
People’s Democratic Republic of Algeria
University Ibn Khaldoun Tiaret
Faculty of Natural Sciences and Life

ARTIFICIAL INTELLIGENCE:
APPLICATIONS IN BIOLOGY AND MEDICINE

This manuscript is intended for students of M1 precision agriculture and
M1 infectiology.

Dou El Kefel MANSOURI and Wassim YEZLI

March, 2022

Contents

Preface 4

List of Symbols 6

Part I : Introduction 7

1 Biology and medicine into the 21st century: Opportunities
& Challenges 8
1.1 What is Biology? . 8
1.2 History . 9

2 Artificial intelligence 12
2.1 Computer vision concept . 13
2.2 Real-time concept . 19

3 Suggested readings 22

Part II : Image Processing 25

4 Image formation 26
4.1 X-Ray Imaging . 26
4.2 Computed Tomography (CT) 27

1

4.3 Magnetic Resonance Imaging (MRI) 27
4.4 Ultrasound Imaging . 28
4.5 Microscopy . 28

5 Image Digitization 35
5.1 Sampling . 36
5.2 Quantization . 37
5.3 Resolution . 38

6 Basic image processing algorithms 42
6.1 Low level algorithms . 42
6.2 Intermediate level algorithms 47
6.3 High level algorithms . 53

7 Suggested readings 54

Part III : Machine learning 56

8 Object Recognition 57
8.1 Faster R-CNN . 59
8.2 YOLO . 63

9 Classification 67
9.1 Naive Bayes . 67
9.2 Decision Trees (DTs) . 70
9.3 Support Vector Machines (SVM) 71
9.4 k-Nearest Neighbors (KNN) 73

10 Regression 75
10.1 Linear Regression . 75
10.2 Ridge Regression . 76
10.3 Lasso Regression . 77

2

10.4 Quantile regression (QR) . 78

11 Clustering 80
11.1 k-means . 80
11.2 BIRCH . 81
11.3 DBSCAN . 83
11.4 FCM . 84

12 Dimensionality Reduction 86
12.1 Linear methods . 87
12.2 Nonlinear methods . 93

13 Suggested readings 98

Part IV : Applications Gallery 100
13.1 Application 1 . 101
13.2 Application 2 . 103

3

Preface

Who Should Read This Manuscript ?: This manuscript is primarily intended
for students of M1 precision agriculture and M1 infectiology. It is also
intended for an audience with a basic understanding of biology or medicine,
mathematics, and also programming. Approaching this manuscript without
this context is possible, but probably more challenging. The manuscript may
also be of keen interest to academics as it presents a set of python language
source codes for each AI method presented in the manuscript.

What’s In This Manuscript ?: The manuscript is divided into four parts, and
each part consists of several chapters. Part I : is an introduction to biology
and medicine and their challenges in the twenty-first century. This part
also presents an introduction to artificial intelligence and its contributions
to these two fields. Part II : introduces the concept of Image Processing. It
consists of three chapters including, the image formation, image digitization
and basic image processing algorithms. Part III : introduces the concept
of Machine Learning. It consists of six chapters including, classification,
regression, clustering, deep learning, object recognition, and dimensionality
reduction. Each of the aforementioned part ends with the reference section.
Part IV : is a gallery of applications.

4

List of Symbols

• Pixel Picture element, the smallest item of information in an image.

• LED full Light-Emitting Diode.

• CCD Charge Coupled Device.

• CMOS Complementary Metal Oxide Semiconductor.

• IP Internet Protocol.

• PCR Polymerase Chain Reaction.

• MRI Resonance Imaging.

• CT Computed Tomography.

• RGB Red Green Blue.

• HD High Definition.

• 4K Horizontal resolutions of around 4,000 pixels.

• Python programming language.

• DFT Discrete Fourier Transform.

• DCT Discrete Cosine Transform.

• DWT Discrete Wavelet Transform.

5

• CNN Convolutional Neural Networks.

