrable on (a,b) x (¢, d) so for all z € [a,b), f(z,y) is integrable on (¢, d) and :

b d
/(a,b)x(c,d)f(x7y)dxdy = /(/ f(:ﬁ,y)dy> dz, (1.1)

= ([ i) an

i.e if f(x,y) is a measurable on (a,b) X (¢,d) and is finite one of the integrals

/ (/ ]fxydydx) // (x,y)dzdy.
(a,b) (c,d)

7




1. BASIC NOTIONS

1.4.1 Formula of Dirichler

It is particular case of theorem of Fubini , we have the following equality :

/ab /j f(z,y)dydx) = /ab /yb f(z,y)dxdy.

Where one of two previous integrals at least is absolutely convergent.

1.5 Some Concepts in Fractional Calculus

1.5.1 Specific Functions

In this section we recall the functions Gamma and Béta because they have an

important role in the theory of fractional calculus and its applications.

Definition 1.5.1. Let z > 0,r,s > 0. The gamma and the beta functions are

defined as follows
['(z) = / t=te~tdt, z > 0.
0
1
B(r, s) :/ N1 — )5,
0
proposition 1.5.1. For all z € C with Re(z) > 0, we have
['(z+1) =zI'(2),
proposition 1.5.2. For all n € N we have
I'(n+1)=nl

proposition 1.5.3. Béta function is related by Gamma function by the following

relation

for all z > 0; w > 0.

proposition 1.5.4. For all z > 0; w > 0.

Bz, w) = B(w, 2).




1. BASIC NOTIONS

1.6 The Fractional Integral Over an Interval|a,b]

Definition 1.6.1. Let f a continuous function on [a,b], we consider the integrals:

JOf@) = [ rwar
TOf@) = [ (105w)

- /:(/txdu dt (1.2)

2 Tn—1

JO f(z) = /0 dr, /0 dis Flwn)dzn (1.3)

a

= oo /j(m )Lt

For all n € N.

This formula is called formula of Cauchy, and from the generalization of factorial
by the Gamma function I'(n) = (n — 1), Riemann releazed that the 2" member
of (1.3) might have meaning even when n take a non integer value, it defined the

fractional integral as follows.

Definition 1.6.2. The Riemann-Liouville fractional integral operators of order

a > 0 of function f(z) € Ly[a,b], —00 < a < b < +00, are defined by

7o f(z) = F(la) [0 0t w>a
Je f(z) = F(la) /:@ — 2L ()t x < b,

For a = 0 we denote J;_ by J“.




1. BASIC NOTIONS

Theorem 1.6.1. If f € L'([a,b]) then J* f exist a.e x € [a,b] and further
Jof € L'([a,b]).

proposition 1.6.1. Let o, 5 € C, such that Re(a), Re(8) > 0, for all function
f € L*([a,b]) we have,

Je(J2f) = et = J2 ().

For almost everywhere x € [a,b]. If more over f € C([a,b]), then this identity is
true for all x € [a,b].

Example 1.6.1. We consider the function f(x) = (x —a)™ for a > 0 and m > —1

so:
I'(m+1)

Jile —a)" = T(a+m+1)

(x —a)*™™

Y

in effect
fe m __ L v o a—1 o m
JHx—a)" = T(a) /a (x —2)* 7 (t — a)™dt.

Using the change of variable t = a + (z — a)7,0 < 7 < 1 so taking in account the

Béta function and proposition (1.5.3) we get

JHx—a)" = (1a) (r —a)*™™ x B(m+1,a)
. m_ T(m+1) atm
Jo (x —a) —m(m— )

10



Chapter 2

Some Chebyshev type inqualities

of a single variable

This chapter is divided into two sections:
The first section is devoted to some classical Chebyshev inequalities.
In second section we are intersted in the famous fractionnal inequalities of a single
variable introduced by Chebyshev .
The Chebyshev type integral inqualities play an important role in all branches
of mathematics, these inequalities apply to derivable ,absolutely continuous, lip-
chitzian, monotonic functions and to functions and to function with limited varia-

tion.

2.1 Classica chebychev’s Functional

Definition 2.1.1. Let 0 < a < b < oo f and g be two integrable fuctions on [a,b]

and

1) o= [ s - o ([ @) ([atonae). 2

Definition 2.1.2. For two measurable functions f,g : [a,b] — R,define the func-
tional, which is known in the literature as Chebychev’s functional
b

T(f,g;a,b) = 7 i - /ab f(z)g(x)dx — (b—1a)2 /ab f(a:)da:/ g(x)dx. (2.2)

a

11



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

Cerone and Dragomir [3] have pointed out generalizations of the
above results for integrals defined on two different intervals [a,b] and [c,d]. They

defined the functional (generalised Chebyshev functional)
T(f.g:a,b,c,d) := M(f,g;a,b) + M(f,g;c,d) = M(f;a,0)M(g;c,d). (2.3

Where the integral mean is defined by

M(f;a,b) := bia/abf(x)dx. (2.4)

2.2 Some Chebyshev Type Inequalities of a Single
Variable

2.2.1 Some Classical Chebyshev Inequalities

The following Chebyshev inequalities for synchronous functions (asynchronous)

arae given by the following lemma:

Lemma 2.2.1 If f and g are synchronous on [a,b] i.e (f(T)—f(p))(g(T)—g(p)) > 0.
for each T,p € [a,b], then
T(f,9)=0. (2.5)

If f,g asynchronous on [a,b], i.e (f(T)—f(p))(g(T)—g(p)) <0, For each T, p € [a,b).

The constant

is the best possible in inequality (2.5).
—a

Where T(f,g) difined by (2.1)

The following inequality is well known as the Gruss inequality [1].

Lemma 2.2.2 Let f,g: [a,b] — R two integrable functions on [a,bland the function

f.g is integrable on |a,b], then

T(f,9:0,5)| < (M —m)(N ~n), (2.6)

provided that m < f < M andn < g < N a.e. on [a,b], where m, M,n, N are real

numbers. The constant 1 in (2.6) is the best possible.

12



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

Another inequality of this type is due to Chebychev (see for example [2].
Namely, if f, g are absolutely continous on [a,b] and [, ¢’ € Lyla,b] and
I/l := ess sup |f'(t)], then
tela,b]

1
T(f, 90 0)] < Sl Nlcllg oo (b = @)? (2.7)

1
and the constantl—2 is the best possible.

Theorem 2.2.1. Let f,g : I € R — R be measurable on I, and the intervals
la,b],[c,d] C I. Further, suppose that f and g are of Hélder type so that for

f(2) = f(y)] < Hilx - y["and|g(z) — g(y)| < Holx —y[® (2.8)
where Hy, Hy > 0 and r,s € (0, 1] are fixed. The following inequality then holds,

HyHy

m[|b_c|0+2—|b—d|0+2+|d—a|0+2—|c—a|9+2]’

(2.9)

(0+1)(0+2)|T(f, g3 a,b, ¢, d)| <
where 0 =r + s and T(f, g;a,b, c,d) is as defined by (2.3) and (2.4).

