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General Introduction 

The history of graph theory probably begins with Euler's work in the 18th century and 

finds its origins in the study of certain problems, such as the Königsberg bridge problem (the 

residents of Königsberg wondered whether it was possible to start from any point in the city, 

cross all bridges and return to the starting point without passing over the same bridge twice), 

the walking of a knight on a chessboard, and the map coloring problem..(Eric Sigward, 2002) 

The objective of this dissertation is for the system to receive a typical graph exercise 

statement (Eulerian path) as input and return the solution as output. This solution is 

represented in a format close to a typical correction, allowing students to verify their solutions 

and enabling the teacher to automate part of the correction process. 

In the first chapter, we present the fundamental aspects of graph theory that are relevant to our 

study and the problem of Eulerian paths. 

In the second chapter, we introduce the Eulerian path. We then present the depth-first search 

algorithm and some LaTeX commands. 

In the third chapter, we apply the algorithm to solve our problem and provide several obtained 

results. 

Finally, we conclude with a general conclusion and some perspectives 
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1. INTRODUCTION 

How can we lay cable at minimum cost and make it accessible from any phone? What is 

the shortest route from the capital to each state capital? How can n jobs be filled by n people? 

What is the maximum flow rate per unit time from source to sink in a network of pipes? How 

many layers of computer chips are needed so that wires on the same layer do not cross? How 

can a sports league season be organized with a minimum number of weeks? In what order 

should traveling salesmen visit cities to minimize travel time? Can all map regions be color-

coded in four different colors so that adjacent regions are colored differently? ( DOUGLAS, 

2001) 

These practical problems and many others involve graph theory. So, in this chapter we 

introduce the definitions and basic notions of graph theory, together with examples and 

illustrative figures. 
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1.1 History 

It's fascinating to learn about the Königsberg Bridge Problem and its connection to the 

development of graph theory. The inability of the city's residents to walk a route that crossed 

each bridge exactly once is an example of what is now known as the Eulerian path problem. 

Euler's work on this problem laid the foundation for the study of graphs and their properties. 

Graph theory has since become an important field of study with applications in various areas 

such as computer science, social networks, and transportation systems. (Figure 1) (John M, 

2008) 

 

 

Figure 1: the bridges in Konigsberg (John M, 2008) 

Yes, the Königsberg Bridge Problem is often cited as the birth of graph theory and 

serves as a basic example of a graph. In this problem, the city of Königsberg is represented as 

a graph with land masses as vertices and bridges as edges. The citizens' question of whether 

they could cross every bridge exactly once and return home is equivalent to finding an 

Eulerian path in the graph. This problem helped to establish the concept of a graph as a set of 

vertices connected by edges, which is now a fundamental concept in graph theory. 

.(DOUGLAS, 2001) 

Figure 2: Konigsberg model (DOUGLAS, 2001) 
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The model on the right helps to illustrate why the desired traversal in the Königsberg 

Bridge Problem does not exist. The fact that each land mass must be involved in an even 

number of bridges is a necessary condition for the existence of an Eulerian path in the graph. 

However, this condition was not met in Königsberg, as some land masses were connected to 

an odd number of bridges. 

As you mentioned, the Königsberg Bridge Problem becomes more interesting when we 

explore which configurations of bridges and land masses do have traversals. This problem is a 

classic example of graph theory and has led to many important results in the field. It also 

serves as a general model for discussing similar questions in other contexts. (DOUGLAS, 

2001) 

 

1.2. Graph definition 

That's a great summary of the basic definitions of a graph.  A graph G is a pair 

consisting of a non-empty set of points called vertices (V) and a set of edges (E), where each 

edge is a pair of vertices. If an edge connects a vertex to itself, it is called a loop. If there are 

multiple edges between the same pair of vertices, they are called multiple edges. 

A simple graph is a graph with sigma. In a directed graph, denoted by G = (V, A), the 

edges are directed and are called arcs. This means that each arc has a direction and goes from 

one vertex (the tail) to another vertex (the head). Directed graphs are useful in modeling 

situations where the direction of the relationship between vertices is important, such as in a 

flow network or a social network. (Abbes, 2021).. 
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Figure 3: the graph on the left is simple, but the one on the right is not (Abbes, 

2021) 

 

1.3. The types of graphs 

1.3.1 Oriented graph 

A graph G = (V, E) consists of a finite set V = {v1, v2, ...} whose elements are called 

vertices, and a set E of ordered pairs of vertices, known as edges. An edge e from vertex x to 

vertex y can be denoted as e = (x, y), where x is the initial vertex and y is the terminal 

vertex.(Didier Müller, 2004) 

 

                                              Figure 4: oriented graph (persu, 2023) 

 

 



CHAPTER I:  Graph theory rappel 

 
7 

1.3.2 Graph no-oriented 

 We can define the graph Gr1 = (V1, E) by specifying its elements .Here, E = {e1, e3, ...,en}  

represents the set of edges, where each element eᵢ is called an edge. When an edge e connects 

two vertices, we say that the vertices are adjacent to or incident to eᵢ. (Didier Müller, 2004) 

 

Figure 5: graph non oriented (persu, 2023) 

1.3.3 Simple graph 

In addition to edges connecting vertices to vertices, graphs have loops and multiple 

edges. A loop is an edge connecting a vertex to itself, and a sigma is an edge connecting a pair 

of identical vertices. 

Graphs that allow loops and multiple edges are called polygraphs. A polygraph is a 

generalization of a simple graph, which does not allow loops or multiple edges. 

A multigraph can have edges connecting vertices, loops on vertices, and multiple edges 

between pairs of the same vertices. This type of graph is useful for modeling specific 

situations, such as transportation networks or social networks. (Didier Müller, 2004) 

 

 

 

 

 

 

Figure 6: Multigraphe (Didier Müller, 2004) 
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1.3.4 Connexe graph 

If from any vertex it is possible to connect all other units by following the unconnected 

unit: It consists of components and compresses the connection. The components are {1,2,3,4} 

and {5,6}. (Didier Müller, 2004) 

 

Figure 7: graph connexe (Didier Müller, 2004) 

1.3.5 Complete graph 

If each vertex of a graph is directly connected to all other vertices (Didier Müller, 

2004) 

V={1,2,3,4,5} 

E= { {1,2} {1,3} {1,4} {4,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} 
 

 

Figure 8: complete graph (Didier Müller, 2004) 

1.3.6 Bipartite graph 

If its vertices can be partitioned into two sets x and y, then every stop of the graph is 

connected by a vertex of x and a vertex of y. (Didier Müller, 2004) 

x={1,3,5} 
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y={2,4} 

v={1,2,3,4,5} 

e={ {1,2} {1,4} {2,5} {3,4} {4,5} } 

 

 

Figure 9: bipartite graph (Didier Müller, 2004) 
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1.3.6  Regular Graph 

A regular graph is defined as a graph in which all vertices have the same degree. If the degree 

of each vertex is 'r', then the graph is referred to as a regular graph of degree 'r'. The null 
graph is an example of a regular graph with degree 0, as all vertices have no edges. On the 

other hand, the complete graph 'K' is a regular graph with degree 'n-1', where 'n' represents the 
total number of vertices in the graph. 

Furthermore, for a regular graph 'G' with 'n' vertices and degree 'r', the number of edges in 'G' 
can be determined as 'n*r/2'.  

This relationship arises from the fact that each edge is incident to two vertices, and the sum of 

the degrees of all vertices in the graph is twice the number of edges. 

Regular graphs hold significant importance in graph theory and find applications in various 

fields such as chemistry, physics, computer science, and more. Graphs possess intriguing 
properties and have been extensively studied in mathematics. (VASUDEV, 2006) 

1.3.7 Cycles 

A cycle in graph theory, denoted by 'Cn' (where 'n ≥ 3'), is a graph consisting of 'n' vertices, 

labeled as 'V₁, V₂, ..., Vn', and 'n' edges connecting these vertices in a circular manner. The 

edges of the cycle are represented as '(V₁, V₂), (V₂, V₃), ..., (Vn₋₁, V₁)', forming a closed 

loop. 

To illustrate this concept, let's consider the examples of 'C₃', 'C₄', and 'C₅' cycles as depicted 

in the figure. 

The 'C₃' cycle graph consists of three vertices, denoted as 'V₁, V₂, V₃', forming a triangle. The 

edges in this cycle are '(V₁, V₂), (V₂, V₃), (V₃, V₁)'. Mathematically, the 'C₃' cycle graph can 

be represented as follows: 

C₃ = (V, E) 

V = {V₁, V₂, V₃} 

E = {(V₁, V₂), (V₂, V₃), (V₃, V₁)} 

Similarly, the 'C₄' cycle graph is formed by introducing a fourth vertex to the cycle, resulting 

in a square-like structure. The edges in this cycle are '(V₁, V₂), (V₂, V₃), (V₃, V₄), (V₄, V₁)'. 

