RÉPUBLIQUE ALGÉRIENN DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ IBN KHALDOUN DE TIARET

FACULTÉ DES SCIENCES APPLIQUÉES DÉPARTEMENT DE GÉNIE CIVIL

Mémoire de fin d'études en vue de l'obtention du diplôme de Master 02

Spécialité : Travaux Publics

Option: Voies et Ouvrages d'Art

Présenté par :

BOUTEBAK Djillali

Sujet du mémoire

ÉTUDE DE RENFORCEMENT DE LA ROUTE NATIONALE N° 111 DU PK123 AU PK138 (ENTRE SIDI-ABDERRAHMANE ET EL-BAYADH)

Soutenu publiquement le 18/06/2023 devant le jury composé de :

M^{elle} RENNAK Zohra Président
M. BEKKI Hadj Rapporteur
M^{me} DRAOUI Aicha Examinateur
M. SERBAH Boumediene Examinateur

PROMOTION: 2022/2023

Remerciement

Je remercie Allah, le Majestueux, de m'avoir accordé lafoie la volonté et le courage afin d'accomplir dans les meilleures conditions ce travail.

Je voudrais remercier tout d'abords mes parents à qui je dois beaucoup et qui ont toujours été des fervents supporteurs de mes travaux sans vraiment savoir ce que c'était; Mes remerciements vont à mon promoteur Mr. BAKI ElHADJ d'avoir accepté d'être notre encadrant et pour avoir dirigé ce travail, pour son rôle important dans le déroulement de cette étude, pour son aide, ainsi que pour la confiance qu'il nous a prodiguée durant la réalisation de ce travail. Et remercie également chaleureusement les membres du jury

pour l'intérêt qu'ils ont porté à notre étude en acceptant d'examiner notre travail et de l'enrichir par leurs propositions.

Je n'oublie pas non plus ma petite famille ma femme et mes deux fils YACINE et YOUCEF

A tous ceux qui m'ont aidé de près ou de loin, à tous ceux qui m'ont encadré, à tous ceux qui
m'ont encouragé, à tous ceux qui m'ont accordé leur confiance, à tous ceux qui m'ont montré leur
intérêt, à vous tous MERCI donné la force et la patience d'accomplir ce modeste travail.

Enfin, nous tenons également à remercier toutes les personnes qui ont participé de près ou de loin à la réalisation de ce modeste travail.

DEDICACES

Tout d'abord je tiens à remercier le dieu puissant Rien n'est aussi beau à offrir que le fruit d'un labeur qu'on dédie du fond de cœur à ceux qu'on aime.

Je dédie ce modeste travail à mes chers parents et ma femme et mes deux fils YACINE et YOUCEF

Je dédie ce modeste travail:

A toute la famille: BOUTEBAK ET BETTAHAR

Aux ingénieurs en particulier: Mr GUERMACHE Lamine, Mr OUCIEF Imed et A tous mes amis

.

Je vous dis merci tous qui mon aidés de loin ou de prés pour la réalisation de cette mémoire.

Enfin à tous ceux qui me reconnaitront...

الطرق جزء مهم من البنية التحتية الأساسية لأي بلد، من الناحية الإستراتيجية والاقتصادية والسياحة. وتتألف شبكة طرق ولاية تيارت من 706 كيلومتر من الطرق البلدية. ومع ذلك، تتارت من 706 كيلومتر من الطرق البلدية. ومع ذلك، تتطلب هذه الشبكة الكبيرة أعمال الرصد والصيانة والتعزيز لضمان مستوى مقبول من الخدمة لمستخدمي الطرق. يتمثل مشرو عنا في إجراء دراسة للخبرة وتعزيز للطريق الوطني رفم 111 من 123 ولي ن ك الى ن ك 138 على مسافة 15 كم (بين سيدي عبد الرحمن وولاية البيض). تم إعداد الدراسة المعنية وفقًا لدليل تعزيز الطريق الذي وضعته وزارة الأشغال العامة، والذي كشف عن هيكل رصيف جديد يتكون من (6 cm BB + 14 cm GB + 15 cm GNT) يسمح هذا الهيكل الجديد باطالة عمر 10 سنوات.

Abstract

The road network of the wilaya of Tiaret consists of 706 km of National Roads, 683 km of departmental roads and 1500 km of communal roads. However, this substantial network requires maintenance and reinforcement work to ensure an acceptable level of service for road users. Our project consists in conducting a study of expertise and reinforcement of the RN 111 over 15 km from PK123 to PK 138 (between Sidi-abderrahmane and W. El-bayadh). The study was carried out according to the reinforcement guide drawn up by the Ministry of Public Works, which revealed a new pavement structure composed of (6 cm of Bituminous Concrete Layer, 14 cm of Bituminous Base and 15 cm of Unbound Gravel Layer). This new structure allows to extend the road lifespan up to 10 years.

Résumé

Les routes représentent une partie importante dans l'infrastructure de base de tout pays sur les plans stratégique, économique et touristique. Le réseau routier de la wilaya de Tiaret est composé de Routes nationales et 706 km, de 683 .chemins de wilaya et de1500 KM de chemins communaux. Cependant, ce réseau consistant nécessite un suivi et des travaux d'entretien et de renforcement afin d'assurer un niveau de service acceptable pour les usagers de la routes. Notre projet consiste à mener une étude d'expertise et de renforcement de la RN 111 sur 15 kms du pk123 au pk 138 (entre Sidi-abderrahmane et W. El-bayadh). L'étude en question a été élaborée selon le guide de renforcement des routes établi par le ministère des Travaux Publics, qui a fait ressortir un nouveau de corps de chaussée composé de (6 cm BB + 14 cm GB + 15 cm GNT). Cette nouvelle structure permet de prolonger la durée de vie de 10 ans.

Sommaire

	INTRODUCTION GENERALE	1
	CHAPITRE I: GENERALITES SUR LES ROUTES	
	I.1. TRAFIC:	4
	I.1.1. Analyse du trafic :	4
	I.1.2. Différents types de trafics :	4
	I.1.3. Capacité:	4
	I.2. Dimensionnements	5
	I.2.1. La chaussée :	5
	I.2.1.1. Définition :	5
	I.2.1.2. Types des chaussées :	6
	I.2.2- les étape d'une études de renforcement	8
	1.2.2.1. Methode de rentorcement :	9
	I.2.2.2. Auscultation par mesures de déflexion :	9
	I.2.2.3. Auscultation par mesure d'uni:	10
	I.2.2.4. Description et classification des principales dégradations :	10
	I.2.2.4.1 Les différents types des dégradations et leurs causes	10
	I.2.2.4.2 la famille des déformations.	11
	I.2.2.4.3 Ornière à faible rayon.	11
	I.2.2.4.4.Ornière à grand rayon.	11
	I.2.2.4.5.Affaissement.	13
	I.2.2.4.6.Soulèvement différentiel.	15
	I 2 2 4 7 Désordre de profil	15
	I.2.2.4.7.Désordre de profil	17
	I 2 2 4 0 Figures transversales	17
	I.2.2.4.9. Fissures transversales.	18
	I.2.2.4.10.Fissures longitudinales. I.2.2.4.11.Fissures longitudinales en piste de roues.	18
	I.2.2.4.12.Fissures longitudinales en piste de roues	19
	I.2.2.4.13.Fissures de gel.	21
		21
	I.2.2.4.14.Fissures en carrelage.	
	I.2.2.4.15.Fissures en rive.	22
	I.2.2.4.16.Faïençage	23
		24
	I.2.2.4.18.Désenrobage.	25
	I.2.2.4.19.Pelade	25
	I.2.2.4.20.Nid de poule	26
	1.2.2.4.21.Ressuage	26
	CHAPITRE II PRESENTATION DU PROJET ET DONNEES SUR LA ZONE DE L'ETUDE	
Ħ	II.1 Introduction.	29
H	II.2. Situation et topographie de site	29
	II.3.le renforcement d'une chaussée:	30
	II.4. Etat actuel de la route (Relevé visuel des données géométriques)	31
	II .5. Conclusion	32
	CHAPITRE III RECUEIL ET ANALYSE DES DONNEES	J2
	III.1. Etude de trafic	34
-	III.1.1 Introduction :	34
1	111.1.1.1.111.2.44.4.10.11	"

	III.2 Généralité sur le trafic :	34
	III.2.1.Méthodes de comptage	34
	III.2.2.Pourcentage des poids lourd	35
	III .2.3. Composition du trafic	37
	III.2.4. Effet du trafic	37
	III .2.5. Classe de trafic	37
	III.2.6.Durée de vie de la chaussée	38
	III. 3.Données fournis par CTTP	39
	LIII 3 L Hypothese de calcill	39
	III.4.donnees sur l'auscultation de la chaussée	40
	III.4.1. Etat visuel de la chaussée	40
	III.4.2.Schéma de différentes dégradations relevées	41
	III.4.3 Famille de déformation.	41
	III .4.3.1 Affaissement	41
	III.4.4. Famille de fissuration	42
	III.4.4.1. Faïençage à maille fine	42
		43
	III5 .CONCLUSION III.6 Relèves des données d'assainissement	49
	III.6.1. travaux d'assainissement et de drainage	49
	III. 6.2 Travaux préconises	49
	III.6.3. curage des passages transversaux.	50
	III.6.4 .Relevés relatifs à la sécurité routière	51
	III .7. Auscultation par mesure d'uni	52
	III.7.1. La mesure de l'uni description de l'appareil et principe de la mesure	52
	III.7.2.Indice de planéité internationale IRI «International RoughnessIndex	52
	III.7.3. Présentation de l'équipement	53
	III.7.4. Domaine d'application	53
	III.7.5. Composants du Système d'essai	53
	III.7.6. Conclusion	57
	III.8 Les appareils de mesure utilisée en auscultation	58
	III.8.1 Road Surface Profiler (RSP) Mark IV	58
	III.8.2 Domaine d'application	58
	III.8.3 HWD(HeavryWeightDeflectometer)	58
	II.8.4. Dynatest Highway/Runway 6875 HRFT Friction Tester Equipment	60
	III.8.5. Le DeflectographeLacroix	61
	III.8.6.Géoradar	62
	III.8.7. Conclusion	63
	III.9 auscultation par mesure de déflexion	64
	III.9.1 . La déflexion de la chaussée sous charge.	64
	III.9.1 . La déflexion de la chaussée sous charge	64
	III.9.3.Présentation du matériel de mesure	65
	III.9.4. Valeurs caractéristiques pour le paramètre déflexion	67
	III9.5. La déflexion prise en compte pour la modélisation de la structure	68
	III.9.6Classes de déflexion	69
	III.9.7 .Découpage en zones homogènes à partir de la déflexion	69
Н	III .9.8. Les zones homogènes.	70
	III.9.9.Conclusion.	75
	CHAPITRE IV DIAGNOSTIC ET MODELISATION	
	IV .1.Introduction.	78
	IV.2.Définition des sections témoins	78
	IV .3.Objectif du Carottage Effectue	78

IV.4. Implantation des carottages	83
IV.5. Classification des matériaux prélevés	85
IV.6.Modélisation des sections témoins	85
IV.7Détermination du module des couches bitumineuses	85
IV.8. Détermination du module du sol par calcul inverse	86
IV.09. Conclusion	85
CHAPITRE V : CONCEPTION DE LA STRUCTURE DU CHAUSSEE	•
V .1.Introduction.	88
V.2.Notion de dommage	88
V.3 .Le modèle multicouche de Burmister	89
V.4. Évaluation de l'endommagement	90
V.5 .hypothèses de calcul.	90
V.6. Renforcement	95
V.6.1 Introduction	95
V.6.2. Mode de fonctionnement	95
V.6.3.1 Les résultats de calcul de renforcement	96
V.6.3.1 Les calculs de la zone 1	96
V.6.3.2 Solutions proposées pour la zone 1	96
V.6.3.3 Les calculs de la zone 02.	97
V .6.3.4 Solutions proposées pour la zone 2	97
V.6.3.5 Les calculs de la zone 3	97
V.6.3 .6. Solutions proposées pour la zone 3	97
CHAPITRE VI DEVIS QUANTITATIF ESTIMATIF	
VI.1. Introduction.	103
VI.2. Devis estimatif.	103
VI.3. Devis quantitatif.	103
VI3.1 Décaissement	104
VI 3.2 Rechargement des accotements	104
VI.3.3 . Glissière métallique.	104
VI .4 .Les calculs de devis quantitatif et estimatif	105
VI.5 projet: travaux de renforcement de la route nationale. Bordereau des prix unitaires	106
VI.6. projet: travaux de renforcement devis quantitatif estimatif	107
CONCLUSION GENERALE	108

Listes des figures

CHAPITRE I: GENERALITES SUR LA ROUTE	6
Figure I.1 Schéma général de la coupe transversale d'une chaussée souple	8
Figure I.2 : démarche de renforcement	14
figure I.3 Les différents types des dégradations (Ornière à faible rayon. Ornière à grand rayon,	16
Affaissement)	
Figure I.4 : Désordre du profil et soulèvement différentiel	20
Figure I.5 : Fissures longitudinales en piste de roues et fissures longitudinales hors-piste de roues)	24
Figure I.6: Faïençage	27
Figure I.7: Nids de poule	6
CHAPITRE II PRESENTATION DU PROJET ET DONNEES SUR LA ZONE DE L'ETUDE	
Figure II.1 : Image Satellitaire de la Route National N° 111	30
CHAPITRE III RECUEIL ET ANALYSE DES DONNEES	
Figure III.1. Organigramme de dégradations observées	41
Figure III.2 : Affaissement	42
Figure III.4 : Faïençage	42
Figure III.5 : Passage busé obstrué et le mur de retour détruit	51
Figure III.6 : Glissière métallique (PK 125+175 -125+265 Gauche et PK 125+217 -125+265	51
Droite)	
Figure III.7: Corp. de chaussée	52
Figure III.8: Profils longitudinaux et transversaux	52
Figure III.9: RSP	53
Figure III.10 .1'UNI longitudinal	57
Figure III 11:HWD	59
Figure III.12. HWD (Heavy Weight Deflectometer)	60
Figure III.13: Dynatest Highway 6875 HRFT Friction Tester Equipment	61
Figure III.14:Deflectographe Lacroix	62
Figure III.15:Géoradar	63
Figure III.16 :Défléctographe	65
Figure III.17: Curiamètre	65
Figure III.18: HWD Déflectomètre à masse tombannte	66
Figure III.19: Poutre Benkelman	66
Figure III.20: Exemple de déflectogramme sur schéma-itinéraire	67
Figure III.21: Correction de la déflexion en température	68
Figure .III.22 : pré découpage à partir des dégradations	70
Figure III.23 : prédécoupage à partir de la déflexion caractéristique de rive	71
Figure III.24 : pré découpage à partir de la déflexion caractéristique de l'axe	71
Figure .III.25 : pré découpage à partir de trafic journalier en poids lourd	72
Figure .III.26. Le découpage en zones homogènes par investigation avec implantation des carottes	74
CHAPITRE IV DIAGNOSTIC ET MODELISATION	
Figure IV.1. Découpage en 03 zones	77
Figure IV .2 . Carotteuse	79
Figure IV .3.Carotte 01Carotte 02	80
Figure IV.4 Carotte 03Carotte 04	81
Figure IV.5 des carottes de 05 à 10	82

CHAPITRE V : CONCEPTION DE LA STRUCTURE DU CHAUSSEE	
Figure .V.1.Modèle multicouche de Burmister	
Figure. V.2. Solution proposée pour la zone homogène n°01 avec CAM =0,8	
Figure.V.3. Solution proposée pour la zone homogène n°02 avec CAM=0,8	
Figure V.4 . Solution proposée pour la zone homogène n°03 avec	
Figure. V.5. zone n°01 renforcement 2023 -2033	
Figure. V.6 zone n°02 renforcement 2023 -2033	99
Figure. V.7. zone n°03 renforcement 2023 -2033	100

Listes des Tableaux

CHAPITRE I: GENERALITES SUR LA ROUTE	
Tableau II.1:Historique des travaux réalisés sur la RN 111 entre sidi abderahmane vers	30
la limite elbayadh	
Tableau II. 2 : Les paramètres géométriques relatifs à la RN 111	31
CHAPITRE II PRESENTATION DU PROJET ET DONNEES SUR LA ZONE DE	
L'ETUDE Tableau III.1 : définition des classes de trafic	35
Tableau III.2 : catégories des voies en fonction des matériaux	36
Tableau III.3 : catégorie de véhicules	36
Tableau III.4 : le relevé des zones homogènes	37
Tableau III.5: les classes de trafic	38
Tableau III. 6: tableau des informations du trafic	39
Tableau III.7: Trafic cumulé en poids lourds	39
Tableau III. 8: relevé visuel de dégradation sur l' axe de la RN 111.	44
Tableau III.9: Curage et réparation des Passages Transversaux	50
Tableau III .10 (. Les seuils IRI spécifiques à ce type de chaussée)	54
Tableau III.11 : État de planéité de la chaussée	55
Tableau III.12: Valeur de k pour la correction de la déflexion en fonction de la	68
température	00
Tableau III.13: La classe de déflexion	69
Tableau III.9.14: Calcule de la déflexion caractéristique	69
Tableau III.9.15.Déflexion obtenu par Déflectographe la croix	73
CHAPITRE III RECUEIL ET ANALYSE DES DONNEES	13
Tableau .IV.1. Evaluation des carottes de 01 à 02	80
Tableau .IV .2. Evaluation globale de la zone homogène N°01	80
Tableau .IV3. Evaluation des carottes de 03 et 4	81
Tableau .IV.4. Evaluation globale de la zone homogène N°02	81
Tableau IV.5. Evaluation des carottes de 05 à 10	82
Tableau .IV.6. Evaluation globale de la zone homogène N°03	83
Tableau IV.7: classification des matériaux des sou- couches	84
Tableau IV.8: classification de la qualité des interfaces	84
Tableau IV.9:modules des matériaux pour la modélisation en fonction de la qualité de la	85
carotte	
CHAPITRE IV DIAGNOSTIC ET MODELISATION	
Tableau .V.1. Lois de fatigues des matériaux utilisés	91
Tableau V.2: Chaussée existante de la zone 1.	96
Tableau V 3: Solution 1 proposée pour la zone 1.	96
Tableau V.4: Chaussée existante de la zone 2	97
Tableau V.5: Solution 1 proposée pour la zone 2.	97
Tableau V.6 : Chaussée existante de la zone 3.	97
Tableau V.7: Solution 1 proposée pour la zone 3.	97
CHAPITRE V : CONCEPTION DE LA STRUCTURE DU CHAUSSEE	
Tableau VI. 1 :calcul le décaissement	104
Tableau VI.2 :calcul le Rechargement des accotements	104
Tableau VI.3 : calcul la quantité de la Glissière métallique	104
Tableau VI.4:Calcul de quantité (BB, GB, GNT, accrochage et imprégnation)	105

INTRODUCTION GENERALE

INTRODUCTION GENERALE

L'histoire de la route date de plus de 5000 ans, les premières ont servies au passage d'animaux et de véhicule par traction animale avec des largeurs de moins de 2,5 mètres, et des structures en pierres.

Etant donné que les voies de communications sont aujourd'hui les sources même du développement d'un pays ; les recherches et les études sur les tracés linéaires (routes, autoroutes,) ont pris une importance considérable à travers le monde.

Le réseau routier occupe une place stratégique dans notre système de transport terrestre, puisqu'il supporte plus de 80 % du volume de transports des marchandises et voyageurs. Ce qui engendre une augmentation des efforts verticaux transmis au sol support qui a pour effet d'entrainer l'apparition de déformations permanentes en surface et en profondeur. Ces déformations croissent avec le cumul du trafic ce qui ce traduit en fissuration longitudinale et transversale, etc. En conséquence, il est important pour la pérennité de la route d'envisager des travaux d'entretien et de renforcement de la structure de chaussée.

La maintenance, le contrôle, le suivi et l'auscultation du réseau routier permettent de dégager les besoins en renforcement, réhabilitation et entretien. En effet le renforcement d'une chaussée de route consiste en général à additionner à sa partie supérieure une ou plusieurs nouvelles couches de matériaux.

Ce Projet de fin d'études porte sur la recherche de solutions intermédiaires entre l'entretien et le renforcement lourd des routes en état de dégradation. L'objet de ce présent travail est de donner la méthodologie générale de renforcement d'un tronçon de route. Le travail mené a été réalisé selon le guide de renforcement des routes établi par le ministère des travaux publics.

Le présente mémoire comporte 06 chapitres :

Après une introduction générale sur le travail, on présentera le premier chapitre sous le titre « généralités sur les routes ».

Le chapitre II est consacré à la présentation du projet et données sur la zone de l'étude.

Dans le chapitre III, on exposera recueil et analyse des données,

Dans le chapitre IV, on présentera le diagnostic et la modélisation de la structure de chaussée existante.

La conception de la structure de chaussée en utilisant un logiciel de calcul sera présentée dans le chapitre V.

Un devis quantitatif et estimatif sera donné dans le chapitre VI.

INTRODUCTION GENERALE

Nous terminons notre mémoires par des conclusions générales aux quelles on est arrivées et des propositions pour des futures études de renforcement

CHAPITRE I

GENERALITES SUR LES ROUTES

- I.1. Trafic : Pour résoudre la plupart des problèmes d'aménagement ou d'exploitation routiers, il est insuffisant de connaître la circulation en un point donnée sur une route existante, il est souvent nécessaire de connaître les différents courants de circulation, leurs formations, leurs aboutissements, en d'autres termes de connaître l'origine et la destination des différents véhicules.
- **I.1.1. Analyse du trafic :** Afin de déterminer en un point et en un instant donné le volume et la nature du trafic, il est nécessaire de procéder à un comptage qui nécessite une logistique et une organisation appropriée. Pour obtenir le trafic, on peut recourir à divers procédés qui sont :
 - La statique générale.
 - Le comptage sur route (manuel ou automatique).
 - Une enquête de circulation.

I.1.2. Différents types de trafics : On distingue quatre types de trafic :

- a) Trafic normal : C'est un trafic existant sur l'ancien aménagement sans prendre en considération le trafic du nouveau projet.
- b) Trafic induit : C'est un trafic qui résulte de nouveau déplacement des personnes vers d'autres déviations.
- c) Trafic dévié : C'est le trafic attiré vers la nouvelle route aménagée. La déviation du trafic n'est qu'un transfert entre les différents moyens pour atteindre la même destination.
- d) Trafic total: C'est la somme du trafic annuel et du trafic dévié.
- **I.1.3.** Capacité : On définit la capacité de la route par le nombre maximal des véhicules pouvant raisonnablement passé sur une section donnée d'une voie dans une direction (ou deux directions) avec des caractéristiques géométriques et de circulation pendant une période de temps bien déterminée. La capacité s'exprime sous forme d'un débit horaire.

I.2. Dimensionnements:

Le dimensionnement des structures constitue une étape importante de l'étude d'un projet routier car la qualité d'un projet routier ne se limite pas à l'obtention d'un bon tracé en plan et d'un bon profil en long, en effet, une fois réalisée, la chaussée devra résister aux agressions des agents extérieurs et à la surcharge d'exploitation: action des essieux des véhicules lourds, effets des gradients thermiques pluie, neige, verglas,... Etc.

Pour cela il faudra non seulement assurer à la route de bonnes caractéristiques géométriques mais aussi de bonnes caractéristiques mécaniques lui permettant de résister à toutes ces charges pendant sa durée de vie.

La qualité de la construction de chaussées joue à ce titre un rôle primordial, celle-ci passe d'abord par une bonne reconnaissance du sol support et un choix judicieux des matériaux à utiliser, il est ensuite indispensable que la mise en œuvre de ces matériaux soit réalisée conformément aux exigences arrêtées.

On examinera les différentes méthodes de dimensionnements avec une application au projet.

I.2.1. La chaussée :

I.2.1.1. Définition:

Au sens géométrique : c'est la surface aménagée de la route sur laquelle circulent les véhicules. Au sens structurel : c'est l'ensemble des couches de matériaux superposées de façon à permettre la reprise des charges.

a) Couche de surface :

Elle composée de la couches de roulement et la couche de liaison et elle est en contact direct avec le pneumatique de véhicule et la charge extérieure. Son rôle est :

- ❖ Encaisser les efforts de cisaillement provoqués par la circulation.
- Imperméabiliser la surface de la chaussée.
- * Assurer une transition avec les couches inférieures plus rigides.

b) Couche de base :

Elle reprend les efforts verticaux et repartis les contraintes normales qui en résultent sur les couches sous-jacentes.

c) Couche de fondation :

Elle a le même rôle que celui de la couche de base.

d) Couche de forme :

Elle est généralement prévue pour répondre à certains objectifs en fonction de la nature du sol support :

- Sur un sol rocheux : elle joue le rôle de nivèlement afin d'aplanir la surface.
- Sur un sol peu portant (argileux à teneur en eau élevée) : Elle assure une portance suffisante à court terme permettant aux engins de chantier de circuler librement.