2.2.2 Classical Chebyshev Type Inequalities For Riemann-

Liouuville Operator

Theorem 2.2.2. Let f and g be two synchronous functions on (0, 00), then
t

/Ot(f.g)(x)dx > 1/0tf(x)da: X /0 g(x)dx; t>0. (2.10)

The inquality (2.10) is reversed if the functions are asynchronous on (0, 00).

proof Since the functions f and g are synchronous on (0; c0),then for all

72> 0,p > 0 we have:

(f(r) = f(p)(g(T) —g(p)) = 0.

13



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

Hence
f(T)g(r) + f(p)g(p) = f(T)9(p) + f(p)g(T). (2.11)
Integrating inequality (2.11) with respect to 7 over (0, x), we obtain:
t
[ @)+ 1)) <1 = [ 1ngtordr+ [5G
then
t t t
| ) + 15 (0)g(0) 2 9(p) [ F(R)dr + £(0) [ 9(r)dm (2.12)
U
we integrale the obtained inequality with respect to p over (0,1):
t/ (fg)(r dT+t/ dp>/ de/ dp+/ dT—i—/
t
this yields / (fg)(x)da > / 2)dz X / g(x)dz. O
0
Theorem 2.2.3. Let f and g be two synchronous functions on (0, 00), then
t t t
t/ (f.9)(x)dz > / fl@)dz x / g(x)dz. (2.13)
0 0 0
proof Multiplying both sides of (2.10) by t we get (2.13). O

Theorem 2.2.4. Let {f;}1<i<n be n positive increasing functions on (0, c0), then
/I(H fi)@)dt > 20 x H/ fi(t)dt
0 =1 =170
for all x > 0.

Theorem 2.2.5. Let f and g be two functions defined on (0,00), such that f is
increasing and g is differentiable and there exists a real number m = h;% J(z).

Then

[ awar= [ sy g~ [*pwarm [

is valid for all x > 0.

14



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

2.2.3 Classical Chebyshev Type Inequalities Using Pecaric

Extention

Montgomery’s identity is a very effective technique in establishing new
generalizations of the Chebyshev type of integral inequalities. The following section
discusses some extensions of this identity, then a generalization of some integral

inequalities [5].

Lemma 2.2.3 Let f : [a,b] — R a differentiable function on |a,b], we suppose that
f'(t) is integrable on [a,b]. Then the Montgomery’s identity

b b
f@)= [ fwat+ [ Panf @, (2.14)
is satisfaite where the kernel of Peano is defined by
t—a
b —a <t<u,
Plx,t)=9 3 "% (2.15)
, r<t<hb
b—a
proof We use integrating by part. 0
An extension of this identity was introduced by Pecaric [5]. This extension is given

by the following Lemma:

Lemma 2.2.4 Under the same assumptions of the Lemme(2.2.3) and if
w : [a,b] = [0,+00[ is a probability density function, then there is a generalization

of Montgomery’s identity

fla) = / " w(t) f(1)dt + / " P ) ()t (2.16)

Where the kernel of Peano Py, (x,t) is defined by:

Wit a<t<cz
Py(x,t) = ) T (2.17)
W(t)—1 z<t<b.
In 2007 Boukerrioua and Guezane Lakoud in their work [0] ,are established a new

generalization of Montgomery’s identity given below.

15



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

Lemma 2.2.5 Let f : [a,b] — R a differentiable function of derivative f' and Let
¢ :[0,1] = R a differentiable function on [0,1] with ¢(0) = 0,¢(1) # 0 and ¢’ is

integrable on [0, 1], then a generalization of Montgomery s identity is given by:

@) = (p(l)/b (t)gp'(/atw(s)ds) Dit+ s / Ndt (2.18)

where P, is the kernel generalization defined below

(2.19)

Poo(@t) = p(W(1),  a<t<uw,
pW(H) = (1), z<t<b

With

Classical Chebyshev Type Inequalities Using Pecaric Extension

On 2014 Guezane-Lakoud and Aissaoui [7] the first Chebyshev integral in-
equality using Montgomrey’s identity (2.14).

Corollary 1 Let f,g : [a,b] — R two differentiable functions on |a,b|,the deriva-
tives ' and g’ are integrable, and f', g € Loo([a,b]) So:

7

T(F 9l < 550 = a1l 19l (2.20)

where T(f,g) is defined in (2.2).
proof Let’s define F, G, F, and G as follows
. b
F=flz /f dt, F:/P:v,t
b-ua
G = g(z) - b_a/ g(t)dt, G = / (z,)g'(t)dt.

using Montgomery’s identity (2.14), We have FG = FG and:

r6 = (1= 2 [ 1) (o - 2 [Caoar)

= J@)o(e) ~ Sy [ gty (2.21)
1

_ g(x)b_a/abf(t)dt—l—b_la/abf(t)dtbia/abg(t)dt.

16



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

1
Integrate (2.21) on [a, b], then multiply the result by 7 ,we find
—a

T(f,9) = b— /f dfc—(b_a/f dﬂ?) <bia/bg(:c)d:c>

M) = 5 [ f - (1 bf(x)drE) (55 [ atorir)e2)
= bia/ab/abp(a:t dt/ (x,t)g'(t)dtdx

therefore

T(f,9) = ‘bia/ab/abp(xt d/ (x,t)g'(t)dtdx
b_la/ab /ab p(z, )| |f’(t>|dt/a Ip(z, t)| |g' ()| dtda

b [ b 2
bl [ ([ bt o) o 223

/N

VAN

let’s calculate

/ab|p(x,t)|dt = /ax|p(a:,t)|dt+/:|p(x7t)|dt

= 2(b1—a) [(:c—a)2+(x—b)2},

then

and

b b|p($7t)|dt le' = i 5 b[(w—a)Q—F(x—b)Q]de
a \Ja 4(b—a)? Ja

= o i E l/ab(x —a)*dx + /ab(:v —b)tdx + 2 /ab(x —a)?*(z — b)dx

_ 1 (b—a)® (b—a)®> (b—a)’

 4(b—a)? l 5 5 15 ]

- T a)?)’ (2.24)
60

17



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

so replacing the result (2.24) in (2.23) gets (2.20).

1 , o Tb—a)® 7
T < — N _
706,001 < 5 1l e O = T

Pachpatte, in his work [8], established a new generalization of Chebyhev-

b—a)*[|f'lloc 19l oo

type inequality using the extension given by (2.14). The following theorem without

proof shows this result. O

Theorem 2.2.6. Let f,g : [a,b] — R two differentiable functions on [a,b] and f’
and ¢' are integrable on [a,b] and w is a probability density function then we have

the following inequality:

T, £,9)) < 17l gt | ) )i, (2.25)
where
1) = [ pula. )]t
and
w(z)de /  w(@)g(x)da. (2.26)

The following theorem presents a new generalization of the Chebyshev type

w(e)f()glaydt — [

a

T(w,f.0)= [

a

integral inequality obtained by K. Boukerrioua and A. Guezane-Lakoud in [0]. Using
the extension given by (2.18).