The mathematical representation of the 'C₄' cycle graph is: 
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C₄ = (V, E) 

V = {V₁, V₂, V₃, V₄} 

E = {(V₁, V₂), (V₂, V₃), (V₃, V₄), (V₄, V₁)} 

Likewise, the 'C₅' cycle graph is constructed by adding a fifth vertex to the cycle, forming a 

pentagon-like structure. The edges in this cycle are '(V₁, V₂), (V₂, V₃), (V₃, V₄), (V₄, V₅), 

(V₅, V₁)'. The mathematical representation of the 'C₅' cycle graph is: 

C₅ = (V, E) 

V = {V₁, V₂, V₃, V₄, V₅} 

E = {(V₁, V₂), (V₂, V₃), (V₃, V₄), (V₄, V₅), (V₅, V₁)} 

In summary, a cycle graph 'Cₙ' is composed of 'n' vertices and 'n' edges forming a closed 

loop. The mathematical representation of a cycle graph includes a set of vertices 'V' and a set 

of edges 'E', denoted as 'Cₙ = (V, E)'. The edges are defined by connecting consecutive 

vertices in the cycle, with the last vertex connected back to the first vertex, as shown in the 

formulas above for 'C₃', 'C₄', and 'C₅' graphs.(VASUDEV, 2006) 

 

Figure 10:  Cycles C₃, C4, C5  and C6 (VASUDEV, 2006) 

1.3.8 Wheels 

The wheel graph labeled as "Wn" is constructed by introducing an extra vertex to the cycle 

graph "Cn" (where "n ≥ 3"), and then adding new edges to connect this newly added vertex to 

every existing vertex in "Cn". This process results in the formation of a wheel-shaped graph. 
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To illustrate this concept, let's consider the examples of "W₄", "W₅", "W₆", and "W₇" wheels 

as depicted in Figure 1. 

The "W₄" wheel graph consists of a cycle with four vertices, denoted as "C₄", forming a 

square. Additionally, a fifth vertex is added to the graph, which is connected to each of the 

four vertices in "C₄" by new edges. Mathematically, the "W₄" graph can be represented as 

follows: 

W₄ = (V, E) 

V = {v₁, v₂, v₃, v₄, v₅} 

E = {(v₁, v₂), (v₁, v₃), (v₁, v₄), (v₁, v₅), (v₂, v₃), (v₃, v₄), (v₄, v₅), (v₅, v₂)} 

Similarly, the "W₅" wheel graph is formed by connecting a fifth vertex to each vertex of the 

cycle graph "C₅", creating a pentagon-like structure. The mathematical representation of the 

"W₅" graph is: 

W₅ = (V, E) 

V = {v₁, v₂, v₃, v₄, v₅, v₆} 

E = {(v₁, v₂), (v₁, v₃), (v₁, v₄), (v₁, v₅), (v₁, v₆), (v₂, v₃), (v₃, v₄), (v₄, v₅), (v₅, v₆), (v₆, v₂)} 

Similarly, the "W₆" wheel graph includes a sixth vertex connected to each of the vertices in 

the cycle graph "C₆". The "W₇" wheel graph is formed by adding a seventh vertex and 

connecting it to every vertex in "C₇". The mathematical representations of "W₆" and "W₇" 

graphs follow a similar pattern as shown above for "W₄" and "W₅". 

 

In summary, the "Wₙ" wheel graph is constructed by extending the cycle graph "Cₙ" with an 

additional vertex and connecting it to every existing vertex in "Cₙ". This process creates a 

wheel-like structure with "n+1" vertices and "2n" edges. The mathematical representation of 

the "Wₙ" wheel graph can be defined as "Wₙ = (V, E)", where V represents the set of 

vertices and E represents the set of edges connecting the vertices in the graph..(VASUDEV, 

2006) 
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Figure 11:  Wheels W₃, W4, W5  and W6 (VASUDEV, 2006) 

1.3.9 Platonic graph 

A figure formed by the vertices and edges of five regular solids (platons): tetrahedron, 

octahedron, cube, dodecahedron, and icosahedron..(VASUDEV, 2006) 

 

Figure 12 : Platonic graph (VASUDEV, 2006) 

1.4.  Eulerian path problem 

Data : Graph G 

Question: Is there a simple clear phrase for G that includes all edges of G? Such a path is 

called an Euler chain. If the Euler chain is closed (the first and last vertex of the path are the 

same), it is called an Euler circle. The routing problem of city streets is thus a problem of 

passing through each and only one of them, and thus the existence of Euler circles in a graph 
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where vertices are intersections of streets and stops are parts of streets at the crossroads 

(Frederic Murnier). 

1.5. Progression in a graph 

The concepts of progression in a graph are : Cycles, chains, paths, tours. 

1.5.1 Chain 

In the context of graph theory, we define a chain in a graph as either a directed chain or an 

undirected chain. Let's consider a graph G, which is represented by the set of vertices V and 

the set of arcs (or edges) U. We can express this graph as G = (V, U).  

A chain in G is an alternating sequence of vertices and arcs. Specifically, we represent the 

chain as U = V0, U1, V1, ..., where U0, U1, U2, ... denote the arcs, and V0, V1, V2, ... denote 

the vertices. The endpoints of each arc Ui are the vertices Vi-1 and Vi. 

Furthermore, if a chain Ua connects the vertices V0 and Vk, we say that Ua is a chain of 

length k. The length of the chain represents the number of arcs or edges in the sequence. 

Mathematically, we can express a chain U as: 

U = (V0, U1, V1, U2, V2, ..., Uk-1, Vk) 

By employing these definitions and mathematical representations, we can analyze and study 

chains in graphs, taking into account their directionality (in the case of directed chains) or 

their lack thereof (in the case of undirected chains).  (A. Bretto A, 2012) 

1.5.2 Cycle 

Cycle is a closed path in a graph where the starting and ending vertex is the same, and all 

other vertices in the cycle are distinct. A cycle can be defined as a sequence of vertices V0, 

V1, ..., Vk-1, Vk, along with their corresponding edges U1, U2, ..., Uk and V0=Vk (directed 

or undirected) we say U  is a  cycle  (A. Bretto A, 2012). 

1.5.3 Path 

There exists an alternating sequence of vertices and stops y=V0,U1,V1,...,Vk such that 

1=<i=<K in the graph (directed or undirected), provided that the vertices V i+1,Uk,Vk-

1,Uk,Vk are its endpoints. ,Vk-1,Uk,Vk if and only if there exists an alternating sequence of 

vertices V i+1 such that 1=<i=<K in the graph (directed or undirected) and the stop 

y=V0,U1,V1,...,Vk is its endpoint. (A. Bretto A, 2012) 



CHAPTER I:  Graph theory rappel 

 
15 

1.5.4 .Circuit 

In the directed graph G= (V.U), y = V0 , U 1 ,V1,... , Vk-1 , U k ,Vk . y is a circuit of length k 

such that y = Vk-1 , U k ,Vk , k >0, V0 =Vk. y is a circuit of length k such that y = Vk-1 , U k 

,Vk , k >0, V0 =Vk. (A. Bretto A, 2012) 

1.6. Representation mode  

1.6.1 Succession list 

Consider a graph G = [ X , U ]. To represent a graph G by an inheritance list, we use 

 6.1.1. an array, called a dictionary, containing the vertices of the graph G. 

6.2.2. a list of successors (or predecessors) matching each element of the dictionary. (Fatima 

zohra tebbak) 

 

Figure 13: Succession list(Jean Charles Régin, 2016) 

1.6.2 Adjacency matrix  

Consider a graph G = [ X , U ] of degree N . The adjacency matrix of G is equal to the matrix 

A = ( a ) of dimension Nx N .  

6.1.1.Directed graph The adjacency matrix of a directed graph is any matrix with zeros 

and ones. 
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6.2.2. The adjacency matrix of an undirected graph is a diagonal symmetric matrix _3 . 

(Fatma zohra tebbak) 

Figure 14: Adjacency matrix (Jean Charles Régin, 2016) 

1.6 .3. Incidence matrix of  

1.6.3.1 A directed graph 

Consider the loop-free directed graph G = [ X , U ] of order N , with: 

 X = { x₁ , ... xN } : set of vertices. 

 U =  { a , ... am ): set of arcs. 

 We call incidence matrix of G , the matrix A = ( a ) of dimension Nx M , such that: 

 1 if x , is the initial end of uj. 

 1 if x , is the terminal end of u. 

 0 if x  , is not an extremity of u. 

1.6.3.2 An undirected graph  

Consider an undirected loop graph G = [ X , U ] of degree N: 

- X = {x₁, ... xn}: the set of vertices. 

- U = {aam}: the set of edges. 

The incidence matrix of G is denoted by the matrix A = ( a ) of dimension Nx M such that 

- 1 if x is an extreme value of u. 

- 0 otherwise. (Fatima zohra tebbak)       
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Figure 15: incidence matrix (Jean, 2019) 

1.7. Operations on graphs  

 As in the case of mathematical entities, it is convenient to consider a large graph as a 

combination of smaller graphs and to derive its properties from those of the smaller graphs. 

