REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE
MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE
UNIVERSITE IBN KHALDOUN - TIARET

MEMOIRE

Présenté a :

FACULTE DES MATHEMATIQUES ET DE I'INFORMATIQUE
DEPARTEMENT D’INFORMATIQUE

Pour I’obtention du diplome de Master
Spécialité : Génie Logiciel

En vue de créer une startup

KHADAMNI.DZ :CB

RECOMMEMNDATIONS

Par :

TOUHAMI Hadil
YAHIAOUI Somia

Sur le théme

Session-based Recommendation Systems
with Graph ATtention Networks

Soutenu publiquement le 11/ 07 / 2023 a Tiaret devant le jury composé de :

Mr. KOUADRIA Abderrahmane MCB Université de Tiaret ~ Président

Mr. BOUDAA Boudjemaa MCA Université de Tiaret ~ Encadrant

Mr. BERBER EL-Mehdi MAA Université de Tiaret ~ Examinateur

Mme. SADJI Fatima Pr Université de Tiaret ~ Représentant de I’incubateur
Mr. REKHIES Mohamed ANEM de Tiaret Repésentant du partenaire

socio-économique

2022-2023

Acknowledgments

Acknowledgments

First and foremost, we express our deepest gratitude to Allah, the Almighty, for guiding
us throughout this research journey and granting us the strength and perseverance to
complete this thesis.

We would like to extend our sincere appreciation to our supervisor, BOUDAA
Boudjemaa, for their invaluable guidance, continuous support, and constructive
feedback. Their expertise and dedication played a vital role in shaping this work.

We are also indebted to our parents, sisters, brothers, and extended family members
for their unwavering love, encouragement, and belief in our abilities. Their constant
encouragement and sacrifices have been instrumental in our academic pursuits.

Furthermore, we would like to express our heartfelt gratitude to our friends, whose
unwavering support and encouragement have been a constant source of motivation.
Their presence during both the challenging and joyous moments has made this journey
more meaningful and enjoyable.

We extend our gratitude to all individuals, whether directly or indirectly involved, who
have contributed to our research. Their assistance, whether in the form of discussions,
interviews, or provision of resources, has greatly enriched this work.

Lastly, we acknowledge the efforts of all the researchers, scholars, and pioneers in our
field of study, whose previous work has served as a foundation and inspiration for our
own.

We are deeply grateful to all the mentioned individuals for their invaluable
contributions and support. However, any omissions of names are unintentional, and we
appreciate the understanding of those who may not be mentioned explicitly.

Thank you all for being an integral part of our journey and for shaping us into the
individuals we have become today.

Dedication

Dedication

Dedication

To our loving parents Mohamed, Fatima, Ayachi and Fatma (Tamtam),

supportive siblings Abedselam, Oussama, Habib, Djihad, Kadirou, Sara, Hadjer and
Tasnim,

dear friends Widad, Sabrine, and cherished family,

This thesis is dedicated to each and every one of you. Your unwavering love,
encouragement, and belief in us have been instrumental in our academic journey. Your
presence, guidance, and support have shaped our accomplishments and inspired us to
reach new heights.

Thank you for being our constant source of strength, for celebrating our successes, and
for standing by us during challenging times. This thesis is a testament to the profound
impact you have had on our lives.

With heartfelt gratitude and sincere thanks

TOUHAMI Hadil & YAHIAOUI Somia

Table of contents

1able of contents

Contents
GENEIAL INTFOAUCTION ...ttt ettt b ettt b et b et bbbt b e bttt b et eas ii
1. BACKGIOUNG ...ttt sttt s bt bbbt et e et ebe e bt e bt st e b et et e e e s eneeneene ii
2. Problem STATEMENTc.ooieiriree ettt ettt b s bbbttt e e e st s e b e nen iii
3. DEIIMITALION. ...ttt b et b et bt bttt b bt na e iii
N o] o] 0T (o] 1 H USRS iv
B OULIINE ..ttt b et bbbt b et b ettt n et na e iv
Chapter 1 : Session-Based RecOmMmEeNdation SYSIEMSccueueieiririniniesiesienieeetee ettt 2
1.1 INEFOUUCTION .ttt ettt b e bbbt e e e bt e bt eb e s b e b et et e e eseeneeneene 2
1.2 ReCOMMENMALION SYSTEIMS ...c.uiiiiiiieiecieeteee ettt ettt e te ettt e st e e aa e besbe et e steesaenbesanentesseensees 2
1.3 USEI FEEADACK ...ttt sttt 3
1.3.1 EXPHCIT FEEADACK ...c.viveeeieieceeee ettt ettt ettt et sae et e s be et esbeesaebeeasentesreenneneas 3
IR T 100 o] T | =TT | o Tod TS 3
IR T I o Y o T = =T [o T - TS 3
1.4 ReCOMMENTALION TASKSeveuirtinieteieterietet ettt ettt sttt b et 4
1.5 Types of ReCOMMENAALION SYSIEMS.....cc.eciiiitieiiitieieite st ee ettt te et e sbe e e tesbeesbesreessesbesasetesreenneseas 4
1.5.1 Content-bDased FIltEIINGceecveriieieeceeese ettt st e st e e s se e e sneennenes 4
1.5.2 Collaborative fIlIEIINGccveeeeieiieec ettt st et re e be e e e sneennenes 5
IS T0C B 1Y/ oT To B]C=T Fgo RPS 6
1.6 Challenges and LIimItationS.........ccvecieiieieiiieeieiteeteste s e ettt e s tesbeeaesbeesa e besasensesbeenneneas 7
1.7 Sequence-Aware ReCOMMENUEr SYSIEIMScccviiiieieiiiitiee et ete e et e e sreestesreesaesbe e etesbeenaeses 8
L7201 INPULS ettt ettt ettt et s et et e st et s bt e e s be e s ab e e sabeesabaeesabeesabaeebbeeeabaeeabeenabeesbbeesabaeenaaean 9
O A O 111101111 TS PTSRIN 9
1.7.3 COMPUEALIONAT TASKSeeieteeietieieie sttt ettt st ettt et et e st e et et e s teentensesneenseeneeneenees 9
1.8 Session-Based Recommendation SYSIEMScoiireririerenieieriee ettt ettt s 10
I TR O 1T o] 4 77 14 o] RSP 11
IS T AN o] o] (0= Vo 1= ST 12
1.8.2.1 MOdel-Free APPrOACIEScccviiieeieticeete sttt ettt sbe et ee e s beesaesreesaenee s 12
1.8.2.2 Model-based APPIrOBCNESooieieieiee ettt ettt ettt e te e e e e saeeneenee s 13

TABLE OF CONTENTS

1.8.3 Challenges and Limitations 0f SBRS..........ccooiriiiiiiiiieiereeeeee e 14

1.9 CONCIUSION. ...ttt ettt b e e bttt et s bt s b et et e s e s et enneseenis 15
Chapter 2 : Graph ATIENTION NEIWOTKScuviuiriieiiitirierterteetet ettt s 17
2.1 INEFOTUCTION ..ttt bbbt b bbbt s et ese e bt et e e e bt n e b e 17
W N g U T T LI 1) (=11 T =T g Tor - TR 17
2.3 MACHINE TEAIMING ...ttt ettt ettt e a e bbb e b e e e s e eneeaeene e 17
2.3.1 Data rEPIESENTALIONServertertetetetet ettt ettt sttt ettt eae bbbt sa e b et et e et e st e beebesb e b e st e s e e e e eneeneene 17
2.3.2 Types of Maching [€AIMINGc.eoviiiieiece ettt et e s reebesreennenne s 18

2.4 Deep Learning and NeUral NEIWOTIKSccvcvviiieieieiieiese ettt st e e s re b ste s et e s reeaesreenaeseas 20
2.4.1 Training NEUral NEIWOIKS.......cccoeiiiiieieci ettt ettt te et sre e s e bessaesbesreessesreennensens 21
2.4.2 Back Propagation and Gradient DESCENL...........ccereieieieireeesiesieseseeeeee e 22
2.4.3 ACHIVALION FUNCHIONc.iitiiiiiieieieiieeet sttt sttt ettt ettt b e bbbttt e eae e 23
2.4.4 0SS FUNCHION ...ttt ettt ettt b ettt b e eb s 28
2.4.4.1 L0SS FUNCLIONS TOF REGIESSIONc.veeeveiiceieiecte ettt sttt ste e te e ae et steeaesbe e e e ssesbeensestesrnensens 28
2.4.4.2 L0ss FUNCtions fOr ClasSifICAtIONcoeiireririeieieeeee e 29
2.4.4.3 L0SS FUNCLioNS fOr RECONSIIUCTION........coutitiriirtiieieieieit ettt 29

2.5 Deep Learning ChallEBNGEScouevuiriirieieieeeet ettt sttt 29
2.5.1 Testing, Validating and OVErfitliNgcccveviiieieiiceecese ettt st 29
2.5.2 HYPEIPAIAMELELS ..cetee ettt eee ettt ste e et e e st e st e e sbee e e beessbeeessteeasbeeessseessseeenseeesnseeensaeesnsessnseeesnseesns 30

2.6 Graph NEUFAl NEIWOTKS.ceviiieieierieeteiiseetesie et este st et e e st e e sre et e tesseesesseesaessesseensesseensasesssessessennsenses 30
BTN V- Y1 IO 0] o1 o] £ ST 31
2.6.1.1 NON-EUCHIAEaN SPACE TALAccvevieieeiectieieeie ettt e et te et besbeeaaesbesae et e sbeeaaesteesnensens 31
2.6.1.2 Graph NeIghDOINOOU.ccviieeieeceee ettt ettt et e ae e e s beeabesteennentens 31
2.6.1.3 Permutation equivarianCe and iNVAIANCE.ccccueieeveerieeerteireeiresteereestesteeaesteeseesesreesestesssensens 32
2.6.1.4 NEUral MESSAGE PASSING....cviereererrieeertertestestesseessesreessesseeseessesseessessesseessessesssessesssessessesssessesssessens 32
2.6.2 Types of Graph NEUral NEIWOTKSc.ccieeerertieieriieeesie st ete st see e sesees e seeeaessessaessesseesseseesssenseas 33

2.7 Graph ATEENTION NEIWOTKSocveeieiecteeieeie ettt ettt et et e e st e e e te st e tesbeesaesteebaenbesteensesbesrsansesreenseees 33
2.7.1 Architecture of Graph ATIENTION NETWOIKS........coeiiiiieiiiteciece ettt st 34
2.7.2 Graph ATtention Networks adVantagescoeeeiererierierieeierie e et et e e ee s eeesee e seseeeneeneeas 35
2.7.3 Comparison of GAT and different GNN’S archit€CtuIescevvverveervrrreerrieerieeseesnesreesreesseeseenanes 36

2.8 CONCIUSTON.......eiiiiiiitcirt ettt b bbbt b ettt et e bt et se bt n e b 36
Chapter 3 : Graph ATtention Networks for the development of session-based recommendation systems......38
L INEFOTUCTION ...ttt b et eb e b e b e e s e e e e bt e st e bt eb e b e e e s e s e e eneenene 38
3.2 Deep learning-based reCOMMENUALIONS..........ccevirieriirieierie ettt e sre et e s ressaessesreenee e 38
3.4 Material ENVIFONIMENTcoiuiiiiiirieiiieit ettt ettt b et b et st b et eneas 41
3.5 Development t00IS aNd LIDIAIIEScceeieviiiieiesieseete sttt sttt e e s e s ressa e besenenee e 41

TABLE OF CONTENTS

I T R 110V (=T PSP U PR PROUSRPURUUPRORN 41
B0, 2 PYENON <.t h e bt b et 41
B0 B PYTOICN .ttt b bt a b et 42
BT 3 1] 1010) USRS 42
3.5.5 SCIKIT-TBAIT ... bbbttt sttt b et n s 43
3.6 Experiments and imPIEMENTALIONScoirierieiiieireeesert ettt 43
3.6.1 EVAIUALION MELIICS......cueiuirtiitinterteteiet ettt sttt sttt ettt beeb bbb s s s e 43
Bu0.2 DALASELS ...ttt e bbbt b e r e a e 44
3.6.3 LSS TUNCLIONS ...ttt bbbttt sttt en s 45
3.6.4 IMPIEMENTALIONc.veveeiiiececceeee ettt ettt et e st esteesa e besbe et e sbeessessesseenseseessnensens 46
BT RESUITS ...ttt h bbb b h bt bbbttt h e h e bbbttt et ene e 49
3.7.1 Comparison With BaSEIINESccueoueieieirirerterese ettt 49
B.7.2 DISCUSSION ..cuvtititteintet ettt ettt ettt bttt b et b et b et bt b et e bt e bt st e bt et st et e st nn et ebens 52
BLB CONCIUSION ...ttt bbbt b et b e bt b et b ettt b et e s 53
4. GENETAI CONCIUSTON ...ttt ettt a e bbb e b et et et e bt bt sb e b e st e ae e e s eneeneebeas 55
Al SUIMIMAIY .ottt b e e et et s h et s bt e e s b e eh e et e s bt e at e bt e ab e b e sbe et e nbeeaee b e saeentesbeeaseneeeneenbens 55
B. Directions fOr fULUIE TESEAICNcouiviiieieeee ettt sttt 55
LI o (010 1Y/ 0TRSO 58
T AN] o110 1o 3 TR 62
(271 o] [oY = =T o] o1V Z0 PP 65

—
| —

Abstract

Abstract

Recommender systems give users beneficial product or service recommendations for their decision-
making processes. Today, a variety of application domains such as YouTube, Amazon, Facebook,
and ResearchGate have proven the validity of classic recommendation systems that employ
collaborative and content-based filtering techniques. Session-based recommender systems, a novel
RS paradigm, have evolved in recent years in order to give timelier and more accurate next-item
recommendations that are responsive to being adjusted in various session circumstances. SBRSS
strives to record dynamic and short-term user preferences within sessions. The literature only includes
a few models with poor precision and efficacy as proposed development methodologies for SBRS
models, which are this type of system's primary objectives. The goal of this thesis is to explicitly
provide a new deep learning design for session-based recommender systems based on graph neural
networks (GNNSs) via the intriguing architecture of graph attention networks (GAT). Currently, gat-
based methodologies are among the most cutting-edge techniques used in many research fields, and
SBRs can take advantage of them to greatly research fields, and SBRs can take advantage of them to
greatly enhance the outcomes of their suggestions.

Keywords: recommender systems, session-based recommender system, graph neural network, graph
attention network.

Résumé

Les systémes de recommandation donnent aux utilisateurs des recommandations de produits ou de
services benéefiques pour leurs processus de prise de décision. Aujourd’hui, une variété de domaines
d’applications tels que YouTube, Amazon, Facebook et ResearchGate ont prouvé la validité des
systéemes de recommandation classiques qui utilisent des techniques de filtration collaboratives et
basées sur le contenu. Les systémes de recommandation basés sur la session, un nouveau paradigme
RS, ont évolué au cours des derniéeres années afin de fournir des recommandations plus ponctuelles
et plus précises qui répondent a des ajustements dans diverses circonstances de la session. SBRSS
s’efforce d’enregistrer les préférences d’utilisateur dynamiques et a court terme au sein des sessions.
La littérature ne comprend que quelques modeles de faible précision et efficacité en tant que
méthodologies de développement proposées pour les Modéles SBRS, qui sont les objectifs principaux
de ce type de systéeme. L'objectif de cette thése est de fournir explicitement une nouvelle conception
d'apprentissage profond pour les systemes de recommandation basés sur la session basée sur les
réseaux neuronaux graphiques (GNNS) via l'architecture intrigante des réseaux d'attention graphique
(GAT). Actuellement, les méthodologies basées sur le trou sont parmi les techniques les plus
avancées utilisées dans de nombreux domaines de recherche, et les SBR peuvent en tirer profit dans
des domaines trés recherchés, et ils peuvent en profiter pour améliorer considérablement les résultats
de leurs suggestions.

Mots clés : systéeme de recommandation, systéme de recommandation basé sur la session, réseaux
neuronaux graphiques, réseau d‘attention graphique.