Theorem 2.2.7. Let f, g : [a,b] — R two differentiable functions on [a, b], and f’, ¢’

are integrable on [a,b]. Let w and ¢ the two functions defined in lemma(2.2.3) so

we have:
1 b
T (w, f,9,¢)] < =0 1o 19"l ||90’||oo/a w(x)H?(z)da (2.27)
where 5
H@) = [ puslo,t)lat
! - /
€]l oo = E55,SUp | ()],
and

T foe) = [y ([ wo) f@g

(2.28)

- g [ e ([ o) s | [ wto ([ weias) storas].

18



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

2.2.4 Fractional Chebyshev Type Inqualities for General-

ized Riemann-Liouvill Operator

Theorem 2.2.8. Let f and g be two synchronous functions on (0,00). Then ,

I(a+1)

2 ()00 (2:29)

J(fo)(t) =

for allt > 0,a > 0.

The inequality (2.29) is reversed if the functions are asynchronous on (0, 00).

Theorem 2.2.9. Let f and g be two synchronous functions on (0,00). Then

tOL

Tat+1D) JO(fg)(t) = Jof)T(B)g(t) + JPf(£)J%g(t) (2.30)

PUfo)(t) +
g TG+ 1)

forallt > 0,a > 0,8 > 0.

The inequality (2.30) is reversed if the functions are asynchronous on (0, 00).

/ 1 1
Theorem 2.2.10. Letp > 1,p > 1 such that —+— = 1,if fand g are two functions
p b

in LP and L”/, respectively.
Then
JU(fg)(@) < (J*fP(2)P (" (x))¥

for all x > 0, > 0. The following theorems were proved in [10)].

Theorem 2.2.11. Let {f;}1<;<, be n positive increasing functions on (0, 00) then
7 (I = e T )
i=1 i=1

for all x > 0, > 0.

Theorem 2.2.12. Let f and g be two functions defined on (0,00), such that f is
increasing and g is differentiable and there exists a real number m := glcr>1g J(x).
Then

T (fg)() = (7)) = E T () m f) ()

is valid for all x > 0, > 0.

19



2. SOME CHEBYSHEV TYPE INQUALITIES OF A SINGLE VARIABLE

Definition 2.2.1. Let a > 0,5 > 1,1 < p < oo and the integral operator Kfff be
defined as

Kb f@) = 20 [ (P oy, x>0 (@281

defined from L, to L, space, with locally integrable non-negative weight functions
u and v.

We mention that for o > 0,3 > 1 necessary and sufficient conditions for the bound-
edness, see [U], and compactness,see [J], of the integral operator K7 from L, to
L, spaces with 0 < p,q < oo were found for locally integrable non-negative weight

functions u,v.

Remark 2.2.1. If v(x) = u(z) = 1,8 = 1, the operator Kfﬁ’f coincides with the
classical Riemann-Liouville fractional integral operator.

To simplify the calculations, we denote

K=K k(z,t):=(z—t)*1In"! (x> #0.

u,v t

Then the integral operator in inequality (2.31) becomes

v(z)
[(a)

Kf(x) = /O “k(z, O f(Du(t)dt, >0

Theorem 2.2.13. Let f,g be two sunchronous functions on (0, 00), u and v locally
integrable non-negative weight functions.

Then
K(fg)(z) > (K(1))7'K f(z)Kg(x), (2.32)

where
K(1)(z) = ;Ez)) /0 " (e, Dult)dt.

Inequality (2.32) is reversed if the functions are asynchronous on (0, 00).
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proof Since the functions f and g are synchronous on (0, 00), then for all

7 > 0,p > 0 we have:
(f(7) = f(p))(g(T) — g(p)) = 0.
Hence,

f(m)g(r) + f(p)glp) > f(T)g(p) + fF(T)g(p). (2.33)

v(x) |
F(a)]{?(ZE,T)U(T),T € (0,z), we get:

k(o T (a(r)ule) + For b ) Pla(o)utr)

Multiplying both sides of inequality (2.35) by

v(x)
[(a)
v(z) o(z)
> 5 (a)k(:zz, 7)f(T)g(p)ulr) + @k(x, ) f(p)g(T)u(r). (2.34)
Integration inequality (2.34) with respect to 7 over (0, x), we obtain
o) o)
I'(p) I(a)

v(x) [*
F(a)/o k(z,7)f(T)u(T)dr

| k@ f@gmuridr + f)glo) s [kl ru(r)ar

| kD) (ru(r)r + £(p)

. This implies:

K(fg)(x)+ f(p)g(p)K(1)(x) > g(p)K(f)(x) + f(p)g(p)K(1)(z) (2.35)
O

Multiplying both sides of (2.35)by EEI)) k(x, p)u(p), we get
«

ko PP (F9)(0) + £y bl ) F(Plg (K (1)

)
Fio e PP )) + FC Sk o) f PR 0))

We integrate the obtained inequality with respect to p over (0, x):

Fox [ Wt + K)@)EE [ ket sl

?EZ)) /O " k(. p) £ (p)u(p)dp.

~—

>

K(fg)(z)

> K@) [k p)ulp)alo)dp + Ko(z)
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This yields:
K(fg)(z) = (K(1))"' K f(x)Kg(x).
If f and g are asynchronous, the proof is similar to that of synchronous case.

The proof is complete. U

Remark 2.2.2. Theorem (2.2.13) applied with v(x) = u(z) = 1,5 = 1 gives The-
orem (2.2.8).

Theorem 2.2.14. Lef {f;}1<;<, be n positive increasing functions on [0, 00) and u

and v be localement integrables non-negative weight functions. Then .

(H ﬂ) > (K(1 ><x>><ln>ﬁ;f<fi<x>
for all x > 0.

proof We prove this Theorem by induction. We suppose that

(lﬁ fz) > <><x>>2—”mﬁ1 K1), (2.36)

O

i=n—1
Sience {f; }1<i<n are positive increasing function, then H fi is an increasing func-
i=1

tion.
1=n—1

Hence, we can apply Theorem (2.2.13) with H f =g, f. = f,and we obtain
i=1

(H fz> K(fg)(@) > (K(1) K <Hf> () ful2)

Therefore, by (2.32), we get

(T 5) = o o (T ) wrae

and the proof is complete. 0

Remark 2.2.3. Theorem (2.2.14) v(z) = u(z) = 1, 5 = 1 gives Theorem (2.2.11).
Considering f; = f,1 =1,2,...,n,in Theorem (2.2.14), we get the following Corollary.
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Corollary 2 Let f be an increasing positive function on (0,00),u and v locally in-

tegrable non-negative weight function.