• ANN Artificial Neural Network.

• BNN Biological Neural Network.

• YOLO You Only Look Once.

• DT Decision Tree.

• SVM Support Vector Machine.

• KNN k-Nearest Neighbors.

• QR Quantile regression.

• BIRCH Balanced Iterative Reducing and Clustering using Hierarchies.

• DBSCAN Density-Based Spatial Clustering of Applications with Noise.

• FCM Fuzzy C-Means Clustering.

• PCA Principal Component Analysis.

• MDS Multidimensional scaling.

• LDA Linear Discriminant Analysis.

• CCA Canonical correlation analysis.

• Isomap Isometric mapping.

• KPCA Kernel Principal Component Analysis.

• LLE Locally Linear Embedding.

6

Part I :

Introduction

7

Chapter 1

Biology and medicine into the
21st century: Opportunities &
Challenges

1.1 What is Biology?

Biology is defined as the study of life. The word ”biology” is derived from the
Greek words ”bios” and ”logos” that mean respectively, ”life” and ”study”.
This scientific discipline studies living organisms constituted of one cell e.g.
bacteria, archaea, yeast; or several cells e.g. animals, plants, filamentous
fungi, etc., based on their structure and function, where we can found prokary-
otes and eukaryotes cells. It studies also their growth, evolution and origin.

The main constraint is that they exist different competing organism con-
cepts and definitions, and among biologist, there is no general agreement on
exactly what entities qualify as ”organisms”. Some researchers think this is
a problem that have to be corrected; because, both organism concepts and
definitions are useful; others have suggested that biology does not actually
need an organism concept.

Different organism concepts are useful for addressing different questions,

8

and it is important to be explicit about which is being used. Indeed, all
organisms are endowed with genetic material that processes hereditary infor-
mation encrypted in genes, which will be transmitted to other generations.

Another primordial concept is evolution, which explains at the same time
the unity and the diversity of life. This concept owes its existence to Charles
Darwin who developed the theory of evolution. This theory overturned ex-
isting notions and gave a new era to life science.

Consequently, there are different axes of biology that are based on the
problem sought and the tools used to respond to it. Studies in biology are
carried out according to a well-structured research methodology based on
physical and chemical techniques, mathematical algorithms, computer tools,
etc., in order to carry out observations, frame problems, develop hypotheses,
do experiences, draw conclusions and suggest solutions.

1.2 History

The history of biological sciences, including medicine, which is the art of
healing and maintaining the stability of human and animal health (veteri-
nary medicine); date back from 3000 to 1200 years before common era, in
Mesopotamia and ancient Egypt. This impact came in later and shaped the
Greek natural philosophy of classical antiquity. Several Greek philosophers
such as Aristotle contributed a lot to the development of biological knowl-
edge. We find among these works ”History of Animals”, which was very
important; and subsequently, other empirical work based on biological cau-
sation and the diversity of life. Aristotle’s successor in the Peripatetic school,
Theophrastus, is also found to have written books on botany, and which were
the subject of antiquity’s most important contribution to the plant sciences,
even in the Middle Ages.

The scholars of the medieval Islamic world contributed much in the bi-
ological sciences, where we find Al-Jahiz (781–869), Al-Dı̄nawar̄ı (828–896),

9

who wrote books on botany, Rhazes (865–925) who wrote on anatomy and
physiology. Medicine was greatly enriched by his father, Ibn Sina, known as
Avicenna, who established the pillars of medicine. The latter has been well
studied by Islamic scholars working in the traditions of Greek philosophers.

The rapid development of biology owes its power to the Dutch merchant,
Antonie van Leeuwenhoek, a Dutch merchant fan of optical instruments, who
spectacularly developed the microscope and enabled scientists to discover
spermatozoa, bacteria, and the diversity of life microscopic. Also noteworthy
is the work of Jan Swammerdam, who gave a new vision for entomology and
helped to develop the basic techniques of microscopic dissection and staining.