List of figures

List of figures

Figure 1 : Example of recommeNndation SYSIEMcciiueeciiiieeeiieeete ettt st e ae e 3
Figure 2 : Example of content-based filteriNg.........cooiiieciiiee e e 5
Figure 3 : Example of collaborative fIlEriNGcccoiriiiiiriee e 6
Figure 4 : Example of hyBrid filEEIING......cc.ooeeieieeeeeeee et e 7
Figure 5: Overview of sequence-Aware recommendation problem............coevereveieininnneneeeeee 9
Figure 6 : An example of an e-commerce website using SBRS..........ccoviiirinineeeeeeeeee 10
Figure 7 : The classification 0f SBRS'S QPPIOACNES.........cciiieiiitieierie ettt re et st reeaaeanas 12
Figure 8 : Types Of MaChing LEAININGcoueueieieirtirieriesieset ettt sttt eaes 20
Figure 9: The relationship between Al, ML and DLccooiiiiiiiieiiceeececete ettt 20
Figure 10: Artificial neural NEtwWOrk arChitECIUIE.........ceecviiveeiecieeeecece et 21

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

The learning process Of deep 1EAIMINGceeririririeieee e 22
GrAGIENT UESCENT ...vevveeeeeieieeteet ettt sttt ettt et et be et e sbe st e te st eneeseeseeseesestessesenseneenennens 23
Activation function use in NEUral NEIWOIKSccceevuieierierieiese sttt 24
BiNary StEP FUNCTIONc.eiuiiiitieeeee ettt 24
Linear aCtivation FUNCLIONooivieieieiece et sttt 25
Sigmoid activation fUNCEION Graph.........coeeieiiiriree e 26
TanH activation fUNCLION Graphccveiviiieeeeececeee et st r e s eas 26
ReLU activation fUNCLION Graph...........oueouiiieiiiecececeec ettt 27

Figure 19: Leaky ReLU activation funCtion graph...........ccoeeeverieeni e 27
Figure 20: Softmax activation FUNCLION Graph.........c.cceieeiiiiiceceeeceeeee et st 28
Figure 21: 1-hop and 2-hop neighborhoods of a given target NOde A.........cccveiviiiiii e 32
Figure 22: Neural message passing Of target NOUE A ..o s 33
Figure 23: Functioning process of GAT based-model for SBRS...........ccocoiiiiiiiiieeee 40
FIQUIE 24: JUDPYLET 100, ... cuteeeeiieiieii etttk b bbbt bbbt t e 41
Figure 25: Python programming 1anguage 10g0..........cuiiiiiiiiiiieise s 42
FIQUIE 26: PYTOICH 1000 .c ittt sttt s be et et e s b e et e st e e b e s beetsesbesbeesbesteaneeseas 42
FIQUIE 27: INUMPY L1000 ...eiiiiiieiiecece ettt et e s b e et et s b e et e e besbe et esbe et e sbeensesbesreeseesteaneeeas 43
Figure 28: SCIKIt-1EAIN 10Q0........iiiiii ittt e st e e b e s beera e besbeesbesteeneeseas 43
Figure 29: Import NECESSArY HDIArIEScciiieie et sttt et s beea e te e aras 46
Figure 30: Preprocessing the atacc.eiiiiiiiiiiiic ettt sttt re st be e e e te e e aras 46
FIigure 31: SPIt the JatASEL.......cooiiiiiiiite ettt b bbbt ene s 47
Figure 32: Mapping the 1tem IDS t0 INICES.c.oviiiiiiiieieiee et 47
Figure 33: Filtering any out Of range INAICEScviiiiiiiiieee e 47
Figure 34: Construct sessions for training and teSting data............ccoeiiiriniieneieese s 47
Figure 35: Create the dynamic train graph..........oooi oo s eeas 48
Figure 36: Model performance comparison with RETAILROCKET dataset using precision metric.............. 50
Figure 37: Model performance comparison RETAILROCKET dataset using recall metricccccccocveeeee. 51
Figure 38: Model performance comparison YOOCHOOSE dataset using F1-score metric........c..ccoccvvveennee. 51
Figure 39: Home page of the job recommendation WEDSITEcouoiiiiiiiiiieee s 58
Figure 40 :Exploring the Dual Pathways Registration and Anonymity in Website Interaction....................... 59
FIQUIE 412 JOD POSTINGS. ...ttt bbbt bbb bbb st b bbbttt e e b e 59
Figure 42: JOD reCOMMENTALIONouiiiiitiieeieieeeee ettt bbbttt ne s 60

List of tables

List of tables

Table1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

Comparison between SBRS and Other RSS.......cciiieiiiiicieieceee ettt 11
Comparisons between Different Technical Approaches for Session-based Recommendations....... 25
Comparison of GAT and different GNINS.........coieieiiiecece et 39
CharacteristiCs Of the JAtASELSc.evvriereri ettt sttt e e naenees 44
The results of the proposed GAT-based SBRS MOGELcccoeriririneiieiiineeerereeeeeeeee 48
Comparison of GAT-based SBRS MOdel DASEIINESccuevvieeeiiiiieieceeeeese e 49

ACRONYMS

Acronymes

RS Recommender Systems
SBRS Session-Based Recommendation Systems
GNN Graph Neural Networks
GAT Graph ATtention Networks
CBF Collaborative Filtering
ML Machine Learning
DL Deep Learning

SARS Session-Aware Recommendation Systems

General introduction

General

Introduction

General introduction

General introduction

1. Background

Since the first articles on collaborative filtering appeared in the middle of the 1990s, recommender
systems have gained importance as a study area [1]. The distinctive features of recommender systems
have undergone extensive development over the past few decades in both industry and academia.
There are several pertinent apps that can assist users in managing information overload and offer
them individualized recommendations, content, and services, but there are still a lot of unanswered
questions in this field of study. We now routinely receive different types of automated
recommendations when using the internet. Currently, numerous application areas, including e-
commerce and video streaming, use these platforms.

The matrix completeness problem formulation, where a user-item rating matrix is given and the goal
is to forecast the missing values, has historically functioned as a standard framework for scholarly
research in the area. The training of machine learning models that aim to capture longer-term user
preference profiles is generally well suited to this abstraction. Sequence-aware recommender
systems, on the other hand, use additional methods to execute recommendations that take into
consideration users' near-term actions and intentions. They are also designed to benefit from the rich
data that is contained in the sequentially organized user interaction logs that are typically seen in real-
world applications.

Recommender systems are critical in many application scenarios where short-term user interests and
longer-term sequential patterns are vital to their success. Session-based recommender systems are a
typical example, where there is no longer-term user history available and the recommendations must
be adapted based on the assumed short-term interests of an anonymous user. The primary goal in such
scenarios is to recommend objects that match a given sequence of user actions.

Since the 1990s, a lot of research has focused on session-based recommender systems, which have
also been referred to as next-item, next-basket, pattern-based, rule-based, sequence-based, and
transaction-based recommender systems [2].

The pertinent works on session-based recommender systems are divided into two distinct stages: the
model-free stage from the late 1990s to the early 2010s, and the model-based stage from the early
2010s to the present. To drive the model-free stage, data mining techniques such as pattern mining,
association rule discovery, and sequence mining were developed. Research on recommendations
based on patterns, rules, and sequences eventually took control graph-based machine learning
techniques, particularly graph neural network (GNN) models. Model-based recommender systems
have advanced to new heights since 2017 as a result of the recent explosive expansion of GNNs.
Researchers have just started working in this area and have developed a variety of GNN-based models
for next-item and shopping cart predictions.

General introduction

Due to its outstanding performance over the past few decades in numerous application areas,
including computer vision and speech recognition, deep learning is currently the subject of a lot of
excitement. Academics and business are vying to incorporate deep learning into a wider range of
applications due to its capacity to handle numerous complicated problems.

Recent developments in deep learning have changed recommendation architectures and expanded
opportunities for increasing recommender system performance [3]. Graph neural networks (GNNSs),
which have been proved to be particularly good at processing data that is graph-structured, are the
foundation for the majority of current deep learning models. Due to their capacity to record intricate
patterns in user-element interactions and their capacity for generalization, GNs have consequently
drawn considerable interest in session-based recommender systems. The effectiveness of session-
based recommender systems could be greatly increased by GNNs. The interpretability of the
recommendations has also been improved by the addition of a GNNS attention mechanism.

2. Problem Statement

Session-based recommendation systems (SBRS) have grown in popularity in recent years as
businesses attempt to provide customized recommendations to users based on their interactions with
items in the short term.

Traditional SBRS methods, on the other hand, frequently rely on basic models that fail to capture the
complicated and dynamic patterns of user behavior that emerge within individual sessions, resulting
in poor suggestions.

To solve this problem, this thesis proposes a Graph Attention Network (GAT) model for SBRS that
is capable of capturing the complex interactions between items within a session and creating correct
and appropriate recommendations for users. This effort is guided by a central research question:

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-
based recommendation systems to capture the intricate and dynamic patterns of user

behavior within individual sessions, leading to improved and personalized

recommendations?"

By addressing this issue, this study intends to investigate the potential of GAT models for boosting
SBRS performance and promoting user happiness across a variety of sectors, including e-
commerce, news, and entertainment.

3. Delimitation

This thesis is limited to the examination of item-item and item-session interactions and focuses on
session-based recommendation systems employing the GAT model. The effectiveness of the GAT
model will be assessed using a publicly accessible dataset, and the study will not take into account
how external variables like user demographics, temporal dynamics, or contextual information may
affect the quality of the recommendations. Additionally, this study excludes other domains like news

—
| —

General introduction

and music in favor of evaluating the GAT model's performance just n the e-commerce domain. This
thesis intends to provide a clear and focused study of the GAT-based SBRS model's performance on
a specific dataset and in a specific domain by outlining these constraints. noting the need for
additional research in many fields and under various experimental setups as well as the potential
influence of other factors.

4. Approach

In order to establish a session-based recommendation system using graph neural networks (GNNSs),
specifically the Graph Attention Network (GAT) model, The main problem of the research is the need
for a system that can produce personalized recommendations based on user experiences while
utilizing the wide range of information found in the session graph.

Each item clicked during a browser session is treated as a node in the session graph, which depicts
the user's sequential interactions. The GAT model will be used to capture the intricate dependencies
and relationships between these nodes, allowing the system to provide recommendations that are
aware of their context.

Allinall, it is expected to offer a strong framework for comprehending user preferences, recognizing
similar items, and making precise recommendations by customizing the GAT model to fit the session-
based recommendation requirement.

5. Outline
This thesis is structured in three chapters besides a general introduction and a general conclusion:

» Introduction: initiation to recommender systems and the background, problem
statement, delimitations of the thesis and the approach.

» Chapter 1: Session-Based Recommendation Systems
A theoretical introduction to recommender systems and their families, all for the
purpose of giving a basic foundation and a comprehensive view of session-based
recommender systems.

» Chapter 2: Graph ATtention Networks
Essential context and background knowledge around artificial intelligence, machine learning,
and deep learning. This chapter gives a familiarization with the fundamental concepts
necessary to approach deep learning, GNNs and GATSs.

» Chapter 3: Graph ATtention Networks for the development of Session-based

recommendations systems
Takes an in-depth dive into practical application of graph attention networks in the making of
a session-based recommendation systems. The evaluation metrics used for the experiment are
first presented, then datasets and baselines used. At last, the baselines results are compared to
the proposed GAT-based SBRS model with a discussion of the obtained results.

> Conclusion: Based on the results and the discussion in the previous chapter, this last part
relates to the research questions and draws a summary of this work. Finally, suggestions for
potential future work are discussed.

Chapter 1 : Session-Based Recommendation Systems

Chapteri.

Session-based

recommendation systems

Chapter 1: Session-Based Recommendation Systems

Chapter 1 : Session-Based Recommendation Systems

1.1 Introduction

Recommendation systems have become essential tools for assisting users in navigating the vast array
of services and products accessible in the era of many options and overwhelming of information.
These systems aim to offer recommendations that are tailored to each user's interests , leading to more
informed decision-making.

The efficacy of conventional recommendation systems is undeniable, yet they frequently fail to
capture the changing nature of user preferences. They ignore a user's short-term transactional
behaviors and potential preference changes over time, focusing instead on their long-term,
unchanging preferences. This constraint necessitates a novel strategy that considers the temporal
component of user behavior.

Session-based recommendation systems are useful in this situation. In recent years, session-based
recommender systems have drawn a lot of attention since they provide a relatively new paradigm for
recommendation since they provide a relatively new paradigm for recommendation. By taking into
account the context of a user's current session or visit and including short-term transactional patterns,
these systems go beyond static preferences.

In this chapter, we will delve into the world of session-based recommender systems, offering a
comprehensive and systematic overview of this emerging recommendation approach. We will explore
the key concepts and techniques employed in session-based recommendation systems, shedding light
on how they address the limitations of traditional recommendation systems.

1.2 Recommendation Systems

A recommender system, usually referred to as a recommendation system, is a method of making
decisions that is intended to help users in complicated information settings, especially in the context
of E-commerce [4].

It acts as a tool that facilitates users' effective searching through a vast amount of knowledge tailored
to their preferences and areas of interest [5]. The system leverages recommendations from others to
augment the decision-making process when users lack personal knowledge or experience with the
available alternatives [6]. By offering individualized and unique recommendations for content and
services, it tackles the issue of information overload [7].

In essence, a recommender system makes use of artificial intelligence algorithms and techniques to
analyze user data, such as past purchases, search histories, demographic data, and more, in order to
suggest or recommend more products, information, or services that are most relevant to a specific
user [8]. It serves as a tactical tool that helps users identify pertinent information, improves decision-
making by incorporating social recommendations, and reduces information overload by providing
tailored and specialized recommendations.

Chapter 1 : Session-Based Recommendation systems

@

v
o
v

User 1‘
A
—

ltems

Figure 1 : Example of recommendation system

1.3 User Feedback

It is important to define the concept of user feedback, which is a key concept of recommendation.
When users perform actions over items on a platform (e.g., an e-commerce site, a movie review
system , a video blogging platform , and so on) , they provide implicit, explicit or , hybrid feedback:

1.3.1 Explicit Feedback

In order to build and enhance his model, the system typically prompts the user through the system
interface to offer ratings for items. The quantity of user-provided ratings determines how accurate the
recommendation is. This method's only shortcoming is that users must put forth some effort and aren't
always ready to provide sufficient data. Since it does not involve deriving preferences from actions
and it provides transparency into the recommendation process, explicit feedback is still perceived as
providing more reliable data, leading to a marginally higher perceived recommendation quality and
greater confidence in the recommendations [9].

1.3.2 Implicit Feedback

By keeping track of a user's many actions, including past purchases, navigation history, time spent
on specific web pages, links they follow, email content, and button presses, among other things, the
system automatically infers what the user prefers. By assuming users' preferences based on how they
interact with the system, implicit feedback lessens the burden on users. Although the method does
not require human effort, it is less accurate. Additionally, it has been argued that implicit preference
data may actually be more objective because there is no bias due to users answering in a socially
acceptable manner and because there are no concerns with self-image or the desire to maintain an
image for others [10].

1.3.3 Hybrid Feedback

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order to
minimize their weaknesses and get a best performing system. This can be achieved by using an
implicit data as a check on explicit rating or allowing user to give explicit feedback only when he
chooses to express explicit interest [11].

https://www.sciencedirect.com/topics/computer-science/explicit-rating

Chapter 1 : Session-Based Recommendation systems

Many recommender systems focus on implicit input since it is simple to collect and represent users'
opinions through observable behavior (e.g., by examining browsing history, mouse movements, etc.).

Implicit feedback has the drawback that it is always noisy. For instance, even if a person has viewed
a movie, we can't say for sure if they enjoyed it or not. However, it is not always available because
some users are unwilling to score the products they consume. Explicit feedback, on the other hand,
might be more illuminating about user preferences [12].

1.4 Recommendation tasks

We can specify many types of recommendation tasks that a recommendation system can take on
depending on the type of feedback that is available [12]:

% Click-through rate (CTR) prediction: Predicting the probability that a user would click on
an item that is described by a set of features (such as an image, text, the day of the week, a
user's features, etc.), namely predicting P (click|item, user, features) of implicit feedback
occurring.

% Rating prediction: estimating the probability that a user will give a particular rating to a
product that has a particular collection of attributes, specifically estimating the P
(Rating=r|item, user, features) of giving a specific product a rating r.

% Sequential prediction: determining the probability distribution of the next target item that a
user would consume based on the attributes of the previous target item in a sequence. In
addition to their IDs, both the user and the item sequence could be described by a different set
of characteristics. If user features are not taken into account, the issue results in a broad (as
opposed to customized) recommendation.

1.5 Types of Recommendation Systems

Although there are many recommendation algorithms and strategies, the majority can be divided into
the following categories:

1.5.1 Content-based Filtering

The information retrieval and filtering study is where the content-based recommendation algorithms
are derived [13]. The early collaborative filtering process is continued and developed in the content-
based recommendation. Instead of using the user's remarks on things, content-based recommendation
systems suggest items that are similar to those that the user has previously selected. Many current
content-based systems create profiles for both users and items. While an item profile contains a list
of item features, a user profile comprises details about a user's tastes, preferences, and needs that can
be extracted from questionnaires about users or over time from their transactional behavior. The
system then determines the degree to which each item's profile and the user's profile match up,
recommending products that might satisfy the user's needs or preferences. The utility function is
typically defined as the following by combining the features of items and the user interest model [14]:

1. u(c, s)=score(ContentBaseProfile (¢), Content (s))

u(c, s): This represents the utility or score of a content item (s) for a specific user (c). It predicts how
much the user will like or find the content item relevant.

Chapter 1 : Session-Based Recommendation systems

ContentBaseProfile(c): This refers to the profile of the user (c) in the content-based recommendation
system. The profile consists of attributes or features that describe the user's preferences or interests.