Actuellement, on tient de plus en plus compte du rôle de portance à long terme apporté par la couche de forme dans le dimensionnement et l'optimisation des structures de chaussée

La figure ci-dessous présente d'une manière générale les différentes couches d'une chaussée souple

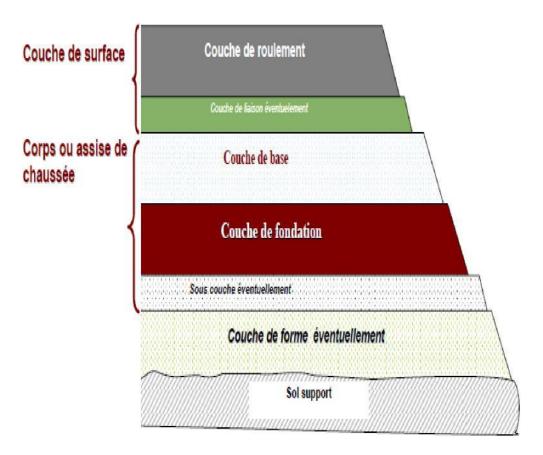


Figure I.1 Schéma général de la coupe transversale d'une chaussée souple (d'après Georges Jeuffroy et Raymond Sauterey 1985)

I.2.1.2. Types des chaussées :

Un véhicule transmet une charge sous forme de forces verticales par l'intermédiaire des pneumatiques. Le sol n'étant pas assez porteur. Il est donc nécessaire d'interposer un écran qui aura pour but de réduire et de répartir les charges. La chaussée constitue cet écran. Selon le mode fonctionnement mécanique de la chaussée, nous avons des chaussées souples, des chaussées semi rigides et des chaussées rigides.

a) Les chaussées souples ou flexibles :

Elles sont constituées d'une couche bitumineuse en surface au-dessus d'une couche de base et d'une couche de fondation en matériaux granulaires traités ou non. La chaussée souple distribue les efforts de surface à travers les couches de base et de fondation. Cette distribution se fait de façon à ce que l'effort sur la plate-forme soit compatible avec la résistance de l'infrastructure et du sol support.

b) Les chaussées semi-rigides :

Une chaussée semi rigide est une chaussée avec une couche de surface en béton bitumineux reposant sur une couche de base en matériaux stabilisés aux liants hydrauliques et d'une couche de fondation granulaire. Les couches bitumineuses assurent:

- la qualité d'uni de surface,
- la limitation de la remontée des fissurent transversales de la couche de matériaux traités en liants hydrauliques. La couche de base diffuse et atténue les efforts transmis de par sa rigidité élevée offerte par le liant hydraulique.

c) Les chaussées rigides :

Elles sont constituées d'une dalle de béton en ciment portland reposant directement sur la couche de fondation ou sur la plateforme. La dalle de béton joue un double rôle : elle est à la fois la surface de roulement et la couche de base. Elle répartit les efforts de surface dus aux charges de cisaillement sur une large surface afin d'éviter une déformation sur la couche de fondation ou sur l'infrastructure.

I.2.2- LES ETAPE D'UNE ETUDES DE RENFORCEMENT

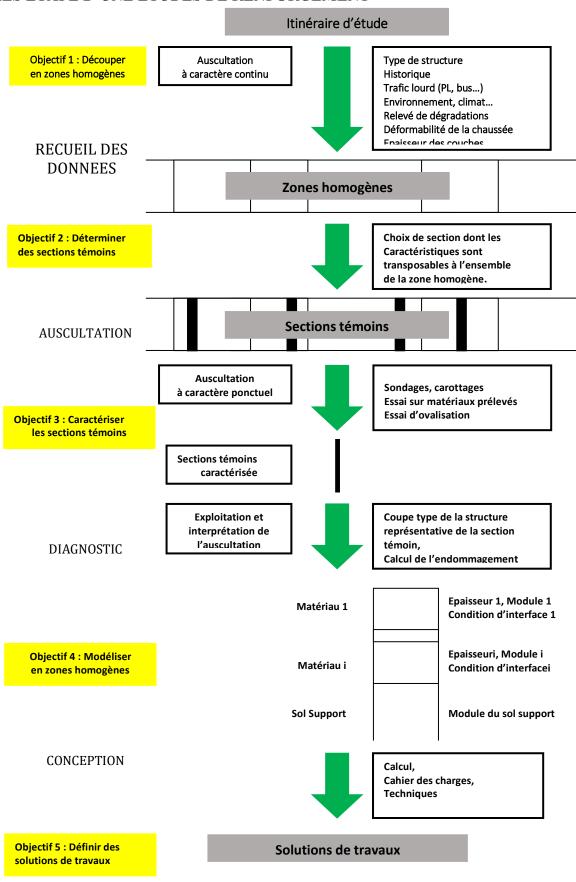


Figure I.2: DEMARCHE DE RENFORCEMENT

I.2.2.1. Méthode de renforcement :

I.2.2.2. Auscultation par mesures de déflexion: La mesure de déflexion consiste à appliquer une charge à l'essieu légale à 13T sur la chaussée à mesure le déplacement vertical de la surface de la chaussée ainsi provoqué. L'unité de déflexion est le centième de mm. En Algérie, le CTTP dispose du matériel à grand rendement pour effectuer cet essai avec le deflectographe LACROIX, les résultats des mesures sont donnés par le deflectrogramme qui est la représentation graphique de ces résultats. Il permet aussi de couper provisoirement la route en tronçons homogènes et de localiser les points singuliers.

a) Condition de mesure :

La mesure est couramment réalisée dans une zone proche des bandes de roulement des véhicules, soit respectivement à 0.8 et 2.50m du bord de chaussée. La déflexion dépend de nombreux facteurs dont le plus importants sont :

- L'utilité de mesures sur les deux voies de la chaussée ou tout au moins sur la voie la plus chargée.
- L'utilité de bien localiser la mesure sur la voie (généralement les valeurs de déflexion du coté rive, jumelage droit, sont supérieurs à celle réalisées du coté axe.
- L'influence de la charge : dans notre pays, la flexion est mesurée sous les roues d'un jumelage gonflé à 7 bars et appartenant à un essieu 13T (essieu légal définit par le code de la route)
- Il importe de vérifier de la sollicitation de temps la charge réelle sur l'essieu, notamment si le camion est chargé avec des matériaux susceptibles de retenir une partie de l'eau de pluie.
- La vitesse de la sollicitation : la réflexion diminue lorsque le temps d'application da la charge (vitesse de passage des camions) augmente.
- L'influence des conditions climatique : les conditions climatiques influent fortement sur la flexion. Lors de périodes de forte chaleur ou de sècheresse pendant lesquelles la portance du sol de la fondation peut se trouver considérablement améliorée et non représentative d'un état normal. En général, on mesure la déflexion entre la période pluvieuse et le début du printemps lorsque le sol support est à teneur en eau élevée.

b) Détermination de la déflexion de calcul :

• Le paramètre de base est la flexion caractéristique, celle-ci est donnée par la

relation : $DC = D_{MO Y} + 2 \sigma$

■ **D** c: la déflexion caractéristique

■ **D** Moy: la déflexion moyenne

• σ : Ecart type

I.2.2.3. Auscultation par mesure d'uni :

Les mesures de l'uni permettent l'appréciation des irrégularités du profil en long, les déformations fonctionnelles dues à l'usure de surface, ainsi que les déformations structurelles. (état de planéité de la surface)

I.2.2.4. Description et classification des principales dégradations :

Introduction

L'évaluation des chaussées repose sur une série de mesures et d'observations visuelles qui permettent d'établir la condition de la structure, de diagnostiquer les causes des dégradations apparentes et de cibler les solutions les plus appropriées. Ces dégradations apparentes sont caractérisées par deux grandeurs importantes qui sont :

L'étendue qui permet de rendre compte de l'importance d'apparition du désordre, c'est la partie de la chaussée affectée par le défaut. Elle exprime la longueur endommagée par rapport à longueur total de la section du relevé pour les dégradations linéaires ou la surface endommagée par rapport à la surface totale, pour les dégradations bidimensionnelles.

La **gravité** pour signaler le degré de sévérité (**faible, moyen et majeur**) de la dégradation. Dans ce chapitre nous étudions d'une manière générale les différents types des dégradations observées dans les chaussées souples et leurs causes les plus probables.

I.2.2.4.1 Les différents types des dégradations et leurs causes

D'une manière générale, les dégradations observées dans les chaussées souples peuvent être répertoriées en quatre principales familles qui sont :

- •La famille des déformations
- La famille des fissurations
- •La famille des arrachements
- La famille des dégradations en milieu urbain

Pour chaque type des dégradations sont énumérés trois niveaux de sévérité qui incluent les notions suivantes :

Faible : il correspond au stade initial de la dégradation : les premiers indices apparaissent parfois de façon intermittente sur un segment de route et l'évaluateur doit être attentif pour y déceler les symptômes de détérioration. Ce niveau est souvent difficile à percevoir pour un observateur se déplaçant en véhicule à une vitesse de l'ordre de 50 km/h. À la vitesse maximale permise, le confort au roulement n'est pas altéré ou l'est très peu

Moyen: Ce niveau désigne une dégradation continue et facilement perceptible pour un observateur se déplaçant à une vitesse de l'ordre de 50 km/h. À la vitesse maximale permise, le confort au roulement est sensiblement diminué par la plupart des dégradations.

Majeur : Ce niveau indique que la dégradation est accentuée et évidente, même pour un observateur se déplaçant à la vitesse maximale permise. Le confort au roulement est généralement diminué et, dans certains cas, la sécurité à la vitesse maximale permise peut être compromise.

I.2.2.4.2 la famille des déformations

Ce sont des dégradations qui entrainent une modification de la chaussée donnant à la surface de cette dernière un aspect différent de celui désiré. Ces déformations qui prennent naissance dans le corps de la chaussée affectent en générale les couches inférieures pour atteindre ensuite la couche de roulement et peuvent se distinguer selon leur forme ou leur localisation comme suit :

I.2.2.4.3 Ornière à faible rayon

L'ornière à faible rayon correspond à une dépression longitudinale simple, double et parfois triple, de l'ordre de 250 mm de largeur, située dans les pistes de roues. Le profil transversal de ces dépressions est souvent similaire à des traces de pneus simples ou jumelés.

A. Gravité et étendue

Faible : la profondeur de l'ornière est inférieure à 10 mm.

Moyen: à ce niveau la profondeur de l'ornière est de 10 à 20 mm

Majeur : la profondeur de l'ornière est supérieure à 20 mm.

Etendue : représente le % de la longueur totale des zones atteintes par rapport à la

CHAPITRE I

longueur totale de la section du relevé.

B. Les causes probables

Les matériaux granulaires constituant l'assisse des chaussées souples ont parfois une faible rigidité. Comme la couverture bitumineuse est mince, les efforts verticaux dus au trafic sont transmis au support avec une faible diffusion. Les contraintes verticales élevées engendrent par leur répétition des déformations plastiques qui se répercutent en déformations permanentes à la surface de la chaussée. L'évolution la plus fréquente de ces dégradations se manifeste d'abord par l'apparition des déformations permanentes de type orniérage.

Les causes probables d'orniérage à faible rayon sont :

- Enrobé à stabilité réduite par temps chaud (ex. : bitume trop mou ou surdosage).
- Enrobé trop faible pour bien résister au trafic lourd.
- Compactage insuffisant de l'enrobé lors de la mise en place.
- Usure de l'enrobé en surface (abrasion).

I.2.2.4.4.Ornière à grand rayon

Elle est caractérisée par une dépression longitudinale simple située dans les pistes de roues. La forme transversale de la dépression correspond à celle d'une courbe parabolique très évasé

A. Gravité et étendue

Faible : la profondeur de l'ornière inférieure à 10 mm.

Moyen: la profondeur de l'ornière est de 10 à 20 mm

Majeur : la profondeur de l'ornière est supérieure à 20mm

Etendue : représente le % de la longueur totale des zones atteintes par rapport à la longueur totale de la section du relevé

B. Causes probables

Les causes les plus plausibles et les plus fréquentes qui provoquent des ornières à grand rayon sont les suivantes :

Vieillissement (accumulation des déformations permanentes).

- Compactage insuffisant dans les couches de granulaire à la construction.
- Capacité structurale insuffisante de la chaussée.
- Mauvais drainage des matériaux granulaires de la chaussée

(ex. : période de égal).

Usure.

Les ornières ont des origines variées, plus elles sont étroites, plus la couche de chaussée à incriminer est voisine de la surface. Elles peuvent avoir leur siège dans les couches d'enrobés lorsque celles-ci ont une stabilité insuffisante. Mais elles peuvent aussi avoir leur siège dans le sol naturel lui-même lorsque la chaussée est mince et dépourvue de revêtement épais.

I.2.2.4.5. Affaissement

C'est une distorsion du profil en bordure de la chaussée ou au voisinage de conduites souterraines ou dépression très prononcée et souvent assez étendue se localisant soit en rive, soit en pleine largeur

A. Gravité et étendue

Faible : il est définit par une dénivellation dont la profondeur est inférieure à 20 mm sous la règle de 3 m. À la vitesse maximale permise, la sécurité n'est pas compromise et l'effet sur le confort au roulement est négligeable

Moyen : ici la dénivellation a une profondeur se situant entre 20 et 40 mm sous la règle de 3 m. À la vitesse maximale permise, la sécurité est peu compromise et le confort au roulement est modérément diminué.

Majeur : il correspond à une dénivellation dont la profondeur est supérieure à 40 mm sous la règle de 3 m. À la vitesse maximale permise, la sécurité est compromise et le conducteur doit ralentir. Le confort au roulement est fortement diminué.

Etendue : c'est le % de la surface totale atteinte par rapport à la surface de la section de relevé

B. Causes probables

Les affaissements des chaussées souples sont souvent causées par instabilité du remblai, la présence de matériaux inadéquats ou mal compactés, zone de déblai argileux ou secteurs marécageux, affouillement ou assèchement du sol support, le mauvais état des réseaux souterrains (milieu urbain). Il existe d'autres raisons comme un sous-dimensionnement localisé, la pollution du corps de chaussée, la construction localement défectueuse.

Les figures ci-contre illustrent les différentes dégradations citées ci-dessus

(a) Ornières à petits rayons

(b) ornières à grands rayons

Figure I.3 (d'après AIMQ 2002)

I.2.2.4.6. Soulèvement différentiel

Le soulèvement différentiel est définit par le gonflement localisé de la chaussée en période de gel, aussi bien parallèle que perpendiculaire à l'axe de la chaussée.

A. Gravité et étendue

Faible : Dénivellation progressive dont la hauteur est inférieure à 50 mm. À la vitesse maximale permise, la sécurité n'est pas compromise et l'effet sur le confort au roulement est négligeable.

Moyen : Dénivellation progressive dont la hauteur se situe entre 50 et 100 mm. À la vitesse maximale permise, la sécurité est peu compromise et le confort au roulement est modérément diminué

Majeur : Dénivellation progressive dont la hauteur est supérieure à 100 mm ou dénivellation brusque quelle que soit sa hauteur. À la vitesse maximale permise, la sécurité est compromise et le conducteur doit ralentir. Le confort au roulement est fortement diminué.

Etendue : % totale de la zone touchée par ce type de dégradation par rapport à la surface totale de la section du relevé.

B. Causes probables

- Les causes les plus plausibles sont :
- Infrastructure gélive, phénomène hivernal récurrent
- Matériaux sensibles à l'humidité, phénomène permanent.
 - Nappe phréatique élevée et présence d'eau aux abords de la chaussé
 - Hétérogénéité des matériaux ou transition inadéquate dans la chaussée.
- Conduites souterraines à faible profondeur (milieu urbain)

I.2.2.4.7.Désordre de profil

Le désordre de profil est observé en cas des pentes et géométrie inappropriées favorisant l'accumulation des eaux de ruissellement en flaques sur la surface de la chaussée.

A. Gravité et étendue

Faible: Accumulation d'eau sur une profondeur de moins de 20 mm.

Moyen: Accumulation d'eau sur une profondeur de 20 à 40 mm.

Majeur: Accumulation d'eau sur une profondeur de plus de 40 mm.

Etendue : % de la surface totale touchée par ce type de dégradation par rapport à la surface totale de la section du relevé

B. Causes probables

Les phénomènes qui provoquent les désordres de profil sont généralement les points bas non drainés, l'affaissement le long des bordures.

La figure suivante présente les deux types de dégradations citées ci-dessus.

Figure I.4. (d'après AIMQ 2002.» Québec 2002)

I.2.2.4.8.la famille des fissurations

Les sollicitations répétées de flexion alternée dans la couverture bitumineuse d'une chaussée souple entrainent une dégradation par fatigue, sous la forme de fissures d'abord isolées puis évoluant peu à peu vers un faïençage à maille de faible dimension. Les fissurations sont définies comme étant une cassure de revêtement suivant une ligne avec ou sans rupture du corps de chaussée. Elles peuvent intéresser aussi bien la couche de roulement seule, qu'une partie ou la totalité du corps de chaussée.

I.2.2.4.9. Fissures transversales

On parle de fissures transversales en cas de rupture du revêtement relativement perpendiculaire à la direction de la route, généralement sur toute la largeur de la chaussée.

A. Gravité et étendue

Faible : Fissures simples et intermittentes dont les ouvertures sont inférieures à 5 mm. Les bords sont en général francs et bien définis.

Moyen : Fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de 5 à 20 mm. Les bords sont parfois érodés et un peu affaissés. Sans être inconfortable, la fissure est perceptible par l'usager

Majeur : Fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de plus de 20 mm. Les bords sont souvent érodés et il y a affaissement ou soulèvement au gel au voisinage de la fissure. Le confort au roulement est diminué par les déformations de surface

Etendue : % de surface totale de la zone atteinte par rapport à la surface de la section du relevé.

B. Causes probables

Les fissures transversales sont causées par les phénomènes ci-contre :

- Retrait thermique.
- Vieillissement et fragilisation du bitume
- Joint de construction mal exécuté (arrêt et reprise des travaux de pose d'enrobé).

Diminution de la section du revêtement.

Parfois il ya apparition des glissements de revêtement qui sont des mouvements très importants de la couche de la surface imputable à la fois à un collage insuffisant avec la couche de base et à une stabilité insuffisante de revêtement. Ils s'amorcent par une fissuration diagonale au droit de passage des roues et par des fissures paraboliques franches.

L'eau s'infiltrant alors plus facilement provoque une accélération des phénomènes : épaufrures aux lèvres des fissures avec départ des matériaux, puis formation de nids de poule. Si la chaussée est laissée sans entretien, elle évoluerait très rapidement vers une destruction complète.

I.2.2.4.10. Fissures longitudinales

Les fissures longitudinales sont classées en deux catégories :

- Les fissures longitudinales en piste de roues
- les fissures longitudinales hors-piste de roues

I.2.2.4.11. Fissures longitudinales en piste de roues

Elles sont caractérisées par la rupture du revêtement parallèle à la direction de la route et située dans les pistes de roues.

A. Gravité et étendue

Faible : Ce niveau faible est défini par fissures simples et intermittentes dont les ouvertures sont inférieures à 5 mm. Les bords sont en général francs et bien définis.

Moyen : Le niveau moyen se caractérise par fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de 5 à 20 mm. Les bords sont parfois érodés et un peu affaissés. Sans être inconfortable, la fissure est perceptible par l'usager

Majeur : On parle de niveau majeur quand on est en présence des fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de plus de 20 mm. Les bords sont souvent érodés et il y a affaissement ou soulèvement au gel au voisinage de la fissure. On note la présence de fissures en carrelage. Le confort au roulement est diminué par les déformations de surface.

Etendue : c'est le pourcentage de la longueur affectée par rapport à la longueur de section du relevé

B. Les causes probables

Ces types de fissures sont souvent causées par :

- Fatigue du revêtement (trafic lourd).
- Capacité structurale insuffisante de la chaussée.
- Mauvais drainage des couches granulaires de la chaussée (ex. : pendant le dégel)

En plus, les variations de la température à la surface d'une chaussée provoquent des phénomènes de traction et de contraction qui entrainent les fissures. La chaleur qui ramollit les couches de surface, accélère le vieillissement des produits hydrocarbonés. Le cycle chaleur-froid altère la stabilité des matériaux, et les surfaces bitumineuses cassantes, et donc sujettes à la fissuration et l'effritement.

I.2.2.4.12. Fissures longitudinales hors-piste de roues

Elles sont définies par la rupture du revêtement relativement parallèle à la direction de la route, en dehors des pistes de roue.

A. Gravité et étendue

Faible : Il se définit par des fissures simples et intermittentes dont les ouvertures sont inférieures à 5 mm. Les bords sont en général francs et bien définis

Moyen : Ce niveau moyen fait état des fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de 5 à 20 mm. Les bords sont parfois érodés et un peu affaissés.

Majeur : Fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de plus de 20 mm. Les bords sont souvent érodés et il y a affaissement ou soulèvement au gel au voisinage de la fissure.

Etendue : c'est le pourcentage de la longueur affectée par rapport à la longueur de section du relevé.

B. Les causes probables

Les fissures longitudinales hors piste de roues sont dues aux phénomènes ci-contre :

- ➤ Joint de construction mal exécuté le long de la travée adjacente.
- > Ségrégation de l'enrobé à la pose (ex. : centre de l'épandeur).
- Vieillissement du revêtement.

- > fatigue avancée de la chaussée ou sous-dimensionnement d'une ou plusieurs couches.
- diminution de portance du sol support (drainage déficient, défaut d'étanchéité)
- > mauvais mode de fonctionnement de la structure (couches décollées)
- > qualité médiocre de certains matériaux.

Les schémas suivants illustrent ces types de dégradations

a. Fissures longitudinales en piste de roues) b.fissures longitudinales hors-piste de roues)

Figure I.5 (d'après AIMQ 2002 des dégradations des chaussées souples.» Québec 2002.

I.2.2.4.13.Fissures de gel

Elles correspondent à la rupture du revêtement générant une fissure active sous l'effet du gel, soit rectiligne et localisée au centre de la voie ou de la chaussée, soit d'apparence lézardée sans localisation précise sur la chaussée.

A. Gravité et étendue

Faible : Ce niveau reflète des fissures simples et intermittentes dont les ouvertures sont inférieures à 10 mm. Les bords sont en général francs et bien définis.

Moyen : Il est caractérisé par des fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de 10 à 25 mm. Les bords sont parfois érodés et un peu affaissés. Sans être inconfortable, la fissure est perceptible par l'usager

Majeur : Ce sont fissures généralement simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de plus de 25 mm. Les bords sont souvent érodés et il y a affaissement ou soulèvement au gel au voisinage de la fissure. Le confort au roulement est diminué par les déformations de surface.

Etendue : pourcentage de la longueur affectée par rapport à la longueur de section du relevé.

B. Causes probables

Les fissures de gel sont provoquées par les phénomènes suivants :

- ❖ Infrastructure gélive et soulèvements différentiels.
- Comportement gélif différentiel.
- * Remblai instable.
- ❖ Drainage inadéquat.

I.2.2.4.14. Fissures en carrelage

Les fissures en carrelage sont représentées par la rupture du revêtement sur des superficies plus ou moins étendues, formant un patron de fissuration à petites mailles polygonales dont la dimension moyenne est de l'ordre de 300 mm ou moins.

A. Gravité et étendue

Faible : c'est un maillage composé de fissures simples aux bords francs.

Moyen: Maillage composé de fissures simples aux bords faiblement détériorés.

Majeur : Maillage qui est composé de fissures simples aux bords détériorés.

Etendue : elle est définie par le pourcentage de la somme des surfaces des zones endommagées par rapport à la surface totale de la section du relevé.

B. Causes probables

Les causes les plus fréquentes des fissures en carrelage sont :

- -Fatigue (ex. : épaisseur de revêtement insuffisante).
- -Vieillissement de la chaussée (oxydation et fragilisation du bitume dans l'enrobé).
- Capacité portante insuffisante

I.2.2.4.15.Fissures en rive

Elles correspondent à des ruptures en lignes droites ou en arcs de cercle, le long de l'accotement ou de la bordure, ou décollement du revêtement le long de la bordure.

A. Gravité et étendue

Faible : il se définit par fissures simples et intermittentes dont les ouvertures sont inférieures à 5 mm. Les bords sont en général francs et bien définis

Moyen : Fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de 5 à 20 mm. Les bords sont parfois érodés et un peu affaissés.

Majeur : Fissures simples ou fissures multiples le long d'une fissure principale, celle-ci étant ouverte de plus de 20 mm. Les bords sont souvent érodés et il y a affaissement ou soulèvement au gel au voisinage de la fissure.

Etendue : pourcentage de la longueur totale touchée par la dégradation par rapport à la longueur totale de la section du relevé

B. Causes probables

Les fissures en rive sont dues aux phénomènes ci-contre :

- Manque de support latéral (ex. : accotement étroit et pente de talus abrupte).
- Discontinuité dans la structure (ex. : élargissement).
- · Apport latéral d'eau de ruissellement dans la structure de la chaussée (milieu urbain).
- · Assèchement du sol support.