Then
K(f") () > (KQ)()" (K f(z))"

Now we consider the next two operators

Kuflo) = g [ =00 ) o
A(2)

T(ag)/o (w—t)a2—11n52—1(§)f(t)u2(t)dt

Kyf(x) =

Theorem 2.2.15. Let f,g be two synochronous functions on (0, 00),
D, q : la,b] = (0,00) be integrable, u; and v; i = 1,2, locally integrable non-negative

weight functions. Then

Kyq(z)Ki(pfg)(z)+Kip(z)Ka(qfg)(z) > Kao(qg)(x)Ki(pf)(z)+Ka(qf)(z) K1 (pg) ().

For all x > 0.

Inequality (2.37) is reversed if the functions are asynchronous on (0, 00).
D) K (7)o (7)ol

I(a) ’

7 € (0,x),and integrating the resulting inequality with respect to 7 over (0, z), we

find that

proof We multiply both sides of inequality (2.33) by

Ki(pfg)(z) + Ki(p)(z)f(p)g(p) = Ki(pf)(x)g(p) + Ki(pg)(x)f(p). (2.38)
O

vy ()
I'(a)
resulting inequality with respect to p over (0,x). This leads as to inequality (2.37).

Again multiplying inequality (2.38) by Ky(z, p)ua(p)q(p) and integrating the

Letting g(x) = p(x) in Theorem (2.2.15), we get the following Corollary. O

Corollary 3 Let f,g be two synchronous functions on [0, 00), P : [a,b] — (0, 00), u;

be positive integrable weight functions and v;,1 = 1,2, be positive functions. Then

Kop(2)Ki(pfg)(z)+EKip(z)Ka(pfg)(x) > Ka(pg)(z)Ki(pf)(z)+Ka(pf)(z) Ki(pg)(z)
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for all x > 0. Inequality (2.39)is reversed if the functions are asynchronous on
(0, 00).
Theorem (2.2.15)with K1 = Ky = K and q(x) = p(x) leads us to the following

corolary.

Corollary 4 Let f,g be two synchronousn functions on (0,00), u and v be locally

ibtegrable non-negative weight functions. Then

K(pz)K(pfg)(z) = K(pf) (@)K (pg)(x) (2.40)

for all x > 0.Inequality (2.40)is reversed if the functions are asynchronous on (0, 00).

Theorem (2.2.15) with q(x) = p(x) =1 gives the following corollary.

Corollary 5 Let f,g be two synchronousn functions on (0,00), u; and v;,i = 1,2

locally integrable non-negative weight functions. Then

Ko(1)(2) K1 (fg) () + Ki(2) Ka(fg)(2) = Kag(o) Ko f(2) + Ko f () Kig(z)  (2.41)

for all x > 0.Inequality (2.41)is reversed if the functions are asynchronous on [0, o0o].

If f =g in (2.41), we get the following corollary.

Corollary 6 Let f, f* be positive and integrable functions on (0,00), and u;,u and

v;, 1 = 1,2, be locally integrable non-negative weight functions. Then

Koy(D)K 1 (f)*(z) + Ki(1) Ko (f)* (%) > K f () K1 f(2)
for all x > 0.

Corollary 7 Let f be a positive and absolutely continunous functions on (0, 00) such

that f/ > 0.Let u;and v;, 1 = 1,2, be locally integrable non-negative weight functions.
Then

Fo(1)(2) K1 () (@) + Ka(D) (@) Ka(f2) () = (Ki(1)(2)) " Ko f () (K (p))?
+ (Ko(1)(2) 7 Ko f (2) K1 f () (K2 f (@)

forall x > 0.
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proof We observe that the conditions f > 0, f > 0 imply that the functions f and

f? are synchronous on (0, oo).Hence, for all 7, p > 0 we have

(f(r) = () (f* () = f(p)) = 0.
Therefore,
A0 fP(p) = f(r)f*(p) + f(p) F3 (7).

Applying Theorem (2.2.13), we complete the proof. O

Remark 2.2.4. By applying Corollary (5) with v;(x) = u;(x) = 1,5, = 1,i = 1,2,
we arrive at Theorem (1.6.1)
In the following we shall make use a well known Hélder inequality for many functions.

1 1
Lemma 2.2.6 Suppose that — + ...+ — =1 for P,>1 i=1,2,....n.1f
Y4 Pn

fi € Ly, respectively, then H fi € Lyand
i=1

/Owi:ﬁl|fi|dxsi:ﬁl(/o°°|fi

Theorem 2.2.16. Let P, > 1,i=1,2,...,n such that

1
i d:c) (2.42)

Ll
Bt p =

If f; € Ly, ,u and v locally integrable non-negative weight functions,then
i=n =n v 1
w (I 7)o < T (2.43)
i=1 i=1
For all x > 0.

proof For ¢ = 1,2,...,n we consider the functions Fj, defined on (0,z) as follows

Fi(t) = k(x, 16)1’L fi(t). By applying Hoélder’s inequality, we obtain
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n

x?

v(x)

«

Kﬁ @) = F(k(z, tut)dt

S—

—

0 ;=

|
S =

T =

I
/@\/-\
S—
—

[(a)

(5

(Fo
= [T @)

Fy(t)u(t)dt

0

Il
—_

1

PP (t)u(t)dt)

-.
Il

T

~— <.

IA

S—

0

Il
3 —

1

k(a, 0) 17 <t>u<t>dt)

c
S
~

TN

I
—

S~
8

S .
I
S =

@
I
—

This proves inequality (2.43) and completes the proof. O

Remark 2.2.5. Theorem (2.2.16) applied with v(z) = u(z) = 1,8 = 1,n = 2
proves Theorem (2.2.10).

Theorem 2.2.17. Let f,g be two functions defined on (0,00), uw and v be locally
integrable non-negative weight functions. If f is increasing. ¢ is differentiable and

there exists a real number m := glcgg g (x),then
K(fg)(z) = (K1) K f(z)Kg(x) — m(K(=1)) " K f () K(id)(x) + mK(zf)(z)
holds for all x > 0,where id(z) = x.

proof We consider a function h(z) = g(xz) — ma, where h is differentiable and
increasing on [0, 00).
Then f and h are synchronous on (0, co).

By applying Theorem (2.2.13) , we conclude that

K(f(z)(g —ma)) > (K(1))" K f(2)K(g — ma).

Since K is linear, we have

K(f(z)(g —mz)) = K(fg)(x) — mK (zf)(x).
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This yields:
K(fg)(z) = (K1) K f(z)Kg(x) — m(K (1)) K (id)(2) K f (z) + mK (zf)(2).