The biological cell was described by the observation of plants by Robert
Hooke, (1635-1703) an English multidisciplinary scientist. Hooke describes
in 1665 a fly’s eye and a cork cell published in (”Observation XVIII” of
Micrographia). He was the first to use the word ”cell” in 1667.

The structuring of taxonomy and classification has become of paramount
importance to scientists. Carl Linnaeus, a pillar of biology, published a
basic taxonomy for the natural world in 1735 (variations of which have been
used ever since) and in the 1750s he introduced scientific names for all his
described species. Georges-Louis Leclerc, Comte de Buffon, treated species
as artificial categories and living forms as malleable, even suggesting the
possibility of common descent. Although he was opposed to evolution, Buffon
is a key figure in the history of evolutionary thought; his work influenced the
evolutionary theories of Lamarck and Darwin.

Serious evolutions in biology have been implemented thanks to the de-
velopment of equipment and diagnostic techniques. The basis of modern
biology began with the work of Gregor Mendel, who presented his paper,
”Versuche über Pflanzenhybriden” (”Experiments on Plant Hybridization”),
in 1865, where he described the principles of inheritance biological, basic
servant for modern genetics. However, the importance of his work was not
realized until the early 20th century, when evolution became a unified theory,

10

with the modern synthesis reconciling Darwinian evolution with classical ge-
netics. In the 1940s and early 1950s, a series of experiments anticipated by
Alfred Hershey and Martha Chase showed that DNA was the component of
chromosomes containing the trait-carrying units known as genes. This has
pushed towards interest in molecular biology, a modern and solid axis on
which current biology is based.

11

Chapter 2

Artificial intelligence

Modern biology is witnessing a revolution and the spread of knowledge on
an unprecedented scale. This is due to the ever-increasing detail and sophis-
tication, as well as the shift from the principle of reduction to the integra-
tive and organizational principles of living systems. Biology, as a scientific
study, raises an obvious problem about the large amount of data that char-
acterizes it and that is obtained from heterogeneous sources. Before long,
analyzing biology data was done with traditional laborious methods, often
time-consuming. Today, Artificial Intelligence (AI) is expected to dominate
biological data thanks to its powerful surveying and classification tool. AI is
primarily based on mathematical models that can describe complex biologi-
cal systems in an accurate manner. In general, most modern AI techniques
originate from computer vision, including data processing (for example, im-
age recognition, natural language processing, ...). The real-time concept also
has an important place in AI. In this chapter, we present in a simple way
both concepts: computer vision and real time.

12

2.1 Computer vision concept

2.1.1 What is Computer vision?

Computer vision is an interdisciplinary scientific field in which computers
seek to interpret scenes at the same level as a human visual system can do.
Let’s look at Figure 2.1 that illustrates a scene composed of various objects.

Figure 2.1: Simple example of computer vision interpretation.

From the figure, it is understood that a group of children is running
through a pedestrian crossing, located on a street that appears to be in a
residential area. The image looks recently captured, based on the Volkswa-
gen car parked to the right of the image. The number of children is six.
Children’s details are not clear enough in the figure, this makes distinguish-
ing between girls and boys a little difficult. Let’s now focus on the two boys
in the middle of the children group. We can see that the boys are running
around smiling. This indicates that there is no danger to children from on-
coming cars. We now turn to the set of images in Figure 2.2. One could
say at first glance that the images show danger. The danger exposed by the
two images above requires very rapid parental intervention. As for the dan-
ger presented in the two images below requires the intervention of security

13

services. In fact, the human visual system can arrive at this interpretations

Figure 2.2: Some images that present a danger.

very quickly without any effort thanks to the brain which has more than 1010

neurons. However, the number of images that cross the human in his daily
life, like those presented above, is very large and far exceeds their ability to
understand, interpret and make complex decisions based on them.