I.2.2.4.16. Faïençage

Le faïençage est par définition un ensemble de fissures plus ou moins rapprochées formant des mailles. Elles sont dites à mailles fines ou peaux de crocodiles lorsque le coté varie de 10 à 40 cm et à mailles larges au delà de 40 cm. Ce le nom donné au réseau de fissures qui apparaissent parfois sur le revêtement en enrobés lorsque ceux-ci sont placés sur une chaussée trop déformable. Il s'agit d'une rupture du revêtement par fatigue qui met en cause l'épaisseur du revêtement compte tenu des charges roulantes, de leur fréquence et de la qualité de chaussé

A. Gravité et étendue

Le niveau de sévérité du faïençage dépend de l'évolution des fissures qui le composent Cette évolution est caractérisée par une extension progressive du phénomène en surface qui définit le dernier stade avant désordres graves.

Etendue : pourcentage de la surface totale atteinte par rapport à la surface de la section du relevé.

B. Causes probables

Les causes possibles sont la fatigue excessive de la chaussée, due à un sous dimensionnement, à une mauvaise qualité de l'ensemble de la structure ou d'une seule des couches de la chaussée :

- ❖ Durcissement et retrait de l'enrobé.
- * Rupture de la couche superficielle due aux sollicitations de la circulation, à la fatigue et au vieillissement dans le cas d'une trop faible épaisseur
- Mauvais accrochage de la couche de roulement sur la couche de base.
- ❖ Dégradation de couches inferieures (couche de base principalement)
- * Perméabilité de la couche de base inferieur à celle de la couche de roulement.

La figure ci-contre présente les différents types de fissurations :

a. Fissures transversales

b. Faïençage

Figure I.6 (d'après AIMQ 2002 Manuel d'identification des dégradations des chaussées souples.» Québec 2002.)

I.2.2.4.17.La famille des arrachements

Il s'agit des désordres affectant en général la couche de roulement.

CHAPITRE I

GENERALITES SUR LA ROUTE

I.2.2.4.18.Désenrobage

Le désenrobage est l'érosion et perte des gros granulats en surface produisant

une détérioration progressive du revêtement.

A. Gravité et étendue

Faible: c'est une perte tout juste observable du mastic ou des gros granulats, principalement

dans les pistes de roues.

Moyen : Perte facilement observable du mastic laissant les gros granulats très apparents ou

perte des gros granulats laissant un patron régulier de petites cavités généralisées à toute la

surface.

Majeur : il est définit par une surface entièrement érodée et dégradation accentuée dans les

pistes de roues (début d'orniérage par usure).

Etendue : pourcentage de la surface affectée par rapport à la surface de la section du relevé.

B. Causes probables

Le désenrobage est causé par les phénomènes suivants : usure par trafic intense, Sous

dosage du bitume, utilisation d'agrégats hydrophiles, compactage insuffisant, surchauffe ou

vieillissement de l'enrobé (oxydation et fragilisation), sollicitations accrues en zone de

virage et de freinage (milieu urbain), adhésivité liant - granulat insuffisante, mise en œuvre

par conditions météorologiques défavorables, et la stagnation d'eau sur la chaussée.

I.2.2.4.19.Pelade

C'est l'arrachement par plaques de l'enrobé de la couche de surface.

A. Gravité et étendue

Faible : Pelade ayant la surface d'arrachement inférieure à 0,5 m carré.

Moven : Pelade dont la surface d'arrachement est de 0,5 à 1,0 m carré.

Majeur : Pelade ayant la surface d'arrachement supérieure à 1,0 m carré.

Etendue : le pourcentage de la surface affectée par rapport à la surface de la section du

relevé

25

B. Causes probables

Mauvaise adhérence de la couche de surface (ex. : manque de liant d'accrochage, incompatibilité chimique, saleté entre les couches).

- · Épaisseur insuffisante de la couche de surface.
- · Chaussée fortement sollicitée par le trafic

· I.2.2.4.20.Nid de poule

Le nid-de-poule est la manifestation finale d'une combinaison de différents <u>problèmes.il</u>est caractérisé par une désagrégation localisée du revêtement sur toute son épaisseur formant des trous de forme généralement arrondie, au contour bien défini, de taille et de profondeur variables.

A. Gravité et étendue

Faible : il est décrit par le nid-de-poule dont le diamètre est moins de 200 mm.

Moyen: dans ce cas le nid-de-poule possède un diamètre de 200 à 300 mm.

Majeur : à ce niveau le nid-de-poule a diamètre de plus de 300 mm.

Etendue : elle est évaluée par le nombre de nids de poule par section du relevé

B. Causes probables

Les nids de poules sont provoqués par la faiblesse ponctuelle de la fondation, l'insuffisance de l'épaisseur du revêtement, le défaut de portance (drainage, poche d'argile, etc.). Ils peuvent aussi avoir lieu lorsque la chaussée est fortement sollicitée par le trafic lourd, en cas d'un défaut localisé de la couche de surface ou de base qui est souvent du à une mauvaise qualité à la fabrication ou à la mise en œuvre des matériaux.

I.2.2.4.21.Ressuage

Le ressuage est une remontée de bitume à la surface du revêtement, accentuée dans les pistes de roues

A. Gravité et étendue

Faible : dans un tel cas le ressuage est surtout détectable dans les pistes de roues par l'apparition d'une bande de revêtement plus foncée.

Moyen : ici Les pistes de roues sont bien délimitées par la couleur noire du bitume.

Majeur : il correspond à un aspect humide et luisant de la plus grande partie de la

surface. La texture de l'enrobé est impossible à discerner. Le bruit des pneus est similaire à celui produit sur un revêtement mouillé. La plus grande partie de la surface est affectée.

Etendue : le pourcentage de longueur cumulée des zones affectées par le désordre par rapport à la longueur totale de la section du relevé.

B. Causes probables

Le ressuage est causé par : Surdosage du bitume, effet combiné de la température élevée du revêtement et des sollicitations du trafic, excès de liant d'accrochage, formulation d'enrobé inadaptée aux sollicitations.

La figure suivante présente ces différents types de dégradations :

a. Nids de poule

b. Pelade

Figure I.7. (d'après AIMQ 2002)

CHAPITRE II

PRESENTATION DU PROJET ET DONNEES SUR LA ZONE DE L'ETUDE

II.1.Introduction:

Dans le cadre de **l'Etude de renforcement de la route nationale N**° **111 du pk123 au pk1138**, marché N°70/2022 liant la Direction des Travaux Publics de la Wilaya de Tiaret, l'Organisme National de Contrôle Technique des Travaux Publics (CTTP) a procédé à une étude d'auscultation et de renforcement de la route nationale N° 111 sur un linéaire de 15 Kms.

Par ailleurs, l'auscultation de la chaussée est un paramètre de base pour l'expertise des chaussées. Elle repose sur un ensemble de mesures (déflexion, uni, adhérence...) et d'observations visuelles qui nous permettent de caractériser la route à travers de nombreux paramètres et de caler nos calculs.

D'autre part, le relevé visuel des dégradations de surface a toujours constitué un élément indispensable de cette auscultation, dont l'importance n'a jamais été diminuée malgré les évolutions des méthodes de mesures, et l'émergence de nouvelles techniques d'investigation. pour assurer une objectivité dans l'appréciation de ce paramètre et améliorer la fiabilité et la précision des informations fournies par ces inspections visuelles, une formalisation du relevé de dégradations de surface a été réalisée en se réfèrent au Guide de réhabilitation élaboré par le CTTP en 1996.

Enfin, le présent rapport est relatif aux prestations n°01, n°03.1, n°05 et n°06 prévue dans le marché, il donne en premier lieu un diagnostic détaillé du relevé visuel des données géométriques, et les dégradations de la chaussée ainsi que l'état des dépendances sur tout le tronçon à étudié.

II.2. Situation et topographie de site:

L'étude de renforcement a concerné la route nationale N° 111 qui prend origine au PK 123+000 vers limite wilaya (Tiaret-El bayadh) et se termine au PK 138+000 au niveau de la jonction avec RN90 (Sidi Abderahmane) sur un linéaire de 15 Kms, Cet axe présente une importance stratégique notamment sur les plans : économique, social, touristique et facilitation des transports routiers en Algérie.

Figure II.1 : Image Satellitaire de la Route National N° 111 du PK 123+000 au PK 138+000 **II.3.le renforcement d'une chaussée:**

Le renforcement d'une chaussée devra être envisagé lorsque l'une des deux conditions suivantes est rencontrée :

- ➤ la densité de ses dégradations relevant d'un défaut structurel sera devenue trop importante pour que celle-ci relève encore du domaine des réparations.
- la charge admissible est insuffisante pour permettre une évolution souhaitée du trafic.

Le renforcement n'est utilisé que sur les routes ayant une énorme fréquentation. en effet, devant l'augmentation considérable du trafic sur une route bitumée, on peut constater que le sol n'est plus assez porteur. La route n'arrive plus à supporter les charges des véhicules qui passent et les défiances de la structure conduisent à termes à des dégradations visibles à la surface de la chaussée. È

Tableau II.1:Historique des travaux réalisés sur la RN 111 entre sidi abderahmane vers la limite elbayadh

A	Turno do	DIZ		Linéaire	Historique de réan des routes		
Axe Routier	Type de la Route	PK initial	Pk Fin	(ml)	Année de réalisation de l'axe	Structure	
RN111	Bidirectionnel	123+000	128+000	5000	2011	5-7cm BB 10cm GB 25cm GC 30cm Tuf	Chaussée épaisse >12 cm
NIVIII	le	128+000	138+000	10000	2011	5-7cm BB 25cm GC 30cm Tuf	chaussée souple < 12 cm

II.4. Etat actuel de la route (Relevé visuel des données géométriques):

- ➤ Le profil de la route est celui d'une chaussée bidirectionnelle
- ➤ L'axe routier présent un relief plat avec de sinuosité et déclivité moyenne à faible sur tout le linéaire.
- ➤ Le tableau suivant récapitule la géométrie de tout le linéaire à étudié.

Tableau II. 2 : Les paramètres géométriques relatifs à la RN 111

Localisation (des sections	Géométrie	Géométrie (mesure des largeurs)								
PK début PK Fin		Chaussée (m)	Accote	ment (m)	D éclivité	Ciagitá	Daliaf				
PK debut	PKFIN	()	Droite			Sinuosité	Relief				
123+000	124+000	6,70	2,00	2,00							
124+000	125+000	7,10	2,10	2,70							
125+000	126+000	7,10	1,90	1,80							
126+000	127+000	6,60	2,50	2,00							
127+000	128+000	6,80	2,20	2,90							
128+000	129+000	7,60	2,10	2,30	ole	Moyenne à Faible					
129+000	130+000	7,00	2,20	2,40							
130+000	131+000	6,70	3,30	3,30	à Fai	me à]	t				
131+000	132+000	7,00	2,20	2,50	Moyenne à Faible	Moyer	Plat				
132+000	133+000	6,50	2,90	3,40	Mo						
133+000	134+000	7,00	2,30	2,00							
134+000	135+000	7,20	2,20	3,20							
135+000	136+000	7,10	2,00	3,10							
136+000	137+000	7,20	2,10	3,30							
137+000	138+000	7,10	2,40	3,60							
138+000	/	7,20	2,20	2,20							

II.5.CONCLUSION:

L'objectif général assigné à ce travail est d'apporter des solutions pour remettre en service normale la chaussée étudié. Afin d'atteindre cet objectif le travail vise :

- Faire une évaluation technique de l'état de la route actuelle.
- Délimiter et faire une étude spécifique des zones à fortes déflexions nécessitant un renforcement.
- Proposer la meilleure solution sur le plan technique et économique.

CHAPITRE III

RECUEIL ET ANALYSE DES DONNEES

III.1. Etude de trafic :

III.1.1. Introduction:

Le présent chapitre porte sur la présentation des essais d'auscultation non-destructifs effectues sur le tronçon ayant fait l'objet d'étude pour choisir une solution d'entretien qui est un renforcement sur le long du tronçon (15 Km) selon le guide de renforcement utilisé par l'organisme CTTP.

L'étude de trafic est menée afin de déterminer l'intensité du trafic d'une part (TJMA), et d'autre part, l'agressivité des véhicules poids lourds (%PL). Le prédécoupage selon le trafic journalier en poids lourd a généré une (01) zone homogène: Du PK 123+000 Au PK 138+000

III.2 Généralité sur le trafic :

.T.J.M.A:

Le trafic moyen journalier annuel, (ou TJMA) représente le nombre total de véhicules empruntant toute la largeur circulable de la chaussée. Il est déterminé lors des campagnes de comptage permettent la mise en oeuvre et le suivi des politiques routières en matière d'infrastructure tel que la conception, l'entretien, la sécurité et l'exploitation des chaussées.

III.2.1.Méthodes de comptage :

a) Comptages Automatiques:

les postes mobiles sont opérationnels deux semaines par année, Pour chaque section de trafic. Ces semaines étant judicieusement décalées dans l'année

Pour certaines sections de trafic On distingue ceux qui sont permanents et ceux qui sont temporaires

- ➤ Les comptages permanents : Ils correspondent à des comptages sur les sections pour lesquelles nous disposons d'un recueil de débits journaliers sur une année complète. Ils sont exprimés en TMJA.
- Le comptage temporaire : Les comptages temporaires sont réalisés avec des plaques ou des tubes caoutchouc placés en travers de la chaussée reliés à un compteur. Le trafic est enregistré pendant une période d'une semaine

Remarque: cette méthode ne distingue pas les différents types de véhicule (lourds, légers).

b) Comptage Manuel : Ce comptage est effectué par un observateur installé au bord de la chaussée. Il enregistre tous les véhicules qui traversent la section transversale de la chaussée au point de comptage suivant leur catégorie.

III.2.2.Pourcentage des poids lourd :

La connaissance du trafic poids lourds est indispensable pour :

Établir le diagnostic : expliquer et comprendre l'évolution et la dégradation de la structure de chaussée, évaluer le dommage structurel théorique en fonction du nombre de charges de référence ayant circulé sur la structure.

Déterminer le type et l'épaisseur de la couche de surface qui sont fortement fonction du trafic poids lourds journalier moyen (MJA).

Les poids lourds, conformément à la norme NF P 98-082 de janvier 1994, sont les véhicules de plus de 35 kN de Poids Total Autorisé en Charge.

Deux notions sont retenues pour évaluer le trafic supporté par une route :

- Le trafic journalier déterminé à partir de la MJA de la voie exprimé en classe de trafic
 Ti. (tableau 1).
- > le trafic cumulé correspondant au nombre de poids lourds par sens sur la voie pendant la durée de dimensionnement de la chaussée.

Tableau III.1 : définition des classes de trafic.

Classe	T5	T4	7	Г3	7	Γ2	Ţ	Γ1	T	O		TS	TEX
Classe	13	14	Т3-	T3+	T2-	T2+	T1-	T1+	ТО-	T0+	TS-	TS+	ILA
MJA	C	25	50 85	5	150	20030	0	500	750120	0 200	0 300	00 5000	

Le trafic cumulé des poids lourds, TC_{PL}, est calculé :

Soit à partir d'une progression arithmétique

> Soit à partir d'une progression géométrique

Avec:

MJA: Moyenne Journalière Annuelle, représentant le nombre moyen de PL par jour, par sens, lors de la mise en service, éventuellement pondéré par la largeur de la chaussée et le nombre de voies de circulation par sens.

d : nombre d'années de durée de service ou d'ouverture à la circulation.

τ: taux de croissance linéaire annuelle du trafic à la mise en service.

q : taux de croissance géométrique annuelle du trafic à la mise en service.

Le trafic poids lourds cumulé est alors converti en un nombre équivalent NE de passages de l'essieu de référence de 130 kN :

$$NE = TC_{pL} xCAM$$

CAM: Coefficient d'agressivité structurelle moyenne des poids lourds.

Sols supports (1)

Le tableau 2 nous renseigne sur les coefficients d'agressivité retenus dans le catalogue des structures types de chaussées neuves de 1998 pour les voies du réseau structurant (VRS) et non structurant (VRNS).

Rappelons que le coefficient d'agressivité moyen du poids lourd (CAM) peut être déterminé à partir des stations de pesage en marche et des matériaux de structure.

Matériaux	Catégories des voies			
	VRS	VRNS		
Bitumineux	0,8	0,5		
Traités aux Liants Hydrauliques	1,3	0,8		
Graves non traitées	1,0	1,0		

1,0

1,0

Tableau III.2 : catégories des voies en fonction des matériaux.

Pour les trafics PL inférieurs à 150 PL/j/voie CAM = 0,004 x MJA PL + 0,4

Donc Le nombre de poids lourds circulant sur la route à renforcer est le critère d'agressivité que l'on prend en compte dans l'étude de dimensionnement des chaussées. Pour cela, le trafic sera évalué par catégories de véhicule. Classé dans le tableau ci-dessous :

Tableau III.3 : catégorie de véhicules.

P1	Véhicules particulières
P2	Véhicules utilitaires (camionnettes)
P3	Cars
P4	Camion a 2 essieux
P5	Camion a 3 essieux
P6	Ensembles articulées

Le pourcentage de poids lourds pris en compte dans le dimensionnement est la somme des pourcentages des catégories (P4, P5, et P6)

Un Comptage a été effectué par le service concerné du CTTP qui a donné les résultats suivants

Tableau III.4 : le relevé des zones homogènes

Localisation PK Déb - PK Fin		TJMA	PL
Localisation 1 K Deb - 1 K Fin		(Véh/j)	%
DIZ 122 . 000 DIZ 120 . 000	Sens 1 : Aller	1028,49	24
PK 123+000 – PK 138+000	Sens 2 : Retour	1219,30	28

III .2.3. Composition du trafic :

Le trafic est en général composé de :

- > Véhicules léger.
- > Autocars ou autobus.
- > Poids lourd (camions en général).
- > Transports légers.
- > Engins agricole et de travaux publics.
- > Deux roues immatriculées.
- > Hippomobiles.

Cette décomposition du trafic sera plus ou moins fine selon l'étude visée :

Pour une étude routière complexe (extension d'un réseau routier, amélioration d'itinéraire élargissement ...) on se limitera aux véhicules légers et aux poids lourds.

III.2.4. Effet du trafic :

Le trafic intervient sous deux formes :

En tant que quantité de véhicules (débit de véhicules passant par une route), cette donnée principale permet de dimensionner géométriquement la route pour pouvoir contenir un débit enregistré (largeur de chaussée, type de revêtement, niveau de service). En tant que charge c'est la sollicitation qui permet de dimensionner la chaussée pour pouvoir supporter les charges générées par le trafic enregistré (arrêter les épaisseurs des différentes couches constituantes le corps de la chaussée).

III .2.5. Classe de trafic

- > Les classes de trafic considérées pour le dimensionnement des structures de renforcement sont celles définies à partir du trafic cumulé pour la durée de vie escomptée Tc.
- > La classe de trafic (TP Li) est déterminée à partir du trafic PL/j/sens compté en moyenne journalière annuelle (MJA), sur la voie la plus chargée, à l'année de mise en service. Le tableau

ci-dessous donne par niveau de réseau (RP 1 ou RP2), les classes de trafic adoptées.

Tableau III.5 : les classes de trafic.

TPLi	Classe de Trafic RPi	TPLO	TPL1	TPL2	TPL3	TPL4	TPL5	TPL6	TPL7
(PL/J/sens)	RP1	-	-	-	150 à 300	300 à 600	600 à 1500	1500 à 3000	3000 à 6000
	RP2	0 à 50	50 à 100	100 à 150	150 à 300	-	-	-	-

✓ Détermination de trafic PI à l'année de mise en service :

 $Tms = Tpl x (1 + \tau)^n$

Avec:

Tms: Le trafic PI a l'année de mis en service

Tpl: Le trafic lourd par voie de circulation considérée.

τ: Le taux de croissance annuel du trafic (%).

n : nombre d'années.

✓ Détermination du trafic cumulé pour la durée de vie escomptée :

$$Tc = \frac{365x \text{ Tms } x(1+\tau)^n - 1}{\tau}$$

Avec:

Tc: trafic cumulé pour la durée de vie escomptée

Tms:Le trafic a l'année de mis en service

N: durée de vie escomptée

τ: Taux d'accroissement annuel.

III.2.6.Durée de vie de la chaussée :

La durée de vie d'une structure de chaussée est le nombre d'année que s'écoulent entre l'année de

la mise en service et l'année pendant laquelle la structure attendra son état de fatigue limite. C'est le gestionnaire du réseau qui fixe la durée de vie pour le dimensionnement en prenant en compte les facteurs de rentabilité, les contraintes budgétaires et le type d'aménagement. (Rase campagne, traversée de localités, carrefour, etc...)

Les lois citer au-dessus ainsi que les données fournis par l'entreprise des travaux public CTTP nous permet d'effectués les calculs suivants:

III. 3.Données fournis par CTTP:

Tableau III. 6: tableau des informations du trafic.

Taux d'accroissement	0.05
Durée de vie	10 (ans)
Année de la mise en service	2023
Année de comptage	2022
C A M	0.8

III.3.1. Hypothèse de calcul

CAM=0,8 (NB :les poids lourds doit respecter la charge de 13 tonnes par essieu) ;

Année de comptage 2022;

Année de mise en service 2023;

Durée de vie escomptée N = 10 ans ;

Coefficient d'accroissement annuel i = 5 %.

Selon la méthodologie du guide de renforcement élaboré par le CTTP en 1992, on aura les résultats illustrés dans le tableau suivant :

Tableau III.7 : Trafic cumulé en poids lourds

Localisation PK début - PK	TJMA	% PL	Trafic cumulé prévisionnel
fin	(Véh/j)		en poids lourds
PK123+000 - PK138+000	1 219,30	28%	1,646E+06

- 4. Comptage de trafic journalier en poids lourd et pesage
- TJMA 2022 = 1219,30 v/j PL = (28%)

359 PL/j (TP Li mise en service);

- Croissance géométrique du trafic de 5 % annuel ;
- Risque de 15 %;

- **CAM: 0,8-2,4** pour les matériaux bitumineux, 1 pour le sol support ;
- Trafic cumulé prévisionnel en poids lourds (2033)= 1,646E+06.

Programmation des travaux

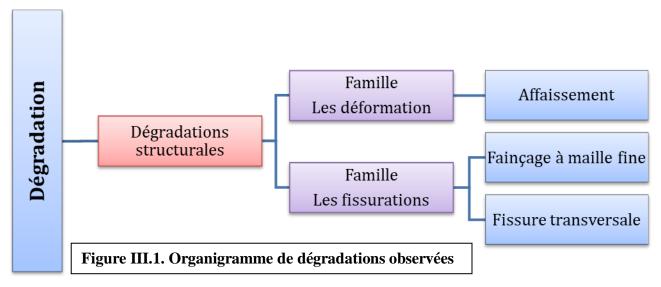
- Année prévue des travaux : 2023 ;
- Durée de vie : 10 ans.
 - relevée visuel des dégradations

III.4.donnees sur l'auscultation de la chaussée :

Ausculter une chaussée revient à évaluer son état structurel et fonctionnel et à établir son diagnostic afin d'y apporter des remèdes nécessaires pour son maintien dans un niveau de service appréciable donc apporter des solutions appropriées au choix de la technique à mettre en œuvre et ce à travers des paramètres d'état bien définis. La campagne d'auscultation de la chaussée a portée sur :

- Un relevé visuel détaillé pour connaître l'état de surface de la chaussée et les types de dégradations.
- les mesures de déflexion pour connaître l'état de la structure ou la portance,
- les mesures d'uni pour connaître l'état de planéité de la chaussée,
- ➤ Des investigations géotechniques pour connaître les caractéristiques intrinsèques des matériaux du corps de chaussée et la portance du sol support.

III.4.1. Etat visuel de la chaussée :


Les chaussées évoluent et se dégradent essentiellement sous I 'effet du trafic lourd et des conditions climatiques. La rapidité de cette évolution et les désordres qui apparaissent sont également liées à la nature et à l'épaisseur des matériaux utilisés et à leurs conditions de fabrication et de mise en œuvre.

Les dégradations les plus couramment rencontrées se classent en deux grandes familles, dégradations structurelles et dégradations superficielles.

Les premières apparaissent au sein de la structure de chaussée ou de son support. Les Secondes prennent naissance dans la couche de surface de la chaussée.

III.4.2.Schéma de différentes dégradations relevées :

La figure suivante schématisé la classification des différentes dégradations rencontrées par famille sur toute la section.

Les dégradations observées sur l'axe étudié sont énumérées par famille ci-après : une description sommaire pour chaque dégradation avec les causes probables sont données à titre de renseignement.

En outre, une illustration photographique des dégradations constatées et leurs localisations ainsi que leurs gravités sont mentionnés pour chaque désordre observé sur l'axe étudié.