Since a graph is defined by a set of vertices and edges, it is natural to use the terminology of 

set theory to define relations between graphs. In particular, the union of two graphs 

G1=(V1,E1) and G2=(V2,E2) is another graph G3 (written G3=G1uG2) with vertex set 

V3=V1ÂV3 and edge set E3=E1â Similarly, the intersection between G1and G2 of graphs G1 

and G2 is a graph G4 consisting only of vertices and edges in both G1 and G2. The ring union 

of two graphs G1 and G2 (written G1G2) is a graph consisting of the vertex set V1Sm_C2 

and an edge contained in either G1 or G2 but not in both The two graphs, their union, 

intersection and ring union are shown in Figure 13. As is clear from the definitions, the three 

operations just described are commutative. That is, as in the case of mathematical entities, it is 

convenient to consider a large graph as a combination of smaller graphs and derive its 

properties from those of the smaller graphs. Since a graph is defined by a set of vertices and 

edges, it is natural to use the terminology of set theory to define relations between graphs. In 

particular, the union of two graphs G1=(V1,E1) and G2=(V2,E2) is another graph G3 (written 

G3=G1uG2) with vertex set V3=V1ÂV3 and edge set E3=E1â Similarly, the intersection 

between G1and G2 of graphs G1 and G2 is a graph G4 consisting only of vertices and edges 

in both G1 and G2. The ring union of two graphs G1 and G2 (written G1G2) is a graph 

consisting of the vertex set V1Sm_C2 and an edge contained in either G1 or G2 but not in 

both The two graphs, their union, intersection and ring union are shown in Figure 16. As is 

clear from the definitions, the three operations just described are commutative. That is. 

 G1⋃G2=G2⋃G1, 
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 G1⋂G2=G2⋂G1, 

 G1⊕G2=G2⊕G1. 

 If G1 and G2 are edge disjoint, then G1⋂G2 is a null graph, andG1⊕G2= 

 G1⋃G2.IfG1 and G2 are vertex disjoint, then G1⋂G2 is empty.For any graph .G, 

 G⋃G=G⋂G=G, and 

 G⊕G=a null graph. 

If g is a subgraph of G, then G⊕g   is, by definition, that  subgraph of G which remains after 

all the edges in g have been removed from G. Therefore,  G⊕g is  written as G−g,whenever 

g⊆G. Because of this complementary nature, G⊕ g=G−g  is often called the complement of g 

in G.  Decomposition: A graph G is said to have been decomposed into two subgraphs g1 and 

g2  if :  g1⋃g2=G, and  g1⋂g2=a null graph.(NARSINGH DEO, 1974) 

 

Figure 16: union, intersection, and ring sum of tow graphs.(NARSINGH DEO, 1974) 

In other words, every edge of G resides on either gl or g2, but never on both. However, some 

vertices may reside on both gl and g2. In the decomposition, isolated vertices are ignored. m 

edges {el,e2,... ,em} can be decomposed into pairs of subgraphs g1,g2 in 2m-1-1 ways 

(why?). Although union, intersection, and ring sum are defined for a pair of graphs, these 

definitions can be extended in obvious ways to include any finite number of graphs. Similarly, 

a graph G can be decomposed into two or more subgraphs - subgraphs whose (paired) edges 

are disjoint and collectively contain all edges of G .(NARSINGH DEO, 1974) 
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1.8. Applications of graphs 

Graph theory has found extensive use in disciplines such as engineering, physics, 

social sciences, biological sciences, linguistics, and many others. 

In engineering, graphs provide a powerful tool for understanding and solving complex 

problems. They can be utilized to model networks, such as electrical circuits, communication 

systems, transportation routes, and logistical networks. By representing these systems as 

graphs, engineers can study their properties, optimize their design, and analyze their 

performance. 

In physics, graphs play a crucial role in describing and studying interactions between 

particles, molecular structures, and energy flows. They are extensively employed in fields like 

quantum mechanics, statistical physics, and computational physics to analyze complex 

systems and visualize relationships between various components. 

Social sciences benefit from graph theory by using graphs to represent social 

networks, where individuals or entities are represented as nodes, and their connections or 

interactions are represented as edges. This enables researchers to study social relationships, 

analyze information diffusion, and investigate the spread of influence within communities. 

In biological sciences, graphs provide a valuable framework for modeling genetic 

networks, protein interactions, food webs, and neural networks. By employing graph theory, 

researchers can understand the structure and dynamics of biological systems, identify key 

components, and analyze the impact of perturbations or mutations. 

Linguistics also makes extensive use of graphs to analyze language structures and 

relationships. Graphs can be employed to represent phonological patterns, syntactic structures, 

semantic networks, and language evolution. This allows linguists to study language 

properties, analyze linguistic phenomena, and develop computational models for natural 

language processing. 

Beyond these specific fields, graph theory finds applications in diverse domains such 

as computer science, information technology, operations research, data mining, and 

optimization. Its wide-ranging utility stems from the fact that graphs can effectively represent 

and analyze relationships and dependencies in almost any system composed of discrete 

objects. 



CHAPTER I:  Graph theory rappel 

 
20 

In summary, the simplicity and versatility of graph theory have made it an invaluable 

tool across various disciplines. By employing graphs to represent objects and their 

relationships, researchers and practitioners can gain insights, solve complex problems, and 

uncover patterns and structures in diverse fields, ranging from engineering and physics to 

social sciences, biological sciences, linguistics, and beyond...(NARSINGH DEO, 1974) 

1.9. The Basic of graph theory  

Let V(G) denote the vertex set of a graph G and E(G) denote the edge set. For 

notational convenience, instead of denoting edges as {u, v}, we denote them simply as uv. 

Given two vertices u and v, we say that u and v are adjacent if uv∈E. In this case, we say that 

u and v are endpoints of edge uv. If uv  ∈ E, then u and v are nonadjacent. Furthermore, if an 

edge has vertex v as an endpoint, we say that v is incident to E. 

We denote the neighborhood (or open neighborhood) of a vertex v by N(v). v: 

N(v)={x∈V|vx∈E}.(John M, 2008) 

 A closed neighborhood of a vertex v, denoted N[u], is simply the set {v} U N(v). 

Similarly, a closed neighborhood of S denoted N[S] is defined to be SUN(S). 

 The degree of u, denoted deg(v), is the number of edges associated to u. For simple 

graphs, this is the same as the cardinality of the (open) neighborhood of v.∆(G)= 

max{deg(v) | v€ V(G)}. 

Similarly, the minimum degree of a graph G, denoted by 5(G), is defined to be 

 δ(G)= min{deg(v) | v∈  V(G)}.(John M, 2008) 

1.10. Terminology 

10.1 Subgraph:  H = (Y,B) is a subgraph of G = (X.A) if Y is subset of X and B is subset of 

A. 

10.2 Order of a graph:  the order of a graph is the number of vertices in that graph.   

10.3 Path:  a finite sequence of vertices connected by edges. 

10.4 Simple path:  a path that does not use the same edge twice 

10.5 Eulerian path:  a simple path that passes through all edges of a graph. 
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10.6 Hamiltonian path: a simple path that passes through all vertices of a graph once and 

only once. 

10.7 Walk: a sequence of vertices connected by arcs in a directed graph. 

10.8 Cycle: a path that returns to its starting point. 

10.9 Eulerian cycle: a simple cycle that passes through all edges of a graph once and only 

once. 

10.10 Hamiltonian cycle: a simple cycle that passes through all vertices of a graph once and 

only once. 

10.11 Connected graph: a graph G is said to be connected if for every pair of vertices (x, y) 

in G, there exists a path from x to y. 

10.13Tree: a connected graph without a simple cycle or loop. 

10.13 Eulerian graph: a graph that has an Eulerian cycle. 

10.14 Semi-Eulerian graph: a graph that has an Eulerian path. 

10.15 Hamiltonian graph: a graph that has a Hamiltonian cycle. 

10.16 Semi-Hamiltonian graph: a graph that has a Hamiltonian path. 

10.17 Valued graph: a graph where real numbers are associated with the edges. In this 

presentation, we will only consider positive valuations. 

10.18 Length of a path: the number of edges that make up the path. 

10.19 Value of a path: the sum of the values of the edges (arcs) in a valued graph. 

10.20 Distance between two vertices: the length of the shortest path connecting those two 

vertices. 

10.21 Diameter of a graph: the maximum distance between the vertices of a graph. 

10.22 Chromatic index: the minimum number of colors required to color the edges of a 

graph such that adjacent edges do not have the same color. 
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10.23 Chromatic number of a graph: the minimum number of colors required to color the 

vertices of a graph such that adjacent vertices do not have the same color.(Eric Sigward, 

2002) 

10.24  isolated and pendant vertices : 

10.24.1 Isolated vertex : A vertex having no incident edge is called an isolated vertex. In 

other words, isolated vertices are those with a degree of zero. 

10.24.2 Pendant or end vertex: A vertex of degree one is called a pendant vertex or an end 

vertex. In the above figure, V_{5} is a pendant vertex. 

10.24.3 In-degree and out-degree: In a graph G, the out-degree of a vertex v_{i} of G, 

denoted by outdeg(v) or deg(v), is the number of edges beginning at v_{i}. The in-degree 

of vertex v_{p}, denoted by indeg(v) or deg(v), is the number of edges ending at v_{p}. 

The sum of the in-degree and out-degree of a vertex is called the total degree of the vertex. A 

vertex with a total in-degree of zero is called a source, and a vertex with a total out-degree 

of zero is called a sink. This is because each edge has an initial vertex and a terminal 

vertex. 