Computers are extremely efficient solution that perform tasks requiring
human intelligence. Thanks to the cameras built around the right resolution,
computers are able to collect a very large number of images, and interpret
them at the same time while making best decisions. For instance, computer
vision system can monitor the highways, neighborhoods, green spaces, and
easily inspect object details too small to be seen by the human eye. This
improves the speed, accuracy, and effectiveness of human efforts. Indeed,
even though computers are very efficient, the images actually contain a lot of
information, making its interpretation difficult for humans, not to mention
computers alone. From here, it is important to ask the following question:
’How makes a computer intelligent ?’. As humans, we usually go through a
number of steps to quickly understand images and make decisions. We may
first observe the images and secondly rely on what we know to explain what
we see and finally make the decision. Likewise, computers should use similar

14

steps to reach human intelligence.

2.1.2 Components of a vision system

The common core function of biological and computer vision includes the
following units:

– Lighting. radiation should be emitted from the part to be inspected
so that it can be seen clearly by the camera and processed afterwards.
The light sources commonly used to illuminate the parts in machine
vision are fluorescent, quartz halogen, LED, mercury, and xenon. It
replaces natural sources, such as solar radiation or moonlight and even
fire, which was one of the first attempts at inventing the light source.
Figure 2.3 shows the lighting principle. Note that computer vision
analyzes the reflected light from the object, not the object itself. It
should also be noted that the higher the control over the use of light,
the higher the image quality and the more precise the analysis.

Figure 2.3: Lighting principle.

– Camera lens. also known as photographic lens. It captures the image
by collecting the radiation received from the object and presents it to
the sensor in the form of light. Lens vary in optical quality and price.
It might also be permanently fixed to a camera or interchangeable.
Figure 2.4 shows an example of camera lens.

15

Figure 2.4: Example of camera lens.

– Sensor. The basic component of digital cameras. It receives the ex-
ternal light in the form of energy, stores it in its cells (pixels), and then
turns it into a digital image. The digital image is then sent to the pro-
cessing unit for analysis. Note that low light produces darker pixels,
while bright light gives brighter pixels. Figure 2.5 shows an example
of sensor. Sensors can be categorized in several ways, by resolution,
frame rate, pixel size, sensor format, structure type (CCD or CMOS),
chroma type (color or monochromatic) or shutter type (shutter global
or rolling).

Figure 2.5: Example of sensor.

– Processing unit. processes incoming image data, usually higher di-
mensional data. It can take place in a computer or in a standalone

16

vision system. It is always associated with a memory system to store
image data, including software to perform the processing. In the con-
text of computers, there are several processing units that differ in width
and speed. It is manufactured by various companies such as Intel,
AMD, Qualcomm, Motorola, Samsung, IBM, etc. Figure 2.6 shows the
Central Processing Unit.

Figure 2.6: Central Processing Unit.

– Communications. between the aforementioned set of off-the-shelf
components. Communication is done using a conventional RS-232 se-
rial output, Ethernet or Ethernet/IP.

Figure 2.7 briefly illustrates components of machine vision mentioned in
this section.

2.1.3 Basic stages of computer vision

A computer vision system often consists of an image acquisition system, im-
age processing and statistical analysis programs. Image acquisition system
include: an illumination device, a frame-grabber, and a computer. Image
processing and statistical analysis rely on specialized algorithms that en-
hance, recognize, locate and classify objects. For example, neural networks
are among the most efficient algorithms for identifying and classifying ob-
jects. In addition, systems evolve according to the algorithms that make it

17

Figure 2.7: Components of machine vision (Figure adopted from url https://www.
cognex.com/what-is/machine-vision/components).

work. As a result, surveillance cameras today are radically different from
surveillance cameras of the year 2000, because surveillance cameras algo-
rithms are now more sophisticated than the algorithms used in the year
2000. In this handout, we will introduce some computer vision algorithms to
help the reader understand the process of computer vision.