III.4.3 Famille de déformation

III .4.3.1 Affaissement

Tassement vertical de la chaussée localisé soit à la partie comprise entre le bord et la bande de roulement de rive.

Causes probables:

- Dimensionnement des couches supérieures inadapté au trafic ;
- Sous-dimensionnement localisé, lié à une hétérogénéité au niveau de l'assise ou du sol support ;
- Perte locale de portance du sol suite à une humidification excessive de la chaussée ;
- Absence, mauvaise qualité ou sous-dimensionnement de l'épaulement qui peut être aggravé par des conditions géométriques particulaires (intérieure de virage à petit rayon) ;
- Mauvais drainage superficiel et latéral.

Figure III.2 : PK 124+680

Figure III.3: 136+527

III.4.4. Famille de fissuration

III.4.4.1. Faïençage à maille fine

Réseau de fissures d'orientations variées, reliées entre elles, formant une série de polygones et occupant soit l'endroit de passage préférentiel des roues, soit la quasi-totalité de la chaussée.

Causes probables:

- Dimensionnement inadéquat par rapport au trafic, épaisseur insuffisante des couches supérieures en matériaux liés, faible portance du sol;
- Décollement de la couche de roulement (mauvais accrochage de la couche de roulement sur la couche de base);
- Couche de roulement ri gide sur couche de base très déformable ;
- Fatigue de la chaussée, fin de durée de vie.

Figure III.4 : PK 134+000

III..5. CONCLUSION

L'évaluation des chaussées repose sur une série de mesure et d'observations visuelles qui permettent d'établir l'état réel de la route, de diagnostiquer les causes des dégradations et enfin de cibler les solutions d'entretien les plus adéquates.

Le présent document retrace en premier lieu l'un des paramètres essentiels de l'évaluation des routes c'est le relevé visuel des données géométriques et de dégradations de la chaussée ainsi que l'état des dépendances.

Pour notre cas, le diagnostic de l'auscultation visuelle de la section de la route nationale N° 111 située du PK 123+00 au PK 138+000, nous a conduits à estimer les pourcentages de l'état de surface de la chaussée comme suit :

- Bon sur 18 % de linéaire ;
- Moyen sur 03 % de linéaire ;
- Mauvais sur 79 % de linéaire.

Les résultats sont réservés sur le tableau suivant :

Tableau III. 8: relevé visuel de dégradation sur l'axe de la RN 111.à divisé en plusieurs tableaux par page

Localisation	Distance de la sous	Linéaire Total (KM)	Appréciation	Événement
	section	14,720	Voie 01	
	100	<u>L</u>	mauvais	
an	200		mauvais	
	300	E1 /	mauvais	
PK123+000 PK124+000	400	514	mauvais	
123	500		mauvais	
PK PK	514		mauvais	
	100		Mauvais	
	200		mauvais	
	300		mauvais	
8	400		mauvais	Buse 124+350
au PK125+000	500		mauvais	
12;	600	1177	mauvais	
PK	700	1177	moyen	
an	800		bon	
	900		bon	
0 +	1000		bon	
PK124+000	1100		bon	
PK	1177		bon	
	100		bon	
	200		bon	
	300		bon	Buse 125+234
	400		mauvais	
	500		mauvais	
000	600		mauvais	
) + 9	700	1217	mauvais	
[12	800	1317	mauvais	
PK	900		mauvais	
au PK 126+000	1000		mauvais	
	1100		mauvais	Buse 125+1064
0 +	1200		mauvais	
PK125+000	1300		mauvais	
PK	1317		mauvais	
	100		mauvais	
26+000	200	002	mauvais	
PK126+000 au PK127+000	300	993	mauvais	
PK1 au PK1	400		mauvais	Buse 126+359

	Distance	Linéaire	A	
Localisation	de la sous	Total (KM)	Appréciation	Événement
	section	14,720	Voie 01	
	100		mauvais	<u> </u>
	200		mauvais	
an	300		mauvais	
000	400	J14	mauvais	
PK123+000 PK124+000	500		mauvais	
PK123+000 au PK124+000	514		mauvais	
	100		Mauvais	
	200		mauvais	
	300		mauvais	
	400		mauvais	Buse 124+350
	500	1177	mauvais	
8	600		mauvais	
PK124+000 au PK125+000	700		moyen	
PK1	800		bon	
an]	900		bon	
000	1000		bon	
24+(1100		bon	
PK1	1177		bon	
	100		bon	
	200		bon	
	300		bon	Buse 125+234
	400		mauvais	
	500		mauvais	
000	600	1317	mauvais	
au PK 12	700	131/	mauvais	
	800		mauvais	
	900		mauvais	
	1000		mauvais	
25+(1100		mauvais	Buse 125+1064
PK1	1200		mauvais	

	1300		mauvais	
	1317	·······	mauvais	
an	100		mauvais	
8 8	200	993	mauvais	
27+00	300	393	mauvais	
PK1	400		mauvais	Buse 126+359

PK132+000	100		mauvais	Buse 131+038
	200		mauvais	
	300		bon	
	400		bon	Buse 131+337
	500		bon	
PK	600	1016	mauvais	
	700		moyen	
PK131+000 au	800		moyen	
90+	900		mauvais	
131	1000		mauvais	Buse 131+954
PK	1016		mauvais	
	100		Mauvais	
9	200		mauvais	
133	300		mauvais	
au PK133+000	400		mauvais	
	500	835	mauvais	
	600		mauvais	Buse 132+598
PK132+000	700		bon	
132	800		moyen	
PK	835		bon	
	100		bon	Buse 133+062
	200		bon	
	300		bon	Buse 133+298
9	400		bon	
134+000	500		moyen	
134	600	1151	bon	
PK	700	1151	bon	
	800		bon	
+0 00 au PK133+000 au] P	900		bon	
	1000		bon	
	1100		mauvais	
	1151		mauvais	
- -	₹ 100	989	mauvais	

	200		•	
	200		mauvais	
	300		mauvais	
	400		mauvais	
	500 600		mauvais mauvais	Buse 134+526
	700		mauvais	Duse 134+320
	800		mauvais	
	900		mauvais	
	700		mauvais	
	989		mauvais	Buse 134+959
	100		mauvais	
	200		mauvais	
	300		mauvais	
00	400		mauvais	Buse 135+388
PK135+000 au PK136+000	500	982	mauvais	
K13	600	982	mauvais	
m P	700		mauvais	
3 00	800		mauvais	
2+0	900		mauvais	
K13	982		mauvais	
	100		mauvais	
	200		mauvais	
	300		mauvais	
8	400		mauvais	Buse 136+334
.7+0	500	005	mauvais	
K13	600	995	mauvais	
PK136+000 au PK137+000	700		mauvais	
3 00	800		mauvais	
0+98	900		mauvais	
K113	995		bon	
<u> </u>	100		bon	
2	200		bon	
PK137+000 au PK 138+000	300	765	bon	Buse 137+260
PK137+000 PK 138+000	400		bon	
K13	500		mauvais	
	<u> </u>			

	600	mauvais	
! !	700	mauvais	
-	765	mauvais	

	Bon	Moyen	Mauvais	Total (m)
uc	2607	500	11613	14720
Estimation	17,71%	3,40%	78,89%	100%

III.6 Relèves des données d'assainissement

III.6.1. travaux d'assainissement et de drainage

Le comportement mécanique des sols support et des matériaux non traités utilisés dans les structures de chaussée se dégrade avec la présence d'eau, l'eau accumulée aux interfaces des couches bitumineuses est mise en pression sous l'action du trafic lourd, ce phénomène dégrade les liaisons entre couches, et a pour effet d'accroitre leur fatigue.

Ainsi l'eau se trouvant en excédant dans la chaussé

e, en raison des infiltrations d'origine diverse (eaux de ruissèlement, eaux internes) est un élément décisif de l'accélération des dégradations de chaussée quels que soient les matériaux qui la constituent.

Par ailleurs, l'eau qui tombe ou qui ruisselle sur la chaussée, si elle n'est pas rapidement évacuée, met en cause la sécurité et le confort de l'usager (chaussée glissante, projection engendrée par le trafic altérant les conditions de visibilité par temps de pluie, formation de verglas ou même inondations).

Pour parvenir contre ces effets un intérêt primordial doit être apporté au réseau d'assainissement et de drainage, on doit s'intéresser de près :

a. L'assainissement des eaux superficielles :

Cette opération a pour rôle la collecte des eaux provenant de la plateforme ou de l'environnement, et leurs canalisations hors de l'emprise routière et contribue :

- À assurer la sécurité et le confort de l'usager
- À éviter les stagnations et les infiltrations de l'eau dans la chaussée et le sol support.

b. Au drainage des eaux internes :

Cette tache a pour but d'éliminer l'eau présent dans la structure de chaussée, et contribue de façon essentielle au bon comportement de la chaussée, en évitant la diminution de la portance du sol support.

c. A la réduction des possibilités d'infiltration par :

• L'entretien et la remise en état des dispositifs d'assainissement et de drainage existant.

III. 6.2 Travaux préconises :

Un examen visuel du réseau d'assainissement existant au niveau de la Route National N° 111 a permis de constater que les dispositifs d'assainissement en termes de fossés en béton et des

certains ouvrages transversaux sont obstrués ce qui va engendrer une stagnation d'eau, et donc va précipiter la dégradation de la chaussée.

Une amélioration du réseau d'assainissement et de drainage s'avère nécessaire pour cela, il est prévu :

- Curage des ouvrages transversaux (passages busés) et leurs réparations ;
- Curage des fossés bétonné obstrués.

La localisation de tous les travaux précités est donnée ci-dessous :

III.6.3. curage des passages transversaux

Tableau III.9 : Curage et réparation des Passages Transversaux

Localisation	Туре
	Турс
PK 124+350	
PK 125+234	
PK 125+1064	
PK 126+359	• Curage (Buses)
PK 127+767	
PK 128+484	
PK 128+565	
PK 129+051	
PK 129+918	
PK 131+038	• Curage+Réparation (Buses)
PK 131+337	
PK131+954	
PK 132+598	
PK 133+062	Curage (Buses)
PK 133+298	
PK 133+935	
PK 134+526	 Curage+Réparation (Buses)
PK 134+959	5 1
PK 135+388	• Curage (Buse)
PK 136+334	 Curage+Réparation (Buse)
PK 137+260	• Curage (Buse)

Passage busé obstrué et le mur de retour détruit

Figure III.5 : PK 136+334

III.6.4 . Relevés relatifs à la sécurité routière

L'inspection de sécurité routière a pour vocation de relever des singularités de la route, de ses abords et de son environnement qui peuvent influer sur le comportement de l'usager et, ainsi, avoir des répercussions sur la sécurité routière.

Des visites terrains ont été réalisées de diagnostiquer et évaluer la signalisation existante et ses équipements sur la route **nationale** N° 111 située du PK 123+000 au PK 138+000. Les constats sont appuyés par des documents photographiques joints comme suite :

Sens El-bayadh vers Tiaret (Sidi abderrahmane)

Dispositif de retenue : Glissière métallique

Figure III.6: PK 125+175-125+265 Gauche et PK 125+217-125+265 Droite

III .7. Auscultation par mesure d'uni

III.7.1. La mesure de l'uni description de l'appareil et principe de la mesure :

III.7.2.Indice de planéité internationale IRI «International RoughnessIndex»:

L'uni d'une chaussée est un critère de qualité géométrique. Il caractérise l'ensemble des dénivellations de la surface de la chaussée par rapport à ses profils théoriques (irrégularités longitudinales).

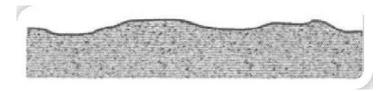
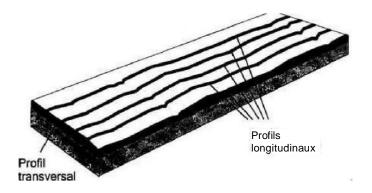



Figure III.7: Corp. de chaussée

Figure III.8: Profils longitudinaux et transversaux

L'indice de planéité international IRI est utilisé par de nombreux pays pour apprécier l'uni des chaussées routières. Il a été proposé par la Banque Mondiale de développement«World Bank» dans les années 1980 dans le but de développer un indice de mesure de l'uni deschaussées qui serait commun à tous les pays du monde.

L'IRI est une unité internationale calculer les débattements, en mètres que la suspension d'une voiture subit lorsqu'elle parcourt un kilomètre à une vitesse de 80 km/h.

Cet indice comporte certains avantages tels que :

- ➤ Il est comparable dans le temps.
- ➤ Il est applicable à tous les types de route et de piste.
- > Il peut être calculé à partir de relevés réalisés avec un nombre important de type d'appareil.
- > Il bénéficie d'une reconnaissance internationale.

III.7.3. Présentation de l'équipement :

Le RSP Mark 4 est un appareil (analyseur de profil en long) conçu pour effectuer le contrôle de l'Uni longitudinal des chaussées routières et aéronautiques.

Le système de mesure de la planéité du profil longitudinal est constitué d'un accéléromètre qui est utilisé pour obtenir le déplacement vertical de la coque du véhicule roulant, et d'un capteur laser pour mesurer le déplacement vertical entre la roue du véhicule et surface de chaussée. La mesure du profil est donc obtenue en additionnant ces mesures respectives.

III.7.4. Domaine d'application :

Le matériel RSP Type Mark 4, est un outil destiné à la mesure du profil en long des chaussées en services ou en cours de construction et qui intervient sur la sécurité, le bruit, le confort de l'usager ou d'adhérence de la chaussée.

Figure III.9: RSP

III.7.5. Composants du Système d'essai:

Le RSP est constitué des principaux composants suivants :

- Une Unité centrale de traitement électronique (EPU).
- Un capteur laser pour la mesure de l'élévation.
- Un accéléromètre.
- Un PC Compatible doté d'une connexion internet.
- > Un ensemble d'encodeur de roue.

Le PC de recueil des données est doté d'un logiciel de mesure qui nous permet le recueil des données.

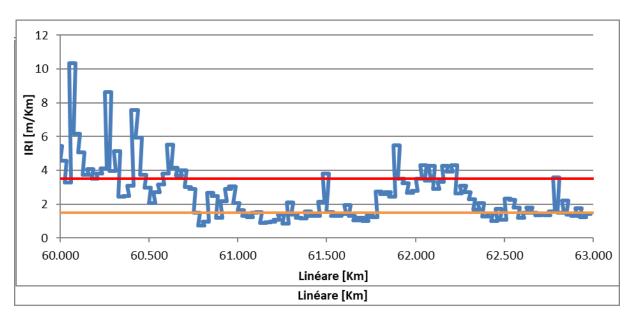
L'exploitation des résultats s'est faite sur la base de l'échelle de spécifications de la Banque Mondiale tirée de la norme établie par le « FederalHighway Administration FHWA ».

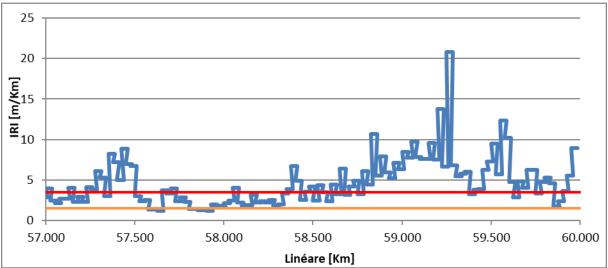
L'échelle de la Banque Mondiale limite les valeurs d'IRI par type de Route. Les seuils IRI spécifiques à ce type de chaussée sont présentés dans le tableau ci-dessous :

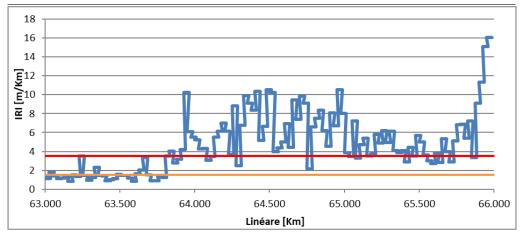
IRI TYPES DE CHAUSSEES ET UTILISATION NORMALE (m/km) Ornières dues à érosions et dépressions profondes 14 50 km/h Fréquentes dépressions peu profondes, avec quelques 60 km/h dépressions plus profondes 10 7,5 Dépressions Mauvaises routes non revêtues fréquentes mais de 80 km/h faible importance 6 100 km/h 5 Chaussées Imperfections endommagées de surface Routes non revêtues, mais bien entretenues 3,5 Chaussées relativement 2,5 anciennes Chaussées 1.5 neuves Pistes d'aéroport et autoroutes 0,5 Perfection absolue

Tableau III .10 (. Les seuils IRI spécifiques à ce type de chaussée)

RN 111: SIDI-ABDERRAHMANE VERS EL-BAYADH


État de planéité de la chaussée


Les mesures d'uni ont été effectués à l'aide d'un appareil de type RSP Mark 4, fixé à l'aide de supports métalliques derrière le véhicule. Cet appareil fournir les données d'uni en IRI (International Roughness Index), Les mesures effectuées en décembre 2022 permettent d'obtenir une meilleure appréciation de la planéité de la chaussée.


Tableau III.11 : État de planéité de la chaussée

Du	Au	(IRI <1.5)	(1.5 < IRI < 3.5)	(IRI > 3.5)	ESTIMATION
		Bon	Moyen	Mauvais	
PK 123+000	PK 124+000	5,3	84,2	10,5	Moyen
PK 124+000	PK 125+000	4,4	80,0	15,6	Moyen
PK 125+000	PK 126+000	11,5	78,8	9,6	Moyen
PK 126+000	PK 127+000	13,2	68,4	18,4	Moyen
PK 127+000	PK 128+000	20,5	43,6	35,9	Moyen
PK 128+000	PK 129+000	0,0	55,0	45,0	Moyen
PK 129+000	PK 130+000	0,0	13,5	86,5	Mauvais
PK 130+000	PK 131+000	10,3	33,3	56,4	Mauvais
PK 131+000	PK 132+000	57,5	35,0	7,5	Bon
PK 132+000	PK 133+000	25	59,4	15,6	Moyen
PK 133+000	PK 134+000	63,6	29,5	6,8	Bon
PK 134+000	PK 135+000	0,0	10,3	89,7	Mauvais
PK 135+000	PK 136+000	0,0	20,5	79,5	Mauvais
PK 136+000	PK 137+000	5,3	7,9	86,8	Mauvais
PK 137+000	PK 138+000	46,7	46,7	6,7	Bon à moyen

L'auscultation effectuée sur le tronçon étudié a donné les résultats suivants

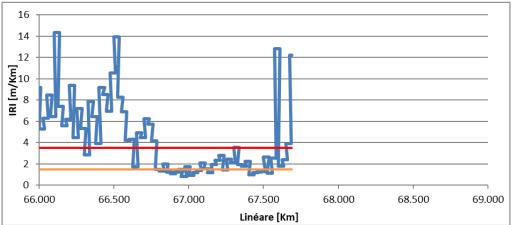


Figure III.10 .l'UNI longitudinal

III.7.6. Conclusion:

Ce rapport présente toute la méthodologie utilisée pour le calcul des indices de confort au roulement exprimé sous forme d'IRI. En considérant l'échelle de la Banque Mondiale, l'indice de planéité IRI enregistré dans la Wilaya de TIARET sur l'ensemble des sections auscultées, présentent un Uni qui varie comme suit :

RN 111:

▶17,55% du l'itinéraire présente un uni Bon.

≥44,41% du l'itinéraire présente un uni Moyen

≥38,04% du l'itinéraire présente un uni Mauvais.

A la lecture de tous ces résultats, on remarque que l'uni est moyen à mauvais sur la majeure partie de l'itinéraire concerné par l'étude.

Les appareils de mesure utilisée en auscultation

III.8.. Les appareils de mesure utilisée en auscultation :

III.8.1 Road Surface Profiler (RSP) Mark IV:

Le PRS est un appareil analyseur de profil en long conçu pour effectuer le contrôle de l'Uni longitude des chaussées s routières aéronautiques.

Le PRS est un appareil analyseur de profil en long conçu pour effectuer le contrôle de l'Uni longitude des chaussées routières aéronautiques.

III.8.2 Domaine d'application:

Le matériel PRS est un outil destiné à la mesure du profil en long des chaussées en services ou en cours de construction , et qui intervient sur la sécurité, le bruit, le confort de l'usager ou d'adhérence de chaussée

➤ Les avantages :

- Garantie une haute précision du laser accordée aux standard en vigueur.
- Mesure prise pour toutes les vitesses de circulation.
- Tous les indices calculés en temps réel.
- Calibrage du laser et l'accélération facile.

III.8.3.. HWD(HeavryWeightDeflectometer):

Le HWD est un appareil conçu pour simuler et mesurer les sollicitations d'une charge roulante sur une chaussée par application d'un chargement par impulsions sur une plaque de charge circulaire.

La charge dynamique, appliquée sur la chaussée et mesurée par une série de capteurs d'effort (qu'on appelle déflecteurs ou géophones), provoque un bassin de déflexion qui est mesuré et enregistré. La force dynamique appliquée, fixée par la chute de la masse, est adaptée en fonction de la nature de la structure testée (essentiellement, les chaussées routières et pistes aéronautiques).

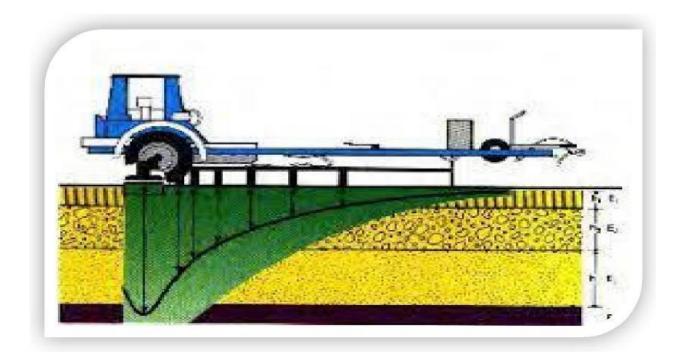


Figure III 11:HWD

➤ Domaine d'application:

Le matériel **HWD** est un outil quasi-essentiel pour l'auscultation de réseaux routiers et pistes aéroportuaires à l'aide d'un véhicule multifonctions.

Son aspect mécanique lui permet de:

- 1. Mesurer la déformabilité des chaussées et des couches constituantes.
- 2. Déterminer leur homogénéité lors de la réalisation.

Apprécier la portance et le comportement à la fatigue des structures

Son aspect analytique lui confère une gestion de chaussée inégalable:

- 1. Inventaire routier.
- **2.** Planification stratégique d'intervention d'entretien.
- 3. Études de réhabilitation d'infrastructures routières et aéroportuaires.
- **4.** Préparation et suivi de projet de réhabilitation.
- **5.** Études spécifiques.

Figure III.12. HWD (Heavy Weight Deflectometer)

III.8.4. Dynatest Highway/Runway 6875 HRFT Friction Tester Equipment:

Mesure d'un coefficient de frottement longitudinal qui correspond à la capacité d'une chaussée à mobiliser des forces de frottement entre le pneumatique d'un véhicule (ou avion) et la surface du revêtement sous l'effet des sollicitions engendrées par la conduite, accélération, freinages ...etc

Les perditions d'adhérences sont principalement causées par des contaminants tels que l'eau, la neige ou le gel et la glace ainsi et surtout par l'érosion des surfaces due à l'effet excessif et répète de l'adhésion et freinage des pneus de véhicules roulants. Le HRFT est capable de surveiller et de contrôler cette perdition de friction.

Caractéristiques:

- Capacité de réservoir d'eau: 1000L peut aller jusqu'à 12km de mesure.
- Capable de mener un essai à deux vitesses différentes 64km/h et 90km/h ± 5km/h.
- Fournit des valeurs moyennes de friction pour segment désignés par l'utilisateur.
- Indice de friction:

Mu = Force horizontale E / Force verticale P

Figure III.13: Dynatest Highway 6875 HRFT Friction Tester Equipment

III.8.5. Le DeflectographeLacroix:

Appareil de mesure :

Mesure de la déformation verticale (déflexion) en continu d'une chaussée sous l'essieu d'un poids lourd en mouvement.

> Objectifs de la mesure:

- Surveillance d'un réseau routier et l'étude de son évolution sous trafic.
- La détection des zones défectueuses à renforcer.
- Le contrôle de l'exécution et de l'efficacité des renforcements.

Principe:

La déflexion est mesurée entre chaque jumelage de l'essieu arrière du véhicule par des bras palpeurs munis de captures rotatifs et articulés sur une poutre de référence. Cette dernière, désolidarisée du véhicule, repose sur la chaussée par trois points situés hors de la zone d'influence de la charge. Le véhicule avançant, on enregistre la déflexion jusqu'à ce que les jumelage viennent au niveau des palpeurs. La poutre de référence est alors prise en charge par le véhicule, ramenée vers l'avant, et reposée sur chaussée dans sa position initiale vis à vis du véhicule, pour une nouvelle mesure, sans que le véhicule interrompe son mouvement.