10. 25 the handshaking theorem : 

If G = (V, E) is an undirected graph with e edges, then the sum of the degrees of the vertices 

in G is equal to 2e. In other words: 

∑_{v in V} deg(v) = 2e 

The sum of the degrees of the vertices in an undirected graph is always even (VASUDEV, 

2006) 

10 .26 vertex degrees:  

    The degree, denoted as d(v), of a vertex v in a graph G is defined as the number of edges in 

G that are incident with v. When considering loops, each loop is counted as two edges 

incident with the vertex. 

  Additionally, we denote the minimum and maximum degrees of vertices in G as δ(G) and 

Δ(G), respectively. 
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To summarize: 

- The degree of a vertex v in G: d(v)  

- Minimum degree of vertices in G: δ(G) and  Maximum degree of vertices in G: Δ(G) (J.A 

Bondy, 1976)  
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Conclusion 

  In this chapter, we explored the historical background of Eulerian chains and then proceeded 

to define various types of graphs. These included oriented graphs, non-oriented graphs, simple 

graphs, connex graphs, complete graphs, bipartite graphs, regular graphs, wheel graphs, cycle 

graphs, and Platonic graphs. 

  Next, we delved into different methods of graph representation, which encompassed the use 

of succession lists, adjacency matrices, and incidence matrices. We also discussed the 

Eulerian path problem, which pertains to finding a path that traverses each edge of a graph 

exactly once. 

  Furthermore, we introduced the concept of progressions within a graph, namely chains, 

cycles, paths, and circuits. These terms were used to describe specific sequences of vertices 

and edges within a graph. 

  Finally, we concluded the chapter by exploring various operations on graphs and discussing 

their applications in diverse fields. Additionally, we covered fundamental graph terminology 

to facilitate a comprehensive understanding of the subject matter. 
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2.1. Introduction   

In this chapter, our focus will be on the Eulerian chain. We will begin by revisiting the 

definition of an Eulerian chain, which is a concept in graph theory.  

  After establishing the definition of Eulerian chain  , we will delve deeper into the properties 

and characteristics of Eulerian chains. We will explore the conditions under which a graph 

can possess an Eulerian chain and examine the implications of these conditions. 

Understanding the properties of Eulerian chains is crucial for identifying and analyzing them 

in various graph structures. 

  Next, we will discuss the "First Depth Search Algorithm," which is commonly employed in 

the application and identification of Eulerian chains. This algorithm, also known as the depth-

first search (DFS) algorithm, systematically explores the vertices and edges of a graph to 

construct and trace paths. We will explain the algorithm's steps and illustrate how it can be 

used to determine the existence of Eulerian chains in a given graph. 

  In addition to discussing the Eulerian chain and its application, we will also cover LaTeX 

commands. LaTeX is a typesetting system commonly used in academia and scientific 

research to create professional- looking documents, including mathematical formulas, graphs, 

and diagrams. We will present and explain relevant LaTeX commands that can be used to 

generate visual representations of graphs and mathematical equations in a document. 

  By the end of this chapter, we will have a comprehensive understanding of Eulerian chains, 

their properties, the algorithm used to identify them, and the LaTeX commands that can be 

employed to create visually appealing representations of graphs and mathematical formulas. 

2.2. Definitions 

2.1 Definition Eulerian chain: An Eulerian chain is a path in a graph that traverses each 

edge exactly once, allowing for repeated visits to vertices. This path starts and ends at 

different vertices. It is named after the famous mathematician Leonhard Euler, who made 

significant contributions to the field of graph theory. 

An Eulerian chain is a specific type of path in a graph, which is a mathematical representation 

of a network or interconnected system. In an Eulerian chain, you traverse each edge of the 

graph exactly once, allowing for multiple visits to vertices or nodes. 
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The path starts at one vertex and ends at a different vertex, which means the chain forms a 

loop or a closed circuit within the graph. This property distinguishes an Eulerian chain from 

an Eulerian cycle, where the path starts and ends at the same vertex. 

The concept of an Eulerian chain is named after Leonhard Euler, a renowned Swiss 

mathematician who lived in the 18th century. Euler made significant contributions to the field 

of graph theory, which deals with the study of graphs and their properties. Euler's work on 

graph theory laid the foundation for many fundamental concepts and algorithms used in 

modern mathematics and computer science. 

.2.2 Definition Eulerian cycle : If this Eulerian chain is closed, we say that we have an  

eulerian cycle.(meilleur en maths) 

2.3. Euler's theorems (admitted): 

3.1 A connected graph admits an Eulerian chain if and only if the number of vertices of odd 

degree is 0 or 2. 

An Eulerian chain is a path in a graph that traverses each edge exactly once. In order for a 

connected graph to admit an Eulerian chain, certain conditions must be met. One such 

condition is that the number of vertices with odd degrees in the graph must be either 0 or 2. 

To understand why this is the case, let's examine the properties of Eulerian chains and the 

degrees of vertices in a graph. 

First, a degree of a vertex in a graph refers to the number of edges incident to that vertex. In 

an undirected graph, each edge is incident to two vertices, so the sum of degrees of all 

vertices is twice the number of edges. 

Now, let's consider the properties of an Eulerian chain. Since an Eulerian chain visits each 

edge exactly once, it means that each time we enter a vertex, we must have an exit point from 

that vertex. The only exception is the starting vertex, where we can enter without an 

immediate exit, and the ending vertex, where we can exit without going any further. 

Based on this observation, we can conclude that for a connected graph to admit an Eulerian 

chain, the degrees of all vertices except for two (or zero) must be even. This is because each 

time we enter a vertex, we consume one of its incident edges, which decreases its degree by 

one. Similarly, each time we exit a vertex, we consume another incident edge, reducing its 

degree further. 



Chapter II                                                                      Eulerian chain 
 

 
28 

If all vertices except for two (or zero) had even degrees, we would be able to enter and exit 

each vertex without getting stuck. However, if more than two vertices had odd degrees, we 

would encounter a situation where we couldn't exit a vertex without leaving some edges 

unvisited, or we would be unable to enter a vertex without revisiting an already traversed 

edge. 

Therefore, a connected graph admits an Eulerian chain if and only if the number of vertices 

with odd degree is 0 or 2. If there are no vertices with odd degree, we can start and end at any 

vertex, traversing all edges. If there are exactly two vertices with odd degrees, we can start at 

one of them, traverse all edges, and end at the other odd-degree vertex. 

3.2 A connected graph admits a Eulerian cycle if and only if the number of vertices of odd 

degree is 0 (all vertices have an even degree). To understand why a connected graph admits 

an Eulerian cycle if and only if the number of vertices with an odd degree is zero, let's first 

define some terms. 

A connected graph is a graph where there is a path between any two vertices. In other words, 

you can reach any vertex from any other vertex in the graph. 

An Eulerian cycle is a cycle in a graph that visits every edge exactly once and returns to the 

starting vertex. In other words, it is a closed walk that includes all the edges of the graph. 

Now, let's examine why the number of vertices with odd degree is important in determining 

the existence of an Eulerian cycle. 

First, let's assume that a connected graph has an Eulerian cycle. In this case, we can start at 

any vertex and traverse each edge exactly once, eventually returning to the starting vertex. 

Since we visit each edge once, every time we enter a vertex, we must leave it as well. Thus, 

every vertex along the cycle has an even degree. 

Now, let's consider the converse. Suppose a connected graph has all vertices with even 

degrees. We want to show that there exists an Eulerian cycle in this graph. 

To construct an Eulerian cycle, we can use the following algorithm: 

Start at any vertex in the graph. 

Traverse an arbitrary edge from the current vertex to an adjacent vertex. 
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Remove the traversed edge from the graph. 

Repeat steps 2 and 3 until no edges remain in the graph. 

Since each vertex in the graph has an even degree, we can always find an unvisited edge from 

the current vertex because whenever we enter a vertex, there must be an unused edge to leave 

it. Furthermore, since the graph is connected, we can keep traversing edges until we exhaust 

all of them. 

By the end of this algorithm, we will have visited every edge exactly once, and we will return 

to the starting vertex, forming a closed walk. This closed walk is an Eulerian cycle. 

Now, let's consider the case when a connected graph has one or more vertices with odd 

degrees. 

If there is more than one vertex with an odd degree, it is impossible to form a closed walk that 

includes every edge exactly once because whenever we enter a vertex with an odd degree, we 

must leave it as well, but there won't be any unused edges to leave the vertex again. 

If there is exactly one vertex with an odd degree, it is still impossible to form a closed walk 

that includes every edge exactly once because we would start and end at the vertex with the 

odd degree. Therefore, there would be an unused edge when we reach the starting vertex. 

Hence, in a connected graph, the existence of an Eulerian cycle is guaranteed if and only if all 

vertices have even degrees, i.e., there are no vertices with an odd degree. (meilleur en maths) 

2.4. Euler's algorithm 

2.4.1. Case of an Eulerian cycle: 

The graph is connected and all vertices have even degree. 