Content(s): This represents the content item (s) that is being evaluated for recommendation. It is
described by attributes or features that capture its characteristics.

score(ContentBaseProfile(c), Content(s)): This function calculates the similarity or relevance score
between the user's profile and the content item. It measures how well the attributes of the content item
align with the user's preferences or interests

o Read by user
f“‘y

\ Similar articles

Recommended
to user

Figure 2 : Example of content-based filtering

1.5.2 Collaborative filtering

According to user preferences collected from a large number of users, algorithms recommend
products (this is the filtering component). Using the similarity of user preference behavior and
knowledge of past interactions between users and objects (this is the collaborative part), recommender
systems can learn to anticipate future interactions. These recommender systems create a model from
a user's prior actions, such as items they have previously purchased, ratings they have given for those
items, and comparable choices made by other users. According to the theory, there is a good chance
that two people will choose the same things in the future if they have already made comparable
decisions and purchases in the past, such as choosing a movie [7].

For instance, if a collaborative filtering recommender discovers that you and another user have similar
movie preferences, it can suggest a film to you that it has previously discovered that the other user
enjoys (see figure 3) [15].

Chapter 1 : Session-Based Recommendation systems

COLLABORATIVE FILTERING

Read by both users

Read by her,
recommended to him!

Figure 3 : Example of collaborative filtering
1.5.3 Hybrid Filtering

A hybrid recommendation system is a special sort of recommender system that gives the user a
recommendation by combining two or more methods, such as collaborative and content-based
filtering methods. The difficulties posed by employing these two filtering techniques independently
were overcome by combining them [11].

Based on how the various recommended methodologies are combined with one another, hybrid RSs
are divided into 7 classes [16]:

e Weighted: We can define a few models that can accurately understand the dataset for the
weighted recommendation system. The weighted recommendation system will integrate the
outputs from all of the models into static weightings, which remain the same throughout the
training and test sets.

e Switching: In a switching hybrid, the system alternates between different recommendation
strategies based on a set of criteria, such as when a strategy doesn't generate enough reliable
recommendations.

e Mixed: A mixed hybrid technique initially generates a variety of candidate datasets using the
user profile and attributes. The recommendation system feeds various sets of candidates into
the model in accordance with their requirement combining the predictions to produce the final
recommendation.

e Feature Combination: This hybrid recommender system treats one recommender's output as
extra feature data and prefers to employ the second recommender (often content-based, which
heavily utilizes item features) over the new expanded data.

e [Feature augmentation: A contributing recommendation model is used to grade or categorize
the user/item profile. This rating , or categorization, is then used in the primary
recommendation system to produce the expected outcome. Without altering the primary
recommendation model, the feature augmentation hybrid can boost the performance of the core
system. For instance, we can improve the user profile dataset by utilizing the association rule.

Chapter 1 : Session-Based Recommendation systems

The functionality of the model for content-based recommendations will be enhanced by the
augmented dataset.

Cascade: One type of hybrid filtering method is cascade hybrids. A coarse ranking of the
candidate items is first generated using one technique, and the list is subsequently refined using
the preliminary candidate set. The cascades depend on the order.

Meta Level: is also an example of order-sensitive hybrid RSs that use an entire model produced
by the first technique as input for the second technique.

watched by both users

i
I\

similar users

) D
watched /ecom mended
by her to him

Figure 4 : Example of hybrid filtering

1.6 Challenges and Limitations

The following is a summary of the challenges and restrictions that RSs confront that are seen as
crucial for the advancement of RSs research.

Cold start problem: The system encounters the cold start issue when it is unable to establish
any connections between users and items for which it lacks sufficient data. There are two
different kinds of cold-start issues [17]:
1. User cold-start issues: These issues occur when there is virtually no information
available about the user.
2. Product cold-start issues: These issues occur when there is virtually no information
available about the product.
Synonymy: When an item is represented by two or more names or entries that have similar
meanings, synonymy results. In some situations, the recommender is unable to determine if
the terms refer to separate or the same item [18].
Shilling Attacks: When a dishonest user or rival enters a system and begins providing
fraudulent ratings on certain items in an effort to either boost or diminish the item’s popularity.
Such attacks have the potential to undermine user confidence in the RS and harm the
effectiveness and value of suggestions. CF techniques are more concerned with this threat [19].
Privacy: Better recommendation services are obtained by providing personal information to
the RS, but doing so may raise data privacy and security concerns.

Chapter 1 : Session-Based Recommendation systems

©)

1.7

Problem of Overspecialization: Users are only shown recommended products based on those
already known or defined by their user profiles, ignoring new items and other possibilities
choices [18].
The sparsity problem: occurs when a user has a large matrix of purchases, viewings, or music
listings. It is a critical problem in recommender systems. When the user didn't rate these things,
sparsity developed. While recommender systems rely on users ratings on a matrix to
recommend items to others [18].
Gray Sheep: Gray sheep happen in collaborative filtering systems when a user's thoughts do
not align with any group, and as a result, they are unable to profit from recommendations [20].
Novelty: New ones must be included in the recommended items.
Serendipity: beyond novelty, it may also be an objective that some recommended items are
not only unheard of, but also surprising user wouldn't have thought before [20].
Scalability: is a measure of a system's capacity to operate efficiently with high performance
as information expands. When the number of users or the number of items increases, the
recommender system must continue to suggest the same items to the users. We need to perform
more calculations and spend more money to achieve this [20].
Evaluation and the Availability of Online Datasets: A recommender system's quality can
be assessed along with other factors. One of the main issues with RSs is the construction of
evaluation criteria and the selection of appropriate evaluation metrics. They can be categorized
as follows [21]:

1. Prediction metrics: include coverage and accuracy measures such as Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Normalized Mean Average Error

(NMAE).

2. Set recommendation metrics: such as Precision, Recall, and Receiver Operating
Characteristic (ROC).

3. Rank recommendation metrics: such as the half-life and the discounted cumulative
gain.

Sequence-Aware Recommender Systems

A type of recommender systems known as sequence-aware recommender systems considers the
chronological order of items in a user's interaction history. They are employed to anticipate the
following items a user will find interesting during a current session or to generate complete sequences
of items to display to the user [22].

Sequence-aware recommendation issues differ in several ways from conventional matrix-completion
issues. The problem, its inputs, outputs, and specific computing tasks are all presented in high-level
detail in Figure 5. In general, the sequence in which the items that presented can have an impact on
both the inputs and the outputs. These points will be covered in more detail later on [23].

Chapter 1 : Session-Based Recommendation systems

Input: Interaction log ®

User
Output:
- & ’ M J L Ordered list of items
% ﬁ (>
= 3 102
time Recommender

Specific computational tasks:
Context adaptation
Trend detection
Repeated recommendation
Consideration of constraints

Figure 5: Overview of sequence-Aware recommendation problem

1.7.1 Inputs : The primary input to sequence-aware recommendation problems is an ordered
and frequently timestamped list of previous user actions. Users can be known to the system or be
anonymous. Each action can also be one of several predefined types, and each action, user, and
item may have a number of additional attributes [23].

1.7.2 Outputs : Ordered lists of items are the result of a sequence-aware recommender. The

results in this broad sense resemble those of a conventional "item-ranking" recommendation

arrangement. The order of the objects in the recommendation list, however, can also be important
In some sequence-aware recommendations cases. There are situations where the user should take
into account each recommendation and do so in the order supplied rather than viewing the list of

recommendations as a collection of choices [23].

1.7.3 Computational Tasks : The literature has identified a variety of computational

occupations for sequence-aware recommenders. Four primary objectives are most frequently

accomplished with the use of SARS in a variety of application scenarios:

1) Context Adaptation: One of the main objectives of sequence-aware recommender systems is
to understand the scenario and aims of the users in order to make recommendations that are
appropriately tailored to those situations. It is crucial to effectively utilize interactional context
information since there is no historical data accessible regarding the users' previous
preferences.

Based on the availability and significance of long- and short-term interactions, the following
context-adaptation scenarios are distinguished in [23]:

a) Last-N interactions: Only the most recent N user actions are taken into account in the
last-N interactions-based recommendation.

b) Session-based recommendations: are made using only the user's most recent sequence
of actions, which are only known for the period of a session (the particular duration
during which the user interacted with the website).

c) Session-aware recommendations: are made when it is known both what users did in
the most recent session and what they have done in the past. If there are identifiable
returning consumers, this type of issue will arise.

2) Trend detection: Another feasible, if less researched, objective that can be achieved is trend
detection. Trend detection is the identification of trends in a given sequence dataset. In [23]

Chapter 1 : Session-Based Recommendation systems

the sequential log data can be divided into the following categories for the information that can
be extracted and used in the recommendation process:

a) Community trends: SARS can try to find and use popularity patterns in the interaction
logs to enhance the recommendations since the popularity of items may change over
time in different domains.

b) Individual trends: Shifts in people's preferences for particular things are also possible.
When there is a natural interest drift, certain changes in interest may result. Modeling
the dynamics of user musical preferences is one such issue.

3) Repeated Recommendation: Recommending products that the user is already familiar with or
has previously purchased can be effective in specific application domains. In the conventional
matrix completion configuration, these eventualities are not at all taken into account. In [23]
there are identified the following categories of scenarios:

a) Identifying patterns of frequently occurring user activity: SARS can use historical
interaction logs to discover patterns of frequently occurring user behavior. For example,
SARS may propose launching the email or calls app after opening the contacts app, i.e.,
used to provide shortcuts.

b) Recurring recommendations as reminders: Recurring recommendations can assist in
reminding users of past interests. These reminders may be for items the user may have
recently interacted with or may be for items they may have forgotten, depending on the
domain, such as Amazon.

1.8 Session-Based Recommendation Systems

As seen in Section 1.7, session-based recommendations are considered one of the main computational
task situations in sequence-aware recommender systems. An SBRS is a type of recommendation
system that focuses on making personalized recommendations based on a user's current session or
browsing behavior. Unlike traditional recommender systems that consider long-term user preferences
and historical data, session-based recommendation systems prioritize the immediate context and the
user's short-term interests.

In a session-based recommendation system, the user's current session is treated as a sequence of
interactions or actions, such as clicks, page views, or purchases, within a specific time frame. These
interactions capture the user's preferences and interests in the present moment. The system analyzes
this sequential data to generate real-time recommendations that cater to the user's immediate needs.
Session-based recommender systems aim to predict the unknown part of a session (see Figure 6) or
the future sessions based on modeling the complex relations embedded within a session or between
sessions [24].Table 1 presents a comprehensive comparison between SBRS and other typical RSs.

Previously visited items [tem to be recommended

10

—
| —

Chapter 1 : Session-Based Recommendation systems

SBRS Collaborative Content-Based Hybrid
Filtering (CF) Filtering (CBF) Recommender
Systems
Data Source User session User-item Item features Multiple sources
interactions interactions (session, CF,
CBF)
Recommendation = Session-based User-based or Item-based Combined
Type recommendations = item-based recommendations recommendations
recommendations
Personalization ~ Highly Moderately Moderately Highly
personalized personalized personalized personalized
User Context Captures Temporal context No explicit Captures
temporal context limited context captured multiple types of
context
Sequential Exploits Doesn't consider ~ Doesn't consider ~ May consider
Patterns sequential sequential sequential sequential
behavior patterns patterns patterns
Cold Start Problem = Suffers from cold Suffers from cold Less affected by =~ Moderate impact
start problem start problem cold start
problem
Scalability Can face Scalable Scalable Scalable
scalability
challenges
Sparsity Handling = Handles sparse Requires denser ~ Handles sparse Handles sparse
session data data for accuracy data effectively data effectively
effectively
Serendipity Can offer Moderate Limited Moderate
serendipitous serendipity serendipity serendipity
recommendations
Explanation Limited explicit Lacks explicit May provide May provide
explanations explanations feature-based combined
explanations explanations

Table 1: Comparison between SBRS and other RSs

1.8.1 Categorization

An SBRS makes the unknown session information as its target to be predicted by taking the prior
session information as the context and condition, which is called a session context C in this work. A
session context can either be an intra-session context C'@ or an inter-session context C'¢ according to
whether the session context comes only from one session (the current one) or across multiple sessions
(before the current one) [19].

According to [24], SBRS can be generally categorized into two major branches:

11

—
| —

Chapter 1 : Session-Based Recommendation systems

= Next-item(s) Recommendations: given an intra-session context C'* over the current session
S,,, the next-item(s) recommendations predict the next item(s) i, in S,,conditional on C*¢. Next-
item(s) recommendations are the mainstream and the most common setting of session-based
recommendations.

= Next-session (next-basket) Recommendations: given an inter-session context C*¢ for current
session Sy, the next-session recommendations predict those items possibly occurring in session
Sy

1.8.2 Approaches

We try to classify SBRS in this section from a technical point of view all currently published efforts
are specifically divided into two branches: model-free techniques and model-based approaches,
various types of techniques are present in each branch (Figure 7).

—[Pattern/rule mining

| K nearest neighbour

_| Conwentional SBRS
approaches

|
|
| Markow chain |
|

"-I Generative probabilistic model

- —| Latent factor model |
Latent representation

based approaches

-—I Distributed representation |

SBRS approaches

Recurrent neural networks |

| Multilayer perceptron networks |

_| Basic deep neural

networ ks I Conwvolutional neural networks |
Graph neural networks I
| Deep neural network
based approaches Attention model |
| Memory networks |
‘-I Advanced models | Mixture model I

| Generative model |

Reinforcement learning]

Figure 7 : The classification of SBRS's approaches

1.8.2.1 Model-Free Approaches

Model-free approaches are typically devoid of complicated mathematical models and are based
primarily on data mining techniques. Sequential pattern-based RS for ordinal session data and
pattern/rule-based RS for unordered session data are two common techniques in this area.

a) Pattern/Rule-based Approaches: Pattern/rule-based RS first mine frequent patterns or
association rules and then use these patterns and rules to guide the subsequent
recommendations. This is based on the assumption that most customers would follow the
common shopping patterns [25].For instance, customers usually bought milk and bread

12

—
| —

Chapter 1 : Session-Based Recommendation systems

together when they go shopping, therefore {milk, bread} can be treated as a frequent pattern
to recommend bread to those why have bought milk. It should be noted that pattern/rule-based
RS are applied in unordered data [26].

b) Sequential Pattern-based Approaches: To handle those data having a strict order over items
or involving time-factor based effect, sequential pattern-based RS are proposed. Similar to
pattern-based RS, they first mine a collection of sequential patterns and then recommend the
remaining items after the occurrence of the prior items [27].

1.8.2.2 Model-based Approaches

Model-based RS are typically constructed on stringent assumptions like ordering over objects and
intricate models like Markov chain models, in contrast to model-free RS. The three primary groups
of model-based approaches that are now in use are Markov Chain-based approaches, factorization-
based approaches, and neural model-based approaches.

a) Markov Chain-based Approaches

Using transitional probabilities, Markov Chain-based RS models the first-order (and sometimes
higher order) dependency over a sequence of items, and then uses that dependency to create
recommendations for the next items. Markov Chain-based RS take into account all things and so
significantly reduce information loss, in contrast to sequential pattern-based techniques that are
simple to filter out such infrequent items and patterns and consequently result in information loss
[28].

b) Factorization-based Approaches

These methods create a latent representation vector for each item by first factoring the item co-
occurrence matrix or the item-to-item transitional matrix [29]. Then they use these latent
representations to predict the subsequent items. Such methods should be distinguished from the
frequently employed factorization machine (similar to matrix factorization) in collaborative
filtering-based RS, which typically factors the user-item interaction matrix (similar to rating
matrix) into latent factors of users and items [15].

¢) Neural Model-based Approaches

take advantage of the neural network to learn the complex relationships and interactions over items
within or between sessions and then generate recommendations based on such interactions. Based
on the model structure, neural model-based approaches can be divided into shallow neural model-
based approaches, which sometimes are also called embedding models or representation learning
models and deep neural model-based approaches like RNN [30].

13

—
| —

Chapter 1 : Session-Based Recommendation systems

Approaches Working Applicable Target issues Pros Cons
mechanism scenarios
Pattern/rule- | Mine frequent Simple, Capture Intuitive, Information
based patterns or balanced and | explicit co- simple and loss, cannot
approaches association rules to | dense session | occurrence- effective on | handle complex
guide data without based simple data | data (e.g.,
recommendations order dependency imbalanced
between items data, long tailed
data)
Sequential Mine sequential Simple, Capture Intuitive, Information
pattern-based | patterns to guide balanced and | explicit co- simple and loss, cannot
approaches recommendations dense session | occurrence- effective to | handle complex
data with based inter- capture data (e.g.,
order item sequential | sequential imbalanced
dependency relations on | data, long tailed
simple data | data)
Markov Chain- | Use Markov chain Relative Capture Reduced Usually ignore
based to model the simple explicit or information | long-term and
approaches transitions between | sequential implicit inter- | loss, higher-order
items or sessions for | data mainly item sequential | flexible, dependency
recommendations with short- dependency good at
term and low- modelling
order short-term
dependency sequential
dependency
Factorization- | Factorize item Relative Learn latent Reduced Easy to suffer
based transitions into simple data item information | data sparsity
approaches latent mainly with representations | loss, good at | issues, cannot
representations of short-term and | to fit for item- | modelling capture higher-
items for low-order to-item low-order order
recommendations dependency transitions dependency | dependency
Neural model- | Model the complex | Complex data | Encode the Powerful, Hard to
based dependency in a with complex can capture | implement,
approaches neural network and | sequential or | dependency both long computationally
embed this non- into latent term and costly
dependency into the | sequential representations | short term,
learned latent dependency of items or higher-order
representations for sessions and low-
recommendations order
dependency

Table 2 : Comparisons between Different Technical Approaches for Session-based Recommendations

1.8.3 Challenges and Limitations of SBRS

Session-based recommendation systems face several challenges, including [31]:

14

—

—t

Chapter 1 : Session-Based Recommendation systems

1.