Domaine d'emploi:

- Réception de chaussées routières et autoroutières.
- Expertise (site accédentogènes).
- Auscultation dans le cadre de lagestion et de l'exploitation des réseaux routiers.

> Caractéristique:

- Vitesse de la mesure supérieur à 3km/h.
- Pas de mesure de k 4m.
- Chargé appliqué 13 tonnes.
- Etendu de mesure: ± 2.5 mm.
- Résolution de mesure: 0.01mm.
- Mesure de température de surface: ± 3°C.

Figure III.14:Deflectographe Lacroix

III.8.6.Géoradar:

Le géoradar constitue un procédé géophysique léger et non destructif permettant d'effectuer de manière précise et en continu des études géologiques de sub-surface et des auscultations d'ouvrage d'art.

Il est applicable pour:

- L'auscultation des chaussées.
- Détection des réseaux sous terrain.
- L'auscultation des structures (l'inspection des sols, murs, ponts, dalles tunnels)

- Le géoradar utilise la propagation et la réflexion d'ondes électromagnétiques.
- Une antenne émettrice envoie dans la structure des ondes de très grandes fréquences, quand les ondes rencontrent un contact entre deux milieux différentes, une partie de leurs énergies est réfléchie, tandis que l'autre pénètre plus profondément.
- Une antenne de réception reçoit les ondes réfléchies et réfractées.

➤ Que mesure le géoradar:

- Le géoradar mesure le temps de parcours et l'amplitude des ondes EM réfléchies et ou réfractées.
- L'amplitude et le temps de parcours des ondes EM sont fonctions de permittivité et la conductivité des milieux traversés.

Figure III.15:Géoradar

III.8.7. Conclusion:

L'auscultation des chaussées est essentielle pour alimenter les systèmes de gestion des chaussées :

- > Connaitre l'état du réseau routier.
- > Identifier les besoins en intervention.
- > Établir les priorités et les stratégies
- > la déflexion

III.9 auscultation par mesure de déflexion

III.9.1. La déflexion de la chaussée sous charge:

La déflexion de la structure de chaussée est mesurée dans les bandes de roulement de la voie lente. Si le tracé est sinueux ou si l'état de dégradation est différent par sens, des mesures sur chaque sens de circulation sont indispensables.

Le paramètre « Déflexion » est peu sensible aux variations de module des matériaux du corps de chaussée, mais sensible aux variations d'épaisseurs et très sensible aux variations de portance du support.

Les conditions hydriques pendant les deux mois précédents les mesures doivent être prises en compte lors de l'interprétation des mesures .

III.9.2. Mode d'acquisition du paramètre " Déflexion" :

Les mesures peuvent être réalisées :

de manière continue selon le mode opératoire D1 de la méthode d'essai LPC 39. Le pas de mesure est fixé par le type d'appareil :

- Déflectographe (NF P 98-200-3 à 5) : les mesures s'effectuent simultanément sur les deux bandes de roulement de la voie auscultée à une vitesse inférieure à 10 km/h. Le pas de mesure est constant et inférieur 5 m. Le type de déflectographe doit être adapté au type de structure. Si ce n'est pas possible (alternance de structures de types différents), on devra en tenir compte dans l'interprétation du paramètre, en particulier lors de la modélisation.
- Curviamètre (NF P 98-200-7) : la mesure ne s'effectue que sur la bande de roulement côté rive à une vitesse de l'ordre de 18 km/h. Le pas de mesure est de 5 m.

IV.3. Déflectographe LACROIX

Il a été mis au point par M. J. Lacroix, en 1956, Ingénieur des Ponts et Chaussées intégrant la poutre Benkelman a un camion pour mesurer la déflexion sous essieux lourds des chaussées. Le but de cette innovation était de mesurer la déflexion plus rapidement et avec plus de points qu'avec la poutre Benkelman. La direction des Ponts et Chaussées perçoit rapidement l'intérêt du Deflectographe Lacroix pour les mesures de déflexions de la chaussee a grande échelle et a grand rendement, et collabore a la construction d'un second appareil prototype en 1961.

Le Deflectographe Lacroix subit dans les 30 années suivantes plusieurs

modifications plus ou moins importantes.

III.9.3.Présentation du matériel de mesure :

L'auscultation réalisée a été effectuée à l'aide du défléctographe Lacroix ont été réalisées dans la période du 25/03/2022 au 01/04/2022, acquis en 2010 par le CTTP. Le défléctographe est un appareil qui mesure la déformation verticale d'une chaussée sous l'essieu d'un poids lourd en mouvement à vitesse constante. Il est utilisé notamment pour :

- La surveillance d'un réseau routier.
- La détection des zones à renforcer.
- Le contrôle de l'exécution des renforcements.
- La surveillance hivernale de réseau routier (pose ou levée des barrières de dégel).
- La réception des chaussées neuves.

Figure III.16 :Défléctographe du CTTP

Figure III.17: Curiamètre

de manière ponctuelles à l'aide :

- de la poutre Benkelman (norme NF P 98-200-2) sur les chaussées souples traditionnelles, inverses et bitumineuses épaisses.
- du HWD (déflectomètre à masse tombante) sur tous les types de chaussées

Figure III.18: HWD Déflectomètre à masse tombannte

Figure III.19: Poutre Benkelman

Le pas de mesure, qui est à adapter à l'hétérogénéité visuelle de la chaussée, doit être inférieur ou égal à 50 m.

PR 57 PR 58 PR 59 TJMA = 1028/j/se TJMA = 1028/j/sen TJMA = 1028/j/se Sidi abderrahmane vers el bayadh El bayadh vers sidi abderrahmane TJMA = 1029/j/sen TJMA = 1029/j/sens TJMA = 1029/j/senPlat / Rembla Plat / Rembla Du PK 127+220 au PK 127+600 Buse (PK 125+234 - PK 125+1064) Buse (PK 126+359) 10 cm 25 cm 10 cm 25 cm 10 cm 25 cm 30 cm 50% 23% GB GK

Les mesures sont reportées sur un schéma-itinéraire.

Figure III.20: Exemple de déflectogramme sur schéma-itinéraire

III.9.4. Valeurs caractéristiques pour le paramètre déflexion:

La moyenne des déflexions maximales (dm).

L'écart type des déflexions maximales (o).

Le seuil caractéristique à 97,5 % des déflexions maximales (de).

les mesures de déflexion sont fonction de la température dans les matériaux bitumineux,

ellespeuvent être corrigées pour être ramenées à la température conventionnelle de 20°C à l'aide de la formule suivante:

avec:

D20°C: déflexion à 20°C.

 \mathbf{D}_T : Déflexion mesurée à la température T (relevée à mi-hauteur des matériaux bitumineux).

 ${\bf K}$: coefficient fonction du type de structure.

Tableau III.12: Valeur de k pour la correction de la déflexion en fonction de la température.

Type de structure	K
Souple	0,15
Bitumineuse épaisse	0,20
Mixte	0,08
Semi-rigide	0,04

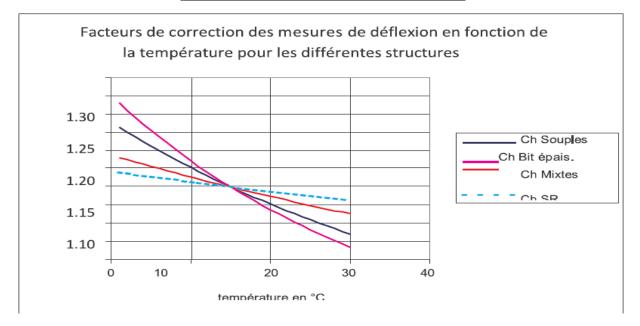


Figure III.21: Correction de la déflexion en température

III..9.5. La déflexion prise en compte pour la modélisation de la structure:

Des études menées à partir de capteurs ancrés sur différentes structures de chaussées ont montré que les déflexions mesurées aux déflectographes sont fonction de la rigidité de la structure et de la géométrie de l'appareillage de mesure. Ainsi pour les mesures au déflectographe les déflexions mesurées doivent être corrigées en prenant en compte la déformabilité D de la structure pour fournir une valeur de déflexion corrigée, plus représentative de la rigidité vraie de la chaussée

$$D = EH^3 / 12*(1-v^2)$$

Avec:

E: module de la couche traitée en MPa.

y : coefficient de Poisson.

 ${f H}$: épaisseur de la couche traitée en m.La formule de correction des déflexions mesurées est la suivante .

La formule de correction des déflexions mesurées est la suivante :

déflexion corrigée =0,052 xExH
$$3/(12*(1-v^2))+0,6*$$
 déflexion mesurée+14

Si l'on retient y = 0.35:

avec:

Déflexion corrigée É déflexion mesurée en 1/100

III.9.6. .Classes de déflexion:

Comme indiqué précédemment, la valeur caractéristique de la déflexion constitue un indicateur du comportement mécanique de l'ensemble structure/support de chaussée. Cet indicateur fonction du type de la chaussée est lié généralement à une classe de déflexion. Le tableau précise les classes de déflexion retenues en fonction de la valeur caractéristique issue des mesures.

Tableau III.13: La classe de déflexion.

Classes	D1	D2	D3	D4	D5	D6	D7	D8	D9
Seuils de déflexion caractéristique en	de 0 a 19	de 20	de 30	de 45	de 75	de 100	de 150	de 200	'S' 300
1/100ème mm		à 29	à 44	à 74	à 99	à 149	à 199	à 299	

III.9.7 .Découpage en zones homogènes à partir de la déflexion:

Tableau III.9.14: Calcule de la déflexion caractéristique.

Zone	Du	Au	Au Rive			Axe			Déflexion	Température
homogèn			dmoy	σd	dc	dmoy	σd	dc	Max	Moyenne
ZH08	43300	45370	56.44	15.93	88.29	51.84	15.99	83.81	88.29	16.91
ZH09	45370	51000	37.19	29.31	95.81	34.92	28.65	92.22	95.81	16.60
ZH10	51000	63184	49.49	25.38	100.25	43.65	21.04	85.74	100.25	17.44

N° de zone	Déflexion caracté	ristique	Tomnéroture meyenne	
homogène	Rive	Axe	Max	Température moyenne
ZH01	104,3	99,7	104,26	18,33
ZH02	92,1	79,7	92,09	18,66
ZH03	103,5	87,2	103,53	16,74

III .9.8. Les zones homogènes:

Une zone homogène fait référence à des données de situation (agglomération ou rase campagne), d'historique (structure, trafic, date de réalisation) et à des caractéristiques de la chaussée identiques.

Le découpage en zones homogènes doit être réalisé en premier lieu à partir de pré découpage issus :

- des données d'historique ;
- des dégradations
- des déflexions ;
- de comptage de trafic ;
- et des épaisseurs.

a - Le pré découpage à partir des données d'historique :

Le pré découpage à partir des données d'historique a généré deux (02) zones homogènes :

1ére zone de PK 123+000 Au PK 128+000;

2éme zone de PK 128+000 Au PK 138+000.

a- Prédécoupage à partir des dégradations

Il s'effectue visuellement sur le schéma itinéraire. Celui-ci est découpé en sections élémentaires de longueur constante (généralement 100 m) aux quelles on affecte la classe de dégradation correspondante (FMFi, FLi, FTi, AFFi, ORNi, TASSi,.....etc).

Le pré découpage selon les dégradations est comme suit :

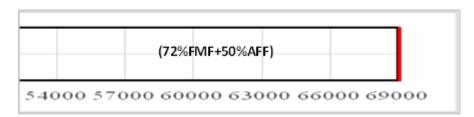


Figure .III.22 : pré découpage à partir des dégradations

Commentaire:

Le pré découpage à partir des dégradations est en 01 zone homogène :

> du PK 123+000 Au PK 138+000.

Cette opération s'effectue selon la méthode CUSUM (accumulate ddifference) citée dans le guide de conception AASHTO (voir Appendix J de AASHTO Design Guide) et le calcul de la déflexion caractéristique selon le Guide de Renforcement élaborée par le CTTP en 1992;

b- Le pré découpage selon les déflexions est comme suit :

Les mesures de la déflexion obtenues parle Déflectographe Lacroix

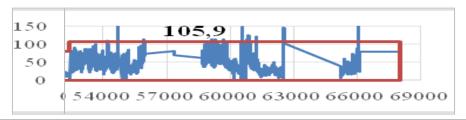


Figure III.23 : pré découpage à partir de la déflexion caractéristique de rive

Figure III.24 : pré découpage à partir de la déflexion caractéristique de l'axe

N.B:

- la déflexion par l'appareil Déflectographe Lacroix est de 1/100 mm;
- Pour la déflexion caractéristique par l'appareil Déflectographe Lacroix en prend le max entre les deux déflexions caractéristiques Rive et Axe.

Commentaire:

Le pré découpage à partir des déflexions Lacroix a généré une (01) zone homogène à savoir:

du PK 123+000 Au PK 138+000.

d-.Pré découpage à partir du trafic journalier en poids lourd

Les changements de flux au niveau des échangeurs, zone d'activité ; bifurcation et les intersections sont autant des paramètres à prendre en compte pour effectuer un premier pré découpage de l'itinéraire.

Le pré découpage selon le de trafic journalier en poids lourd est comme suit :

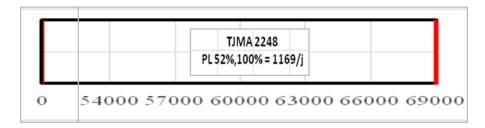


Figure .III.25 : pré découpage à partir de trafic journalier en poids lourd

Commentaire:

Le pré découpage à partir de trafic journalier en poids lourd a généré une (01) zone homogène :

Les zones homogènes globales

pk 126	pk 138
	pk 126

ZH 01	ZH 02	ZH 03

Tableau III.9.15.Déflexion obtenu par Déflectographe la croix du PK 123+000 au PK 138+000

Zone	Localisation PR				Localisat	tion GPS				Défle	exion		Température
Zone	20041134			To			Frome			Rive		xe	remperature
N°	То	Frome	Latitude	Longitude	Altitude	Latitude	Longitude	Altitude	Moyenne	Ecart type	Moyenne	Ecart type	Moyenne
49	4800.00	4900.00	3439.27	111.14	42.93	3440.19	110.78	42.97	51.06	12.12	54.74	14.64	17.53
50	4900.00	5000.00	3440.19	110.78	42.97	3440.70	110.59	42.99	71.15	18.90	69.51	17.25	17.42
51	5000.00	5100.00	3440.71	110.59	42.99	3441.20	110.28	43.01	17.87	9.44	18.14	9.66	18.59
52	5100.00	5200.00	3441.20	110.28	43.01	3441.69	110.00	43.04	54.50	14.79	50.32	13.25	19.07
53	5200.00	5300.00	3441.69	110.00	43.04	3442.19	109.75	43.06	51.31	14.81	45.90	11.89	19.03
54	5300.00	5400.00	3442.19	109.75	43.06	3442.72	109.62	43.08	48.07	16.84	44.49	14.36	18.21
55	5400.00	5500.00	3442.72	109.61	43.08	3442.95	109.48	43.09	59.68	20.71	50.97	12.99	19.69
56	5500.00	5600.00	3442.95	109.48	43.09	3443.77	109.16	43.13	66.84	14.77	66.92	19.79	17.22
57	5600.00	5700.00	3443.78	109.16	43.13	3444.29	108.98	43.15	71.64	17.45	56.39	16.66	17.83
58	5700.00	5800.00	3444.30	108.98	43.15	3444.84	108.78	43.17	55.95	25.54	42.73	14.67	17.24
59	5800.00	5900.00	3444.85	108.78	43.17	3445.36	108.59	43.19	34.58	12.40	28.82	9.83	15.29
60	5900.00	6000.00	3445.36	108.59	43.19	3445.68	108.45	43.21	28.01	10.50	27.56	10.45	15.89
61	6000.00	6100.00	3445.68	108.45	43.21	3445.68	108.45	43.21					
62	6100.00	6200.00	3445.68	108.45	43.21	3445.68	108.45	43.21					
63	6200.00	6300.00	3445.68	108.45	43.21	3447.45	107.60	43.28	27.83	7.99	35.55	8.79	15.92
64	6300.00	6400.00	3447.45	107.59	43.28	3447.51	107.49	43.29	54.17	28.98	48.56	24.24	13.37

Figure .III.26. Le découpage en zones homogènes par investigation avec implantation des carottes

III.9.9.Conclusion:

Nous avons calculé la déflexion pour obtenir les zones homogènes de la déflexion après cela le découpage de zones homogènes globales à partir de pré-découpage de (dégradation, trafic et déflexion) en suit nous avons calculé la déflexion caractéristique pour la modélisation de la structure

CHAPITRE IV

DIAGNOSTIC ET MODELISATION

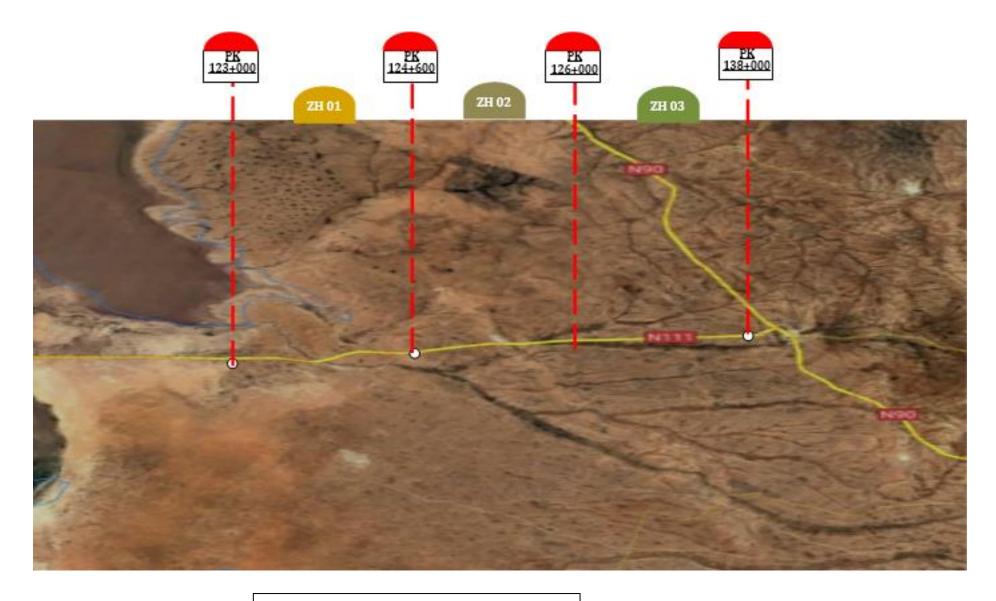


Figure IV.1. Découpage en 03 zones

IV .1.Introduction:

Le dimensionnement d'une structure de chaussée routière consiste à déterminer la nature et l'épaisseur des couches qui la constituent afin qu'elle puisse résister aux diverses agressions auxquelles elle sera soumise tout au long de sa vie. La structure d'une chaussée routière doit résister à diverses sollicitations, notamment celles dues au trafic et elle doit assurer la diffusion des efforts induits par ce même trafic dans le sol de fondation.

La méthode rationnelle de calcul d'une structure de chaussée peut être utilisée dans le cas des chaussées existantes pour :

- > estimer par calcul inverse le module d'une ou plusieurs couches, non mesurable.
- > vérifier le dimensionnement initial.
- évaluer l'endommagement de chacune des couches de la structure en fonction de l'historique de la chaussée.
- > valider un scénario d'endommagement pour confirmation ou infirmation.

IV.2.Définition des sections témoins:

Des sections témoins sont alors définies pour réaliser des essais complémentaires, essentiellement des carottages et des sondages, qui doivent permettre de comprendre les origines des dégradations constatées.

Les contraintes de sécurité et d'exploitation de la route sont prioritaires dans le choix de l'implantation de ces sections.

Remarque : une section témoin peut être l'ensemble de la section étudiée.

IV .3. Objectif du Carottage Effectue :

Afin de déterminer la qualité de la fabrication et de mise en oeuvre des travaux réalisés en (BB), le CTTP a effectué des carottages sous chaussée dans le but de :

- ➤ de déterminer les caractéristiques générales des couches liées de la section témoin (nature et état des matériaux, épaisseurs, conditions aux interfaces, performances mécaniques).
- ➤ d'observer l'origine et la propagation des fissures (par le bas ou par le haut).
- ➢ d'expliquer les défauts des points singuliers. Les carottages sont réalisés suivant la méthode LPC 43.
 Le diamètre des carottes est supérieurà 140 mm.

ETUDE DE RENFORCEMENT DE LA RN111 DU PK123 AU PK138

Figure IV .2 . Carotteuse

en 2018 par le service concerné du CTTP dans le cadre de la modélisation des différentes couches et de la vérification de l'état des interfaces dans les tableaux ci-dessous :

ZONE HOMOGENE N° 01 DU PK 123+200 AU PK 124+600

DIAGNOSTIC

a. Evaluation

Tableau .IV.1. Evaluation des carottes de 01 à 02

	Caro	tte 01 -F	MF- PK 12.	3+000	Carotte 02 -FMF- PK 123+500				
matériaux	Etat des matériaux	Qualité des parois	Etat des interfaces	Epaisseurs	Etat des matériaux	Qualité des parois	Etat des interfaces	Epaisseurs	
BB 01	Fra	Ga		0,070	Fra	Ga		0,080	

L : Lisse ; F : Fissuré ; S : Saine ; Ga : granulats arrachés ; Fra : fragmenté ; C : Collé ; D : Décollé ;

FMF: faïençage à mailles fines

Figure IV .3. Carotte 01 Carotte 02

-FMF--FMF-

Tableau .IV .2. Evaluation globale de la zone homogène N°01

	Eval	Evaluation globale des carottes									
Matériaux	Qualité des parois	alité des parois Qualité de la carotte Etat des interfaces Hmoy v									
BB	Fra	Ga	D	0,076	0.35						

g. Commentaires

- La déflexion corrigée est de 99,96 (1/100 de mm);
- deux (02) carottes ont été effectuées pour l'évaluation ;
- Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04;
- dommage cumulé pour le sol support est supérieur à 100% (Zone endommagé).

ZONE HOMOGENE N° 02 DU PK 124+600 AU PK 126+000

DIAGNOSTIC

b. Evaluation

Tableau .IV3. Evaluation des carottes de 03 et 4

	Carotte 03	-ZOI	NE SAINE- PI	K 125+000	Carotte 04	-ZON	NE SAINE- PK	125+500
matériaux	Etat des matériau		Qualit Etat		Etat des matériau		Qualit Etat	
BB	S	L		0,055	S	L		0,060
GB	S	L	C	0,100	S	L	C	0,100

Figure IV.4 Carotte 03Carotte 04

-ZONE SAINE--ZONE SAINE-

Tableau .IV.4. Evaluation globale de la zone homogène N°02

		Evaluation globale	Evaluation globale des carottes											
Ma	atériaux	Qualité des parois	Qualité de la carotte	Etat des interfaces	Hmoy	v								
	BB	S	L	D	0,058	0.35								
	GB	S	L	D	0,100	0.35								

h. Commentaires

- La déflexion corrigée est de 99,96 (1/100 de mm);
- deux (02) carottes ont été effectuées pour l'évaluation ;
- Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04;
- Le dommage cumulé pour la couche en GB est supérieur à 100% (Zone endommagé).

HOMOGENE N° 03 DU PK 126+000 AU PK 138+000

DIAGNOSTIC

a. Evaluation

		Carotte 05	Carotte 05 -FMF- PK 126+5000			Carotte 06 -FMF- PK 129+500				Carotte 07 -ZONE SAINE- PK 131+000			
ın	nateriaux	matériaux	Qualité des parois	Etat des interfaces	Epaisseurs	Etat des matériaux	Qualité des parois	Etat des interfaces	Epaisseurs	Etat des matériaux	des	Etat des interfaces	Epaisseurs
	BB 01	F	L		0,075	Fra	Ga		0,070	S	L		0,070

	Carotte 07-FMF- PK 135+000		Carotte 08 -ZONE SAINE- PK 137+200			Carotte 10 -FMF- PK 137+900						
matériaux	THIT APP	doc	Etat des interfaces	Epaisseurs	Etat des matériaux	Qualité des parois	Etat des interfaces	Epaisseurs	Etat des matériaux	des	Etat des interfaces	Epaisseurs
BB 01	Fra	Ga		0,080	S	L		0,075	Fra	Ga		0,085

Tableau IV.5. Evaluation des carottes de 05 à 10

Figure IV.5 des carottes de 05 à 10

Tableau .IV.6. Evaluation globale de la zone homogène N°03

_	Evaluation globale des carottes							
Matériaux	Qualité des parois Qualité de la carotte Etat des interfaces Hmoy v							
BB	Fra	Ga		0,076	0.35			

i. Commentaires

- La déflexion corrigée est de 99,96(1/100 de mm);
- Six (06) carottes ont été effectuées pour l'évaluation ;
- Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04;
- dommage cumulé pour le sol support est supérieur à 100% (Zone endommagé).