1st Step : 

We arbitrarily choose a vertex of the graph and we create a cycle containing edges of the 

graph at most once, If all the edges of the graph are contained once and only once in the cycle 

then we are finished because we have Eulerian cycle. Otherwise we go to the second step. 
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2nd Step : 

We choose a vertex of the previous cycle for which it is possible to create a closed chain 

(cycle) of origins. Beginning and end of this vertex and containing edges of the graph at most 

once and not being contained in the previous cycle By grouping the two cycles, we obtain a 

new cycle (of length the sum of the two lengths of the previous rounds). If all the edges are 

contained once and only once in the new cycle then the new cycle is Eulerian . Otherwise, the 

second step is repeated with the new cycle. 

2.4.2 Case of an Eulerian chain 

The graph is connected and two vertices (and only two) have odd degree. 

1st Step : 

Choose a chain that contains an edge of the graph at most once and connects two vertices of 

odd degree. 

If all edges of the graph are included in that chain, then the chain is Eulerian. Otherwise, 

proceed to the second step. 

2nd Step : 

Select a vertex of the previous chain that can form a closed chain (cycle) of origin and 

endpoints, and select the edge of the graph containing this selected vertex at most once, so 

that it is not included in the previous sequence. Eulerian Chain - Eulerian Cycle 

Combining two chains yields a new chain (whose length is the sum of the two lengths of the 

previous chain). If every edge of the graph is contained in the new chain only once, then the 

chain is Eulerian. Otherwise, redo the second step with the new chain. (meilleur en maths) 

2.5. Eulerian circuits 

Let us return to our analysis of the Königsberg bridge problem. What the Königsbergers were 

looking for was a closed trace containing all the edges of the graph. As we have seen, a 

necessary condition for the existence of such a trace is that the degree of all vertices be even. 

It is also necessary that all edges belong to the same component of the graph. 

The Swiss mathematician Leonhard Euler (pronounced "Euler") stated that these conditions 

are also sufficient conditions (DOUGLAS, 2001). In honor of his contributions, we bear his 

name on these graphs. Euler's paper, published in 1741, did not give a proof of the sufficiency 
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of the obvious necessary conditions; Hierholzer (DOUGLAS, 2001) gave the first complete 

proof. The graph we drew to model the city in Figure 02 did not appear in print until 1894. 

2.5.1 Definition 

  An Eulerian circuit refers to a graph that contains a closed trail, which includes all of its 

edges. This closed trail is called a circuit if it is cyclic and does not specify a particular 

starting vertex. In essence, an Eulerian circuit or locus is a circuit that encompasses all edges 

of a given graph. 

  Furthermore, an even graph is defined as a graph in which all vertices have an even degree. 

Conversely, if the degree of a vertex is odd (even), then the number of vertices with an odd 

(even) degree is also odd (even). 

  It is worth noting that the concept of an Eulerian circuit can also be applied to graphs that 

include loops. In such cases, the definition of vertex degree is extended to account for loops, 

with each loop contributing a degree of 2 to the associated vertex. This extension maintains 

the parity of the degree, ensuring that the presence of a loop does not impact whether the 

graph has an Eulerian circuit, unless the loop consists of components with a single vertex. 

  To prove properties of Eulerian graphs, a lemma is commonly employed. This lemma relates 

to maximal paths within a graph. A maximal path refers to a path (sequence of vertices) 

within a graph that cannot be extended further to form a longer path. Since finite graphs 

cannot have infinitely extended paths, there will always exist a maximal (non-extendable) 

path within a finite graph. 

  By leveraging these concepts and employing the lemma, one can establish various features 

and properties of Eulerian graphs. These findings contribute to a deeper understanding of the 

structure and characteristics of graphs and facilitate the identification and analysis of Eulerian 

circuits in graph theory.  (DOUGLAS, 2001). 

2.6. Eulerian numbers 

Consider the scenario where we need to install an organ with n pipes in a concert hall. 

Each pipe has a distinct length, and the pipes must be arranged in a row. We define 

"ascending" as two adjacent pipes where the left pipe is shorter than the right pipe, and 

"descending" as two adjacent pipes where the left pipe is taller than the right pipe. 

If we arrange the pipes from shortest to tallest, there will be n - 1 possible 

arrangements. In this case, there are no ascending or descending patterns present. Similarly, if 

we arrange the pipes from tallest to shortest, we also obtain n - 1 possible arrangements, with 

no ascending or descending sequences. 
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Now, let's introduce the concept of a specific requirement set by the eccentric director 

of the concert hall. The director, for aesthetic or acoustic reasons, demands exactly k 

ascensions in the arrangement of the n pipes. The question arises: How many different ways 

can we install the organ while satisfying these conditions? The answer is given by the 

Eulerian number (Eulerian(n, k)). 

To elaborate more abstractly, the Eulerian number represents the count of 

permutations of the integers {1, 2, ..., n} where exactly k numbers between 1 and n-1 satisfy 

the condition (i) < (i + 1). In other words, the Eulerian number calculates the number of 

arrangements that exhibit the desired k ascensions within the given constraints. 

Mathematically, the Eulerian number (Eulerian(n, k)) can be computed using the 

formula: 

Eulerian(n, k) = (n - k) * Eulerian(n - 1, k - 1) + (k + 1) * Eulerian(n - 1, k) 

with the base cases: 

Eulerian(n, 0) = 1 if n > 0 

Eulerian(0, k) = 0 if k > 0 

By recursively applying the Eulerian number formula and considering the base cases, 

we can determine the total number of valid arrangements that fulfill the director's requirement 

of exactly k ascensions in the arrangement of n pipes. 

This mathematical concept finds applications in various scenarios, particularly in 

combinatorics and permutation analysis. It allows us to quantitatively explore and analyze 

different possibilities and configurations within a given set of constraints...(John M, 2008)  

2.7. Eulerian digraphs 

The following theorem characterizes Eulerian graphs. 

Theorem: A connected graph D(V, A) is Eulerian if and only if indeg(v) = outdeg(v) for 

all vertices v(V). 

Proof First, assume that D is Eulerian: while traversing C, each time it encounters a vertex 

v, it passes through an arc toward v and then through an arc away from v. Thus, indeg(v) = 

outdeg(v) for all vertices. 
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Let us assume that indeg(v) = outdeg(v) for all vertices v in D (Saidur, 2017). 

Euler discovered the relation between the number of vertices, edges, and regions in a 

graph, and his discovery is often referred to as Euler's formula. 

Theorem: (Euler's formula): if G is a connected planar graph with n vertices, q edges, and 

r domains, then 

n - q + r = 2 

Proof: Using induction on the number q of edges, if q = 0, then G must be K₁ . The result 

still holds in this case. Let us assume that the result holds for all connected planar graphs with 

fewer than q edges, and let G have q edges. 

Case 1: Suppose G is a tree. Of course, the planar representation of a tree has only one 

domain, so r = 1. 

Therefore, n - q + r = n - (n - 1) + 1 = 2, and the result holds. 

Case 2: Suppose G is not a tree; let C be a cycle of G and e an edge of C. Consider the 

graph G - e. Compared to G, this graph has the same number of vertices, one less edge and 

one less domain: 

n - (q - 1) + (r - 1) = 2 

n - q + r = 2. 

The result holds in both cases and induction is complete.. (John M, 2008) 

2.8. Euler tours  

An Euler tour refers to the path traced along all the edges of a graph. This path, known as 

the Eulerian locus, was first investigated by Euler himself. In his initial exploration of graph 

theory, presented in his 1736 paper, Euler demonstrated that it was impossible to cross each 

of the seven bridges in Königsberg only once while traversing the town. To illustrate this, a 

plan of Königsberg and the Pregel River was depicted in Figure 02. 

Proving the impossibility of such a walk is essentially equivalent to establishing that the 

graph shown in Figure 15b does not possess Euler's trajectory.  
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In the context of graph theory, a tour of a graph refers to a closed walk, where each side of 

the graph is crossed at least once. Specifically, an Euler tour is a tour that traverses each edge 

of the graph exactly once, resulting in a closed Euler trail. Therefore, if a graph contains an 

Eulerian tour, it is classified as Eulerian. 

Theorem: A nonempty connected graph is eulerian if and only if it has no vertices of odd 

degree.(J.A Bondy, 1976) 

2.9. Euler's Formula  

Euler discovered the relation between the number of vertices, edges, and regions in a graph, a 

discovery often referred to as Euler's formula. 

Theorem: (Euler's formula): If G is a connected planar graph with n vertices, q edges and r 

domains, then 

n - q + r = 2 

Proof: Using induction on the number q of edges, if q = 0, then G must be K₁ . The result still 

holds in this case. Let us assume that the result holds for all connected planar graphs with 

fewer than q edges, and let G have q edges. 

Case 1: Suppose G is a tree. Of course, the planar representation of a tree has only one 

domain, so r = 1. 

Therefore, n - q + r = n - (n - 1) + 1 = 2, and the result holds. 

Case 2: Suppose G is not a tree; let C be a cycle of G and e an edge of C. Consider the graph 

G - e. Compared to G, this graph has the same number of vertices, one less edge and one less 

domain: 

n - (q - 1) + (r - 1) = 2 
and 

n - q + r = 2. 

The result holds in both cases and induction is complete..(John M, 2008) 

2.10. depth-first search on a graph 

  The depth-first search (DFS) algorithm plays a crucial role in finding Eulerian paths and 

circuits in graphs. An Eulerian path is a path in a graph that traverses each edge exactly once, 

while an Eulerian circuit is an Eulerian path that starts and ends at the same vertex. In this 
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long text, we will explore how DFS is utilized to recursively find Eulerian paths and circuits, 

and discuss the relationship between Eulerian graphs and this algorithm. 