Data Sparsity: Because sessions are frequently short and only contain a limited amount of user
choices, session data may be naturally sparse. This makes it difficult to accurately determine
the user's interests and offer pertinent recommendations.

Dynamic User Preferences: During a single session, a user's preferences and intentions may
quickly change. It might be challenging to accurately model and accommodate their dynamic
choices because their demands and interests may change depending on the immediate
situations.

Cold-Start Issue: When a new user begins a session, little is known about their preferences and
tendencies. Without historical data, it is difficult to give individualized recommendations due
to the cold-start problem.

Contextual Understanding: It might be challenging to comprehend a user's preferences and
intents when sessions lack explicit user feedback or explicit item evaluations. Effective
interpretation of the implicit signals from the session context is required by the
recommendation system.

Focus on the Short Term: Session-based recommendation systems are primarily concerned
with the user's plans for the immediate future, which may not fully reflect the user's long-term
goals. This may result in recommendations lacking diversity or failing to take into account a
user's broader preferences.

Session Ambiguity: Sessions can be ambiguous, and the system needs to disambiguate the
user's intent from the observed behavior. Different users may have different motivations or
goals for similar session behavior, making it challenging to generalize recommendations

1.9 Conclusion

In the beginning of this chapter, a survey of recommender systems, a description of the session-based
recommendation problem, and a discussion of where it fits in the family of sequence-aware
recommendations were provided. It generated a thorough comparison between SBRSs and other RSs,
followed by the formations and associated definitions of SBRS, which in turn stimulated the need for
session-based recommender systems research. Finally, approaches, challenges and difficulties were
examined. The next chapter will introduce Graph ATtention networks as a recent approach for
developing SBRS.

15

—
| —

Chapter2: Graph ATtention Networks

Chaptera2.

Graph ATtention

Networks

16

—
| —

Chapter2: Graph ATtention Networks

Chapter 2 : Graph ATtention Networks

2.1 Introduction

Graphs are a common method of presenting structured data in many areas, such as social networks,
natural language processing, and recommendation systems.

Therefore, in the field of machine learning, it is becoming more and more crucial to be able to evaluate
and model graph-structured data. As a new method of modeling graph-structured data, Graph
Attention Networks (GATS) were introduced in 2018 and are a relatively recent advancement in the
field of graph neural networks.

This chapter provides an introduction to the core ideas required to comprehend Graph Attention
Networks.

2.2 Artificial Intelligence

Artificial Intelligence (Al) refers to the effort to automate intellectual tasks normally performed by
humans. It is a general field that encompasses various approaches, including machine learning and
deep learning, that involve training algorithms to learn from data without being explicitly
programmed. While the idea of Al has been around since the 1950s, it wasn't until the advent of
machine learning that significant progress was made in this field. Machine learning is a subfield of
Al that focuses on the development of algorithms that can learn from and make predictions on data.
Deep learning, a subset of machine learning, is a more advanced approach that leverages deep neural
networks to learn complex representations of data.

Early Al systems, such as chess programs, were based on hardcoded rules crafted by programmers, a
paradigm known as symbolic Al. However, this approach proved to be intractable for solving
complex, fuzzy problems such as image classification, speech recognition, and language translation.
This led to the rise of machine learning as a new approach to Al [32].

2.3 Machine learning

The development of algorithms and statistical models that allow computer systems to automatically
improve their performance on a given job constitutes the field of machine learning, which is a subset
of artificial intelligence. To create predictions or choices, these algorithms use data to learn from,
spotting patterns and relationships within the data.

Predictive analytics, computer vision, natural language processing, and speech recognition are just a
few of the domains where machine learning is used. Machine learning is becoming an increasingly
essential topic for businesses and organizations wanting to extract insights and gain a competitive
edge as the amount of data created continues to expand exponentially [33].

2.3.1 Data representations

Data representation in machine learning refers to the process of transforming raw data into a format
suitable for analysis and model training. Effective data representation is crucial because it determines
the quality of features that can be extracted and the performance of machine learning models [34].

17

—
| —

Chapter 2 : Graph ATtention Networks

Here are a few typical representations of data for machine learning [35]:

Numeric Representation: This is the most common data representation, using numeric values
to represent data. Numerical data can be continuous (e.g., temperature, time) or discrete (e.g.,
age, counts). Numerical data is easy to process and can be used directly by many machine
learning algorithms.

Categorical Representation: Categorical data represents non-numeric values that belong to a
particular class or categories. Examples of this are gender, color, or product type. Before
passing categorical data to a machine learning model, techniques such as one-hot encoding or
sequential encoding are often used to convert categorical data into numerical form.

Text representation: Text data such as documents, tweets, or customer reviews require special
display techniques. A common approach is to use vectorization methods such as bag-of-words
or term-frequency-inverse document frequency (TF-IDF) to convert text to numeric feature
vectors. Another approach is to use word embeddings such as Word2Vec or GloVe to capture
semantic relationships between words.

Image representation: Image data is often represented as a grid of pixels, with each pixel
having a color intensity value. Convolutional neural networks (CNNs) are widely used to
process and extract features from image data. Pretrained CNN models such as VGG, ResNet,
or InceptionNet can be used to extract high-level features or as a basis for transfer
learning.Time series representation: Time series data represents measurements or
observations taken over time, such as stock prices, sensor readings, or weather data. Time
series data is typically represented as a sequence of data points with timestamps. Techniques
like sliding windows or Fourier transformations can be used to extract relevant features from
time series data.

Graph representation: Graph data represents relationships between entities using nodes and
edges. Graphs can be used to model social networks, knowledge graphs, or biological
networks. Graph Neural Networks (GNNs) were developed to process graph-structured data
and allow feature extraction based on graph connections and topology.

2.3.2 Types of machine learning

Machine learning can be split into three major areas:

1.

Supervised Learning: This learning process is based on the comparison of calculated and
projected results, which means that learning entails calculating the error and altering the error
to get the desired outcome.
For instance, a data set of houses of a particular size with actual costs is offered. The controlled
formula is then used to produce additional of these accurate results, such as what the price of
a brand-new home would definitely be [36].
Regression and classification issues are subsets of supervised learning problems:
e A cclassification problem occurs when the output variable is a category, such as "red" or
"blue” or "disease" and "no disease."
e Arregression problem occurs when the output variable is a real value, such as "dollars"
or "weight".

Recommendation and time series prediction are two frequent sorts of challenges constructed
on top of classification and regression.

Some well-known supervised machine learning methods are:

18

—
| —

Chapter 2 : Graph ATtention Networks

e Linear regression is used to solve regression problems.
e Random forests are used to solve classification and regression issues.
e Support vector machines are used to solve classification difficulties.

2. Unsupervised Learning: This learning process is dependent on a comparison of the calculated
result and also the anticipated outcome, which means learning explains identifying the error as
well as converting the error to achieve the anticipated result.

Unsupervised learning differs from supervised learning in that there are no correct answers and
no educators. Algorithms are left to their own devices to uncover and provide fascinating data
structures.

For instance, a specific collection of houses of a certain size with actual costs is provided
following that, the controlled formula is to create more of these appropriate comments, such
as

what would undoubtedly be the cost of a new house [36].
Clustering and association problems are two types of unsupervised learning challenges:

e Clustering: A clustering problem is one in which you wish to uncover the underlying
groups in data, such as categorizing consumers based on their purchase activity.

e Association rule learning: the issue is one in which you wish to identify rules that
characterize substantial chunks of your data, such as persons who purchase X also tend
to buy Y.

Unsupervised learning methods that are widely used include k-means for clustering issues and
the Apriori algorithm for learning association rules.

3. Reinforcement Learning : Reinforcement learning is also distinct from unsupervised learning,

which is often concerned with discovering structure buried in collections of unlabeled data
[37].
Reinforcement learning is predicated on results and how a representative should respond to
them in a given environment to maximize some notion of long-term motivation. For a
successful conclusion, a benefit is provided, while a fee is applied for an unsuccessful
outcome. Because appropriate input/output sets are never presented, nor are sub-optimal
activities clearly addressed, reinforcement learning differs from the supervised learning
problem [36].

19

—
| —

Chapter 2 : Graph ATtention Networks

Meaningful
Compression

Structure Image

- Customer Retention
Discovery

Classification

Big data
Visualistaion

Feature Idenity Fraud

D Classification Diagnostics
letection

Elicitation

Advertising Popularity
Prediction

Learning Learning Weather

M ac h i n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering

Targetted
Marketing Market

Forecasting

Customer

Segmentation Lea rni ng

Estimating
life expectancy

Real-time decisions

Reinforcement
Learning

Robat Mavigation Skill Acquisition

Figure 8 : Types of Machine Learning

2.4 Deep Learning and Neural Networks

Deep learning is a branch of machine learning that focuses on training artificial neural networks to
learn and make choices in the same way that the human brain does. The term comes from the design
of these neural networks, which are made up of multiple layers of linked nodes known as neurons.
Deep learning algorithms may develop hierarchical representations of the input by processing data
via various layers, allowing them to extract increasingly abstract features [38].

” —~ — — — — ARTIFICIAL INTELLIGENCE
- - A technique which enables machines
Artificial Intelligence P - ~ to mimic human behaviour
o 'ﬁ' —— /
Machine Learning
MACHINE LEARNING
e ~ Subset of Al technigue which use
statistical methods to enable machines
to improve with experience
Deep Learning
S
“‘mh DEEP LEARNING

— — = e o o . Subset of ML which make the
computation of multi-layer neural
network feasible

Figure 9: The relationship between Al, ML and DL

“Neural Networks is an algorithm that's get to know the hidden Link in a data set with a similar way
as a human brain

The subfield of machine learning called deep learning relies heavily on neural networks, which are
among the most widely used and potent algorithms. Though neural networks may appear to be a
mystery at first glance, with data flowing from the input layer into the "hidden layers," and then being
processed in some unknowable way before emerging from the output layer, understanding the role of

20

—
| —

Chapter 2 : Graph ATtention Networks

these hidden layers are the crucial factor that determines the success of neural network
implementation and optimization.

A neural network is defined as a computer system consisting of a series of simple but highly
interconnected elements or nodes called "neurons”, organized in layers, using dynamic responses to
external information to process information.

This algorithm is useful for finding patterns too complex to manually extract and teach a machine to
recognize. In this structure, the input layer introduces patterns into the neural network, and each
component present in the input data has a neuron and communicates with one or more hidden layers
in the network, which are simply called " hidden layers” .In these layers, all processing actually
happens through a system Connections characterized by weights and biases.

Input layer Hidden layers i Output layer

i ; h, h, h : 0

NN
Wz XX
<A
o)

{
SN
)‘,' Aﬁ""ﬁ‘(’z

Agit

N %

Figure 10: Artificial neural network architecture

2.4.1 Training Neural Networks

In a neural network, the fundamental building block of computation is the neuron, also referred to as
a unit or a node. This component receives input from other nodes or an external source and performs
calculations to produce an output. Every input has its own associated value. The value of an input is
calculated through the assignment of a weight, denoted as ‘'w', which is determined in relation to the
significance of other inputs. The node then applies a function to the sum of these inputs, which has
been weighed accordingly [39].

At the start, a neural network's weights are assigned arbitrary values, which means the network is
only capable of producing random alterations. It's naturally far from what it should be, resulting in a
high loss score. However, with every round of processing an example, the optimizer adjusts the
weights slightly in the right direction, which in turn lowers the loss score. This process, known as the
training loop, is repeated multiple times (usually hundreds or even thousands of examples over tens
of iterations) until the weight values are minimized and the loss function is reduced. A network that
has undergone this process is referred to as a trained network, with minimal loss such that the outputs
are as close as possible to the targets. This simple mechanism, once scaled, appears to be magical
[40].

So, the process of training neural networks encompasses various stages that can be succinctly
summarized as follows:

21

—
| —

Chapter 2 : Graph ATtention Networks

Data preparation : Prepare training, validation, and test datasets. This includes cleaning the
data, splitting it into training, validation, and test sets, and preprocessing the network input.

Network architecture design: Choose the appropriate network architecture for the task at
hand. This includes choosing the type of neural network (e.g., feedforward, convolutional,
recurrent), the number of layers, and the number of neurons in each layer.

Initialization: Initialize the weights and biases of the network. This can be done randomly or
with pretrained weights.

Forward propagation: Pass input data through the network to generate predictions.

Loss computation: Computes the difference (i.e. loss or error) between the predicted output
and the actual output.

Backpropagation: Use backpropagation to compute loss gradients from network weights and
biases.

Weight update: The weights and biases of the network are updated to minimize loss using an
optimization algorithm such as stochastic gradient descent.

Repeat: Steps 4-7 are repeated for a fixed number of iterations (epochs) or until convergence.

Evaluation: Evaluate the performance of the network against the test set.

weights

activation
functon

net input
net.
J wwoj
activation

transfer
function

0.
X, ,___H‘II. J
" @ threshold

Figure 11: The learning process of deep learning

2.4.2 Back Propagation and Gradient Descent

Backpropagation is an important part of reducing error in a neural network model.

The backpropagation algorithm is frequently employed in machine learning. It operates by computing
the gradient of the loss function, which serves as a guide towards the most optimal value for
minimizing loss. To execute this, it utilizes the chain rule of calculus to calculate the gradient in
reverse through the various layers of a neural network. Through the use of gradient descent, gradual
progress towards the minimum value is made by taking small steps in the direction indicated by the
gradient.

22

—
| —

Chapter 2 : Graph ATtention Networks

Gradient descent is the optimization algorithm used to update the weights of the network. It involves
taking small steps in the direction of the negative gradient of the loss function. The learning rate
determines the size of the steps [41].

Generally speaking, neural network or deep learning model training occurs in six stages:

1.

4.
S.

6.

Initialization: setting the corresponding activation a 1 for the input layer, and initializing
weights w | for all layers.

Forward propagation” : Foreach 1 =2, 3, .. ., L compute Z! = W!a!~! + b'and

al=f(zY).

Compute Error: defining an error function C, which captures the delta between the correct
output and the actual output of the model, given the current model weights (in other words
how far off is the model from the correct result).

Backpropagate The Error: Actual Output — Desired Output
Weight Update: changing weights and biases to the optimal values according to the results of
the backpropagation algorithm

Iterate Until Convergence: Similarly, the network needs to iterate several times to learn. After
each iteration, the backpropagation updates the weights towards less and less global loss
function. At the end of this process, the model is ready to make predictions for unknown input
data. New data can be fed to the model, a forward pass is performed, and the model generates
its prediction.

Loss

/ Starting point

l Value of weight

Point of convergence, i.e.
where the cost function is
at its minimum

Figure 12: Gradient descent

2.4.3 Activation Function

An activation function is a mathematical equation that controls whether a neuron should be activated
or not in a neural network model. It also helps to normalize the output of any input. There are a variety
of activation functions that can influence the speed and how well a neural network converges, as well
as sometimes prevent it from doing so [42].

23

—
| —

https://aitechtrend.com/understanding-cost-function-and-gradient-descent-in-machine-learning/

Chapter 2 : Graph ATtention Networks

* Sigmoid

* Hyperbolid
Tangent

i * Rectified

weights

bias
term

Linear Unit
(ReLU)
» Leaky ReLU
* Maxout

/'
° activation function

O-(Z) output ko
X = weighted sum \
Neuron

Inpms<

Figure 13: Activation function use in neural networks

1. Binary Step Function
A step function with two possible outcomes is commonly known as a binary step function.
The activation of a neuron in a binary step function is determined by a threshold value, which
determines whether or not the neuron should be activated. When the input is supplied to the
activation function, it is compared to a specific threshold. If the input is higher than the
threshold, the neuron is stimulated, but if it is lower, it is inactive and its output is not
transmitted to the succeeding hidden layer [43].

Mathematically it can be represented as:
_ (0 forx<o0
f(x) = {1 forx >0

Binary Step Function

Figure 14: Binary step function

2. Linear Activation Function
The activation function that follows a linear relationship between input and output is known
as the Linear Activation Function. The identity function, or "no activation,” is a linear
activation function where the input and activation are directly proportional to each other, with
the identity function being multiplied by x1.0. The function's output only reflects the value it
receives and does not affect the weighted sum of the input in any way [43].

24

—
| —

Chapter 2 : Graph ATtention Networks

Mathematically it can be represented as:

f) = x

Linear Activation Function

Figure 15: Linear activation function
3. Non-Linear Activation Functions

The activation function that is displayed linearly above is nothing more than a model of linear
regression. Due to its limited capability, the model is unable to establish intricate connections
between the inputs and outputs of the network [43].

The limitations of linear activation functions are resolved by non-linear activation functions,
which offer the following solutions [43]:

« Backpropagation is permitted due to the relationship between the derivative function and the
input, which enables a retrospective analysis of the weights in the input neurons that could
potentially enhance the accuracy of predictions.