IV.4. Implantation des carottages:

Après la détermination les sections homogènes ; l'implantation des carottes s'impose afin de déterminer; les performances mécaniques ; la nature des matériaux, leurs états ; leurs épaisseurs et les conditions aux interfaces d'une part et avoir des réponses sur les causes probables des dégradations d'autre part.

Les carottes à prélever seront implantées sur les endroits caractérisés par les dégradations ou les paramètres suivants :

- Faïençage à maille larges ;
- Faïençage à maille fines ;
- Forte déflexion ;
- Différence entre la déflexion de l'axe et de rive ;
- Zone saine.

IV.5. Classification des matériaux prélevés:

En cequi concerne les carottes, la classification des matériaux constitutifs se fait pour chaque couche bitumineuse en tenant compte des deux éléments suivants : aspect de la carotte et qualité des parois de la cavité. La tenue de la carotte informe directement sur l'état des interfaces.

Tableau IV.7: classification des matériaux des sou-couches

Collée	Bon accrochage, Bonne liaison
Semi	ruite au carottage (surface brillante de l'interface) Paroi lisse au
collée	niveau
Décollée	Paroi avec formation d'une cavité auniveau de la liaison et/ou érosion desbords des deux couches concernéeset/ou présence de pollution au niveaude l'interface

Tableau IV.8: classification de la qualité des interfaces

		Qualité de la carotte						
		Saine	Médiocre	Fissurée	Fragmentée	Désagrégée		
	Lisse	Sain	Médiocre	Fissuré	Non rencontré	Non rencontré		
Qualité de la paroi	Granulats arrachés	Non rencontré	Mauvais	Mauvais	Fragmenté	Désagrégé		

- La coupe caractéristique des carottages pour une section témoin prendra en compte :
- l'épaisseur moyenne des couches (en éliminant les surépaisseurs importantes).
- ➤ la qualité des matériaux en retenant le cas suivant immédiatement le cas le plus défavorable que l'on élimine sauf s'il apparaît plus d'une fois .
- ➤ la qualité des interfaces en retenant le cas suivant immédiatement le cas le plus défavorable que l'on élimine sauf s'il apparaît plus d'une fois.

IV.6. Modélisation des sections témoins :

Pour chaque zone homogène et en fonction des données de la section témoin, une synthèse des informations collectées est établie ainsi qu'une modélisation de la structure, dans le but de:

- > déterminer le module du sol.
- > évaluer les modules des couches de chaussée et la qualité des interfaces à partir des mesures de rayon de courbure et/ou des informations obtenues à partir des carottages.

IV.7..Détermination du module des couches bitumineuses :

La valeur médiane du rayon de courbure (et indépendamment de la valeur de la déflexion), et la valeur du module du sol déterminée par calcul inverse (et conséquemment celle des couches granulaires sus-jacentes), permettent de déterminer le module des couches bitumineuses, à la température de mesure et pour une fréquence estimée de 1 Hz, avec les conditions d'interface issues des carottages.

En l'absence de mesure du rayon de courbure, le module des matériaux bitumineux (tableau 3) est fonction de la carotte représentative de la section témoin (coupe caractéristique).

Tableau IV.9:modules des matériaux pour la modélisation en fonction de la qualité de la carotte

	_	Qualité de la						
	. -	Saine	Médiocre	Fissurée	Fragmentée	Désagrégée		
Qualité	Lisses	Eref	0,7 x Eref	2000 MPa	Non	Non rencontré		
des parois	Granulats arrachés	Non ,	0,7 x Eref	2000 MPa	1000 MPa	500 MPa		

ErefBB = 4000 MPa

ErefGB = 7000 MPa

IV.8. Détermination du module du sol par calcul inverse :

Le calcul es réalisé par le logiciel Alizé permet de déterminer les contraintes et déformations à différentes niveaux de la structure. La charge prise en compte est une charge unitaire correspondante à un demi-essieu de 13 t représenté par une empreinte circulaire.

Les données à rentrer dans le modèle pour les différentes simulations sont :

- > Les épaisseurs de chaque couche.
- > Les modules E est coefficient de poisson (y) de chaque couche y compris le sol support.
- > Les types d'interfaces entre les couches (conditions de collage).

Les épaisseurs prises en compte sont celles issues des carottages . Toutes les interfaces sont supposées collées sauf celles avérées décollées entre couches bitumineuses lors des carottages.

Les couches de graves non traitées sont découpées en sous-couches d'au plus 0,1 m d'épaisseur, exemple : une couche de 0,25 m se décompose en partant du bas en sous couches de 0,10 m, 0,10 m et 0,05 m.

Le sol, d'épaisseur fixée conventionnellement à 6 m, repose sur un massif semi-infini indéformable (E 10000 MPa, y=0.25), de façon à rendre compte de l'effet de la non linéarité du sol.

Les modules des matériaux bitumineux sont plus sensibles à la fréquence de la mesure qu'au taux de dégradations. Par suite, pour le calcul inverse du module du sol on adopte une valeur de module du matériau bitumineux égale à sa valeur évalué divisée par 2, en raison de la vitesse faible de mesure de la déformée, indépendamment du taux de fissuration à l'exception des matériaux fragmentés ou désagrégés.

Et a partir d'un simple tâtonnement par rapport au déflexion corrigé et la déflexion donnée par lelogiciel (les deux valeurs doivent être proches) en tire notre module de la partie blanche (les 3 couches de GNT et sol support).

IV.09. Conclusion:

Dans ce chapitre , nous avons effectué, à l'aide du logiciel Alizé , un calcul inverse qui a permis d'estimer le module des couches pour le différent zones.

CHAPITRE V

CONCEPTION DE LA STRUCTURE DE CHAUSSEE

V.1.Introduction:

À ce stade de l'étude, l'itinéraire a été découpé en plusieurs zones homogènes, à partir des résultats des mesures. Pour chacune des zones homogènes ainsi définies, des sections témoins, choisies comme représentatives, ont fait l'objet d'investigations complémentaires.

L'ensemble des données disponibles (issues des mesures à grand rendement et des investigations complémentaires) doit alors être analysé dans le but d'expliciter le comportement de chacune de ces sections témoins. Cette analyse des essais et mesures in situ se fait dans un premier temps en vérifiant la cohérence des informations disponibles, puis dans un second temps en intégrant ces éléments dans une approche calculatoire de la structure.

Cette approche globale du fonctionnement de la structure, croisant observations, mesures et calculs, permet ainsi de confirmer ou d'infirmer certains scénarios de fonctionnement mécanique et d'apparition des dégradations, et débouche sur un diagnostic de pathologie structurelle de la section témoin. Le diagnostic est d'autant plus fiable que l'ensemble des éléments disponibles (mesures, essais et calculs) convergent.

Le présent chapitre récapitule les principes essentiels de l'approche calculatoire des structures, puis détaille, structure par structure, la méthode d'analyse permettant de poser le diagnostic de pathologie structurelle.

V.2. Notion de dommage :

Dans le cas de l'analyse calculatoire du comportement d'une chaussée existante, en déterminant cette fois le nombre de cycles admissibles par la chaussée à partir des sollicitations qu'elle supporte. La structure en place est décrite à l'aide du modèle de Burmister afin d'évaluer la sollicitation générée au passage de l'essieu de référence dans chacune des couches susceptibles de conduire à la ruine. Cette sollicitation calculée permet de déterminer, via l'expression de la valeur admissible du matériau considéré, un nombre de passages équivalent de l'essieu de référence admissible avant rupture de la couche. Ce nombre de passages équivalents d'essieux de référence admissible (NE) est ensuite

Converti à l'aide du coefficient d'agressivité moyen (CAM) en un nombre de passages de poids lourds (NPL) traduisant la durée de vie de la couche (et par suite de la structure).

Avec:
$$NE = N_{PL} x CAM$$

NE : nombre équivalent de passages de l'essieu de référence.

 N_{pL} : nombre de passages de poids lourds.

CAM: coefficient d'agressivité moyen du trafic poids lourds.

Le dommage cumulé par la couche considérée (noté dcumulé) après nesu bi passages équivalents de l'essieu de référence (correspondant au trafic réel de poids lourds npL déjà

supporté par la couche) est donc :

ne_{subi}
d = NEdurée de vie

Avec:

supporté par la chaussée.

NEdurée de vie : nombre équivalent de passages de l'essieu de référence conduisant à la ruine de la couche.

Remarque

Lorsque**nes**_{ubi}=**NE**_{duréede vie}, la couche a supporté un nombre équivalent de passages de l'essieu de référence égale a celui conduisant a sa ruine et son dommage cumulé vaut alors a 100%

V.3 .Le modèle multicouche de Burmister

Monsieur Burmister en 1943 a développé un modèle adapté à l'analyse multicouche. Qui se présente comme suit :

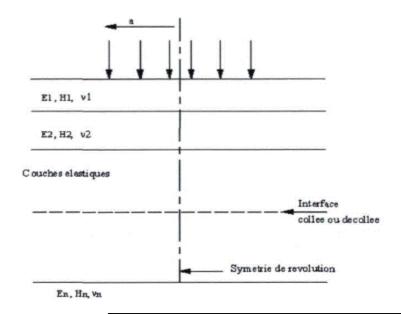


Figure .V.1.Modèle multicouche de Burmister

Monsieur Burmister aborde et traite le problème général d'une structure à n couches reposant sur un massif élastique semi-infini. Les principales particularités du modèle sont les suivantes:

- les couches sont traitées comme des structures élastiques,
- les interfaces entre couches peuvent être collées, semi collé ou décollées,
- le cas de charges complexes (jumelages, essieux tandem ou tridem etc.) peut être traité en additionnant les effets des charges élémentaires,
- sa principale limitation réside dans le fait que les couches sont considérées infinies en plan,
- dans le cas des dalles en béton, il est notamment nécessaire de le compléter par un modèle aux éléments finis pour évaluer les conséquences des charges en bord ou en angle de dalle.

V.4. Évaluation de l'endommagement :

La détermination des sollicitations dans la chaussée à l'état neuf permet de calculer pour chaque couche la durée de vie théorique à l'origine de cette couche NEduréede vie, et par la suite le dommage élémentaire de chaque couche délémentaire. L'évaluation du trafic poids lourds effectif ayant déjà emprunté la chaussée (et par la suite le trafic équivalent effectif nesubi) permet alors de calculer le dommage cumulé de chaque couche.

Si ce dommage cumulé dépasse la valeur de 1 (ou de 100 %), la couche concernée peut être suspectée d'avoir atteint sa durée de vie.

Dans le cas où la chaussée actuelle résulte de travaux de rechargement successifs, le calcul d'endommagement sera conduit couche par couche pour chaque phase de fonctionnement, intégrant l'état probable de chaque couche pendant la phase (matériau neuf ou déjà dégradé), et le dommage total cumulé sera calculé par couche sur la totalité de la durée de servicede la chaussée en fonction de la loi de Miner.

Les conclusions seront tirées comme précédemment en fonction de la valeur du dommage total cumulé.

 $d_{total \ cumule} = \sum_{i=1}^{n} d_{cumule}^{(i)} = \sum_{i=1}^{n} \frac{ne_{subl}^{(i)}}{NE_{durée}^{(i)}}$

dtotalcumulé : dommage total accumulé par la couche considérée, sollicitée à différents niveaux i;

i : numéro correspondant à des conditions de chargement spécifiques (i varie de 1 à n).

V.5 .hypothèses de calcul

Température de référence : Θ éq=20°c (la wilaya de Tiaret est classée en zone II voir catalogue de dimensionnement des chaussées neuves élaboré par le CTTP en date Novembre 2001) ;

CHAPITRE V CONCEPTION DE LA STRUCTURE DE CHAUSSEE

Le Risque R=15% en fonction de trafic en poids lourd (TPL 04);

Coefficient d'agressivité moyen : CAM=0,8 ;

Année de comptage 2022;

Année de mise en service 2023;

Durée de vie escomptée N = 10 ans ;

Répartition de trafic pour la chaussée bidirectionnelle : 100%;

Coefficient d'accroissement géométrique annuel i = 5 %;

Loi de fatigues pour le matériau –GB– (voir catalogue de dimensionnement des chaussées neuves) est récapitulée dans le tableau suivant :

Tableau .V.1. Lois de fatigues des matériaux utilisés

Matériaux	Caractéristiques									
	ε6	-1/b	b	SN	Sh	Kc	c	Sigma	E (10°C)	E (Θéq°C)
GB	100	6.84	-0.146	0.45	0.03	1.3	0.02	0.45	12500	7000

NB : le choix des épaisseurs recommandé dans la conception des structures renforcées y afférents aux fractions granulaires est comme suit :

- ➤ BB de granularité 0/14 ;
- ➤ GB de granularité 0/20

Nous utilisons logiciel Alizé pour les calculs de l'endommagement :lecture de la déformation.

ZONE HOMOGENE N° 01 DU PK 123+000 AU PK124+600

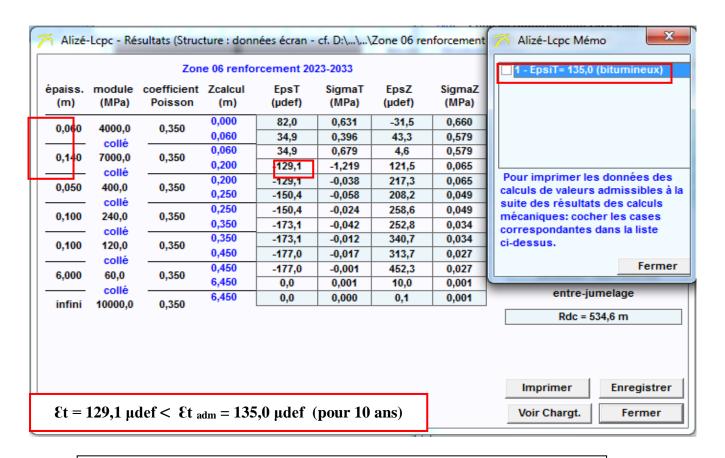
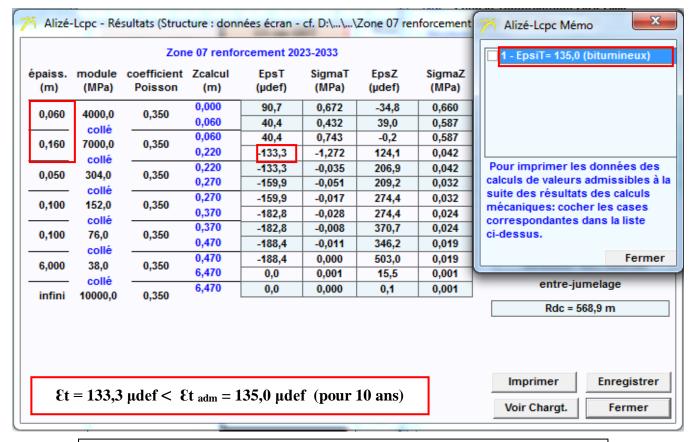



Figure. V.2. Solution proposée pour la zone homogène n°01 avec CAM

- ✓ La déflexion corrigée est de 99,96 (1/100 de mm);
- ✓ Six (06) carottes ont été effectuées pour l'évaluation ;
- ✓ Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04;
- ✓ dommage cumulé pour le sol support est supérieur à 100% (Zone endommagé).

zone homogène n° 02 du Pk124+600 au Pk 126+000

Figure.V.3. Solution proposée pour la zone homogène n°02 avec CAM=0,8

- ✓ La déflexion corrigée est de 99,96 (1/100 de mm);
- ✓ Six (06) carottes ont été effectuées pour l'évaluation ;
- ✓ Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04
- ✓ Le dommage cumulé pour la couche en GB est supérieur à 100% (Zone endommagé).

Alizé-Lcpc - Résultats (Structure : données écran - cf. D:\...\Zone 08 renforcement Alizé-Lcpc Mémo Zone 08 renforcement 2023-2033 EpsiT= 135,0 (bitumineux) épaiss. module coefficient Zcalcul EpsT SigmaT EpsZ SigmaZ (MPa) Poisson (µdef) (MPa) (µdef) (MPa) (m) (m) 0,000 82,0 0,631 -31,5 0,660 0,060 4000,0 0,350 0,060 34,9 43,3 0,396 0,579 collé 0,060 34,9 4,6 0,579 0,679 7000,0 0,350 0,140 0,200 -129,1 -1,219 121,5 0,065 collé 0,200 Pour imprimer les données des -129,1 -0,038 217,3 0,065 0,050 400,0 0,350 0,250 calculs de valeurs admissibles à la -150,4 -0,058 208,2 0,049 collé suite des résultats des calculs 0,250 -150,4 -0,024 258,6 0,049 0,100 240,0 0,350 mécaniques: cocher les cases 0,350 -173,1 252,8 0,034 -0,042 collé correspondantes dans la liste 0,350 340,7 -173,1 -0,012 0,034 0,100 120,0 0,350 ci-dessus. 0,450 -177,0 313,7 0,027 -0,017 collé 0,450 -177,0 -0,001 452,3 0,027 Fermer 6,000 60,0 0,350 6,450 10,0 0,0 0,001 0,001 collé entre-jumelage 6,450 0,000 0,0 0,1 0,001 10000,0 0,350 infini Rdc = 534,6 m Imprimer Enregistrer $Et = 129,1 \, \mu def < Et_{adm} = 135,0 \, \mu def_{adm} = 100,0 \, \mu$ Voir Chargt. Fermer

zone homogène n° 03 du Pk126+200 au Pk 138+000

Figure V.4 . Solution proposée pour la zone homogène n°03 avec

- La déflexion corrigée est de 99,96(1/100 de mm);
- Six (06) carottes ont été effectuées pour l'évaluation ;
- Le nombre des poids lourds est important soit : 341,405 PL/jour, il est de classe TPL 04 ;
- dommage cumulé pour le sol support est supérieur à 100% (Zone endommagé).

V.6. Renforcement

V.6.1 Introduction:

La résistance des chaussées est une grande préoccupation des ingénieurs. En effet, le but recherché est d'obtenir une chaussée qui soit utilisable dans de long terme. Pour renforcer la résistance des chaussées, les ingénieurs doivent prendre en compte :

- > L'intensité du trafic présent et futur.
- L'état de carotte de chaque zone (l'état des interfaces, la qualité des parois).
- Le degré d'endommagement.

Concernant les revêtements de sol, ceux-ci jouent un rôle majeur dans la résistance d'une route. Donc, un bon renforcement doit tenir compte des techniques de mise en œuvre mais aussi du coût de mise en œuvre de la variante choisie.

Après avoir analysé les principaux paramètres conduisant aux choix de renforcement, nous allons exploiter les données sur les travaux de renforcement sur l'autoroute de l'est DAR EL BIEDA VERS ALGER, afin de proposer un type de renforcement qui s'adapte mieux aux conditions climatiques et aux surcharges des essieux.

V.6.2. Mode de fonctionnement :

Après avoir calculer l'endommagement dans chaque zone on vise de trouver un renforcement adéquat qui maintien les charge des essieux dans 10ans avec une mise en œuvre moins couteuse. Notre méthode est basé sur la comparaison des déformations des corps de chaussées renforcées et les deux déformations (admissible ou valorisé). Ces déformations sont calculées à partir du trafic cumulé équivalent de 10ans (2023-2033) avec un risque d'apparitions des déformations après les 10ans de 5% et avec un CAM de 0.8.

Remarque:

On calcule la déformation admissible avec le trafic équivalent, par contre On calcule la déformation valorisé avec un trafic équivalent valorisé.

Trafic équivalent valorisé : c'est un trafic qui prend en considération l'endommagement restant on utilise ce genre de trafic si notre endommagement est inferieur a 100%.

Si notre endommagement est supérieur à 100% notre chaussée est gravement endommagé donc en a besoin d'un nouveau corps de chaussée, par conséquence on compare notre déformation de chaussée renforcé avec la déformation admissible.

Sin notre endommagement est inferieur a 100% notre chaussée est endommagée mais on peux garder une couche dans notre renforcement donc on compare notre déformation de chaussée renforcé avec la déformation valorisée.

.V.6.3. Les résultats de calcul de renforcement:

V.6.3.1 Les calculs de la zone 1:

Tableau V.2: Chaussée existante de la zone 1.

-	Zone 1						
-	Chaussée Existante						
-	Etat des interfaces	Epaisseurs(m)	Module évalué(Mpa)				
BB	D	0.076	2000				
-	-	0,076	-				

V.6.3.2 Solutions proposées pour la zone 1:

Tableau V 3: Solution 1 proposée pour la zone 1.

_	Renforcement							
-	Etat des interfaces	Epaisseurs(m)	Module évalué(Mpa)	Et calculé (i.tdéf)	Et admissible (gcléf)			
BB		0.06	4000	129.1	135.0			
GB		0.14	7000	129.1	155.0			
-	- 0,30 -		-	Et calculé < Et adn	nissible			

Chaussée existante

BB =0.076

Solutions

BB = 0.06 GB = 0.14

V.6.3.3 Les calculs de la zone 02

Tableau V.4: Chaussée existante de la zone 2

-	Zone2				
-	Chaussée Existante				
-	Etat des interfaces	Epaisseurs(m)	Module évalué(Mpa)		
BB	D	0,058	4000		
GB	D	0,100	7000		
-	-	0,158	-		

V .6.3.4 Solutions proposées pour la zone 2:

Tableau V.5: Solution 1 proposée pour la zone 2.

-	Renforcement							
-	Etat des interfaces Epaisseurs(m) Module évalué(Mpa) Et calculé (gdéf) Et admissible (gcléf							
BB	С	0,06	4000	122.2	135.0			
GB	С	0,14	7000	133,3	155.0			
-	- 0,20 - Et calculé < Et admissible				< Et admissible			

Chaussée existante

BB =0.058
GB = 0.1

Solutions

BB =0.06	
GB = 0.16	

V.6.3.5 Les calculs de la zone 3

Tableau V.6 : Chaussée existante de la zone 3.

-	Zone3		
-	Chaussée Existante		
-	Etat des interfaces	Epaisseurs(m)	Module évalué(Mpa)
BB		0,076	4000
-	-	0,076	

V.6.3 .6. Solutions proposées pour la zone 3:

Tableau V.7: Solution 1 proposée pour la zone 3.

-	Renforcement							
-	Etat des interfaces	Epaisseurs(m)	Module évalué(Mpa)	Et calculé (gdéf)	Et Valorisé (gdéf)			
BB		0.06	4000	129.1	135.0			
GB	С	0,14	7000	1129.1	155.0			
-	-	0,20	-	Et calculé < Et Val	orisé			

Chaussée existante

Solutions

BB = 0.076	

BB =0.06	
GB = 0.14	

zone homogène n° 01 du Pk 123+000 au Pk 124+600

CAM=0.8

STRUCTURES RETENUES TRAVAUX DE PREPARATION Pour remédier à tous les désordres constatés sur zone étudiée, plusieurs actions proposées à savoir : 6 cm BB 7,6 cm BB - Décaissement sur une épaisseur de 35 cm ; 14 cm GB Mise en œuvre d'une couche de fondation en 15 cm GNT grave non traitée sur une épaisseur de 15 cm; 25 cm GNT Mise en œuvre d'une couche d'imprégnation en 10 cm GNT émulsion de bitume; Mise en œuvre d'une couche de base en grave PF 02 PF 02 bitume sur une épaisseur de 14 cm; Mise en œuvre d'une couche d'accrochage en Chaussée existante Chaussée renforcée émulsion a rupture rapide; Mise en œuvre d'une couche de roulement en Béton Bitumineux sur une épaisseur de 06 cm.

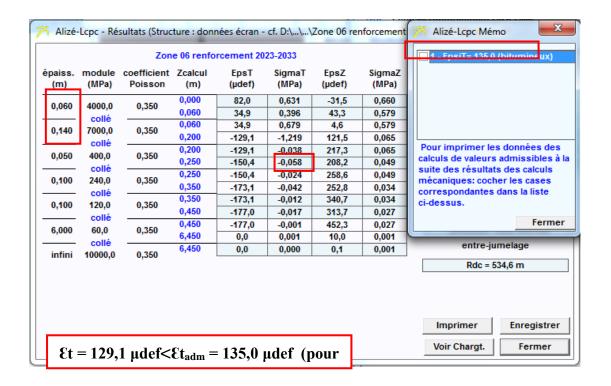


Figure. V.5. zone n°01 renforcement 2023 -2033

zone homogène n° 02 du Pk 124+600 au Pk 126+000

CAM=0.8

STRUCTURES RETENUES

5,8 cm BB 10,0 cm GB 16 cm GB 25 cm GNT 15 cm GNT 10 cm GNT PF 01

Chaussée existante Chaussée renforcée

TRAVAUX DE PREPARATION

Pour remédier à tous les désordres constatés sur cette zone étudiée, plusieurs actions sont proposées à savoir :

- Décaissement sur une épaisseur de 37 cm;
- Mise en œuvre d'une couche de fondation en grave non traitée sur une épaisseur de 15 cm;
- Mise en œuvre d'une couche d'imprégnation en émulsion de bitume ;
- Mise en œuvre d'une couche de base en grave bitume sur une épaisseur de 16 cm;
- Mise en œuvre d'une couche d'accrochage en émulsion a rupture rapide ;
- Mise en œuvre d'une couche de roulement en Béton Bitumineux sur une épaisseur de 06 cm.