 To begin, let's consider an Eulerian graph, which is a graph that contains an Eulerian circuit. 

In an Eulerian graph, every vertex is of even degree, meaning that the number of edges 

incident to each vertex is an even number. This property is essential for the existence of 

Eulerian circuits, as the even degree ensures that we can enter and exit each vertex without 

leaving any unvisited edges. 

Now, let's discuss how DFS can be applied to find an Eulerian path or circuit in a graph. The 

basic idea is to traverse the graph using DFS, making sure to explore all possible edges while 

keeping track of the visited edges. Here's how the algorithm works: 

1. Start the DFS from any vertex in the graph. Initialize an empty stack to keep track of the 

visited edges. 

2. While traversing the graph using DFS, at each vertex, choose an unvisited edge and follow 

it to the next vertex. 

3. Whenever an edge is visited, push it onto the stack. 

4. If a vertex is reached where there are no unvisited edges, it means we have encountered a 

dead end. At this point, backtrack by popping edges from the stack until we find a vertex with 

unvisited edges. 

5. Continue the DFS traversal until all edges have been visited. 

  At the end of this DFS traversal, the stack will contain the Eulerian path in reverse order. To 

obtain the correct order, we can simply reverse the stack. 

  However, there is a caveat when it comes to finding Eulerian circuits using DFS. If the graph 

contains multiple connected components, we need to ensure that every component is Eulerian. 

If any component is not Eulerian, it means that there is no Eulerian circuit in the graph. 

To handle this scenario, we can modify the DFS algorithm as follows: 

1. Start the DFS from any vertex in the graph. 

2. While traversing the graph using DFS, at each vertex, choose an unvisited edge and follow 

it to the next vertex. 
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3. Whenever an edge is visited, push it onto the stack. 

4. If a vertex is reached where there are no unvisited edges, it means we have encountered a 

dead end. At this point, backtrack by popping edges from the stack until we find a vertex with 

unvisited edges. 

5. After the backtracking step, if there are still unvisited edges in the graph, choose a vertex 

from the current connected component that has unvisited edges and start a new DFS traversal 

from that vertex. 

6. Repeat steps 2-5 until all edges have been visited in all connected components. 

 After this modified DFS traversal, if there are any remaining unvisited edges, it implies that 

the graph is not Eulerian and does not contain an Eulerian circuit. However, if all edges have 

been visited, we can combine the stacks obtained from each connected component to form the 

Eulerian circuit. 

  In summary, the DFS algorithm, when applied recursively, allows us to find Eulerian paths 

and circuits in graphs. By carefully traversing the graph, exploring all edges, and using 

backtracking to handle dead ends, we can systematically uncover the Eulerian structure of a 

graph. It is important to note that DFS alone cannot make a graph Eulerian, as the graph must 

satisfy the condition of even degrees for each vertex. DFS simply helps us navigate through 

the graph to identify and construct Eulerian paths and circuits when they exist. 

The relationship between Eulerian graphs and the DFS algorithm lies in the fact that DFS 

provides a means to explore and uncover the Eulerian structure within a graph. By applying 

DFS, we can effectively traverse the graph and identify the necessary conditions for Eulerian 

paths and circuits. The algorithm's backtracking nature allows us to handle the intricacies of 

dead ends and disconnected components, ensuring that we cover all edges and vertices while 

finding the Eulerian path or circuit. 

  In conclusion, the DFS algorithm is an invaluable tool in graph theory, particularly when it 

comes to finding Eulerian paths and circuits. Its recursive nature, combined with careful edge 

selection and backtracking, enables us to efficiently navigate through a graph and construct 

Eulerian paths and circuits when the underlying graph satisfies the necessary conditions. DFS 

serves as a fundamental technique in uncovering the fascinating properties of Eulerian graphs. 

[NARSINGH DEO, 1974 ]. 
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2.11. Introduction to LATEX 

2.11. 1 What is LATEX?  

LATEX, pronounced "lay-tek," is a typesetting system commonly used for creating 

high-quality documents, particularly those containing mathematical equations and scientific 

content. It was developed by Leslie Lamport in 1982 as a set of macros built on top of the 

TeX typesetting system, originally created by Donald E. Knuth. 

The motivation behind the creation of LATEX was to simplify the process of 

typesetting and formatting documents, especially those with complex mathematical formulas. 

TeX, developed by Knuth in the late 1970s, was already a powerful typesetting system that 

focused on producing high-quality output. However, it required users to have in-depth 

knowledge of its intricate syntax and low-level commands to create documents. Lamport 

recognized the need for a more user-friendly and structured approach, leading to the 

development of LATEX. 

LATEX provides a higher-level set of commands and macros that abstracts away 

many of the low-level details of TeX, making it more accessible to users. It introduces a 

document markup language, where users write their content using plain text combined with 

LATEX commands to specify the structure, formatting, and mathematical expressions within 

the document. 

One of the significant advantages of LATEX is its ability to handle complex 

mathematical formulas and equations seamlessly. It offers an extensive range of mathematical 

symbols, operators, and formatting options, allowing users to express mathematical concepts 

with precision. The LATEX typesetting engine automatically handles the placement and 

alignment of equations, ensuring professional- looking output. 

Moreover, LATEX excels in the typesetting of scientific and technical documents, 

such as research papers, theses, reports, and books. It provides extensive support for 

bibliographies, cross-referencing, tables of contents, indexes, and various other features 

commonly found in academic publications. 

The LATEX system operates by compiling source files written in plain text with 

LATEX markup into a variety of output formats, including PDF, DVI (Device Independent), 

and others. Users typically write their documents in a text editor using LATEX syntax and 
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then compile the source code using a LATEX distribution such as TeX Live, MiKTeX, or 

MacTeX. 

Due to its power, versatility, and the quality of its output, LATEX has become the 

standard typesetting system in many academic and scientific disciplines. It is widely used by 

researchers, scientists, mathematicians, engineers, and professionals who require precise and 

aesthetically pleasing document formatting, particularly when dealing with mathematical and 

technical content. 

In summary, LATEX is a typesetting system built on top of TeX, designed to simplify 

the creation of complex documents and mathematical expressions. It provides a higher-level 

markup language, extensive mathematical capabilities, and produces professional-quality 

output. Its wide adoption in academic and scientific communities is a testament to its 

effectiveness and reliability for producing beautifully formatted documents. (Linda Chan- 

Sun, 2004) 

2.11. 2 Principle  

LATEX can be considered a high-level programming language because it relies on TeX, a 

low-level language. This means that the document you want to create must be written in a 

source file (e.g., my_file.tex), composed of a set of LATEX commands (tags), and compiled; 

the LATEX compiler will output a device-independent file (DVI) (my_file.dvi). This file can 

be converted to PostScript or PDF format for printing or output. Most LATEX commands 

begin with a "backslash," with required arguments enclosed in curly braces ({ and }) and 

optional arguments enclosed in square brackets ([ and ]). Example 

\documentclass[12pt]{report} (frederic Gerdends, 1997) 

2.11. 3 Some compilation commands  

2.11.3.1 Under UNIX/Linux  

1. to compile the source file (file.tex): latex file.tex 

In case of an error, the line with the error is indicated. The position of the error within the line 

is indicated by a new line. A brief description of the error is also displayed. The user is then 

free to use several commands: 

- "?" : The help menu is displayed. 
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- "h" : a detailed description of the error that LaTeX stopped is displayed. 

- "return" : forces the compile to continue. 

- "s" : Displays the following error messages. 

- "r" : Continue compiling without stopping. 

- "q" : Continue compilation without displaying the message. 

- "i" : insert something (e.g. forgotten tag) to continue compiling. 

- "e" : Edit source files. 

- "x" : Abort compilation. 

- A number from 1 to 9, ignoring the next x characters in the source. 2. 

2. 2. compile references: bibtex file. 

3. to view DVI files: xdvi file.dvi. 

4. to convert DVI file ←→ PS: dvips file.dvi. 

To print a PS file: lp -d <my_printer> file.ps. 6. 

Convert DVI file ←→ PDF: dvipdf file.dvi 

7. to convert a LATEX source directly to PDF: pdflatex file.tex 

Finally, the following steps are required to generate a complete PostScript document 

- $ latex file.tex 

- $ latex file.tex 

- dvips file.dvi 

The second step restores the cross-references and table of contents (without this 

recompilation, the "?) (Leslie Lamport , 1994) 

2.11. 3.2 Under Windows  

It was enough to install the freeware compiler MikTeX 1. Later, the first easily usable editor 

was WinEdt 2. It has the disadvantage of being shareware, so today freeware alternatives such 
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as TeXnicCenter3 and MeVa4 are preferred.Ghostview5 is a freeware software that allows 

viewing files in PostScript format. (Leslie Lamport , 1994) 

2.11. 3.3 Under Mac OS X 

Just install MacTeX6 and TexShop7 to get the freeware integrated environment. don't forget 

to change the default encoding (MacOSRoman) to Latin-1 in TexShop's preferences. since I 

wanted to use Emacs as well. every time I compiled. I looked for a freeware dvi/pdf viewer 

that would update directly. This is how I found TeXniscope8. (Leslie Lamport , 1994) 

2.10.4 General structure of a LATEX document: 

A very simple first example: 

 % This is a comment 

 % Header of any LaTeX document. Specifies the type of written document 

 \documentclass[11pt,a4paper]{article} 

 \begin{document} % marks the beginning of the text to be composed 

 The body of the document.... 