« Neural networks allow for the stacking of several layers of neurons, resulting in a non-linear
combination of input that has passed through multiple layers. Any output can be expressed
as a functional computation within a neural network.

Here some common non-linear activation functions are:

» Sigmoid / Logistic: sigmoids can reduce extreme values or outliers in data without removing
them:

ex

:ex+1

1
f(x):1+e‘x

The reason why the sigmoid/logistic activation function is extensively used is due to the
following factors:

1. When creating models that require prediction of probabilities, it is typical to use the
sigmoid function as the ideal choice. The reasoning behind this is that probabilities
can only exist within the range of 0 and 1, and sigmoid is able to accommodate this
range.

25

—
| —

Chapter 2 : Graph ATtention Networks

2. The sigmoid activation function is identifiable by its distinctive S-shape, which
represents the function's differentiability and capacity to provide a fluid gradient. This
allows for a lack of abrupt changes in the output values of the function.

A
=L
05 O(Z))

0.0 -

-0.5

Figure 16: Sigmoid activation function graph

» TanH / Hyperbolic Tangent : The Tanh function is known for its resemblance to the sigmoid
or logistic activation function, as both share the same S-shaped curve. However, the Tanh
function has a distinct output range of -1 to 1. As the input value grows larger and more
positive, the output value will approach 1.0. Conversely, as the input value becomes smaller
and more negative, the output will approach -1.0.

(e —e™)
flx) = (@ tem
Tanh

1.04

10

Figure 17: TanH activation function graph

» ReLU (Rectifed Linear Unit) : The rectified linear activation function or ReLU is a non-linear
function or piecewise linear function that will output the input directly if it is positive,
otherwise, it will output zero. It is the most commonly used activation function in neural
networks, especially in Convolutional Neural Networks (CNNs) & Multilayer perceptrons
[44].

RelLu is a non-linear activation function that is used in multi-layer neural networks or deep
neural networks. This function can be represented as:

(1
L %)

Chapter 2 : Graph ATtention Networks

f(x) = max(0,x)

where x an input value. According to equation , the output of ReLu is the maximum value
between zero and the input value.

ReLU f(z)

R(z) = max(0, z)

0.5

0.0
0.0 z >

Figure 18: ReLU activation function graph

» Leaky ReLU : is an activation function used in artificial neural networks. It is similar to the
standard ReLU function, except that it has a small non-zero output for negative input
values. This allows the network to learn faster and reduces the risk of the network getting
stuck in a local minimum. Leaky ReLU is popular in tasks where we may suffer from sparse
gradients, for example training generative adversarial networks [45].

f(x) = max(0.1x, x)

Leaky Rel.U Activation Function

10

_ J 00lx forx<0O
7= { X for x > 0

-10 ~ 0 10

Figure 19: Leaky ReLU activation function graph

» Softmax : In machine learning, the Softmax function is frequently used. It is often used to
convert a set of values into a probability distribution. This enables us to forecast the likelihood
of a specific result. The function is computed by taking the exponentiation of each array
member and dividing it by the total of all exponentiated array values. As a consequence, a
probability distribution is represented by a set of values that add to one.

exp(Z;)
7)) = L
softmax(Z;) S exp(Z)
(]
L %)

https://deepai.org/machine-learning-glossary-and-terms/relu
https://deepai.org/machine-learning-glossary-and-terms/relu
https://www.bing.com/ck/a?!&&p=1dbf084e20c2a47dJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2Ng&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=f5c4e709b3f43e39JmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY2OA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=ca109ab876e4747bJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3MA&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly93d3cuc3VyZmFjdGFudHMubmV0L3JlbHUxLWFuZC1yZWx1Ni1hY3RpdmF0aW9uLWZ1bmN0aW9ucy13aXRoLWJlbmVmaXRzLWFuZC1kcmF3YmFja3Mv&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1
https://www.bing.com/ck/a?!&&p=a2839c1005d8f1fdJmltdHM9MTY4NTY2NDAwMCZpZ3VpZD0zZTY3ZWIxMi1iZmU4LTY5ZTEtMjE4MS1mOTNlYmUyMzY4NDImaW5zaWQ9NTY3Mg&ptn=3&hsh=3&fclid=3e67eb12-bfe8-69e1-2181-f93ebe236842&psq=leaky+relu+activation+function&u=a1aHR0cHM6Ly9wYXBlcnN3aXRoY29kZS5jb20vbWV0aG9kL2xlYWt5LXJlbHU&ntb=1

Chapter 2 : Graph ATtention Networks

Softmax Activation Function

Figure 20: Softmax activation function graph

2.4.4 Loss Function

A loss function is a critical tool in evaluating the effectiveness of a neural network for a specific task.
The method to accomplish this is relatively straightforward: for each training example, the network
processes the data to obtain a numerical value. Then, this value is subtracted from the desired result,
and the difference is squared. This is done because both positive and negative differences are equally
undesirable.

N
L(y,y) = EZ(YDYL’)
i=1

In our neural network, y is the desired output we aim to obtain, while y with a hat represents the actual
output we receive after processing a given example through the network. The index of a training
example is denoted by i. For instance, let's take the example of dogs-vs-cats dataset, which contains
images of labeled dogs and cats, with one representing a dog and zero representing a cat. The label
we want to obtain from the network after passing the image through it is represented by y. To calculate
the loss function, we must iterate over each training example in the dataset, calculate y for each
example, and then apply the function as per the formula defined above. A higher value of the loss
function indicates poor performance by the network; hence, we aim for the smallest possible value.
We can further comprehend the relationship between the loss function and the neural network by
substituting y with the network's actual output in the formula.

2.4.4.1 Loss Functions for Regression

e Mean squared error loss (MSE): The squared loss function is utilized when working on a
regression model that requires a real-valued output.
Consider the scenario when just one output feature must be predicted; the error in a forecast
is squared and averaged over the number of data points, basic and straightforward [46].

N
1
L(W,b) = NZ(?i —y)?
=1

28

—
| —

Chapter 2 : Graph ATtention Networks

e Mean absolute error loss (MAE): In the same vein, (MAE) is similar to (MSE) showing in the
following equation: [45]
ZWTJ =yl

j=1

1
2N

l

L(W,b) =

N
=1

e Mean Squared Log Error (MSLE): another function used for regression with this equation
[46]:

1 g
L(W,b) :ﬁz |logyu—logyij|

N M
i=1j=1
2.4.4.2 Loss Functions for Classification

When developing neural networks for classification issues, the emphasis is frequently placed on
assigning probabilities to these classifications [46].

These differing conditions necessitate distinct loss functions:

e Hinge loss

When the network must be tuned for a hard classification, the most commonly utilized loss
function is the hinge loss and it is mostly used for binary classifications. There are extensions for
multiclass classification [46].

N
1
L(W,b) = NZ max(0,1 — §; * y;)?
i=1

e Logistic loss
they are utilized When probabilities are more interesting than hard classifications [46].
N M
1 P
L(W,b) = NZ Z Yy — Yij
i=1j=1

2.4.4.3 Loss Functions for Reconstruction
This set of loss functions is related to the concept of reconstruction. The concept is straightforward.
A neural network is taught to precisely replicate its input [46].

2.5 Deep Learning challenges

Deep learning involves training complex neural networks with a large number of parameters, which
can lead to a number of challenges related to testing, validating, and overfitting.

2.5.1 Testing, Validating and Overfitting

Once a model has been trained, it is crucial to ensure that it can effectively generalize to new cases,
rather than relying on mere hope. To achieve this, the model needs to undergo evaluation and fine-
tuning if necessary. The most reliable way to assess the model's generalization capabilities is by
testing it on new cases. One approach involves deploying the model into production and monitoring

29

—
| —

Chapter 2 : Graph ATtention Networks

its performance. Although this method can be effective, if the model proves to be flawed, it may result
in user complaints, making it less than ideal. A better alternative is to divide the available data into
two distinct sets: the training set and the test set. As their names suggest, the model is trained using
the training set, while the test set is employed to evaluate its performance.

The measure of the model's error on new cases is known as the generalization error or out-of-sample
error. By evaluating the model on the test set, one can obtain an estimation of this error. This value
provides valuable insights into the model's performance on instances it has not encountered during
training. In cases where the training error is low, indicating that the model makes few mistakes on
the training set, but the generalization error is high, it signifies that the model is overfitting the training
data. Preventing poor generalization necessitates the ability to halt the training process as soon as
overfitting commences.

To address this concern, the training process is divided into epochs. An epoch refers to a single
iteration over the entire training set. Specifically, for a training set of size 'd' and performing gradient
descent with a batch size of 'b’, an epoch would encompass 'd/b' model updates. At the conclusion of
each epoch, it becomes essential to measure how effectively the model generalizes. To accomplish
this, an additional validation set is utilized. The validation set provides insights into the model's
performance on data it has not encountered previously. If the accuracy on the training set continues
to improve while the accuracy on the validation set remains stagnant or deteriorates, it serves as an
indication that training should be stopped to avoid overfitting [47] [48] .

It is worth noting that the opposite of overfitting, known as underfitting, also exists. Underfitting
occurs when the model is too simplistic to grasp the underlying structure of the data. For instance, a
linear model attempting to predict life satisfaction is susceptible to underfitting, as reality is more
intricate than the model's capabilities, leading to inaccurate predictions even on the training examples.

2.5.2 Hyperparameters

In machine learning, hyperparameters are model parameters that cannot be learnt from training data
and must be defined before training begins. They have control over parts of the training process such
as the model's learning rate and the number of iterations through the training data. Learning rate,
regularization strength, the number of hidden layers in neural networks, and the number of trees in a
random forest model are all examples of hyperparameters. The selection of hyperparameters may
have a substantial impact on the model's performance and generalization ability, therefore
determining the best hyperparameters is an important stage in the machine learning workflow [49].

2.6 Graph Neural Networks

A graph neural network (GNN) is a neural network that uses a graph data structure that encodes
relationships between entities. GNNSs are used to learn representations of nodes and edges on graphs
and can be used for various tasks such as node classification, link prediction, and graph classification.

GNNs typically involve the propagation of node features in a graph, using message passing
techniques to update features based on those of neighboring nodes. The architecture of GNNs can
vary depending on the specific task and the type of graph to be analyzed. There is different types of
GNNs, ranging from traditional models such as Graph Convolutional Networks (GCN) to recent
advances such as Graph Attention Networks (GAT) and GraphSAGE [37].

A graph neural network (GNN) has two distinguishing attributes:

e It takes a graph as input.

30

—
| —

Chapter 2 : Graph ATtention Networks

e It produces permutation equivariant results.

GNNs are designed to build node representations that take into account both the topology of the graph
and any accessible feature information.

2.6.1 Main Concepts

In the following section we are going to describe the main concepts that enable graph neural networks:
the nature of non-Euclidean data, graph neighborhoods, concepts of neural message passing.

2.6.1.1 Non-Euclidean space data

The majority of deep learning techniques that exist today are designed to work with structures that
are either Euclidean or grid-like in nature, such as images, videos, or textual data. For instance, images
can be thought of as a function on the Euclidean space (plane), sampled on a grid, which allows us to
leverage their local connectivity and use Convolutional Neural Networks that utilize this information
about the data. Similarly, textual data can be represented as a sequence on a Euclidean plane, which
also has structural concepts of "before" and "after” that NLP models take advantage of. However,
there are many other types of data - such as social networks in computational social sciences, sensor
networks in communications, molecule structures in computational chemistry, and meshed surfaces
in computer graphics - that do not fit the Euclidean mold, and can instead be categorized as non-
Euclidean space data. The non-Euclidean nature here generally means that there are no common
systems of coordinates, data priors or common structures that represent such data [50]. Therefore,
basic approaches that work on Euclidean data, fail to work on its generalization, non-Euclidean case,
where prior structure can be arbitrarily represented. It is also worth noting how the Euclidean data
can be seen as a particular case of non-Euclidean data. For example, an image grid of N x N pixels
can be viewed as a graph with N2 nodes and at most 8 edges per node (connecting to the nearest grid
of pixels) with each node associated a feature vector representing the image’s pixel intensity.

2.6.1.2 Graph neighborhood

In graph theory, the neighborhood of a node inside a graph refers to the collection of nodes that are
immediately related to it by an edge. In simple terms, it includes the nodes that are close to the given
node.
In an undirected graph, the neighborhood of a node v is defined mathematically. G is officially defined
as N(v) ={u e V(G) : uv € E(G)}, where V (G) is the set of vertices in G and E(G) is the set of edges
in G.

Understanding a node's neighborhood is critical in graph theory because it gives insights into the local
structure of the graph surrounding that node. For example, the size of a node's neighborhood might
indicate its degree of centrality.

31

—
| —

Chapter 2 : Graph ATtention Networks

1-hop

2-hop

(a) (b)
Figure 21: 1-hop and 2-hop neighborhoods of a given target node A.

2.6.1.3 Permutation equivariance and invariance

In GNNs, permutation equivariance indicates that the network's output stays constant when the nodes
in the input graph are permuted. If we shuffle the node order, the GNN should provide the same
output, but with the node order reflecting the new permutation. This characteristic enables the GNN
to identify the graph's underlying symmetry and deliver symmetric results [51].

Permutation invariance Operations applied to graph data must be permutation-invariant, i.e.
independent of the order of neighbor nodes, as there is no specific way to order them [51].

Permutation equivariance and permutation invariance are critical properties of Graph Neural
Networks (GNNs). These properties are especially important in situations when node ordering does
not transmit meaningful information or when the network structure stays unaltered after permuting
its nodes. GNNs with these features can successfully capture the local structure and linkages existing
in the network without being influenced by node order. This capacity to generalize and generate
reliable representations is critical in tasks like node classification, graph classification, and link
prediction [51].

2.6.1.4 Neural message passing

The term "neural message passing” refers to a specific framework utilized within the context of graph
neural networks (GNNSs). This framework enables the exchange and assimilation of information
between the nodes present within a graph.

At its core, neural message passing assumes that each node u € V in a given graph G = (V, E), is
associated a feature vector xu € R d, where d is some feature dimension. In order to update a node
u’s feature vector, producing a new feature vector h (k) u, we need to be able to collect feature
information coming from the node’s neighbors, as well as to integrate this information, to produce a
new representation for the node This procedure is reiterated for several message passing steps,
enabling the nodes to exchange information and enhance their representations.

The equation for this process can be articulated in the following manner:
2.h(k + 1), = UPDATE (k)(h(k)y, AGGREGATE (k) ({h(k),, Vv € NW)}))

In this context, the functions UPDATE and AGGREGATE are differentiated by their arbitrary
characteristics, which are usually established as neural networks. The AGGREGATE function
collects the embeddings of surrounding nodes in the neighborhood N(u) to produce a message

32

—
| —

Chapter 2 : Graph ATtention Networks

m(k)_N(u) based on this compiled data. Conversely, the UPDATE function combines the message
m(k)_N(u) with the previous embedding h(k-1) u to create the new and improved embedding h(k) u.
All nodes begin with initial embeddings set to the input features xu for all nodes u at iteration k=0.
By repeating the process of message-passing K times, the desired outcome is achieved, we can use
the final layer output to define the embeddings for each node [52] .

average messages

from neighbors - T

Input graph apply neural ® - ()
Figure 22: Neural message passing of target node A

2.6.2 Types of Graph Neural Networks

1. Graph Convolutional Networks (GCNs): A GCN is a type of GNN that uses convolutional layers
to process graph data. These layers apply a set of learnable filters to the graph, designed to take
into account the structure of the graph and the relationships between vertices.

Some of the most common uses of GNNs in graph classification include:

e Social Network Analysis: GNNs can classify people in a social network based on their
relationship to other people.

e Bioinformatics: GNNs can classify protein-protein interaction networks and predict
protein functions.

2. Graph Autoencoders (GAES): GAEs use graph convolutional layers to learn a low-dimensional
representation of the input graph. The network is trained to encode the graph into a lower
dimensional space, and decode it back to the original graph.

3. Graph Recurrent Networks (GRNs): GRNs are designed for processing graph-structured data in
a sequence or time-series setting. They use recurrent neural networks to propagate information
between nodes across several time-steps.

4. Graph Transformers: Graph Transformers are inspired by the Transformer architecture used for
natural language processing tasks. They use self-attention mechanismsto capture the
relationships between nodes in the graph.

5. Graph Attention Networks (GATs): GAT is a GNN that uses an attention mechanism to weigh the
importance of different vertices in a graph when processing data. This allows GNNs to focus on
the most relevant cornerstones and relations when making predictions.

2.7 Graph ATtention Networks

In a research paper titled "Graph Attention Networks™ published in 2018, Petar Velikovi and
colleagues introduced the Graph Attention Network (GAT), a form of Graph Neural Network (GNN).

33

—
| —

Chapter 2 : Graph ATtention Networks

GAT was created in order to overcome some of the limitations of conventional GNNs when modeling
complicated dependencies and relationships in graph-structured data. Typical traditional GNNs treat
each neighbor equally when aggregating input from nodes in the neighborhood. However, many
nodes may have differing degrees of importance or relevance in many real-world settings.