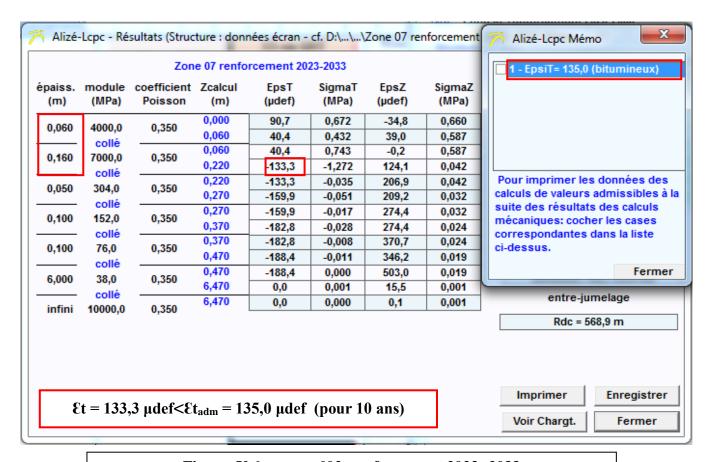


Figure. V.6.. zone n°02 renforcement 2023 -2033

zone homogène n° 03 du Pk 126+200 au Pk 138+000

CAM=0.8

TRAVAUX DE PREPARATION STRUCTURES RETENUES Pour remédier à tous les désordres constatés sur zone étudiée, plusieurs actions proposées à savoir : 7,6 cm BB - Décaissement sur une épaisseur de 35 cm ; 14 cm GB - Mise en œuvre d'une couche de fondation en grave non traitée sur une épaisseur de 15 cm; 15 cm GNT 25 cm GNT Mise en œuvre d'une couche d'imprégnation en 10 cm GNT émulsion de bitume ; Mise en œuvre d'une couche de base en grave PF 02 PF 02 bitume sur une épaisseur de 14 cm; Mise en œuvre d'une couche d'accrochage en Chaussée existante Chaussée renforcée émulsion a rupture rapide; Mise en œuvre d'une couche de roulement en Béton Bitumineux sur une épaisseur de 06 cm.

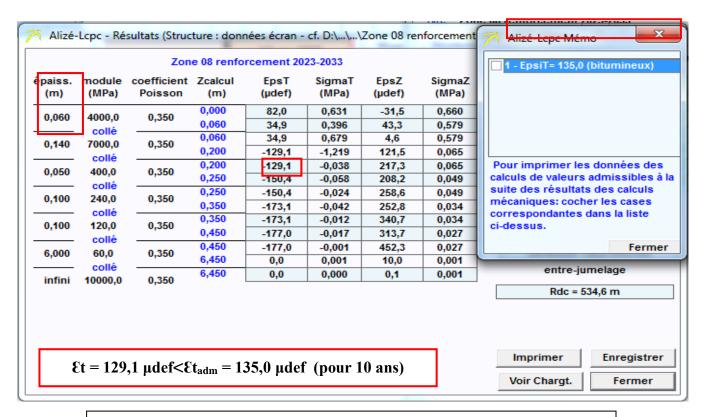


Figure. V.7. zone n°03 renforcement 2023 -2033

TABLEAU RECAPITULATIF POUR 10 ANS

Localisati	on des sections	CAM = 0.8		
Zones	chaussée existante	Travaux préparatoires	Nouvelle conception	
			6 cm BB	
	7,6 cm BB		14 cm GB	
Zone 01 Du PK123+000	25 cm GNT	Décaissement 35 Cm	15 cm GNT	
Au PK124+600	20 021 02 12		10 cm GNT	
	PF		PF 02	
	5,8 cm BB		6 cm BB	
	10,0 cm GB		16 cm GB	
Zone 02 Du PK124+600	25 cm GNT	Décaissement 37 Cm	15 cm GNT	
Au PK126+000	20 cm 01 12	0.022	10 cm GNT	
	PF		PF 01	
			6 cm BB	
	7,6 cm BB		14 cm GB	
Zone 03 Du PK126+000	25 cm GNT	Décaissement 35 Cm	15 cm GNT	
Au PK 138+000	25 CH GN I		10 cm GNT	
	PF		PF 02	

CHAPITRE VI DEVIS QUANTITATIF ET ESTIMATIF

VI.1. Introduction:

Toute étude d'un projet d'infrastructure se termine par le calcul des quantités applicables à Chaque opération réellement exécutée. Cette étape s'appelle le métré.

Celui-ci servira de base pour lancer l'avis d'appel d'offres aux entreprises.

VI.2. Devis estimatif:

Le devis estimatif est basé sur le devis quantitatif qui sera élaboré dans le cadre des volumes de matériaux mis en place ou déplacés.

Le devis estimatif est une pièce technique nécessaire qui doit être conforme et reflète le coût réel des travaux, la prévision élaborée dans le cadre du devis estimatif reste de l'ordre de plus ou moins 20% du coût total après le compte générale définitif.

VI.3.. Devis quantitatif:

Le devis quantitatif est aussi une pièce technique élaboré à partir des plans du projet d'exécution et des plans détaillés ainsi que du devis descriptif. Le devis quantitatif est une base lors de l'établissement des métrés et des métrés contradictoires et aussi des situations de travaux dans le cadre du marché.

-. Les éléments du devis quantitatif et estimatif :

- > Corps de chaussée (BB-GB-GNT).
- > Fraisage.
- > Décaissement.
- > Imprégnation(GB/GNT).
- > Accrochage(BB/GB).
- > Grave bitume
- > Rechargement des accotements
- > Fourniture et pose de la glissière de sécurité métallique

Avant la mise en œuvre de la structure préconisée, une préparation du support à revêtir ainsi que l'assise de la chaussée est impérative, à savoir :

Les sections qui présentent des dégradations d'ordre grave dont l'étendue très avancée doivent faire l'objet d'une scarification avant de procéder à la mise en œuvre de la nouvelle structure préconisée.

VI..3.1 Décaissement

Les zones concernées par les travaux de décaissement sont récapitulées dans le tableau suivant :

Tableau VI. 1 :calcul le décaissement

N°	Localisation of	des sections	S		г .	D' :
de la zone	PK début	PK Fin	Inter PK (m)	Largeur	_	Décaissement (m3)
Zone 01	121+200	124+600	3330	7,00	0,35	8158,5
Zone 02	124+600	126+000	1894	7,00	0,37	4905,46
Zone 03	126+000	138+000	11712	7,00	0,35	28694,4
	•		16936			41758,36

VI.3.2 .Rechargement des accotements

Les zones concernées par les travaux de rechargement des accotements sont récapitulées dans le tableau suivant :

Tableau VI.2 :calcul le Rechargement des accotements

N°	Localisation	Localisation des sections			г.	
de la zone	PK début	PK Fin	Inter PK (m)	Largeur accotement	Epaisseur (m)	Décaissement (m3)
Zone 01	121+200	124+600	3330	2,50	0,35	5 827,50
Zone 02	124+600	126+000	1894	2,50	0,35	3 314,50
Zone 03	126+000	138+000	11712	2,50	0,35	20 496,00
		•	16936		- 1	29 638 ,00

VI.3.3. Glissière métallique

Les zones concernées par les travaux de mise en place des glissières métalliques sont récapitulées dans le tableau suivant :

Tableau VI.3 :calcul la quantité de la Glissière métallique

Lavicau v 1.5 .	uc			
N°	Localisation (des sections		
de la zone	PK début	PK Fin	Inter	Coté
	r K debut	F K I'III	PK(m)	
Zone 01	125+175	125+265	70	Gauche
Zone or	125+217	125+265	200	Gauche
Zone 03	134+657	134+895	10	Droite
		269		

VI.4 .Les calculs de devis quantitatif et estimatif Tableau 1:Calcul de quantité (BB, GB, GNT, accrochage et imprégnation)

Localisation	Largeur chaussée	Linéaire	Structure CAM=0,8	77 0	accrochage BB/GB (m2)	(TT)		GNT (m3)
123+200 - 124+600	7,00	3330	6 BB + 14 GB + 15	3272,72	23310,00	7701,62	23310,00	3501,10
124+600 - 126+000	7,00	1894	6 BB + 16 GB + 15	1861,42	13258,00	5006,22	13258,00	1993,30
126+000 - 138+000	7,00	11712	6 BB + 14 GB + 15	11510,55	81984,00	27087,51	81984,00	12302,20
		16936		16644,69	118552	39795,35	118552	17796,6

Zone	PK début	PK Fin	Structure	BB	GB	GNT	Largeur chaussée	Largeur Accott	Loungeur	Dens ité BB	Densi té GB	Quantité BB	Quantité GB	Quantité GNT	Quantité Accot	accrochage	imprégnatio n
			6 DD 14							ВВ						BB/GB	GBIGNT
_			6 BB + 14														
Zone			GB + 15														
01	121+200	124+600	GNT	0,06	0,14	0,15	7	2,5	3330	2,4	2,35	3 356,64	7 668,99	3 496,50	5 827,50	23310	23310
			6 BB + 16														
Zone			GB + 15														
02	124+600	126+000	GNT	0,06	0,16	0,15	7	2,5	1894	2,4	2,35	1 909,15	4 985,01	1 988,70	3 314,50	13258	13258
			6 BB + 14														
Zone			GB + 15														
03	126+000	138+000	GNT	0,06	0,18	0,03	7	2,5	11712	2,4	2,35	11 805,70	34 679,23	2 459,52	20 496,00	81984	81984
												17 071,49	47 333,23	7 944,72	29 638,00	118 552,00	118 552,00

BORDEREAU DES PRIX UNITAIRES

	Désignation des]	Prix Unitaire Hors Taxe
N°	travaux	Unité	En chiffres	En lettres
1	Décaissement de la chaussée sur une épaisseur Moyenne de 0,35 cm	МЗ		
2	Fourniture et mise en œuvre de la couche d'imprégnation en émulsion de bitume.	МЗ		
3	Fourniture et mise en œuvre d'une couche d'accrochage en émulsion à rupture rapide	M2		
4	Fourniture et mise en œuvre de la Grave bitume GB	M2		
5	Fourniture et mise en œuvre du Béton bitumineux (BB)	T		
6	Fourniture et mise en œuvre de la grave non traitée (GNT)	Т		
7	Rechargement des accotements par GNT	M3		
8	Fourniture et pose de la glissière de sécurité métallique	МЗ		

DEVIS QUANTITATIF ESTIMATIF

N°	Désignation des travaux	Unité	Quantité	P.U (*)	Montant
	Décaissement de la chaussée sur une épaisseur	M3			
1	Moyenne de 0,35 cm		41 758,36	250	10 439 590,00
	Fourniture et mise en œuvre de la couche	M2			
2	d'imprégnation en émulsion de bitume.		118 552,00	120	14 226 240,00
	Fourniture et mise en œuvre d'une couche d'accrochage	M2			
3	en émulsion à rupture rapide		118 552,00	120	14 226 240,00
4	Fourniture et mise en œuvre de la Grave bitume GB	Т	47 333,23	7200	340 799 256,00
5	Fourniture et mise en œuvre du Béton bitumineux (BB)	Т	17 071,49	7500	128 036 175,00
6	Fourniture et mise en œuvre de la grave non traitée (GNT)	M3	7 944,72	1500	11 917 080,00
7	Rechargement des accotements par GNT	M3	29 638,00	1500	44 457 000,00
8	Fourniture et pose de la glissière de sécurité métallique	ML	308	4600	1 416 800,00
MO	NTANT TOTAL (H.T)				565 518 381,00
T.V.		107 448 492,39			
MO		672 966 873,39			

CONCLUSIONS GENERALES

L'objectif principal du renforcement du corps de chaussée et de remédier à un ou plusieurs défauts de sa structure et de prolonger sa durée de vie soit par apport des couches supplémentaires (rechargement) soit par remplacement des couches endommagées par des couches plus résistantes (reconstruction partielles). Ainsi, le renforcement a pour objectif d'augmenter la portance de la structure de la chaussée.

Actuellement la stratégie de renforcement du réseau routier est basée sur le développement des méthodes d'auscultation de manière à relever les dégradations, la planéité (transversale et longitudinale) et la portance de la structure de la chaussée. Pour ce faire, il faut l'effectuer a l'aide des appareils à grand rendement ce qui est le cas dans notre travail où il a été basé sur des résultats d'auscultation élaborés en utilisant des appareils très développés et avec une grande précision tels que :

- Le deflectographe LACROIX : pour mesurer la déflexion
- Le RSP (Road Surface Profiler) 5051 : pour mesurer l'uni

L'étude de renforcement élaboré concerne la RN 111 du PK 123 au PK..138 sur 15 km la chaussée, en appliquant le code de calcul numérique Alizé.

La nouvelle structure de chaussée est composée : (6 cm de couche de béton bitumineux, 14 cm de base bitumineuse et 15 cm de couche de gravier non liée)ce qui permet de prolonger la durée de vie de la route de 10 ans.

Il est à noter que l'opération d'auscultation a été réalisé en continu pendant 7 jours et sous trafic ce qui était une tâche difficile à être réalisée.

Pour des futures études de renforcement, on peut proposer ce qui suit :

-Dans le but d'y remédier, il a été jugé utile de s'orienter vers des techniques dites « innovantes »

telles que les BBME comme solution aux problèmes d'orniérage et de remontée de fissures Le BBME est un béton bitumineux a module élevée à base de bitumes durs à très dur (10/20, 20/35) ou des bitumes modifiés par emploi d'un agent chimique tel que les polymères (SB, SBS,EVA, etc.) ou à base d'additif telles que les poudrettes de caoutchouc ou les fibres synthétiques

permettant l'amélioration des propriétés fondamentales des enrobés telles la résistance au désenrobage, à la fatigue et à l'orniérage.

Le coût économique initial de mise en oeuvre des BBME est nettement supérieur à celui

CONCLUSIONS GENERALES

des bétons bitumineux classiques de 5 % environ. Ce taux peut être réduit progressivement par l'augmentation probable de la durée de vie des revêtements en BBME (≥10 ans) comparativement aux revêtements en enrobés classiques dont le coût d'entretien est relativement élevé et la durée de vie limitée (5 ans en général).

REFERENCE BIBLIOGRAPHIE

Les données on était fournis par :

- Recommandation sur l'utilisation des bitumes des enrobés bitumineux.
- Recommandations sur l'emploi des émulsions de bitume.
- Guide des renforcements.
- guide de réhabilitation des routes.
- conception et dimensionnement des chaussées-1994
- ➤ Guide de L'Entretien Routier 1995 N°01.
- Guide Réhabilitation -1996-
- catalogue structures chaussées neuves-1998
- Catalogue de dimensionnement chaussé neuves.
- Guide conception renforcements 2016.
- Guide-Renforcement-chaussée-sera 2009.
- > 02-Guide Réhabilitation Fascicule01.
- AASHTO Guide for design of Pavement Structures 1993.
- > Trafic et comptages 2014.
- Association des ingénieurs municipaux du Québec (AIMQ), « Manuel d'identification des dégradations des chaussées souples.» Québec 2002.
- ➤ B40 (Normes techniques d'aménagement des routes et trafic et capacité des routes 1972)
 - Publics (CTTP) Algérie.
- ➤ Guide des renforcements (facicule1) des routes 1992 (CTTP) Algérien
- > Données des auscultations par mesures de déflexions et d'uni, effectués
- par les services du CTTP
- > Donnée d'examen visuel de l'état de la chaussée ; effectués par les services du CTTP

REFERENCE BIBLIOGRAPHIE

- ➤ NF P 98-200-1 essai de déflexion a la poutre
- > NF P 98-200-2 Détermination de la déflexion Avec déflectographe Benkelmane modifié

Les sites:

www.academia.edu

www.google.fr

www.wikipedia.fr

www.cttp.dz

www.earth.google.com

www.wikipédia.com.

ANNEXES

ANNAXES 1 relevé visuel de dégradation sur l' axe de la RN 111

Localisation	Distance de la sous	Linéaire	Appréciation	Événement
	section	14,720	Voie 01	
	100		mauvais	<u> </u>
5	200		mauvais	
PK123+000 au PK124+000	300	E1 4	mauvais	
00±	400	514	mauvais	
PK123+000 PK124+000	500		mauvais	
PK PK	514		mauvais	
	100		Mauvais	
	200		mauvais	
	300		mauvais	
_	400		mauvais	Buse 124+350
000	500		mauvais	
PK124+000 au PK125+000	600	1188	mauvais	
K1	700	1177	moyen	
<u>4</u>	800		bon	
	900		bon	
00	1000		bon	
2	1100		bon	
PK.	1177		bon	
	100		bon	
	200		bon	
	300		bon	Buse 125+234
	400		mauvais	
	500		mauvais	
_	600		mauvais	
00-	700	1215	mauvais	
26⊦	800	1317	mauvais	
'K 1	900		mauvais	
п	1000		mauvais	
0 a	1100		mauvais	Buse 125+1064
)00+	1200		mauvais	
125-	1300		mauvais	
PK125+000 au PK 126+000	1317		mauvais	
	100		mauvais	
00	200	002	mauvais	
PK126+000 au PK127+000	300	993	mauvais	
PK1	400		mauvais	Buse 126+359

[
	500		mauvais	
	600		mauvais	
	700		mauvais	
	800		mauvais	
	900		mauvais	
	993		mauvais	
	100		mauvais	
00	200		mauvais	
78 +	300		mauvais	
X	400		mauvais •	
	500	988	mauvais	
] a	600 700		mauvais mauvais	
8	800		mauvais	Buse 127+767
27-	900		mauvais	Dusc 12/+/0/
PK127+000 au PK128+000	988		mauvais	
ļ	100		Mauvais	
	200		mauvais	
	300		mauvais	
an	400	627	mauvais	
PK128+000 PK129+000	500		mauvais	Buse 128+484
28+ 29+	600		mauvais	Buse 128+565
Ž Ž	627		mauvais	
	100		mauvais	Buse 129+051
	200		mauvais	Dusc 127 Vol
	300		mauvais	
	400		mauvais	
	500		mauvais	
	600		mauvais	
8	700		mauvais	
)+0	800	1382	mauvais	
K 113	900		mauvais	
E E				D 120 : 010
an	1000		mauvais	Buse 129+918
8	1100		mauvais	
)+6	1200		mauvais	
au PK129+000 au PK 130+000	1300		mauvais •	
L A	1382		mauvais ·	
	100		mauvais	
	200		mauvais	
	300		mauvais	
88	400	989	mauvais	
0+1	500		mauvais	
PK130+000 PK131+000	600		mauvais	
PK PK	700		mauvais	
		1	15	

800	mauvais	
900	mauvais	
989	mauvais	

	100		mauvais	Buse 131+038
	200		mauvais	
	300		bon	
000	400		bon	Buse 131+337
32 +	500		bon	
ĬŢ	600	1016	mauvais	
н Б	700		moyen	
) a	800		moyen	
PK131+000 au PK132+000	900		mauvais	
131-	1000		mauvais	Buse 131+954
PK	1016		mauvais	
	100		Mauvais	
PK132+000 au PK133+000	200		mauvais	
33+	300		mauvais	
KI	400		mauvais	
a P	500	835	mauvais	
a	600		mauvais	Buse 132+598
00+	700		bon	
132	800		moyen	
PK	835		bon	
	100		bon	Buse 133+062
	200		bon	
	300		bon	Buse 133+298
0	400		bon	
PK 134+000	500		moyen	
134	600	1151	bon	
X	700	1151	bon	
_	800		bon	
а <u>Э</u>	900		bon	
00+	1000		bon	
PK133+000 au	1100		mauvais	
PK	1151		mauvais	
	100		mauvais	
PK134+0 00 au PK135+0 00	200	989	mauvais	
S K S K	300		mauvais	

		т		
	400		mauvais	
	500		mauvais	
	600		mauvais	Buse 134+526
	700		mauvais	
	800		mauvais	
	900		mauvais	
	989		mauvais	Buse 134+959
	100		mauvais	
	200		mauvais	
)00-	300		mauvais	
36+	400		mauvais	Buse 135+388
)K1	500	982	mauvais	
	600	702	mauvais	
PK135+000 au PK136+000	700		mauvais	
00+	800		mauvais	
135	900		mauvais	
PK	982		mauvais	
	100		mauvais	
	200		mauvais	
)00-	300		mauvais	
37+	400	: : : : : : : :	mauvais	Buse 136+334
PK1	500	995	mauvais	
au PK137+000	600	130	mauvais	
. O a	700	: : : : : : : :	mauvais	
00+	800		mauvais	
PK136+000	900		mauvais	
PK	995		bon	
	100		bon	
	200		bon	
	300		bon	Buse 137+260
2	400	765	bon	
9 9 20 a	500	103	mauvais	
00+ *	600		mauvais	
PK137+000 au PK 138+000	700		mauvais	
PK PK	765		mauvais	

ation	Bon	Moyen	Mauvais	Total (m)
Estim	2607	500	11613	14720

ANNAXE

ANNAXES 2
Tableau ; Analyse de la mesure de l'uni

Du	A	(IRI <1.5)	(1.5 < IRI < 3.5)	(IRI > 3.5)	ESTIMATION
Du	Au	Bon	Moyen	Mauvais	ESTIMATION
PK 123+000	PK 124+000	5,3	84,2	10,5	Moyen
PK 124+000	PK 125+000	4,4	80,0	15,6	Moyen
PK 125+000	PK 126+000	11,5	78,8	9,6	Moyen
PK 126+000	PK 127+000	13,2	68,4	18,4	Moyen
PK 127+000	PK 128+000	20,5	43,6	35,9	Moyen
PK 128+000	PK 129+000	0,0	55,0	45,0	Moyen
PK 129+000	PK 130+000	0,0	13,5	86,5	Mauvais
PK 130+000	PK 131+000	10,3	33,3	56,4	Mauvais
PK 131+000	PK 132+000	57,5	35,0	7,5	Bon
PK 132+000	PK 133+000	25	59,4	15,6	Moyen
PK 133+000	PK 134+000	63,6	29,5	6,8	Bon
PK 134+000	PK 135+000	0,0	10,3	89,7	Mauvais
PK 135+000	PK 136+000	0,0	20,5	79,5	Mauvais
PK 136+000	PK 137+000	5,3	7,9	86,8	Mauvais
PK 137+000	PK 138+000	46,7	46,7	6,7	Bon à moyen

ANNAXES 3 Trafic

Poste n°01 caractéristiques de trafic

	Lundi	Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche	Moyenne
	28/03/2022	29/03/2022	30/03/2022	24/03/2022	25/03/2022	26/03/2022	27/03/2022	7 jours
TJM (véh)	1 359	984	1 256	1 114	522	1 111	1 244	1 084
TJMA (véh)	1 239	926	1 121	1 134	586	1 035	1 158	1 028
Tp (véh)	138	70	87	103	53	94	85	90
TC	762	659	814	705	456	813	840	721
(véh)	52	39	47	47	24	43	48	43
THM	61%	71%	73%	62%	78%	79%	73%	71%
(véh) Tc/TJ	11%	8%	8%	9%	9%	9%	7%	9%
MA	478	267	307	428	130	222	318	307
Tp/TJ MA TN	39%	29%	27%	38%	22%	21%	27%	29%