 \end{document} % marks the end of the document 

1) http://www.miktex.org 

2) http://www.winedt.com/ 

3) http://www.toolscenter.org/ 

4) http://www.meshwalk.com/latexeditor/ 

5) http://www.cs.wisc.edu/~ghost/ 

6) http://www.tug.org/mactex/ 

7) http://www.uoregon.edu/~koch/texshop/ 

8) http://www2.ing.unipi.it/~d9615/homepage/texniscope.html 

 LaTeX documents always begin with the documentclass command, which specifies 

the document class (braces). The most commonly used classes are article, report, 

letter, and book. The options for this command are declared within square brackets. 

The most common options are 10pt, 11pt, 12pt (to determine nominal font size), 

a4paper (to determine paper dimensions), french, twocolumn (for two-column text 

layout), and twoside (for two-sided writing). 
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 In practice, the header can define many settings, such as the package to be used (with 

the \usepackage command), command redefinition (see §5), title, bibliography style, 

and so on. 

 The following example should be suitable for most applications: 

  documentclass[11pt,twoside,a4paper]{article} 

  %---include   package   (optional)---  

 =================================================== 

  usepackage[french]{babel} to specify that it is in French. 

  usepackage{a4} paper size 

  ￤ Specify PostScript font with [T1]{fontenc} %. 

  % TrueType vectorial font, French quotation marks 

  % to manage images % % usepackage{epsfig} 

  usepackage{amsmath, amsthm} % Very good math mode 

  ￤package{amsfonts,amssymb} % for defining sets 

  ￤For the arrangement of figures 

  ￤usepackage{url} % for efficient management of URLs 

  % Bibliographic style % Bibliographic style 

  %--- for titles 

  title{document title} author{author name 

  author{Sebastien Varrette <\url{Sebastien.Varrette@imag.fr}>} 

  ●begin{document} 

  maketitle % write title 

  tableofcontents write the table of contents. 

  section{first section} 

  subsection{first subsection} The body of the text... 

  end{document}. (Linda Chan- Sun, 2004) 

2.11. 5 Common Packages 

10.5.1. aeguill: with the cyr option, includes the ae package to produce quality PDF 

documents by adding French quotes « and ». 

10.5.2. amsmath, amsthm, amsfonts, amssymb: American Mathematical Society 

extensions that provide a set of commands for mathematical mode. 
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10.5.3. babel: adapts the names of chapters, dates, and other texts inserted by LATEX 

in the language passed as an option. 

10.5.4. Color: for the use of colors. 

10.5.5. draftcopy: prints the word "DRAFT" in the background of the page. 

10.5.6. epsfig: for the management of graphics in eps format. 

10.5.7. fancybox: adds several page framing commands. 

10.5.8. float: improves the management of floating elements such as tables and 

figures. 

10.5.9. fontenc: with the T1 option, allows the compiler to use the new font encoding 

format. This package should be used systematically. 

10.5.10. Graphics: provides several commands for manipulating boxes and graphics. 

10.5.11. Import: for managing subdirectories. 

10.5.12. Listing: for optimized display of source codes. 

10.5.13. Minitoc: allows the construction of a mini table of contents at the beginning of 

each chapter under the book and report classes. 

10.5.14. Multirow: for multi-row table cells. 

10.5.15. Rotating: for rotating tables, figures, and legends. 

10.5.16. url: allows URLs to be displayed correctly. (Linda Chan- Sun, 2004) 

2.12. The Basics: 

2.11.1 Reserved Characters 

There are a number of characters reserved by LATEX because they introduce a command. 

They are summarized in the following table. All other characters can be used freely. 

 % Comment      

 \ Command 

 {...} Block of processing     

 ~ Non-breaking space 

 $ Mathematical mode     

 & Table alignment marker 

 # Macro parameter     

 ^ and Exponentiation and subscripting 
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2.12.2 Special characters 

The characters coded in ISO-8859-1 are understood by the compiler: common accented 

characters can be entered directly. However, there are a number of special characters 

summarized in Table 1. (Christian Rolland, 1999) 

Table (01): Special characters in latex 

 

2.12.3 Common commands 

Table (02) : Common commands in latex 

 

 

2.13. Saces and line breaks in the source file 

Care should be taken with the use of commands because LATEX ignores a space immediately 

following the command when it is inserted into the text. Consider the following two 

examples: 

 \LaTeX is great. LATEX is great. 
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 \LaTeX\ is great. LATEX is great. 

In addition, LATEX considers carriage returns, tabs, and a succession of empty spaces as a 

single empty space. Thus, by typing: 

 This is a test of spaces. 

 This is an example of a line break.\\ 

 This is the beginning of a new paragraph. 

we obtain: 

 This is a test of spaces. 

 This is an example of a line break. 

 This is the beginning of a new paragraph. (Christian Rolland, 1999) 

2.14. Hierarchical structure of the document 

The structure of a LATEX document is based on the use of chapter commands. These are 

fully controlled by LATEX (especially with regard to indentation and numbering). The 

possibilities for subdivisions are summarized below, some of which are only available in 

certain styles. 

          \part{}    % part 

 \chapter{}   % chapter 

 \section{}   % section 

 \subsection{}   % subsection 

 \subsubsection{}  % subsubsection (subsection level 2) 

 \paragraph{}   % paragraph (subsection level 3) 

 \subparagraph{}  % subparagraph (subsection level 4) 

 \appendix   % signals the beginning of the appendices 

Don't forget to put the chapter, section title, etc., in braces. 

You may wish to remove the numbering suggested by LATEX. To do this, simply place a "*" 

character before the section title. Thus, in the following example, the command 

section*{Acknowledgements} would remove the section numbering. (Thomas Nemeth, 

2000) 
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2.14.1 Inserting files 

When writing long documents, working with a single file is not fun. In fact, the time savings 

can be long and navigation is not always easy. Therefore, we have prepared the following 

command: 

- input{file} is replaced by the contents of file.tex; 

- include{file} inserts file.tex; include{file} inserts file.tex; include cannot be written in the 

header, but includeonly{file1,file2,...} . . 

Note that the import package provides the command˶subimport{dir/}{file} 

or˶subincludefrom{dir/}{file} to include file.tex relative to the subdirectory dir/. (Thomas 

Nemeth, 2000) 

  



Chapter II                                                                      Eulerian chain 
 

 
46 

Conclusion 

In conclusion, this chapter has provided a thorough exploration of the concept of 

Eulerian paths and cycles in graphs. We have defined and discussed the properties of Eulerian 

chains, which traverse each edge of a graph exactly once, and Eulerian cycles, which are 

closed paths visiting every vertex and edge exactly once. Euler's theorems have been 

introduced as fundamental conditions for the existence of Eulerian paths and cycles in a 

graph. 

The chapter has delved into the Eulerian algorithm, a systematic procedure for 

identifying and constructing Eulerian paths and cycles in graphs. This algorithm plays a 

crucial role in determining whether a given graph possesses an Eulerian circuit. Moreover, we 

have covered essential concepts related to Eulerian circuits, including Eulerian numbers, 

Eulerian graphs, Eulerian formulas, Eulerian tours, and Eulerian formulas. These concepts 

provide deeper insights into the properties and characteristics of Eulerian graphs. 

Furthermore, we have discussed the significance of the depth-first search (DFS) 

algorithm in graph traversal. DFS serves as a powerful tool for systematically exploring 

vertices and edges in a graph. Its application extends beyond Eulerian paths and cycles, 

finding utility in various other graph-related tasks and research projects. Additionally, we 

have mentioned the utilization of LaTeX commands for formatting mathematical expressions 

and equations in our thesis, ensuring precise and professional representation of mathematical 

content. 

By covering these topics comprehensively, we have acquired a solid understanding of 

Eulerian paths and cycles, along with the associated theorems, algorithms, and fundamental 

concepts. The knowledge and techniques presented in this chapter lay a robust foundation for 

the subsequent sections of our thesis. In these upcoming sections, we will delve further into 

the analysis and application of Eulerian graphs, exploring their significance in diverse 

domains such as network analysis, graph theory, and optimization problems. 

The study of Eulerian paths and cycles opens up avenues for solving complex 

problems in various fields, including transportation planning, circuit design, and data analysis. 

The ability to identify and construct Eulerian paths and cycles provides insights into the 

connectivity and structure of graphs, offering valuable information for optimizing network 
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flows, designing efficient algorithms, and understanding relationships within complex 

systems. 

As we progress in our research, we will leverage the knowledge gained in this chapter 

to investigate specific applications of Eulerian graphs and their associated algorithms. This 

will involve exploring real-world datasets, applying graph theory principles, and employing 

computational techniques to solve complex problems. By building upon the foundations 

established here, we will contribute to the advancement of knowledge in the field of Eulerian 

graphs and their practical implications. 