The proof is complete. O

Remark 2.2.6. By applying Theorem (2.2.17) for v(z) = u(z) = 1,8 = 1, we
obtain Theorem (2.2.12). Theorem (2.2.13) applied to the decreasing functions f(x)
and G(z) = g(x)— Mz for all & > 0, where M := sup g (z), gives rise to the following
Corollary. =

Corollary 8 Let f g be two functions defined on (0,00), u and v be locally integrable
non-negative weight functions. If f is decreasing, g is differentiable and there exists

a real number M :=sup g (x),then
x>0

K(fg)(z) > (K1) K f(2)Kg(x) — M(K(1))" K f(2)K (id)(z) + MK (zf)()

is valid for all x > 0.
We observe that our results generalize Theorem (2.2.8), (2.2.9), (2.2.10), (2.2.11)
and (2.2.12).

2.2.5 Fractional Chebyshev Type Inequalities Using The Pecaric

Extention

Fractional Montgomery’s Identities

In 2009, Annastassiou [1 1] established two fractional Montgomery identities.

This was important work for the researchers, who stated:

Theorem 2.2.18. Let f : [a,b] — R be a differentiable function, so Montgomery’s

identities for fractional integrals are given by:

£y = T o) ) — e (P D) F0) U2 (A BB), (24)

Where P;(z,t) the Peano fractional kernel is defined by:
t —
J(b — x)l_af‘(a),a <t<zx
Pz,t)=1{ 2=¢ (2.45)
; (b—2)"T(a),z <t <b.
—a
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proof Based on (2.45) and taking into account the properties of the fractional

calculation, we have
b
D()J; (P.b)f®) = [ (- >a-1P<x O ()
- /m(b— ‘“t dt+/ —talt '(t)dt

= [o-0 1—t o+ Pty

b—a
- L [ e—ote—nrma (2.46)
- I <1+£:Z> (b— 1) fi(t )dt—bi/b(b—t)o‘f’(t)dt

[ =0

—aJzx

= [ i [ -
_ /:(b—t)o‘lf( )t — bi/b(b—t)af’(t)dt.
We integrate (2.46) by part:

(@) (Pl (1) = (6= 0 @) = (b= )" (@) + (o= 1) [ (0= 0250y
- (0 as] +a [0 )

(b= )" (@) + (@ = 1) [ (b= 020t~ (b~ @) fla) + (b~ )" f(a)

a

«

[
x b
~b =) @)+ (= 1) [ =20t = o= fban

= (b—2)""' (@) = T T(@JSfB) + (= 1) [ (b=t 2f(t)at

«

b—a
D(0) ¢ (P(e,b)f(8) = (b—2)°"f(x) — s~ T(@)J2F(5) + T(0)J3~ (P2, D) ().
(2.47)
([
Finally, from (2.47) for a > 1, we get:
70) = Ty gz 1) — S (P, BT B) + ¢ (P, D))

Remark 2.2.7. Replacing « with 1 in (2.44) we get the classicl Montgomery’s
identity (2.14).
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Theorem 2.2.19. Let f : [a,b] — R be a differentiable function, then a general-

ization of the fractional Montgomery identity is given by:

f(@) = (b—2)' T () J5 (w(b) (b)) — Jo ™" (Qu(x,0) f(b)) + J& (Qu(w, b) /(D)) -

(2.48)
Where Q,,(x,t) is the fractional Peano kernel defined by:
b—z) " T(a)W(t) a<t<
Qu(x,t) = (=) )Wl) a<i<e (2.49)
(b—2)"T(a)(W(t)—1) x<t<b

Remark 2.2.8. Replacing o with 1 in the (2.48) we get Montgomery’s identity
with weight (2.16).

The thired fractional Montgomery indentity was established by A-Guezan.Lakoud-
F.Aissaoui [7Jon 2013, they replaced the fractional kernel Py, given by (2.19) , by
a fractional kernel with weigh wich is compound by the function ¢ .

Their results were as follows.

Theorem 2.2.20. Let ¢ : [0,1] — R a differentiable function such as
©(0) = 0,p(1) # 0 and ¢’ € L'[0,1], then a generalization of the fractional Mont-
gomery identity is given by:

1

flz) = W(b_ ) T(e)Jg (w(b)¢'(1) £ (b)) (2.50)
1

1
p(1) p(1)

Where Q. (x,t) is the weight fractional Peano kernel defined by:

Jo " (Quip(,0) £ (b)) + —< T (Qup(w,0) /(b)) -

Qo2 1) = (bl—_ﬂi)lar(a)cp(W(t)) a<t<w (2.51)
(b—z) " "T()(p(W(t) — (1)) z<t<b.

Remark 2.2.9. Replacing a with 1 in the (2.50) we find Montgomery’s identity
with weight (2.18).

Fractional Chebyshev Type Inequality

In this section we cite three integral inequalities of the fractional Cheby-

shev type. The first two inequalities are determined via the fractional Montgomery
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identities introduced by Annastassiou [11] and the third, is based on the fractional
Montgomery identity established in 2013 by A. Guezane-Lakoud -F. Aissaoui [7]

whose statements are given by the following theorems:

Theorem 2.2.21. Let f, g : [a,b] — R two differentiable functions, f’, ¢ are inte-
grable on |a,b] then:

(b—a)** (2a® + 11a + 8)
(a+1)?(a+2)(2a+1)(2a+3)

Ta(f,9)] < 1/ Moo 19Nl oc - (2.52)

where o > 1 and T,(f, g) is defined by:

I*(a)
(b—a)?

proof Based on Montgomery fractional identity (2.44):

To(f.9) = 7—T(2a = DI ((f9) (b)) — Jag(0)J5 f(b) (2.53)

b—a

F = (@)~ 7))+ e (B 0 0) = £ = I (P, b))
G = gl) — (6 — 2= 0 (0) + T (PuCe D (8) = & = J (P, B)g (8).
FG=F -G

and
F(Oé) l—a Ja l—a 7o
I —bfw—x) 7 (b= )= Jg g0))
+J07 (Pr(2,b) f +Ja 1 Pi(x,b)g(b))
— f)gla) — fla) (_O‘i< P o) + (@) (P, Bg)
A At0) (b_“a) D) (1 (0) 2 0(0)
DOy () (P D) + gl (Pu ) (8)
NP D)) (b ) (a(0)
I (P BT 0) e (P Do), (254)

We multiply (2.54) by ——(b — 2)**"? and integrate the result on [a,b] , taking

b—a
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into account the properties of the fractional calculation we find(2.52):

Tu(f.9) = - T(20 — )2 ((f)(8) - (5 (@ § Jog(b)J £ (b)
::biaéab_xywaﬁwpmm@fwnjgguLbMQMdﬁ