To tackle this challenge, GAT incorporates attention mechanisms into the GNN architecture.
Attention mechanisms allow the network to dynamically weigh the importance of different nodes
when aggregating information. In other words, GAT assigns attention coefficients to each pair of
nodes in the graph, indicating the importance of one node's information for another. These
coefficients are learned during the training process.

By leveraging attention, GAT enables nodes to focus on the most relevant neighbors and weigh their
contributions accordingly. This adaptive aggregation process allows GAT to capture more nuanced
relationships and dependencies within the graph, leading to improved performance in various graph-
related tasks [53].

2.7.1 Architecture of Graph ATtention Networks

The architecture of a Graph Attention Network (GAT) typically consists of the following
components [53]:

1. Input Graph: GAT takes as input a graph represented by nodes and edges. Each node is
associated with a feature vector, which could encode attributes or characteristics of the node.

2. Node Embedding Layer: The initial node features are fed into a node embedding layer, which
maps each node's feature vector to a lower-dimensional space. This layer aims to capture
meaningful representations of the nodes.

3. Graph Attention Layer(s): The core component of GAT is the graph attention layer. It consists
of multiple attention heads, which operate in parallel to learn different sets of attention
coefficients. Each attention head computes attention scores between a central node and its
neighboring nodes.

a. Attention Coefficient Computation: For each pair of nodes (a central node and one of its
neighbors), attention coefficients are computed. The coefficients measure the importance
of the neighbor's information for the central node and are calculated based on their
respective feature vectors.

b. Attention Aggregation: The attention coefficients are used to compute weighted
aggregations of the neighboring node features. This aggregation step ensures that the
central node can focus on the most relevant information from its neighbors.

c. Multi-Head Attention: The outputs of the attention heads are concatenated or averaged
to produce a combined representation for each node. This allows the model to capture
different aspects or perspectives of the graph.

4. Optional Additional Layers: Depending on the specific task, additional layers such as fully
connected layers or pooling operations can be added to further process the node
representations and perform higher-level computations.

5. Output Layer: The final node representations obtained from the graph attention layers are fed
into an output layer for the specific task at hand. This could be a node classification layer, link
prediction layer, or any other layer appropriate for the target problem.

34

—
| —

Chapter 2 : Graph ATtention Networks

The parameters of the GAT model, including the attention coefficients, are learned through
backpropagation and optimization techniques such as gradient descent, minimizing a task-specific
loss function.

2.7.2 Graph ATtention Networks advantages

The Graph Attention Network (GAT) model offers several advantages, including:

1.

Adaptive Information Aggregation: GAT involves an attention mechanism that supports
adaptive information aggregation. It allows nodes to dynamically weigh the importance of
neighboring nodes when aggregating information. This adaptability helps capture complex
relationships and dependencies in the graph, thereby improving performance.

Flexible contextual representation: GAT captures contextual information by considering
related nodes in the graph. By focusing on the most informative neighbors, GAT generates
node representations responsive to local context. Because of this flexibility and context
awareness, GAT is well-suited for tasks where local neighborhood plays a key role.
Multi-Head Attention Mechanism: GAT uses a multi-head attention mechanism, which uses
multiple attention heads to simultaneously capture different aspects or views of a graph. This
allows the model to learn diverse and complementary representations. The combination of
multiple heads increases the expressiveness of GAT and improves the performance of various
tasks.

Handling large and sparse graphs: GAT works well even when dealing with large and sparse
graphs due to its ability to selectively consider relevant nodes. By focusing on the most
important nodes and considering the interactions between them, GAT efficiently handles
graph-structured data, making it applicable to real-world scenarios with complex and large-
scale graph structures.

Versatility and generalizability: GAT have been successfully applied to various graph-
related tasks, including node classification, link prediction, recommender systems, and
graph-level prediction. Its flexibility and ability to capture complex dependencies make it a
versatile model that can be adapted to different applications.

It's important to note that the advantages of GAT may depend on the specific problem, dataset, and
implementation details. It's always recommended to carefully evaluate the model's performance and
compare it with other baselines or state-of-the-art methods for a given task.

35

—
| —

Chapter 2 : Graph ATtention Networks

2.7.3 Comparison of GAT and different GNN’s architectures

Model Key ldea Attention Aggregation Message Advantages
Passing
Graph Attention- Yes Weighted sum | Linear Captures node
Attention based message combination of | importance,
Network passing node features | allows for
(GAT) and attention | flexible feature
scores weighting
Graph Convolution- | No Averaging Convolution Simple, easy
Convolutional | based message of node to implement
Network passing features
(GCN) and adjacency
matrix
Graph Learnable No Multi-layer Aggregation of | Powerful, can
Isomorphism | function-based perceptron node features | learn complex
Network message and fixed functions
(GIN) passing function
GraphSAGE | Sampling- No Max Aggregation of | Scalable to
based message pooling or node features | large graphs
passing concatenation | from sampled
neighborhood
GNN-LSTM | LSTM-based | No LSTM LSTM-based | Captures
message message temporal
passing passing dependencies

2.8 Conclusion

Table 3: Comparison of GAT and different GNN’s architectures

In this chapter, we have defined the main concept of deep learning as a subset of the field of machine
learning, which is a subfield of Al, and at the very core are graph neural networks (GNNSs), The terms
deep learning and neural networks in reality encompass a wide variety of architectures. Most of these
networks will share elements i.e., gradient descent, the backpropagation algorithm activation
functions, loss functions. While the space of models is diverse, most of them can be grouped into
some broad categories. One of the major ones was the subject of the last section: Graph Attention

Networks (GATS)

In summary, the subsequent chapter will delve into the practical use of GATS, providing a
comprehensive understanding of their applications in machine learning. By applying the concepts and

methodologies presented thus far.

—

36

—t

Chapter3: Graph ATtention Networks for the development of session-based recommendation systems

Chapters3.

Graph ATtention Networks for the development of session

Based recommendation systems

37

—
| —

Chapter3: Graph ATtention Networks for the development of session-based recommendation systems

Chapter 3 : Graph ATtention Networks for the development of session-based
recommendation systems

3.1 Introduction

E-commerce platforms frequently inundate their users with an overwhelming number of products for
sale. To improve user the experience, recommender systems provide customized and practical
recommendations. However, conventional recommender systems rely on user profiles, which can be
difficult to create for new users, anonymous visitors, or individuals who have deleted their tracking
data. In such circumstances, session-based recommendations provide an alternative method.

The following chapter delves into the practical application of Graph Attention Networks (GATS) in
the context of session-based recommendations. The utilization of graph attention mechanisms allows
us to enhance the precision and efficacy of customized recommendations, leading to a personalized
and uninterrupted shopping experience for all users. GATs provide a powerful tool to analyze the
browsing behavior within the current session and generate relevant suggestions based on this context.
This chapter delves into the methodologies and techniques employed to optimize GATS for session-
based recommendations, with the goal of delivering enhanced user satisfaction and engagement.

3.2 Deep learning-based recommendations

In just a few years, numerous deep recommender systems have been put out. Innovation is definitely
thriving in the industry. It would be simple to dispute the necessity of using so many distinct
architectures at this point and perhaps even the effectiveness of neural networks for the given problem
domain. To this purpose, the benefits of deep learning-based recommendation models were outlined
as follows in [54]:

e Nonlinear Transformation: contrary to linear models, deep neural networks is capable of
modeling the non-linearity in data with nonlinear activation functions such as relu, sigmoid,
tanh, etc. This property makes it possible to capture the complex and intricate user-item
interaction patterns.

e Representation learning: Learning complex patterns and representations from large-scale and
high-dimensional data is where deep learning models excel. They can automatically learn rich
representations of items, users, and their interactions, capturing intricate relationships and
latent factors that conventional methods may struggle to uncover.

o Flexibility and scalability: Deep learning models offer flexibility in modeling different types
of recommendation tasks. They can handle various data types such as textual, visual, and
sequential data, enabling the incorporation of diverse information sources into the
recommendation process. Moreover, deep learning models can scale well to handle large
datasets and are amenable to distributed computing frameworks.

3.3 A GAT Based-Model for Session Based Recommender Systems

A Graph Attention Network (GAT) can be used as a model for session-based recommender
system to recommend items to users based on their current session or sequence of interactions. .
By leveraging attention mechanisms and graph convolutions, Graph Attention Networks excel in

(1
L ¥)

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

capturing the dependencies and interactions among items in a session-based recommendation
system. They can effectively model the dynamic nature of user behavior and provide accurate
recommendations based on the sequential patterns observed in the session data.

e Architecture of the proposed model

The proposed model based on GAT for building SBRS is depicted in Fig 23. After representing
a session with a graphical structure (nodes and edges), this model processes the resulting graph
with its adjacency matrix through several layers iteratively.

1. Input layer: The layer receives a set of node features as its input
h={Ry, Ry, hs,..., hy} , h; € RF where N is the number of nodes, and F is the number
of features in each node The layer outputs a new set of node features of the form (of
potentially different cardinality F*), h’= {E’)l, El)z,—h,;, e E’)N}, as its output.

2. Linear Transformation layer: To represent each node in a lower dimension, the
feature matrix x (set of Hi) is transformed using a shared weight matrix W and a bias
b to produce the output Y.

h*=Wh+b
This linear transformation allows making the required features simpler to identify and
classify to compute the attention coefficients on a reduced feature space.

3. Attention mechanism Layer: an attention mechanism is used to compute the
importance of each neighboring node for a given node i. Two main operations are
carried out in this layer, namely:

a. Attention Coefficients: The attention coefficients are computed by a shared
neural network with parameters of {a}. The output of this network is a scalar
value e;; that represents the compatibility between nodes i and j.

3. eij =a (WHL,WE])
Where :
a is the weight vector of the attention mechanism

ﬁi, i_{j are the transformed feature vectors of nodes i and j

W is the weight matrix of the linear transformation

b. Attention Scores: The softmax function is then used to normalize the attention
coefficients in order to produce a probability distribution for node i's
neighbors. The model can then focus on the nodes that are the most important
for each node.

exp(e;;)
Z ki EN eXp(eik)

4. ;= softmax (e;;) =

Where:

39

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

i1=i2—i3—=il—-i4?

Session

5. a;;=softmax (e;;) =

a;;is the attention score for the edge (i,)
e;; is the attention coefficient between nodes i and

Attention mechanism is a single layer neural networks, the input for this network are
the two transform node features vectors for an edge, and applying the LeakyRelLU
nonlinearity (with negative input slope a = 0.2). the output indicates the importance
between these nodes so the attention coefficients, and applying the LeakyRelLU
nonlinearity (with negative input slope o = 0.2).

exp(LeakyReLU@ET[(WH;||Wh;]))
Y. k; en exp(LeakyReLU@T[(Wh;|[Why]))

4. Aggregation and Update Layer: By aggregating the embeddings of node i's neighbors,

weighted by their attention scores, the final embedding vector can be Updated. This
is done by using a weighted and nonlinearity sum operation .

ﬁi = 0% jen;(0y; Wﬁj)
Where :
ﬁi is the final embedding vector of node i
o is the activation function
ajis the attention score for the edge (i,j)

|| is the concatenation

W is the weight matrix of the linear transformation

of (potentially, with a different cardinality F'), h’= {Wl, ﬁz,_h”g, o .,ﬁ,\,}.

5. Next-item recommendation layer: The final embedding vector with final scores are

used to presents a ranked list of next-item recommendations.

Multiple

Linear Transformation
iterations

=
&\ (T TT]
E Scores
T)
Target I 1 R [T T T 037
Node] -
. =|w (T TT] P
=
O Bl | (eS| [T 2| E—-—
i Bt 8|3 £s B " 0.19
2|5 3 ¥ g .
EEEE i3 v
32| (a8 | 8 0 -
> 188 i3
£ | |25
£ &
Graph construction Input S Aggregation and Update
Next-item
Recommendation

Attention mechanism

Figure 23: Functioning process of GAT based-model for SBRS

40

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

3.4 Material environment
The experiments were conducted on a computer system with the following specifications:

e Processor: Intel Core i5 6th generation
e RAM:8GB

e Graphics Card: Integrated graphics

e Storage: Solid State Drive (SSD)

3.5 Development tools and Libraries

The development and implementation of the model were carried out using the following tools and
libraries:
1.5.1 Jupyter
Jupyter ! is an open source web application for creating and sharing interactive notebooks.
Released in 2014 and derived from IPython. Jupyter allows combine code, visualizations, and text
into one document. It supports multiple programming languages and facilitates reproducible
research. Jupyter enables users to iteratively develop code, analyze data, and communicate
insights. The ecosystem includes JupyterLab and JupyterHub for advanced functionality and
collaboration. The user-friendly interface, language flexibility, and active community make
Jupyter a valuable tool in data science and research.

jupyter

Figure 24: Jupyter logo

3.5.2 Python

Python 2 is a powerful, high-level, interpreted programming language. Designed by Guido van
Rossum in 1991, it is known for its simplicity and readability. Python's simple and short syntax places
great emphasis on code readability, making it ideal for beginners. It is compatible with various
programming paradigms, including procedural, object-oriented, and functional programming. Due to
its rich ecosystem of libraries and frameworks, Python is popular in web development, data analysis,
machine learning, and automation. Its widespread adoption and continued expansion is supported by
extensive community support and documentation. Overall, Python is a powerful and easy-to-use
programming language that continues to grow and prosper.

! project Jupyter | Home
2 Welcome to Python.org

41

—
| —

https://jupyter.org/
https://www.python.org/

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

@ python’

Figure 25: Python programming language logo

3.5.3 PyTorch

PyTorch 2 is an open source machine learning library for Python. It was developed by Facebook's Al
research lab and released in 2016. PyTorch provides a dynamic arithmetic framework that enables
efficient tensor computation and automatic differentiation. It is widely used to build and train neural
networks, especially in deep learning applications. PyTorch's intuitive and flexible design, as well as
its extensive collection of pre-built modules and utilities, make it a popular choice among researchers
and practitioners. With an active community and constant development, PyTorch remains at the
forefront of the deep learning ecosystem, enabling users to accelerate research and build cutting-edge
machine learning models.

O PyTorch

Figure 26: PyTorch logo

3.5.4 Numpy

NumPy is the fundamental library for numerical computation in Python. It provides support for large
multidimensional arrays and matrices, and a collection of mathematical functions for manipulating
these arrays. First released in 2006, NumPy has grown to become a cornerstone of scientific
computing and data analysis. It provides efficient data structures, transfer functions, and vectorized
operations to improve the performance of numerical calculations. Due to its rich functionality and
integration with other scientific libraries, NumPy is widely used in fields such as data analysis,
machine learning, and scientific research, enabling users to process and manipulate numerical data
efficiently.

3 pyTorch

42

—
| —

https://pytorch.org/

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

”E: NumPy

Figure 27: Numpy logo

3.5.5 Scikit-learn

Scikit-learn is a powerful machine learning library for Python. It provides a comprehensive set of
tools for various machine learning tasks, including classification, regression, clustering, and
dimensionality reduction. First released in 2007, Scikit-learn has grown to become the go-to
resource for machine learning practitioners and researchers. It provides a user-friendly interface,
extensive documentation, and a wide range of algorithms and techniques. Scikit-learn integrates
seamlessly with other scientific libraries in the Python ecosystem, making it a versatile choice for
data analysis and model development. With its powerful features and community support, scikit-
learn enables users to efficiently explore, model and solve complex machine learning problems.

.ﬁewm

Figure 28: Scikit-learn logo

There are countless additional libraries and frameworks available in Python for a variety of uses. Here
are a few famous examples:

e Torch_geometric: A PyTorch library for geometric deep learning. It provides modules for
constructing graph data structures (for example, Data), graph operations (for example, to
undirected), and neural network layers for graph data (for example GATConv).

e Pandas (imported as pd): A data manipulation and analysis library.

e Unbalanced-learn (imblearn): A library for dealing with imbalanced datasets that includes
oversampling (e.g., RandomOverSampler) and undersampling (e.g. RandomUnderSampler)
approaches.

3.6 Experiments and implementations
3.6.1 Evaluation metrics
The performances of the proposed model and compared methods are evaluated by

» Accuracy : The percentage of cases that were successfully predicted out of all instances is
used to calculate accuracy. The number of accurate forecasts divided by the total number of
predictions is used to compute it. Accuracy, however, might not be the best statistic for
datasets with imbalances.

43

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

Accuracy = (TP + TN) / (TP + TN + FP + FN)

» Precision is the percentage of accurate positive predictions compared to all positive forecasts.
It measures the proportion of true positives to the total of true positives and false positives
and focuses on the accuracy of positive forecasts.

Precision = TP / (TP + FP)

» Recall (Sensitivity or True Positive Rate): Recall counts the number of actual positive cases
out of all the true positive forecasts. It is measured as the ratio of true positives to the total of
true positives and false negatives and focuses on the model's capacity to detect positive cases.

Recall = TP / (TP + FN)

» F1-Score: The harmonic mean of recall and precision is the F1 score. When you wish to take
both the precision and recall values into account, it offers a balanced measurement between
the two. It is determined by dividing the sum of precision and recall by two times the product
of precision and recall.

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

Where TP represents the number of correct recommendations, TN represents the number of
correctly identified non-relevant items, and FP indicates the number of incorrect
recommendations. FN indicates the number of desired items that are not included in the
recommendation list.