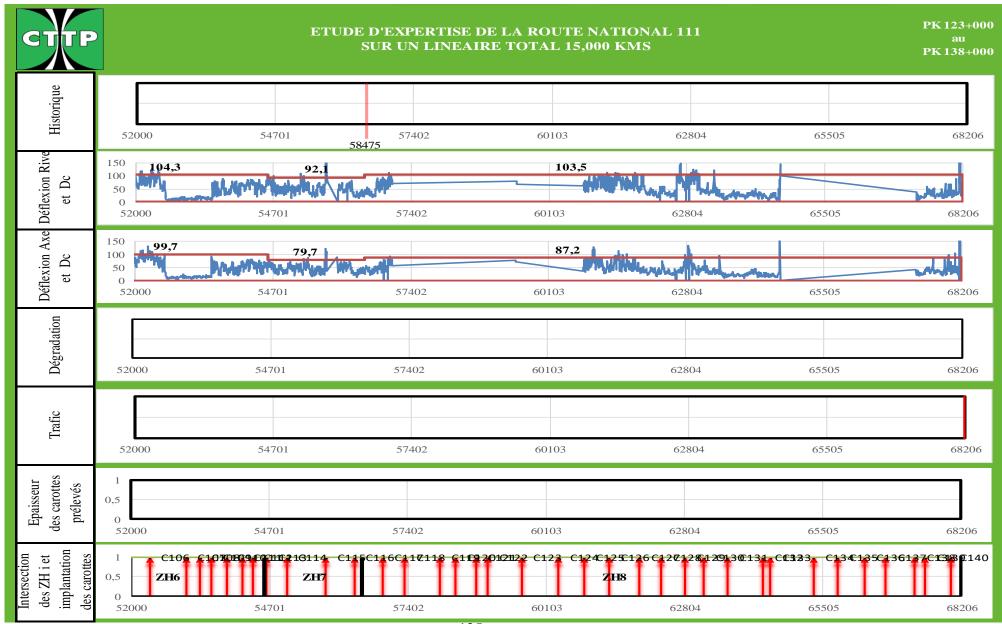
Poste n°01 caractéristiques de trafic

Lundi		Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche	Moyenne
	28/03/202 2	29/03/2 022	30/03/2022	24/03/2022	25/03/2022	26/03/2022	27/03/2022	7 jours
TJM (véh)	1697	1250	1377	1330	680	1228	1419	1283
TJMA	1548	1176	1229	1353	764	1144	1321	1219
(véh) Tp	170	103	102	126	89	95	109	113
	1 159	910	987	1 066	624	915	957	946
(véh) TC	64	49	51	56	32	48	55	51
(véh)	75%	77%	80%	79%	82%	80%	72%	78%
THM (véh)	11%	9%	8%	9%	12%	8%	8%	9%
Tc/TJMA	389	266	242	287	139	228	364	274
Tp/TJMA	25%	23%	20%	21%	18%	20%	28%	22%

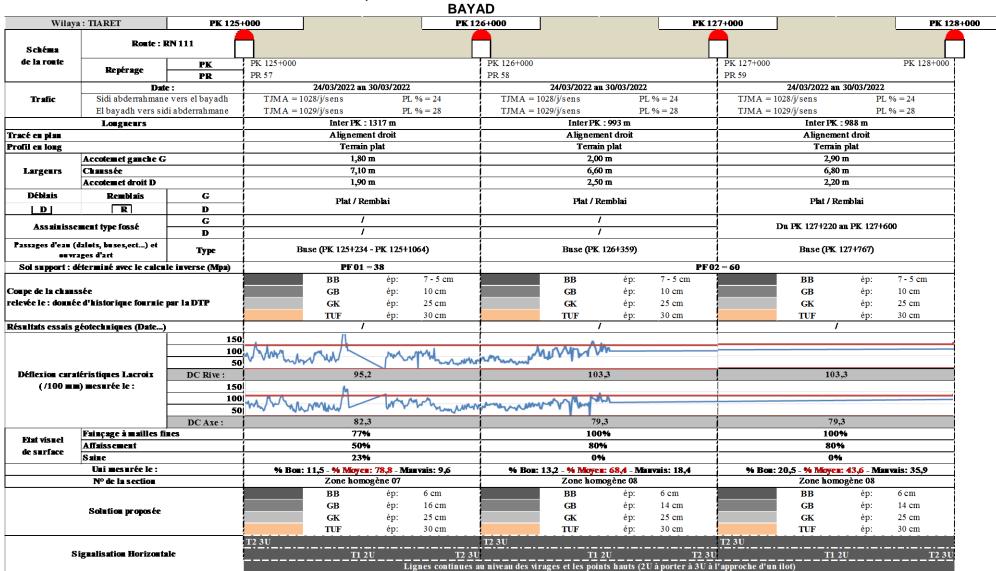
	Sen	s1 : SIDI A	ABDERRAI	HMANE v	ers LW E	L BAYAD	Н	
Date	Lundi	Mardi	Mercredi	Jeudi	Vendredi	Samedi	Dimanche	Moyenne
Moyenne	28/03/22	29/03/22	30/03/22	24/03/22	25/03/22	26/03/22	27/03/22	7 jours
00:00 - 01h00	18	8	15	22	4	8	10	12
01h00 - 02h00	10	8	10	11	4	4	5	7
02h00 - 03h00	13	5	24	12	3	6	17	11
03h00 - 04h00	16	18	29	32	4	10	8	17
04h00 - 05h00	61	17	27	101	5	9	26	35
05h00 - 06h00	151	34	33	93	6	32	29	54
06h00 - 07h00	115	74	66	64	15	39	91	66
07h00 - 08h00	72	62	83	90	37	48	85	68
08h00 - 09h00	83	64	69	49	31	53	66	59
09h00 - 10h00	67	47	82	64	37	55	67	60
10h00 - 11h00	62	57	55	63	33	72	81	60
11h00 - 12h00	59	47	57	52	29	72	72	55
12h00 - 13h00	74	63	66	68	27	65	68	62
13h00 - 14h00	61	53	73	83	22	81	83	65
14h00 - 15h00	76	55	79	88	35	101	88	75
15h00 - 16h00	75	74	78	37	47	94	73	68
16h00 - 17h00	84	69	86	43	42	78	73	68
17h00 - 18h00	71	57	97	31	47	82	78	66
18h00 - 19h00	51	52	87	25	19	72	68	53
19h00 - 20h00	45	45	47	31	14	29	52	38
20h00 - 21h00	26	32	27	23	20	26	37	27
21h00 - 22h00	36	14	20	10	13	32	26	22
22h00 - 23h00	18	15	22	10	14	22	23	18
23h00 - 00h00	15	14	24	12	14	21	18	17
TJM (véh)	1 359	984	1 256	1 114	522	1 111	1 244	1 084

Date		27/03	/2022				
Sens		Sens1: SI		Total			
HEURE	P1	P2	P3	P4	P5	P6	
10 :00-10 :15	12	4	0	3	1	1	21
10 :15-10 :30	18	4	0	1	0	0	23
10 :30-10 :45	9	2	0	3	1	0	15
10 :45-11 :00	11	3	0	6	0	1	21
11 :00-11 :15	15	6	0	1	0	1	23
11:15-1130	11	3	0	5	2	0	21
11:30-11:45	6	0	0	5	0	0	11
11:45-12:00	9	2	0	4	0	1	16
Somme	91	24	0	28	4	4	151
%	60,3	15,9	0,0	18,5	2,6	2,6	100,0

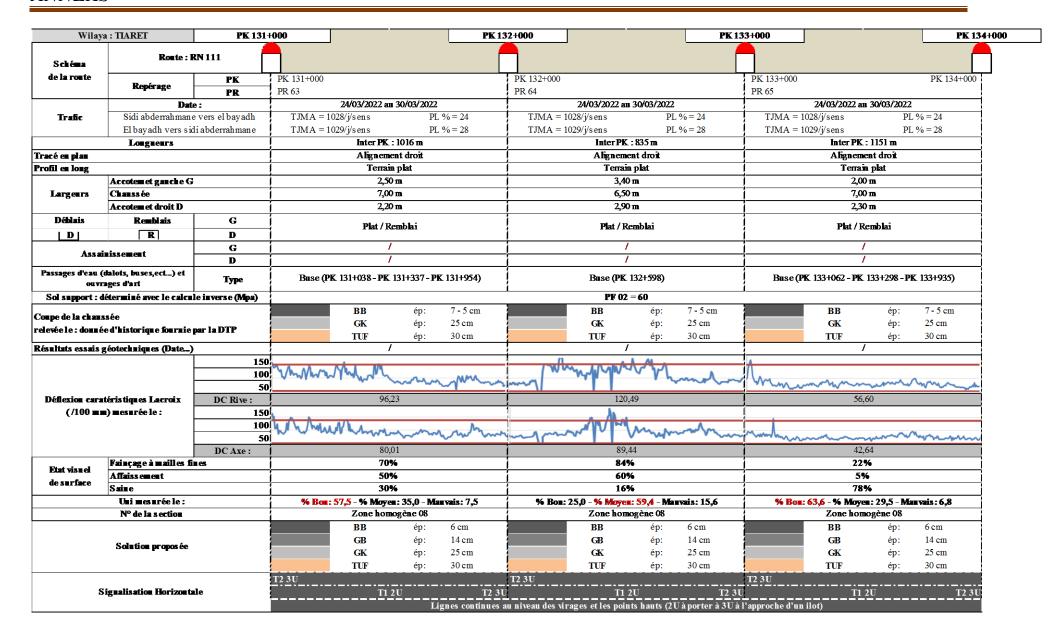
Sens2: LW EL BAYADH vers SIDI ABDERRAHMANE

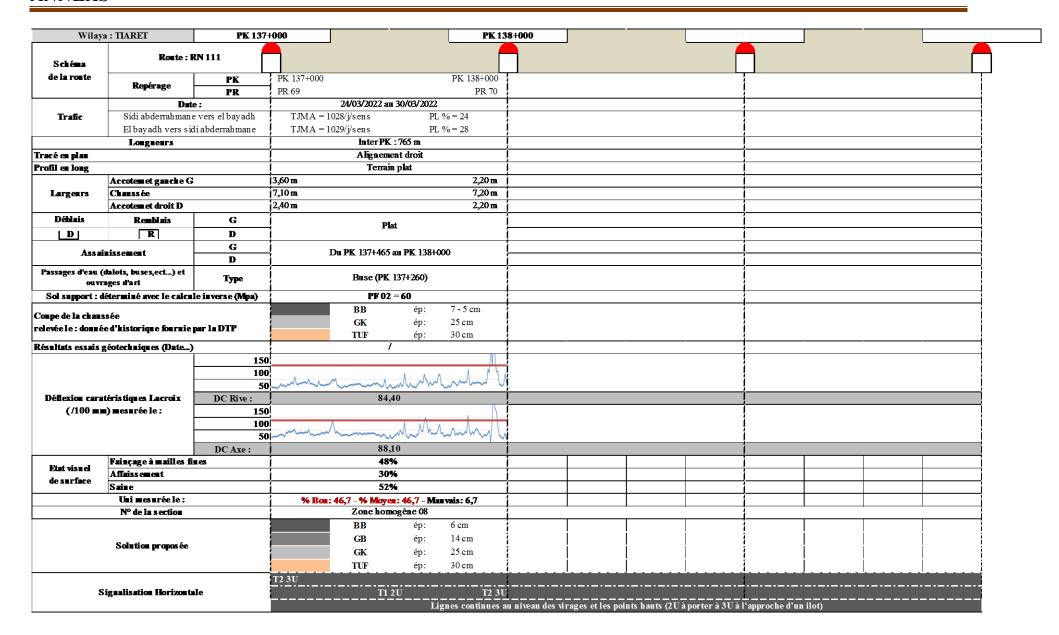

Date	Lundi	Mardi	Mercredi	Jeudi	Vendred	Samedi	Dima	Moye
Moyenne	28/03/22	29/03/22	30/03/22	24/03/22	25/03/22	26/03/22	27/03/22	7 jours
00:00 - 01	h00 29	18	8	24	9	7	21	17
01h00 - 02	2h00 12	15	11	30	4	6	13	13
02h00 - 03	3h0023	10	5	18	5	7	11	11
03h00 - 04	lh00 19	10	11	17	4	7	13	12
04h00 - 05	5h00 41	14	16	37	5	11	37	23
05h00 - 06	6h00 60	31	17	47	3	22	32	30
06h00 - 07	7h00 73	86	45	52	12	22	83	53
07h00 - 08	8h00 97	101	98	97	24	62	103	83
08h00 - 09	h00 100	83	114	104	29	81	117	90
09h00 - 10	0h00 114	81	74	119	34	93	104	88
10h00 - 11	l h00 90	68	93	110	53	102	89	86
11h00 - 12	2h00 110	87	78	79	38	67	97	79
12h00 - 13	3h00 130	94	108	86	43	86	85	90
13h00 - 14	lh00 186	91	98	75	79	75	72	97
14h00 - 15	5h00 107	109	107	87	55	87	65	88
15h00 - 16	5h00 93	94	106	124	49	91	93	93
16h00 - 17	7h00 91	68	81	81	62	82	70	76
17h00 - 18	3 h00 84	52	85	54	48	94	76	70
18h00 - 19	h00 69	39	64	32	42	63	57	52
19h00 - 20	0h00 53	35	56	18	24	65	60	44
20h00 - 21	l h00 47	16	36	10	22	33	46	30
21h00 - 22	2h00 22	15	21	13	12	21	26	19
22h00 - 23	3 h00 26	16	19	8	14	22	30	19
23h00 - 00	0h00 21	17	26	8	10	22	19	18
TJM (véh)	1697	1250	1377	1330	680	1228	1419	1283
Date				27/03/20 22			Total	

Sens		Sens2	2: LW EL I ABDER	BAYADH RAHMA		OI					
HEURE	P1	P2	Р3	P4	P5	P6					
10:00-10:15	8	5	0	6	2	1	22				
10:15-10:30	16	2	0	1	1	0	20				
10:30-10:45	15	2	0	5	0	2	24				
10:45-11:00	11	6	0	4	0	1	22				
11:00-11:15	23	4	0	5	3	3	38				
11:15-1130	13	1	0	4	0	1	19				
11:30-11:45	9	2	0	6	1	0	18				
11:45-12:00	10	6	0	4	0	1	21				
Somme	105	28	28 0 35 7 9								
%	57,1	15,2	15,2 0,0 19, 3,8 4,9								


Zono	Localisa	tion DD			Localisat	tion GPS				Défle	xion		Température
Zone	Localisa	iuon i K		To			Frome		R	ive	A	xe	Temperature
N°	To	Frome	Latitude	Longitude	Altitude	Latitude	Longitude	Altitude	Moyenne	Ecart type	Moyenne	Ecart type	Moyenne
49	4800.00	4900.00	3439.27	111.14	42.93	3440.19	110.78	42.97	51.06	12.12	54.74	14.64	17.53
50	4900.00	5000.00	3440.19	110.78	42.97	3440.70	110.59	42.99	71.15	18.90	69.51	17.25	17.42
51	5000.00	5100.00	3440.71	110.59	42.99	3441.20	110.28	43.01	17.87	9.44	18.14	9.66	18.59
52	5100.00	5200.00	3441.20	110.28	43.01	3441.69	110.00	43.04	54.50	14.79	50.32	13.25	19.07
53		5300.00		110.00	43.04	3442.19	109.75	43.06	51.31	14.81	45.90	11.89	19.03
54	5300.00	5400.00	3442.19	109.75	43.06	3442.72	109.62	43.08	48.07	16.84	44.49	14.36	18.21
55	5400.00	5500.00	3442.72	109.61	43.08	3442.95	109.48	43.09	59.68	20.71	50.97	12.99	19.69
56	5500.00	5600.00	3442.95	109.48	43.09	3443.77	109.16	43.13	66.84	14.77	66.92	19.79	17.22
57	5600.00	5700.00	3443.78	109.16	43.13	3444.29	108.98	43.15	71.64	17.45	56.39	16.66	17.83
58	5700.00	5800.00	3444.30	108.98	43.15	3444.84	108.78	43.17	55.95	25.54	42.73	14.67	17.24
59	5800.00	5900.00	3444.85	108.78	43.17	3445.36	108.59	43.19	34.58	12.40	28.82	9.83	15.29
60	5900.00	6000.00	3445.36	108.59	43.19	3445.68	108.45	43.21	28.01	10.50	27.56	10.45	15.89
61	6000.00	6100.00	3445.68	108.45	43.21	3445.68	108.45	43.21					
62	6100.00	6200.00	3445.68	108.45	43.21	3445.68	108.45	43.21					
63	6200.00	6300.00	3445.68	108.45	43.21	3447.45	107.60	43.28	27.83	7.99	35.55	8.79	15.92
64	6300.00	6400.00	3447.45	107.59	43.28	3447.51	107.49	43.29	54.17	28.98	48.56	24.24	13.37

ANNAXES 5 Tableau des échantillons prélevés


Carottes pré	vus		
	Carottage	PK	
119	C 123	127+682	au nivaeu de la fissure
120	C 124	128+000	Saine
121	C 125	128+400	au nivaeu de la fissure
122	C 126	129+000	Saine
123	C 127	129+660	au nivaeu de la fissure
124	C 17	130+000	au nivaeu de la fissure
125	C 128	130+503	au nivaeu de la fissure
126	C 129	131+000	Saine
127	C 130	131+592	au nivaeu de la fissure
128	C 18	132+000	au nivaeu de la fissure
129	C 131	132+465	au nivaeu de la fissure
130	C 132	133+000	Saine
131	C 133	133+462	au nivaeu de la fissure
132	C 134	134+000	au nivaeu de la fissure
133	C 135	134+151	Saine
134	C 19	135+000	au nivaeu de la fissure
135	C 136	135+470	au nivaeu de la fissure
136	C 137	136+010	Saine
137	C 138	136+431	au nivaeu de la fissure
138	C 139	137+000	Saine


SCHEMA ITINERAIRE DE LA ROUTE NATIONALE 111 DU PK 123+000 AU PK 138+000 (SIDI-ABDERRAHMANE VERS EL-

Wilay	a : TIARET	PK 128	+000	PK 1	29+000		PK 130	+000		PK 13		
Schéma	Route : F	RN 111										
de la route	n (PK	PK 128+000		PK 129+000		1	PK 130+000		PK 131+000		
	Repérage	PR	PR 60		PR 61			PR 62				
	Date	e:	24/03/2022 au 30/03	/2022	24/	03/2022 au 30/03/2022		24/03/20	22 au 30/03/2022			
Trafic	Sidi abderrahman e	vers el bayadh	TJMA = 1028/j/sens	PL % = 24	TJMA = 1028/j	sens P	L % = 24	TJMA = 1028/j/sens	PL	, % = 24		
	El bayadh vers sid	i abderrahman e	TJMA = 1029/j/sens	PL % = 28	TJMA = 1029/j/s	sens P	L % = 28	TJMA = 1029/j/sens	PL	, % = 28		
	Longueurs		InterPK: 627 t	n	1	Inter PK : 1382 m	!	Inte	r PK: 989 m			
racé en plan			Alignement dro	oit	1	Alignement droit	j	Alig	nement droit			
rofil en long			Terrain plat		1	Terrain plat	j	Т	errain plat			
	Accotemet ganche G		2,30 m		į	2,40 m	j		3,30 m			
Largeurs	Chanss ée		7,60 m		İ	7,00 m	į		6,70 m	j		
	Accotemet droit D		2,10 m		į	2,20 m	į		3,30 m			
Déblais	Remblais	G	Plat		į	Plat / Remblai	Ti Ti		Plat			
LD]	R	D	Feat		i	i sa / indicad	i		1 211	i		
	inissement	G	/		i	I	i		1			
ASS	III ISS CIII CII L	D	/			1		/				
	Passages d'eau (dalots, buses,ect) et ouvrages d'art Type		Buse (PK 128+484 - PK	(128+565)	Buse (PK 129+051 - PK 129+	918)					
Sol support : d	léterminé avec le calcul	le inverse (Mpa)				PF 02 = 60	J.					
			BB	ép: 7 - 5 cm		BB ép:	7 - 5 cm	BB	ép:	7 - 5 cm		
Coupe de la chau:				ép: 25 cm		GK ép:	25 cm	GK	ép:	25 cm		
elevée le : dommé	e d'historique fournie p	par la DTP	TUF	ép: 30 cm		ΓUF ép:	ép: 30 cm	TUF	ép:	30 cm		
Résultats essais	géotechniques (Date)		/	•		1	!		1			
		150	p.				1					
		100	o!					NM/	$^{\prime\prime}$	VIN Y NAIA		
		50	oļ					'V 'V		A M. M.		
Déflexion cara	téristiques Lacroix	DC Rive :	103,3		1	87,5			114,55			
(/100 mi	n) mesurée le :	150							n.	į		
		100							WYWY.	1 1 1 1 Y		
		50							, (A	W. W. W		
		DC Axe :	79,3			79,5	j		105,14			
Etat visuel	Fainçage à mailles fi	165	100%		į.	100%	j		100%			
de surface	Affaiss ement		80%		į	80%	<u>j</u>		80%			
ot sailet	Saine		0%		<u>i</u>	0%	<u>i</u>		0%			
Uni mes nrée le : N° de la s ection Solution proposée			% Bon: 0,0 - % Moyen: 55,0			% Moyen: 13,5 - Ma	rvais: 86,5	% Bon: 10,3 - % N	<u> </u>	rvais: 56,4		
			Zone homogène			Zone homogène 08	<u>Ĺ</u>		homogène 08			
				ép: 6 cm		BB ép:	6 cm	BB	ép:	6 cm		
				ép: 14 cm		GB ép:	14 cm	GB	ép:	14 cm		
				ép: 25 cm		GK ép:	25 cm	GK	ép:	25 cm		
			TUF	ép: 30 cm		TUF ép:	30 cm	TUF	ép:	30 cm		
			T2 3U		T2 3U			T2 3U				
S	Signalisation Horizonta	le	T1 2U	T2 3	U	T1 2U	T2 3U		T1 2U	T2 3U		
		Signalisation Horizontale						approche d'un ilot)				

Wilay	a : TIARET	PK 134	+000			PK	135+000			PK 1	36+000			PK 13
Schéma	Route : R	N 111												
de la route	n (PK	PK 134+000				PK 135+000				PK 136+000			PK 137+000
	Repérage	PR	PR 66				PR 67				PR 68			
	Date	:	!	24/03/2022	an 30/03/202	2	1	24/03/2022 ап	30/03/2022		1	24/03/2022 au	30/03/2022	!
Trafic	Sidi abderrahman e	vers el bayadh	TJMA = 1	028/j/sens	P	L % = 24	TJMA = 1	028/j/sens	PL	√ ₀ = 24	TJMA = 1	028/j/sens	PI	L % = 24
	El bayadh vers sid	i abderrahman e	TJMA = 1	029/j/sens	P	L% = 28	TJMA = 1	029/j/sens	PL	∠ % = 28	TJMA = 1	029/j/sens	PI	L % = 28
	Longueurs]	Inter P	K:989 m			InterPK	982 m		1	Inter PK	:995 m	
racé en plan			!	Aligner	nent droit			Aligneme	nt droit		1	Alignem	ent droit	
rofil en long			!	Тепа	in plat		ļ	Тепаіл	plat]	Тепаі	ı plat	
	Accotemet ganche G		Ì		20 m		į	3,10			į	3,30		
Largeurs	Chauss ée		į		20 m.		į	7,10			į	7,20		
	Accotemet droit D		1	2,2	20 m.		j	2,00	m			2,10) m.	·
Déblais	Remblais	G	į	מו	Plat		į	Pla			į	Pk	at	
LD]	R	D	j	-	-		i		•		1	• • •		
	inissement	G	i		1		i	1			ì	/		
ASSA		D	/				ĺ	1			/			
	'assages d'eau (dalots, buses,ect) et ouvrages d'art Type		F	Buse (PK 134+:	526 - PK 134	+959)		Buse (PK	135+388)			Buse (PK	136+334)	
Sol support : d	Sol support : déterminé avec le calcule inverse (Mpa)						•	PF 02	= 60					
· d- 1b				BB	ép:	7 - 5 cm		BB	ép:	7 - 5 cm		BB	ép:	7 - 5 cm
Coupe de la chaus		1_ DTD		GK	ép:	25 cm		GK	ép:	25 cm		GK	ép:	25 cm
eleveele: uumle	ée d'historique fournie p	AI IA DIF		TUF	ép:	30 cm		TUF	ép:	30 cm		TUF	ép:	30 cm
Késultats essais ;	géotechniques (Date)				1			1				1		
		150												
		100	-											
		50	ment											Amm
	téristiques Lacroix	DC Rive:	<u> </u>	9	8,8			98,8	0		<u> </u>	30,	20	
(/100 mm	n) mesurée le :	150												
		100	4											
	ļ	50	~~~											Www
		DC Axe:	!		19,1		-	119,			-	38,		
Etat visuel	Fainçage à mailles fir	165	ļ		0%		<u> </u>	1004			<u> </u>	904		
de surface	Affaiss ement		ļ		0% 1%			80%			<u> </u>	804		
	Saine		1 2/ 5			1 00 5					1 2/ 5	104		1 000
Uni mesurée le :			% Bon	: 0,0 - % Moye	m: 10,3 - Mla mogène 08	IVans: 89,7	% Bon	0,0 - % Moyen: Zone hom		rvaus: 79,5	% Boi	: 5,3 - % Moy er Zone hom		vais: 86,8
	Nº de la s ection		<u> </u>	BB		6 cm	1	BB		6 cm	1			6 cm
Solution propos ée				ép:				ép:			BB	ép:	6 cm 14 cm	
			GB	ép:	14 cm 25 cm		GB	ép:	14 cm 25 cm		GB	ép:	14 cm 25 cm	
			GK	ép:			GK	ép:			GK	ép:		
			TO 011	TUF	ép:	30 cm	T2 3U	TUF	ép:	30 cm	TO 011	TUF	ép:	30 cm
-	Signalisation Horizonta		T2 3U		 l 2U	T2		T1 2		T2 3	T2 3U	T1		T2 3U