By a long calculation we find:

b
[/aw 0 PGl POl [0 9 P9l (9] s s

< oy e 190 [0 o2 ([0 - o i ola) @ @59
1ﬁntegrat par parts we get:
/ab(b—t)o“l|P1(x,t)|dt:/ax(b— )21 | Py(z, 1) |dt+/ )21 Py (2, 1) dt
_ F<O‘)§)b__ax)1_a U;(b—t)“ Lt - a) dt+/x (b—1t) adt]
ST IS R i R s S
b—a a ala+1) ala+1) a+1
F(a)g)b_—ax) - [(a(a +1)+b(a—1)— 2aa:)(§élzojf)1o; (Z(;cﬁ‘; 1 : (2.56D)

replacing (2.56) in (2.55) we get

1 b (b— x)* 2
ITu(f, g)|<( m V Sy T lela )+ = 1) = 200
—l—/ o2(a j_ )2 dx + 2/ ala+1)+b(a—1) — 2ax) (Zzoj—f)l) (Z(;OZ 0 dm}
B (b — a)?+3 [(a -1)?  da(a-1)
(b—a)? * a2 (a+1)? | 2a+1  (2a+1)2a+2)
N 8a? +1+2(a—1)_ 4o ]
2o+ 1)(20 + 2) (2 + 3) a+1 (a+1)(a+2)

(b—a)**(2a)? + 11la + 8
S (a4 1)2(a+2)(2a+ 1)(2a + 3)

1/ lo g lloc-
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Remark 2.2.10. Replaces a with 1 in Chebyshev’s fractional inequality (2.52), it
is reduced to the classical Chebyshev inequality (2.20).

To simplify the notation, and for two given functions f and g : |a,b] — R,we note

To(f.g.w) = T(20 = 1)1 H(w(b)f(b)g (b))
() J3 (w(b)g (b)) g (w(b) £ (b)) (2.57)

The following theorem presents the second fractional Chebyshev type inequality

with a weight kernel.

Theorem 2.2.22. Let f, g : [a,b] — R two differentiable functions on [a,b], " and
g are integrable on [a,b]. Then the fractional Chebyshev type inequality with a

weight kermel is given by:

1

T.(5.9.0)] < T

171l [ 0= 2 ue) + B@dr (2.58)

where o > 1 and
b
Ha(w) = [ (0= )" 1Qu(x, D] di
with Q. (x,t) defined by (2.48).

Remark 2.2.11. If the value of « is changed to 1 , in the Chebyshev fractional
inequality (2.58), we get (2.4).

The following theorem represents the third Chebyshev type fractional inequality
with a weight kernel.

To simplify the notation, for two given functions f and g : [a,b] — R, we denote

Ta(f,9,0,w) = T(20 = 1)J3* 7 (w(b)¢' (1) (b)g (b))

(a) p a /
- 20 J& (w(b)¢'(1)g(D)) Jg (w(b)g' (1) £ (b))

Theorem 2.2.23. Let f, g : [a,b] — R two differentiable functions on [a, b]f" and ¢

are integrable on [a,b]. Then the Chebyshev type fractional inequality with weight

kernel is given by:

1 p / b 20—2 2
To(f, 9, 0,w)| < Wﬂf s llg Hoo/a (b — )™ "w(x)Hy(v)dr  (2.59)
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where o > 1 and
b

Hoe) = [ (0= )" gu(w, D] dt

a

with Qu,,(x,t) defined in (2.51) formula.

Remark 2.2.12. [f the value of « is changed to 1 , in the fractional inequality of
Chebyshev (2.59), we get the inequality of Chebychev (2.27).
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Chapter 3

A generalisation of chebyshev’s

inequalities for functions of

serveral variables

3.1 Chebyshev type inequalities of two variables

using the Montgomery identities:

In the last years, many articles have been devoted to the generalization
of Chebyshev type inequalities. In this section we discuss our results for some
Chebyhev-type integral inequalities for double integrals and [20, 9] multivariable
functions, based on a new version of the Montgomery identity with two variables

given in the following lemma:

2
t
Lemma 3.1.1 Let f : I = [a,b]x[c,d] — R is differentiable, the derivative 0 gt(87 )
s
is integrable on I, so Montgomery’s identity is given by:
fly) = [ () ey
T,Yy) = / t,y)dt + / T,s)ds
(b— a) a (d—c)
)dsdt
b— a)(d — c) / / f(¢, 5)ds
0*f(t,s)
1)@ dsdt 3.1
* / / HRCL (3.1)
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VARIABLES
where the P(x,t) kernel is defined in (2.13) and Q(y, s) is such that
STC cs<
—Jd-¢ =7 3.2
Q(ya S) s—d d ( . )
s <
d—c’ ysss
proof Let’s calculate the following double integral
bord *f(t,s)
/a /c P(z,t)Q(y, s) 5i0s dsdt
@y t—a\ (s—c\ O f(t,s)
_/a / (b—a) (d—c) oros
v ordrt—a\ (s—d\ 0*f(t,s)
—=dsdt
+/a /y (b—a) (d—c) Otos
by (t—0b\ [s—c\ O*f(L,s)
: d
+/z /c (b—a) (d—c) O0tos dsdt
bord (t—Db\ /s—c\ O?f(t,s)
~—~dsdt
+/x /y (b—a) (d—c) Otos s

=A+ A+ As + Ay

We integrate A;, i € 1,2,3,4 by part and using the fubini theorem, we get

e [T ) e
= M(d_c)/a(t—a)/cy(s—c)ag;;;s)dsdt

~ amamg Lo 0250 - [ a

- w—d@—@lw‘@@—dwgwﬁ—L%—@(fa@f”%ﬁ

_ @-aly—. (y—C) v
(x —a) Y
- gL et =y // f{t, s)dsdt
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VARIABLES
In the same way, one obtains
_ (@—a)(d-y) . (d-y) @
A= g @Y) (b—a)(d—c)/af(t’y)dt
—b_xa_;ydfazsds—i- T —c// f(t,s)dsdt
_ =9 —-=x) (y— ¢
Az = mf(ﬂ%y) (b—a—c/fty
(b— 1) Y
- (b—a)(d—c)/c f(z,s)ds + b—a —c// f(t, s)dsdt
and
~ (d=y)b—x) B (d—y) b
—(b_(ba_m/fxsds—i-b_ _C//ftsdsdt
calculate A; + Ay 4+ Az + Ay, term to term we get
A+ Ay + As + Ay
b D2 f(t,s)
= /a/CP(ZE,t)Q(y,S> 5108 dsdt
b d
= f(z ! (diC)/c [z, s)ds

+ (b_a)l(d_C)/ab/cdf(t,s)dsdt

1 b 1 d
few) = g | e = [ fs)ds

(b—a)l(d—c)/ab/cdf(t’ s)dsdt

b d O*f(t,s)
n /a/cP(x,t)Q(y,s) 2 st

hence (3.1), which is the end of the demonstration.

then

Montgomery’s Identity With Two Variables and a Weight

Kernel

We now give a new extension of the Montgomery identity with weight for the

functions two variables similar to (2.14), for which we define two density probability
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functions.