3.6.2 Datasets
The measurements made for datasets are from two different domains: e-commerce and movies

» E-Commerce Datasets: the following e-commerce dataset is used

1. RetailRocket #: A publicly accessible e-commerce dataset called Retail Rocket covers user
interactions with online retail platforms. It is frequently employed in the study and assessment
of recommendation systems. The collection is made up of anonymous user behaviors
including add-to-cart, buy, and view actions. Each event has a timestamp, user session ID, and
object ID attached to it.

2. Yoochoose ° : The YooChoose dataset is another publicly available e-commerce dataset

commonly used for recommendation system research and evaluation. It contains user click
data from an online retail platform. The dataset captures user interactions such as clicks,
views, and purchases, along with the associated session information.
The YooChoose dataset is particularly suitable for session-based recommendation tasks,
where the goal is to recommend items based on the user's current session or recent browsing
history. It provides a valuable resource for studying user behavior, session dynamics, and
developing personalized recommendation algorithms.

» Media Datasets:

MovieLens100K®

The MovielLens 100K dataset is a widely used benchmark dataset in the field of recommender

systems. It contains movie ratings provided by users of the MovieLens website. The dataset

=

4 Available at: Retailrocket recommender system dataset | Kaggle
5 Available at: yoochoose | Kaggle
6 Available at: MovieLens 100K Dataset | Kaggle

44

—
| —

https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
https://www.kaggle.com/datasets/phhasian0710/yoochoose
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

is commonly used for tasks such as collaborative filtering, where the goal is to predict user
ratings for movies based on historical ratings and user preferences.

The statistics for the datasets are given in Table :

RetailRocket Yoochoose MovielLens
Rows 35309 74708 100226
Sessions 3636 14514 22202
Items 15144 9255 9723

Table 4: Characteristics of the datasets

3.6.3 Loss functions

While using GAT to address session-based or more general sequential prediction problems is a natural
choice, the specific network architecture, choice of attention mechanism, and use of session-parallel
mini-batches to speed up the training phase are key innovative elements of the technique. method.
The GAT architecture is able to capture complex relationships and dependencies between elements
in a session using an attention mechanism, which proves to be well suited for modeling sequential
data. By assigning different importance weights to neighboring nodes, GAT selectively focuses on
related items, allowing efficient learning and representation of the importance of different items in a
single session. Furthermore, the choice of attention mechanism in GAT demonstrates its ability to
handle complex dependencies within session data, making it an effective solution for session-based
prediction tasks.

Typically, there are several hyper-parameters that can be adjusted, such as the learning rate,
in_features, out_features, num_heads, and a dropout factor that helps maintain network stability.
Another essential aspect determining the effectiveness of SBRS with GAT is the selection of the loss
function.

% The method of Cross-Entropy Loss is frequently employed in architectural work to evaluate
the difference between the probabilities of the predicted class and the target class. In this case,
the predicted class probabilities are derived from the GAT model's output, whereas the target
class is the subsequent item in each session. The loss function works by computing the
negative logarithmic-likelihood of the anticipated class probabilities concerning the target
class. And it is defined with the following equation:

Leg = — Xiz 1 tilogp)
For n classes, where t; is the truth label and p; is the Softmax probability for the it"class.
And the hyperparameters include:
1. In_features: The input feature dimension of each node in the graph. In this case, it is set to 1
because node characteristics are represented by the position of each element in the session.
2. Out_features: The output feature dimension of each node after applying GAT convolution. In this
code, it is set to 100.

45

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

3. Num_heads: The number of attention heads used in GAT convolution. It controls how often the
attention mechanism is applied. The code uses 8 attention heads.

4. Dropout: The dropout rate applied after GAT convolution to prevent overfitting. Setting it to 0.1
means that 10% of node features are randomly set to zero during training.

3.6.4 Implementation

The code performs a session-based recommendation using a Graph Attention Network (GAT). The
implementation can be summarized as follows:

1) The necessary libraries are imported, including pandas, numpy, scikit-learn, torch, and
imbalanced-learn.

#import libraries

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

from sklearn.model selection import train_test split
import torch

from torch_geometric.data import Data

from torch _geometric.utils import to undirected
import torch.nn as nn

import torch.nn.functional as F

from torch_geometric.nn import GATConv

from imblearn.over sampling import RandomOverSampler
from imblearn.under sampling import RandomUnderSampler
from torch.utils.data import Dataloader

Figure 29: Import necessary libraries

2) The data is read from a CSV file and preprocessed. Irrelevant columns are dropped, and the
timestamp is converted to datetime format. The data is sorted based on visitor ID and
timestamp. The previous item ID for each visitor is added as a new column. Any rows with
missing values are dropped.

data = pd.read_csv('/content/drive/MyDrive/retailrocket/events.csv’ , nrows = 386ea)

Drop the "rating’ column

data = data.drop('event’, axis=1)

data = data.drop('transactionid’, axis=1)

The pd.to_datetime() function is used to convert the "timestamp’' column of the dataset

to a datetime format. The unit="s' argument specifies that the timestamp values are in seconds.
data['timestamp’'] = pd.to_datetime(data[’'timestamp'] / 1886, unit="s")

data = data.sort_values(['visitorid', 'timestamp’])

data['prev_item id'] = data.groupby('visitorid®)['itemid’].shift(1)

data = data.dropna()

Figure 30: Preprocessing the data

3) The data is split into training and testing sets using a train-test split with a 80:20 ratio.

Split the train data into training and testing set4
train_data, test data = train test split(data, test size=8.2)

46

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

Figure 31: Split the dataset

4) Item IDs are mapped to indices. Unique item IDs from both the training and testing sets are
combined, and each item is assigned a unique index using a dictionary.
Map item IDs to indices
train_items = train_data[' 'itemid’].unique()
test items = test data[' 'itemid®].unigque()
all items = np.unionld(train_items, test items)
num_items len{all items)
item to idx = {item: idx for idx, item in enumerate(all items)}
train data['item_idx'] = train_data['itemid’].map(item_ to_ idx)
test_data['item_idx'] = test_data['itemid'].map(item_to_idx)

Figure 32: Mapping the Item IDs to indices

5) Out-of-range indices are filtered out, and sessions are constructed for the training and testing
data. Sessions are grouped by visitor ID, and each session contains a sequence of item indices.

train _data = train data[train data['item idx'] < num_items]
test data = test data[test data['item idx'] < num_items]

Figure 33: Filtering any out of range indices

Construct sessions for training data

train_sessions = []

for user_id, group in train_data.groupby('visitorid'):
session = []
prev_timestamp = None

for , row in group.iterrows():

if prev_timestamp is None or row['timestamp'] - prev_timestamp <= time_threshold:
session.append(row["item idx']) # Append 'item idx' directly

else:
if len(session) »>= min_session_length and len{session) <= max_session_length:

train_sessions.append(session)

session = [row['item_idx']] # Start a new session

prev_timestamp = row['timestamp’]

if len(session} »= min_session_length and len(session) <= max_session_length:
train_sessions.append(session)

Construct sessions for testing data

Figure 34: Construct sessions for training and testing data

6) The lengths of the sessions in the training and testing sets are calculated.

7) Dynamic graphs are created for the training and testing data. The graphs consist of node
features, edge indices, edge attributes, and edge timestamps. The number of nodes is equal to
the total number of unique items.

47

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

Create the train graph as a dynamic graph
train_graph = Data(
x=train_node features,
edge_index=train_edge_ index,
edge attr=train_edge attr,
edge time=train_edge time,
num_nodes=num_items

Figure 35: Create the dynamic train graph

8) A Graph Attention Network (GAT) model is defined using the torch_geometric library. The
GAT model is implemented as a subclass of the nn.Module class and includes the necessary
layers and functions.

import torch.nn.functional as F

class GAT(nn.Module):
def _ init_ (self, in_features, out_features, num_heads, dropout=8.1):

super(GAT, self)._ init_ ()

self.conv = GATConv(
in_channels=in_features,
out_channels=out_features,
heads=num_heads,
dropout=dropout

)
self.fc = nn.Linear(out_features * num_heads, num_items)
self.leaky relu = nn.LeakyRelLU(@8.2) # Initialize LeakyRelU activation function with negative slope 8.2

def forward(self, data):
¥, edge_index, edge_attr = data.x, data.edge_index, data.edge attr
num_nodes = x.size(8)
Filter out any indices that are out of bounds
mask = (edge index < num_nodes).all(dim=8)
edge_index = edge_index[:, mask]
edge_attr = edge_attr[mask]
¥ = self.conv(x, edge_index, edge attr)
X = X.view(-1, self.conv.out_channels * self.conv.heads)
¥ = self.fc(x)
return F.log_softmax(x, dim=-1) # Use log_softmax for classification

9) The GAT model is trained and evaluated. An Adam optimizer is used with a learning rate of
0.01, and the cross-entropy loss is used as the loss function. The training loop iterates over a
specified number of epochs. In each epoch, the model is trained using the training graph, and
then evaluated using the testing graph. Training and testing loss, as well as accuracy, are
computed and can be tracked.

This implementation utilizes session data, constructs dynamic graphs, and applies a GAT model for
session-based recommendation. It provides a framework for training and evaluating the GAT model
on the given data.

Note: In the implementation, the Graph Attention Network (GAT) model utilizes a dynamic graph
representation. A dynamic graph consists of time-varying relationships between nodes, where the
edges in the graph are associated with timestamps and attributes. This allows the model to capture
temporal dependencies and consider the order of interactions between nodes.

However, it is important to note that handling dynamic graphs can consume a significant amount of
memory, particularly when dealing with large datasets. Due to memory constraints, in this

(1
L)

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

implementation, a smaller dataset is used to avoid potential session crashes or out-of-memory errors,
particularly when running the code in an environment like Google Colab. By using a smaller dataset,
the memory usage is reduced, enabling the successful execution of the model without encountering
memory-related issues.

3.7 Results

Table 5 shows the results of the proposed GAT-based SBRS model on the aforementioned
evaluation datasets using the accuracy metric. Several architectures were examined and a single
layer of GAT was found to be the best performer.

Epochs | RETAILROCKET | YOOCHOOSE | MOVIELENS

100 0.7923 0.6158 0.5751

200 0.7933 0.6165 0.5743

Table 5: The results of the proposed GAT-based SBRS model

3.7.1 Comparison with Baselines

POP Baseline: also known as the popularity baseline, is a simple recommendation approach that
suggests items to users based on their overall popularity or frequency of occurrence in a dataset.

S-POP Baseline: In session-based recommendation systems, where user interactions are captured in
sequential sessions or sessions of user activities, S-Pop refers to a popularity measure that takes into
account the popularity of items within a specific session. It focuses on recommending items that are
popular within the current session.

Random Recommendations : Random recommendation baseline is a simple and straightforward
approach in recommendation systems where items are selected randomly and recommended to users.
It serves as a basic benchmark for evaluating the performance of more sophisticated recommendation
algorithms.

49

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

The table allows comparisons between the three baselines with the outcomes of the GAT-based
SBRS model with metrics (precision, recall, and F1-score), it clearly shows that our model
dominates the other methods.

RETAILROCKET YOOCHOOSE

Baselines

Precision Recall F1-Score Precision | Recall F1-Score
POP 0.4546 0.6462 | 0.5333 0.5342 0.9241 | 0.6771

0.0792 0.2229 | 0.1169 0.1106 0.1944 | 0.1410
S-POP
Random . 0.0721 02920 | 0.1156 0.1014 | 0.1842 | 0.1308
recommendations
GAT-based SBRs | 0.7084 0.7807 | 0.7428 0.9505 0.6036 | 0.7384
model

Table 6: Comparison of GAT-based SBRS model with the baselines

Based on the previous results, we can draw a comparison between the proposed model and the
baselines using these graphs, which vividly illustrate the performance differences.

Precision Comparison

0.7 A

Precision
o = 4
o+ w [=1]

o
w
1

o
[N]

0.1

0.0~

Popularity Spop Random
Models

Figure 36: Model performance comparison with RETAILROCKET dataset using precision metric

50

—
| —

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

LUs>

Recall

Recall Comparison

0.8 4

0.7 1
0.6 1
051
0.4
0.3 1
0.2 1
0.1
0.0

Popularity Spop Random
Models

Figure 37: Model performance comparison RETAILROCKET dataset using recall metric

F1-score Comparison

0.7 1
0.6
0.5
0.4 1
0.3 1
0.2 1
0.1
0.0-

Popularity Spop Random
Models

Fl-score

Figure 38: Model performance comparison YOOCHOOSE dataset using F1-score metric

Train and Test Losses

10

—— Train Loss
Test Loss
B -
6 -
4 -
2 -

0 lD 20 30 40 50
Epoch

Figure 39: Train and test losses for RETAIL-ROCKET dataset

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

3.7.3 Discussion

In this study, we compared the performance of our GAT-based SBRS (Session-Based
Recommendation System) model with three baselines (POP, S-POP and Random recommendations)
on the RETAILROCKET and YOOCHOOSE datasets. The evaluation was based on precision, recall,
and F1-score metrics.

The results clearly demonstrate the superiority of our GAT-based SBRS model over the baselines.
On the RETAILROCKET dataset, our model achieved a precision of 0.7084, a recall of 0.7807, and
F1-score of 0.7428. Similarly, on the YOOCHOOSE dataset, our model achieved a precision of
0.9505, recall of 0.6036, and F1-score of 0.7384. In comparison, the baselines exhibited lower
performance across all metrics.

The performance improvements of our GAT-based SBRS model can be attributed to several factors.
Firstly, the GAT architecture employed in our model has the ability to capture complex relationships
and dependencies among items in sessions. By leveraging attention mechanisms, the model assigns
higher weights to important items in the session, thereby enabling more accurate recommendations.
This is particularly beneficial in session-based recommendation scenarios where user preferences can
change dynamically.

Furthermore, the inclusion of temporal edge indices, edge attributes, and edge times in our model
enhances the understanding of session dynamics. By considering the order of items, their attributes,
and the timing of interactions, our model gains a deeper insight into the evolving preferences and
interests of users. This additional contextual information aids in making more personalized and
relevant recommendations.

The practical implications of our GAT-based SBRS model are significant. By providing accurate
session-based recommendations, e-commerce platforms can enhance the user experience and increase
user engagement. Personalized and relevant recommendations can lead to improved customer
satisfaction, potentially resulting in higher conversion rates and revenue for retail companies. Our
model's performance improvements offer a promising avenue for businesses to deliver more effective
recommendations and drive user engagement.

Despite the promising results, it is important to acknowledge some limitations of our study. Firstly,
the evaluation was performed on two specific datasets, RETAILROCKET and YOOCHOOSE. While
these datasets are widely used in the field, they may not fully represent the diversity of real-world
scenarios. Future research should consider evaluating the model on additional datasets to validate its
performance across different contexts.

In terms of future directions, there are several avenues to explore. One potential area for improvement
is the incorporation of additional contextual information, such as user demographics, item attributes,
or session context. By leveraging a wider range of information, the model can gain a deeper
understanding of user preferences and provide even more accurate recommendations. Additionally,
exploring alternative graph-based architectures or integrating other deep learning techniques could
further enhance the performance of session-based recommendation systems.

In conclusion, our study demonstrates the effectiveness of the GAT-based SBRS model in session-
based recommendation scenarios. The model's superior performance compared to the baselines and

(1
1 > J

Chapter 3: Graph ATtention Networks for the development of session-based recommendation systems

its competitive standing in relation to existing approaches validate its potential contributions to the
field. The practical implications of accurate session-based recommendations emphasize the value of
our model in improving user experience and driving business outcomes. Further research and
advancements in this area will continue to refine and extend the capabilities of session-based
recommendation systems.

3.8 Conclusion

At the beginning of this chapter, the Deep learning-based recommendations were discussed. The
focus then shifted towards the use of one of the deep learning models: GATs on session-based
recommendations, which are becoming one of the most important recommendation approaches in
practice for many domains, including movies, and general e-commerce. A GAT Based-Model was
proposed for SBRS and proved to perform better than the three baselines used (pop, s-pop, random
recommendations) in terms of the three-evaluation metrics introduced: precision, recall and F1.

53

—
| —

General conclusion

General

Conclusion

54

—
| —

General conclusion

4. General conclusion

A. Summary

First, a session-based recommender System was reported in Chapter 1 by a survey that was conducted
to determine the recommendation system, the problem of a session-based recommender, and the
position of session-based in the family of sequence-aware recommendations by a comparison of
SBRS and other RSs. Also, categorization, approaches, challenges, and limitations concluded it.
Then, in Chapter 2, deep learning is studied in detail from the basics, namely H. Neural Networks,
Backpropagation, Gradient Descent, Loss, and Activation Functions to Address the Challenge of
Employing Deep Learning Approaches Representing Graph Attention Networks in Session-Based
Recommendation.

In Chapter 3, in order to answer the research question, a recommender system is created, refined, and
evaluated based on the session-based model. The end result of this work is a consideration of research
findings and their implications.

The research questions discussed are:

“"How can a Graph Attention Network (GAT) model be effectively utilized in session-
based recommendation systems to capture the intricate and dynamic patterns of user

behavior within individual sessions, leading to improved and personalized

recommendations?”