In summary, this chapter has presented a comprehensive overview of Eulerian paths 

and cycles, Euler's theorems, the Eulerian algorithm, and the depth-first search algorithm. We 

have discussed the significance of LaTeX for mathematical formatting and emphasized the 

relevance of these concepts in our thesis research. Armed with this knowledge, we are well-

equipped to delve deeper into the analysis, applications, and advancements in Eulerian graph 

theory in the subsequent sections of our thesis. 



 

 

 

 

 

Chapter 3: 

Implementation of an Eulerian chain 

application.
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Introduction 

This chapter marks the conclusion of our final year project focused on the 

development of an automatic solver based on graph theory, specifically the Eulerian path 

problem. Our goal was to create a system capable of receiving a typical exercise statement on 

Eulerian paths as input and providing a solution that closely resembles a typical correction. 

This solution would enable students to verify their own answers, while allowing teachers to 

automate a part of the correction process. 

In the previous chapters, we extensively explored graph theory and the fundamental 

concept of Eulerian paths.  

Our system is based on a set of rules and heuristics specifically designed to identify 

and solve Eulerian paths in a given graph. When an exercise statement is submitted to the 

system, it analyzes the provided information and applies appropriate techniques to generate a 

solution. This solution is then presented in a form similar to a typical correction, allowing 

users to compare their own results with the proposed solution. 

One major advantage of our automatic solver is its ability to handle a wide range of 

typical Eulerian path exercises. Whether it's simple graphs or more complex ones, the system 

is capable of providing accurate and reliable solutions. Additionally, it offers the necessary 

flexibility to accommodate various exercise-specific constraints, such as connectivity 

restrictions or edge weights. 

By automating a part of the correction process, our system allows teachers to save 

valuable time. They can focus on more pedagogical tasks, such as analyzing common errors 

and providing personalized feedback to students. At the same time, learners benefit from an 

additional tool to assess their knowledge and practice autonomously. 

In this final chapter, we will present the results of our experiments and evaluate the 

performance of our automatic solver. We will also discuss the limitations of our system and 

prospects for future research and improvements. Finally, we will conclude by highlighting the 

potential impact of our work on the teaching and learning of graph theory, emphasizing the 

advantages of automation in the correction process of Eulerian path exercises. 
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3.1. Interface 

3.1.1 Step01 

            This interface has the following options: 

            1.1Enter the number of vertices. 

            1.2Choose a type (numbers or letters) 

 .          1.3Add edges. 

 

3.1.2 Step02 

When we enter path a_b, After we enter b_a  it shows this notification. 
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3.1.3 Step03 

When we enter number of vertices and we choose type of vertices it showed us this interface 

named select vertices types

 

3.1.4Example 01: When we enter the data of graph.  
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3.1.5 Table of  degree and table of path  
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3.1.6 Display in latex  

 

Correction  of example 01
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3.1.7 Example 02 

 

3.1.8 Example 02: Table of  path  
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3.1.9 display of example 02 

 

3.1.10 Correction  of example 02 
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3.2 Conclusion 

  In conclusion, the final chapter of this research project centered around leveraging the Java 

programming language to address a specific objective: designing a system that can take a 

standard graph exercise statement, such as an Eulerian path problem, as input and generate a 

solution as output. The solution generated by the system closely resembles a typical 

correction, thereby enabling students to validate their own answers and allowing teachers to 

automate a portion of the correction process. Through the development of this application, we 

have successfully bridged the gap between theoretical graph concepts and their practical 

implementation. 

  The application of Java has played a pivotal role in creating an efficient and reliable system. 

Java's robustness, versatility, and extensive library support have proven to be instrumental in 

implementing complex graph algorithms and data structures required for solving such 

exercises. By leveraging Java's features, we have been able to develop a system that can 

accurately solve graph exercises, offering immediate feedback to students regarding the 

correctness of their work. 

  The benefits of this system extend beyond student feedback. The automation of the 

correction process empowers teachers to streamline their evaluation procedures, saving them 

valuable time and effort. Additionally, by providing a reliable and standardized solution, the 

system assists teachers in maintaining consistency and objectivity when assessing students' 

work. 

  In summary, the application developed in this research project, utilizing the Java 

programming language, has successfully addressed the objective of designing a system to 

solve graph exercises. By offering immediate feedback to students and enabling teachers to 

automate part of the correction process, the system enhances the learning experience. Java's 

robustness and extensive libraries have played a crucial role in implementing complex graph 

algorithms, bridging the gap between theoretical concepts and their practical application. The 

impact of this system extends beyond individual students, empowering teachers to efficiently 

evaluate and provide feedback on graph exercises. 
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General Conclusion 

This research paper delves into the automatic solution of graph theory problems, with a 

specific focus on the Euler path problem. The paper begins by providing essential definitions 

related to graph theory, including the history of the field, the concept of a graph, various 

types of graphs, and an explanation of the Euler path problem. Additionally, the paper covers 

the notion of graph progression, different methods of representing graphs, techniques for 

manipulating graphs, applications of graphs in various fields, and fundamental terminology 

associated with graphs. 

  The main objective of the study is to find an Euler path in a given graph. To achieve this, 

the system takes a typical exercise statement related to Euler paths as input and produces a 

solution as output. The generated solution is presented in a format similar to a standard 

correction, enabling students to validate their own solutions and allowing teachers to 

automate part of the correction process. 

  The choice of the Java programming language for implementing the solution is justified due 

to its robustness, portability, and security features. Java provides a reliable and versatile 

development platform for building software applications. In this study, a depth-first search 

algorithm was employed to explore all accessible nodes from the starting node, enabling the 

identification of an Euler path in the graph. 

  To ensure professional and high-quality document production, LaTeX was utilized as a 

typesetting system. LaTeX offers advanced typographical features and is widely used for 

generating scientific and technical documents.  

  In summary, this research paper focuses on automating the solution of graph theory 

problems, specifically the Euler path problem. By adopting the Java programming language 

and utilizing a depth-first search algorithm, the system can effectively find an Euler path in a 

graph. The use of LaTeX contributes to the production of professional documents. This 

research bridges the gap between theoretical concepts and practical implementation, 

providing a valuable tool for students to validate their solutions and teachers to streamline the 

correction process. 
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Résumé : 

La théorie des graphes est un domaine de recherche actif depuis 200 ans. Le plus 

ancien article connu sur la théorie des graphes a été écrit par euler en 1736 pour résoudre le 

problème des ponts de konisberg. 

Dans ce travail, nous avons étudié le solveur automatique en théorie des graphes 

"chaîne euleurienne" . Après avoir expliqué quelques notions de base sur les graphes et le 

problème de cette chaîne . Nous avons cité les relations fondamentales à la chaine 

euleurienne , la commande latex et nous avons ensuite présenté le " premier algorithme de 

recherche en profondeur " et ces deux derniers que nous avons utilisé dans l'application . 

Enfin, nous avons présenté une application à la chaîne euleurienne. 

 

Mots-clés : graphe, chaîne euleurienne , latex , première recherche en profondeur . 

 

  



 

 

 الملخص

ا للبحث لمدة 
ا
 وشط

ا
أقدم وزقت معسوفت عن هظسيت السسم البياوي لتبها أويلس  .عام 200ماهت هظسيت السسم البياوي مجالً

 .لحل مشهلت حسس موهيسبرج 1736عام 

جتجىب أوبس شسح المفاهيم الأساسيت  ."euleurianسلسلت "في هرا العمل ، دزسىا الحل التلقائي في هظسيت السسم البياوي 

، أمس  euleurianعلاقاث الأساسيت في سلسلت هىاك العديد من ال .حوى السسوم البياهيت والمشنلاث التي جواحهها

 .وهاجين الأخيرين التي استخدمىاها في التطبيق "خوازشميت زئيسيت للبحث في العمق"اللاجنس ولديىا ، بما في ذلو 

ا ، لً يتعين عليىا جقديم طلب إلى سلسلت   .euleurianأخيرا

 اللاجنس ، البحث المتعمق الأوى ،  euleurianالسسم البياوي ، سلسلت  :الكلمات الرئيسية

. 

  



 

 

Abstract 

Graph theory has been an active field of research for 200 years. The oldest known paper on 

graph theory was written by Euler in 1736 to solve the Konigsberg bridge problem. 

In this work, we studied the automatic solver in graph theory " Eulerian chain". 

After explaining some basics about graphs and the problem of this chain. We cited the 

fundamental relations to the Eulerian chain, the latex command and then we presented the 

"first depth-search algorithm" and these last two that we used in the application. 

Finally, we presented an application to the Eulerian chain. 

Keywords: graph, Eulerian, latex, first in-depth search . 
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Annexe 01 

Java is a popular general-purpose programming language that was created by 

James Gosling and his team at Sun Microsystems (which is now owned by 

Oracle Corporation). It was first released in 1995 and has since become one of 

the most widely used programming languages in the world. 

 

  



 

 

Annexe 02 

LaTeX is a typesetting system and markup language that is widely used for 

creating professional-looking documents, particularly in the fields of academia, 

mathematics, and science. It was created by Leslie Lamport in the 1980s as an 

extension of the TeX typesetting system developed by Donald Knuth. 

 