Let w : [a,b] — [0, +00[] a density probability function, and

W(t) = /atw(x)dx for a <t <b, with W(a) =0 and W(b) =1, and ¢ : [¢,d] —
[0, 4+00[] a density probability function, and ¥(s) = /S oy)dy for ¢ < s < d, with
U(c) =0 and W(d) = )

2
Theorem 3.1.1. Assume that the partial derivatives 01 (s, t), 0f(s%) and O fls,)
Os ot 0sot
exist and are continuous on I then:
b od
flawy) = [Cw@ )+ [ v(s)f(a,)ds
b d
— [Cw) [ et ydsat
*f(t,s)
+// (@, )Quly, 5) =5 dsdt (3.3)
Where P, (z,t) and Q,(y, s) two Peano kernels defined by:
W(t), <t<
Py(,t) = (), asise (3.4)
W(t)—1, x<t<hb.

Q,(y, ) { W(s), c<s<y
U(s) -1, y<s<d

We give a new extension of the Montgomery identity with weight for two-variable

functions similar to (2.16).

Theorem 3.1.2. Let f : I — R a function that is twice differentiable and its second

derivative 8258(;;15) is integrable on 1.
L ' (W () f(t,y)dt
fw) = gy [ OO f(y)

o [0 (W) £, )i

(1)
L [l v 0) [ o(s)e (v £t s

v*(1) c
L Pl 0@u 9™ 5 st

©*(1)
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Where P, , defined in (2.6) and Q. the Peano kernel defined by:
p(P(s)),c <s <y
Quo(y,s) = (3.5)
p(U(s)) —(l),y <s<d

Chebyshev Type Inequalities Using Montgomery’s Identity
for Double Integral:

The first Chebyshev-type inequality for the functions of two variables is now
presented based on the identity of Montgomery (3.1).

Theorem 3.1.3. Let f,g : I — R two differentiatable functions such as second
P is.t) Dl
an
0sot 0sot

49

derivatives are integratable on I, then

0% f(t,s) D2 f(t,s)

IT(£,9) = 35056 — @ (d = 9" | =55 Oo’ otds | (3:6)
where the T(f, g) operator is defined by:
b pd
T(f.9) = (b_&)l_c/ / fla,y)g(x,y)dedy (3.7)

_ b )X —c// xy/ (t,y)dtdzdy
— (b—a)id—c)Q/a /C g(x,y)/c f(z, s)dsdxdy

i (b— a)21(d —c)? /ab /cd f(@, s)dsdz /cd /abg(t’ y)didy.

proof Let F, G, ' and G by the quantities defined by:

F=fa) = g [ fit = s [ )i

1
(b—a) Ja c)
+ b=a)d=0 a)l(d s /a /c f(t, s)dsdt

G=g(z,y) - (bi )/bg(t,y)dt— (dic) /Cdg(w',S)dS
b—a // (t, s)dsdt

:/a / P(m,t)Q(y,s)ath(a; ) dsdt
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and
2g(t, s)
6H)Q dsdt 3.8

¢= [ [ Panow. 7o (3.8)

According to Montgomery’s identity (3.1) we have:
FG=FG
1
By multiplying FG by —————— and integrating on I, we get
(b—a)(d—c)

10 = gt [ L ([ [ o200 52 0o

X </ab/c P(x, t)Q(y,S)aQat(a )dsdt>.

What implies that
aaaal [ ([ ] penews g )
(// o3 0
<o—aas L[ ([ [ 1Penews) asa
(//\P:ct (y, s (‘975(8 %) ds dt)dxdy

Pf(t,s)] |[0%g(t,s)
Otos Ot0s

T (f9)|—

>’f(t,s)
Otos

- a><d )

// (// |P(z,1)O(y, )|dsdt> dzdy (3.10)
Let’s calculate

/ab/cd|P(x,t)Q(y,s)|dsdt - /ab|P(x,t)|</cd|Q(y,s)|ds> dt
I = =L

g e ([S]S Jo

_ [( b_a < dH/m t)dt>

om0 Pl - 4
- o B
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replacing (3.11) in (3.10) we get

1 0%f(t,s) D?g(t, s)
Tl = 16(b—a)3(d—c)® || 0tds ||| Otds ||
« /ab/j ([tz = a2+ (b — 2] [y = 2 + (d — y)?])” ddy
_ 1 0?f(t,s) D?g(t, s)
16(b —a)3(d—c)? | Otds || Otds |
x /ab[(w—a>2+<b—as>2}2da:/d[(y—c>2 (@] dy
- 1 Frhs)| ) Folts)
16(b —a)3(d—c)? || Otos otos '
(b—a)® (b—a)® (—0a)\((d=0c)?® (d=0¢)° (d—¢)°
X<5+5+15><5+5+15)
_ 1 D?f(t,s) D?g(t, s)
16(b—a)?(d—c)3 | Otos O0tds
(b—a)* (d—c)’
S TERRCNT:
49 o |02 f(t,5) D2 f(t,s)
= o000 T T, Dt0s
Wich complets the proof. 0

Chebyshev Type Inequalities With Weigh kermel for Double

Integral

Motivated by identity (3.4) we give an integral inequality of Chebyshev type with

weight kernels. Let the T" operator defined by:

T(w, %, f,9) = / / (£)6(y) (. y)g . y)drdy (3.12)

[ et /abw(t)f( ) dady
= [ [ wemiatean ([ o)t sis) s
([ wto) ([ w190 as)

X (/de(y) (/abw(t)g(t, y)dt) dy) ,
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Of(s,t) Of(s,t)

Theorem 3.1.4. Let f,g: I — R such as the partial derivatives

92 os = Ot
and f(5.1) exist and are continuous on I. So:
0s0t
T (w, 1, f,g)] < #iUL) / / y)H?(z,y)dzdy  (3.13)
¥ 12901 = 8t85 - 8t83
where

)= [ [ 1P 0)Qu, o) dst

Theorem 3.1.5. Let Z, g : I — R two differentiable functions such as their second
0%g(s,t) 0°g(s,?)

dsot ’ dsot
Then the inequality is given by:

derivatives are integrable on I.

Df(t,s)
0tos

d?g(t, s)

N <
|T(w,¢,f,g,<,0)|_ 8t88

1 \ I
p*(1) o
<2 [ [ wleyst) B, y)dwdy

(3.14)

where
H(x,y) = /ab /Cd |Pw730($a t)Qw7gp(y7 s)| dsdt
and the operator
T(w7¢7f7g790,) =
/ab /cdw(9”)¢'(W(t))w(y)so’(‘1f(y))f(x, ) g(x, y)drdy
11) /ab /cd [w(z)g' (W ()0 (y)¢' (¥(y))g(z,y)

/ab w(t)' (W (L)) f(t, y)dt] dxdy

_sO(ll) /ab /cd [w(@)e' (W () ()¢ (¥(y))g(z, y) (3.15)

[

IRICECTET T P
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3.2 Bounds For The Chebyshev Functional For
Function of Holder Type

Cerone and Dragomir [3] obtained a variety of bounds using a generalisation
of Korkine’s identity.