Session-based recommendation using GAT is now widely recognized as one of the primary means of
recommendation in many areas, To enhance the performance of session-based recommendation
systems (SBRS), With the proposed GAT-Based-Model approach, it was demonstrated how Graph
ATtention Networks can incorporate sessions in recommender systems, which provides superior
results on the three primary evaluation metrics (precision, recall, and F1) compared to the four
baselines employed (pop, spop, Random, and popularity). on three datasets, each from a different
domain (e-commerce and music).

It is also relevant to note that a part of this research has been published in the RIA’2023 Conference
(for more information, refer to the appendix at the end of this document).

B. Directions for future research

From this survey, and based on the results of GAT shows in the field of Session-based recommender
systems, we plan to perform the following research:

1. Enhancing Graph Attention Mechanisms:
e Investigate innovative ways to increase the effectiveness of graph attention
mechanisms in session-based recommendation systems.
e Explore other attention mechanisms, such as self-attention or multi-head attention, to
capture more complicated interactions within the graph.
2. Incorporating Temporal Dynamics:
e Study techniques to include temporal dynamics into session-based recommendation
systems using graph attention networks.

55

—
| —

GENERAL CONCLUSION

e Develop methods for modeling the evolution of user preferences over time and modify
the recommendations accordingly.
3. Evaluation Metrics and Benchmarks:
e Develop standardized evaluation standards and benchmark datasets particularly
tailored for session-based recommendation systems leveraging graph attention

networks.

e Enable fair comparisons between different techniques and encourage improvements
in the field.

4. Real-world Application: Job Recommendation Website under the name of
“KHADEMNI.DZ”.

56

—
| —

PROTOTYPE

Prototype

57

—
| —

Prototype

5. Prototype

In the future, we plan to launch a job recommendation website called "KHADAMNI.DZ."

e KHADEMNI.DZ inscreption Accueil section de travaille services Members ‘ v

DECOUVR;?“

KHADEMNIDZ

Figure 40: Home page of the job recommendation website

e The job recommendation website "KHADEMNI.DZ" uses graph attention network
architecture to provide personalized job recommendations based on user session data. Even
users who are new to the platform or have limited browsing history can benefit from tailored
recommendations ,This website offers two modes of interaction: one through registration or
inscription, and the other in an anonymous manner. The site's recommendation system
analyzes user sessions for preferences and interests to ensure accurate and relevant job
recommendations.

58

—
| —

Prototype

8.4 KHADEMNIDZ ~ inscrepton Acouel ~ section de ravale senvices Members 3

khademni.DZ

©2023 par khademni dz £ Lets Chat!

Figure 41 :Exploring the Dual Pathways Registration and Anonymity in Website Interaction

e The site provides job postings from various industries, ensuring users have access to a wide
range of employment opportunities. Covering industries such as technology, medical care,
finance, and education, users can explore employment opportunities in their favorite industries.

Cevital(Analyste logistique) Groupe Mecheri (Ingénieur en Yassir(Data Analyste)

Groupe Mecheri

informatique)

D =
YASSIR

availBord) B g

+ Date d'expiration:

de postes:01

« Type de contrat:CDI

Figure 42: Job postings

e The job recommendation website "KHADEMNI.DZ" employs a graph attention network
architecture to deliver job recommendations primarily based on user session interactions
within the platform. By examining user behavior during each session, such as job
advertisements viewed and jobs applied for, the site generates personalized suggestions that
cater to the user's immediate interests and activities. This approach ensures that the job
recommendations provided align closely with the user's recent session interactions,
maximizing relevance and enhancing the overall user experience.

59

—
| —

Prototype

Travail Recommandé

ngénieur en informatique spécialité . Chef de projet Digital
1 SR CRpopan ‘ BOOST IT TECH
CESI SPA
cesi

Boost
tech

Condo

Prenez votre envol |

Figure 43: Job recommendation

The development process involved designing and building a web platform integrating the graph
attention network approach. The method leverages the power of graph neural networks to analyze
and understand relationships among various job attributes such as job title, skills, and industry. By
taking these relationships into account, the system can generate more accurate and relevant
recommendations.

60

—
| —

Appendix

Appendix

61

—
| —

Appendix

6. Appendix

The following appendix presents an article on a novel session-based recommendation system utilizing
Graph Attention Networks (GAT) named “Session-Based Recommender Systems with Graph
Attention Networks” . This article, published in RIA23 the First National Conference in Computer
Science Research and its Applications , focuses on the design and architecture of the proposed model,
aiming to address the challenges associated with session-based recommendations.

The article provides an in-depth description of the GAT-based architecture, outlining the key
components and their functionalities. We delve into the attention mechanism employed by GAT and
explain how it enables the model to dynamically weigh the importance of individual items based on
their relevance to the current session context.

Note: that the following content represents only the first page of the article. This limitation is
imposed to respect copyright laws and restrictions.

|

Session-Based Recommender Systems with Graph Attention
Networks

Boudjema Boudas’, Hadil Touhami', Somia Yahiaoui'
¢ Dagerément of Computor Scimed, Dnivaraity of Tieras, Tiardt, Afparia
E-vctil gddrers: bovndiemas botudeaiiom iv-iaeed b, Rodd, iouasi P v laeet dt, Jeosis sekidduifiahas, con

Abstract: Kecommetder systems (BS) provide users with wseful item sgipestions {pooducs of services) within their decisica-making
procesaes. Today, the reliahility of raditonsl reeonapesdaion sysieams tha use collaborative and comeni-based (ilering techniqees &
confirmed in diverse application donains (eg., Youlube, Amasom, Facchook, Researchimie). I recem vears, session-hased
recoerenender sysems (SHESs) have aperged as o new pamadigm of BSs. SBRSs s o caphee dysamic and shon-senn user
40 b et iy different seasion
me modeks that lack mope precision
s byper o system. This paper has as i objects » presest forrally o nesw design desp
ssinmn-hased reconupender systems based oo graph neural r..m-.\.t-.ul.:.‘d.\ll via its romising archiecase of graph
atiemtiog netveork (GATL Currently. GAT-hased meshods are amaong the new cutting-edge approaches @ several research areas, whese
SHIS can benefit Tooen them io sigificady mpoove the results of their recommendations.

predferences within sesaoes o provide ma r\.n.'nn.l'. ind securale nest-Tiens resammendalions e

Eeywords: Becomerender Systen, Session-Based Recomemender System, Craph Atterion Metwaork.

Uhe remainder of this paper is organized as follows.

L I'heoretical background sbout SHRS and GAT s given in

INTRODDCTION

Recommender systems {RS) suggest weelul items
iproducts or services) w0 users in ooder to help them i their
different deciston-making processes [1]. Mowadays, the
recommendation sysbems® effectivencss is cleardy
coaflimmed in diverse application domains {e.g, Y ouTube,
Amazom, Besearchirate, and social metwarks).

Im the last Pew years. sessioa-based recommender
systenws (SHHSs) have emerged a5 & new recommender
systern type [2). As 2 kind of sequesce-aware
recomanender system [3]. SBRSs capture dynamic amd
short-term user preferences within sessions o provide
more timely and accursie next-isem recomimesdations
acoarding to differest session conseats.

Im the kiterature. the propesed development approaches
of SHRSs [4] are limided fo traditional deep leaming
models such as CNN and RNM that lack capbaring complex
transitions betwesn user-itens iterations and «.'l'.-hl’.\'lll"ﬂll:\.
decrease the and af
recomanendations,

Fhis paper aims to present a new design model for
session-based recommnender systems using the gruh

Acoaracy effectiveness

transitkms bt s, L3l 'I.|. cam handle
grapks of varying s 2ures, without the need for
prior ksowledge about graph opology
valusble ol for o wide mnge of applications, imcluding
social network amalysis, protein secbare prediction., asd
recomanendation sysiems

s makes it a

—

Section 2 In Sectics 4. seme inpostan: related works are
diseussed. Section 3 details our propesed GAT-Based
mndel for SBRA. Finally, Section 3 concludes this anicle
by showing our nearest work.

1. FUMDAMEXTALS

A Eesitsn-Batrdd Resoveveedddr Syrraved

Session-hased recommender systems [SBRS))
represeni a promising frend in che field of recommender
IR As sl ol sequence-yware
recomanendaiion [5], SBRS fake inie account shoei-temm
wseT preferences (or intents). They woek on observing the
interactions of the user with previous Dems in the curment
sessioa o predict recommendations sbout what would
happen next onthe items (g, next video o wasch, PO o
visit, or product o puschasel. Their recommendation

sysiens a

process relies oa tracking the imira-session dependencies
between tinge-stamped user-item inseractioas.

An exarsple of i c-commene websik: wing SHAS.

This appendix includes an attestation that was granted to us subsequent to the successful online
presentation of our article

62

—t

BIBLIOGRAPHY

F 3
T

OF PARTICIPATION

T Presented to e —

Boudjemaa BOUDAA

For participation in online conference

First National Conference in Computer Science Research and its Applications RIA’23

to be held on May 10, 2023

Session-Based Recommender Systems with Graph Attention Networks

Co-authors: Hadil TOUHAMI, Somia YAHIAOUI

Dr. Abdelknm BOUADJEMI 1

Chairman of the Conference 1\ }
} Vs

Bibliography

Bibliography

64

—
| —

Prototype

Bibliography

[1] G.A.a.A.Tuzhilin, " A survey of the state-of-the-art and possible extensions," Toward the next
generation of recommender systems, vol. Volume 17(NO. 6), p. Pages 734 _ 749, 2005.

[2] L.C.a.Y.W. oujin Wang, "A survey on session-based recommender systems," 2019.

[3] L.Y.A.S.a.Y.T.ShuaiZhang, "A survey and new perspectives," Deep learning based recommender
system, vol. Volume 52(NO. 1), 2019.

[4] A.L.C.D.L.S.M.S.K.J.e.a.Rashid AM, "Getting to know you: learning new user preferences in
recommender systems.," p. 127-34., 2002.

[5] K.lJ.R.J.SchaferJB, "Recommender system in e-commerce," in Proceedings of the 1st ACM
conference on electronic commerce, 1999.

[6] H.V.P.Resnick, "Recommender system’s," 1997.

[7]1 A.A. A.M. Acilar, "A collaborative filtering method based on Artificial Immune Network," pp. 8324-
8332, 2009.

[8] "Nvidia," [Online]. Available: https://www.nvidia.com/en-us/glossary/data-science/recommendation-
system/.

[9] C.S.). Buder, "Learning with personalized recommender systems: a psychological view," pp. 207-216,
2012.

[10] L. N. Gadanho SC, "Addressing uncertainty in implicit preferences.," New York, NY, USA, 2007.

[11] "Hybrid Recommendation System — A Beginner’s Guide," [Online]. Available:
https://www.muvi.com/resources/ebooks/hybrid-recommendation-system.

[12] O. O. Poddubnyy, "GRAPH NEURAL NETWORKS FOR RECOMMENDER SYSTEMS," 2021.
[13] R. B.-Y. a. B. Ribeiro-Neto., "Modem Information Retrieval," p. 271-350, 1999.

[14] F. C. Z. L. Hui Li, "Content-Based Filtering Recommendation Algorithm Using HMM," in 2012 Fourth
International Conference on Computational and Information Sciences.

[15] B. S. a.). Y. Greg Linden, "recommendations: Item-to-item collaborative filtering.," 2003.
[16] Burke, "R. Hybrid Recommender Systems," User Model User-Adap Inter 12, p. 331-370, 2002.

[17] "analyticsindiamag," 2021. [Online]. Available: https://analyticsindiamag.com/cold-start-problem-in-
recommender-systems-and-its-mitigation-techniques/.

[18] L. S. a. A. Gera., "A Survey of Recommendation System:Research Challenges," International Journal of
Engineering Trends andTechnology (IJETT), pp. 1989-1992, 2013.

[19] Z. SOUHILA, "Session-based recommender systems using recurrent neural network," 2020.

65

—
| —

Prototype

[20] Z. A. a. I. U. Shah Khusro, "Recommender Systems: Issues, Challenges,and Research Opportunities,"
February 2016.

[21] F. O. A. H. a. A. G. J. Bobadilla, "Recommender systems survey. Knowledge-Based Systems," vol. 46, p.
109_132, 2013.

[22] D. J.,. C. Massimo Quadrana, "Tutorial: Sequence-Aware Recommender Systems," in WWW '19:
Companion Proceedings of The 2019 World Wide Web Conference, May 2019.

[23] P. C. J. Massimo Quadrana, "Sequence-Aware Recommender Systems," February 2018.
[24] L. C. a. Y. W. Shoujin Wang, " A survey on session-based recommender system," 2019.

[25] H. D. L. N. Bamshad Mobasher, "Effective personalization based on association rule discovery from
web usage data," in Proceedings of the 3rd international workshop on Web information and data
management, 2001.

[26] I. 1. B. N. H. D. K. &. J. V. Fabian Abel, "A Rule-Based Recommender System for Online Discussion
Forums," 2008.

[27] R. B. V. S. &. V. K. Utpala Niranjan, "Developing a Web Recommendation System Based on Closed
Sequential Patterns," 2010.

[28] M. V. D. K. Magdalini Eirinaki, "Web Path Recommendations based on Page Ranking and Markov
models," in Proceedings of the 7th annual ACM international workshop on Web information and data
management. ACM, 2005.

[29] C. F. a. L. S.-T. Steffen Rendle, "Factorizing personalized markov chains for next-basket
recommendation.," in In Proceedings of the 19th international conference on World wide web. ACM—,
2010.

[30] L. R. F. Asnat Greenstein-Messica, "Session-Based Recommendations Using Iltem Embedding," in U/
'17: Proceedings of the 22nd International Conference on Intelligent User Interfaces, March 2017.

[31]1Q.Z. H.,.Z.,. W. A. Shoujin Wang, "Sequential/Session-based Recommendations:
Challenges,Approaches, Applications and Opportunities," ACM, New York, NY, July 11-15, 2022.

[32] Y. B. a. A. C. I. Goodfellow, "Deep learning," MIT Press, 2016.

[33] I. Limited, "Artificial Intelligence and Machine Learning In Mobile Apps," [Online]. Available:
https://blogs.infosys.com/digital-experience/mobility/artificial-intelligence-and-machine-learning-in-
mobile-apps.html. [Accessed 20 May 2023].

[34] V. Lendave, "A Comprehensive Guide to Representation Learning for Beginners," November 4, 2021.
[Online]. Available: https://analyticsindiamag.com/a-comprehensive-guide-to-representation-
learning-for-beginners/.

[35] S. Ozechi, "Feature Engineering Techniques," sep 10, 2010. [Online]. Available:
https://towardsdatascience.com/feature-engineering-techniques-bab6cb39ed7e.

[36] B. S. a. S. Swapna, "“A Comprehensive Overview on Types of Machine Learning," vol. 04, 2015.

66

—
| —

Prototype

[37] S.P.F.C.G.L.C.Z.a.P.S. Y. Z. Wu, "A Comprehensive Survey on Graph Neural Networks," in IEEE
Trans. Neural Netw. Learning Syst, Jan. 2021.

[38] E. G. PhD, "Deep Learning: Unleashing the Power of Artificial Intelligence," May 18, 2023. [Online].
Available: https://medium.com/@evertongomede/deep-learning-unleashing-the-power-of-artificial-
intelligence-603fd3dc8cdc . [Accessed May 20, 2023].

[39] J. Fumo, "A Gentle Introduction To Neural Networks Series — Part 1," Oct. 22, 2017.
[40] G. Rajgopal, "Deep Learning," Sep. 20, 2019.

[41] "How the Backpropagation Algorithm is Used to Train Neural Networks - AlTechTrend," Apr. 18,
2023..

[42] "Neural Network Activation Function," 2023. [Online]. Available:
https://neuralnetwork101.com/activation-function.

[43] "Activation Functions in Neural Networks [12 Types & Use Cases]," May 31, 2023.

[44] B. Krishnamurthy, "An Introduction to the ReLU Activation Function," Oct. 28, 2022. [Online].
Available: https://builtin.com/machine-learning/relu-activation-function.

[45] "Relul And Relu6: Activation Functions With Benefits And Drawbacks," November 19, 2022. [Online].
Available: https://www.surfactants.net/relul-and-relu6-activation-functions-with-benefits-and-
drawbacks/.

[46] J. P. a. A. Gibson, " Deep Learning," O'Reilly Media, 2014.

[47] A. Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow," O'Reilly Media,
20109.

[48] N. Buduma, "Fundamentals of Deep Learning," O'Reilly Media, 2017.
[49] "Demystifying Hyperparameters in Machine Learning Models," May 31, 2023.

[50] J.B.Y.L. A.S.a.P. V. M. M. Bronstein, " Geometric deep learning: going beyond euclidean data," IEEE
Signal Processing Magazine, p. 18-42, July 2017.

[51] "Graph Neural Networks — deep learning for molecules & materials," Jun. 01, 2023.
[52] "Deep Learning: Unleashing the Power of Artificial Intelligence," May 18, 2023.

[53] G. C. C. R. L. B. Petar Velickovi, "GRAPH ATTENTION NETWORKS," in ICLR 2018, 4 Feb 2018.

67

—
| —