If we consider the Chebyshev functional:

1 b1 bn
Dy(f,9) == IMk—ak)/m /an f(xy, o zn)g(w, ., 2n)dey . dy,

L f o
(1, .oy ) dzy. . dTy
T ( bk: — ay)? ' b
by bn
x/ / g(x1, ..y xy)dxy .. .dxy,
b b
——— [ f@g(ayia )z [ g(@)az,
(la, b a

where v([a,b]) = H(bk — ag),then we can state the following generalisation of
k=1
Chebyshev’s inequality.

Theorem 3.2.1. Let f,g: [a,b] — R be of Holder type. That is,

|f(Z) 7)| < ZL |z, — , T,y € [a,y], (3.16)

lg( 7)] < ZH |x; — , T,y € [a,y], (3.17)

where L;, H; > Oand p;,q; € (0,1] are fixed for i = 1,2,...,n Then we have the
inequality:

n . q.\pitai n BB — o\
|Dn(f, g) S ZLZHI (bl az) +2 Z LlH (bz az) (b] CLJ)

S et Dita+2) o (i D +2)(g + 1)(g +2)

(3.18)
and the inequality is sharp. We have
|f(z) = f(y) < ZLim — il (3.19)
and
9(2) — g(y) <D Hilw; — yi|* (3.20)
i=1
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If we multiply (3.19)and (3.20), we may get
(f(Z) = F(@)(9() — 9(2))|

< Y LiHj|z; — s

i,j=1

- Z LiHj|z; — y;
=1

pi

zj — ;|

n
pit+4q; + Z LiHj‘xz’ _ yi’pi’%’ _ yj‘qj
i#j36,5=1

n

If we integrate over z,y € [a,b] = [[la:, bi] == [a1, b1] X [an, b,] we get from Korkine’s
i=1
identity

D) < gy [, L 10@) = F@)a(@) — s@)ldads (321
1

<

~ 2[[T (b — a))?

n b b
ZLiHi[ [ |$z’—yz‘
i=1 a Ja

Now, we have that

Prtidrdy + Y LiHi|r -y

i#5;1,5=1

l’j — y]|q]d$dy] .

n

b b bi b
A= / / |2 — yilP T ededy = ] (b — ak)g/ / |2 — yiP T dady; (3.22)
@ e kik=1 ai Jai

and as

/cd /cd & — y|"dady — Q(Tf 1_)(621 ol (3.23)

then we get

& 2(b; —a;)P" +q; — 2
Aij = H (bk — ak)Q. ( )
keisk=1 (pi + @+ 1)(pi + i+ 2)
- (bi — ;)" + g;
=2 bk — ag 2.
k¢g:1( ) (pi +q+1)(pi +a+2)

Also, o
Ajj = [ ﬂ |w; =yl |z — y; | ddy

n

9 bi b _ bj b v
= I (s —a) / |2 — yil” dfﬁz’dyi/ / |j — y; |7 |de;dy;
ki, k=1 a; Ja; aj Jaj
< o 2(bi —a)"*? 2(bj —a;)¥"?
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- 2 (bi — a;)"(b; — ;)"
=4 ] (b — ax)
P (i + 1) (pi +2)(g; + 1)(g; +2)
where we have utilised (3.22). Further,by (3.21),we have:
[ Dn(f, 9)]
1 n n (b _ a.)pi+qi
< LiH; — 2 I] (bx — ar.)? L
= 2T, (o) Z = Do v+ 2
(bi — a;)P(b; — a;)®
+4 L;H,;
z;éj,zzj | H (Pz' + D(pi +2)(q; + 1)(q; + 2)
o oo
S it g+ D(pi+ g +2)
+o Z Lo (bi — a;)" (b; — a;)®
S i+ D+ 2)(g+ D(gy +2)

and the result (3.21) is thus verified.
The sharpness follows from the sharpness of the Chebychev functional for n=1 (see

for example [15]).
Corollary 9 Let f.g :[a,b] — R be Lipschitzian with constants L;, H; > 0. That
18,
/(@) |<2Lm vil, 7,7 € [a, 0]
and

l9(7) |<ZH|IZ vil 7,5 € [a,0]

Then the inequality

1 2 1 n
1Du(f.9)] < =Y LiHi(b; — a;)* + = Y. LiH;(bi — a;)(b; — a;) (3.24)
1253 18 ;=

holds and s sharp .

proof Taking p;, = ¢; =1 fori=1,2,....,n in (3.21)readiy produces (3.24) O
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Remark 3.2.1. Result (3.24)is presented in [18], however,the coefficients of the
sums are ineterchanged .Further, it is apparent that for z,y € [a,b] and f ansolutely

continuous,then

< sup |f'(2)] = L,

z€[a,b]

f(x) = f(y)
r—Yy
demonstrating that a function ssatisfying a Lipschitzian condition is a weaker con-

dition than one whose dervative belongs to L.,

Remark 3.2.2. if n =1 ,then for f,g € [a1,b1] — R
(b1 —a)f + ¢ +1
(m+a+ 1P+ a+2)

|D1(f7 g)| :|T(fvgva7b) < LiH (325)

with
|f(z1) = f(y)| < Lalzy — o[, [g(20) — g(y1)| < Hilzy — 1 |®

x1,y1 € |a1,bi] and py,q1 € (0,1].
If n =2 then for f,g € [ay,b1] X [ag,bs] — R

1

|(191 — az)(by —
1

b1 62
bl o a2)2(b2 - a2 / / $17 xQ)dl’ld:[,‘Z

b1 b
/ / 5(71,.%'2 dCL’leEQ

(bl _ al)P1+¢I1 (bg _ CLQ)P2+lI2
(P1+Q1+1)(p1+Q1+2) et a2+ )(pe+ a2 +2)
(b1 — a1)P' (bg — ag)®
(p1+1)(p1 +2)(q2 +1)(q2 +2)
(b2 — @) (b1 — ar)®
(p2 +1)(p2 +2)(q1 + (1 +2)

|D2(f7 )’

b1 pbs
a2/ / (@1, 22)g(21, 22)d21ds

< LH,

+ 2L, H,

+2L,H,

with

|f (i) = f(yi)| < Lilwi — wil”, @i, 95 € [as, bi), i=1,2,
and

9(x:) — g(vi)| < Hilzi — yil ™, @i, yi € [ai, bi], =12,

thus (3.2.2) recaplures the result of hanna, Dragomir and cerone [13][11].
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Conclusion

The objective of this work is to study several classical and fractional Cheby-
shev type inequalities for functions with one variable and for functions with sev-
eral variables , using the fractional integral in the Riemann-Liouville sense, Mont-

gomery’s identities, Korkin’s identity.
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