2.1.4 Computer vision in Biology and Medicine

Computer vision plays an important role in many fields of biology. For in-
stance, in cell biology, computer vision is used to visualize, measure and also
to interpret the content of a cell image through the basic stages of computer

18

https://www.cognex.com/what-is/machine-vision/components
https://www.cognex.com/what-is/machine-vision/components

vision mentioned above. In biodiversity, computer vision algorithms can
make a significant contribution to reducing biodiversity loss caused by rising
sea levels, extreme temperatures, and the growing human population. In
animal ecology, computer vision solutions can greatly increase the efficiency
of monitoring animal species in the natural world. In the food industry,
computer vision systems are increasingly used for food quality inspection.
Besides, in medicine, computer vision is used in various healthcare appli-
cations like precise detection of brain tumors, diagnosis and treatment of
Covid-19 and also other complex medical diagnostic tasks covering derma-
tology, radiology or pathology.

2.2 Real-time concept

Generally speaking, we are talking about the real-time principle when we are
faced with a problem that involves response time constraints. Suppose an air
traffic controller monitors the airspace and gives take-off or landing orders to
pilots. If he ever give a landing order to a pilot and his order does not arrive
on time, this delay can cause catastrophic events. Another example, let’s say
you are watching the Champions League final on TV. The match is televised
live in the UK by the beIN SPORTS, two thousand kilometers away from
your place of residence. You will receive all the match photos live in real-time
as if you are on the field. If there is a problem with the transmission, for
example the sound comes before the photo, or if there are interruptions that
last one minute or more each time, you won’t want to continue watching the
match.

In fact, a real-time response is critical because any response, even if it
is correct, after a deadline is worthless, and the consequences of a delayed
response are just as dangerous as the consequences of an incorrect response.
From here, it is essential that the request time roughly coincides with the
response time. Real-time is generally referred to as real-time systems or real-

19

time algorithms. For instance, airbag deployment systems are an example of
real-time systems, and algorithms applied to airbag deployment systems are
an example of real-time algorithms. Note that the airbag deployment system
uses an algorithm based on the control unit sensor and the frontal impact
sensor. It distinguishes collisions along these sensor signals. Like computer
vision algorithms, real-time algorithms evolve according to time and need.

2.2.1 Characteristics of a real-time system

Here are some key features of the real-time system:

– Time Constraint: means that all tasks assigned to a program should
be completed before the deadline.

– Correctness: means getting a correct result in a time constraint, and
any result after the deadline is not considered correct.

– Safety: the system should work for a long time without human in-
tervention and without failure, and it will reset itself when the failure
occurs without causing any damage to the data and information.

– Concurrency: the system can respond to a certain number of tasks
simultaneously and according to the deadline set for each task.

– Distributed: the system should work correctly even if its different
components are in different geographical locations.

– Stability: means that the system should gives stable results in a time
constraint even when there are several tasks running at the same time.

– Scalability: the system should be able to scale up or down to meet
application-specific requirements.

20

2.2.2 Real-time in Biology and Medicine

In general, when we talk about real-time in biology, we mean real-time PCR
also known as quantitative PCR, which is used in diverse applications such as
gene expression analysis, the detection of genetically modified organisms, etc.
In medicine, the real-time concept is of great importance. For instance, real-
time proactively provides live information for monitoring and intervention in
care, as well as continuous improvement in patient care.

21

Chapter 3

Suggested readings

1. Craig, N. L., Green, R. R., Greider, C. C., Wolberger, C., & Storz, G.
G. (2021). Molecular biology: principles of genome function. Oxford
University Press, USA.

2. Lindberg, D. C. (2010). The beginnings of Western science: The Eu-
ropean scientific tradition in philosophical, religious, and institutional
context, prehistory to AD 1450. University of Chicago Press.

3. Pepper, J. W., & Herron, M. D. (2008). Does biology need an organism
concept?. Biological Reviews, 83(4), 621-627.

4. Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Reece,
J. B. (2017). Campbell biology. Pearson Education, Incorporated.

5. Sapp, J. (2003). Genesis: the evolution of biology. Oxford: Oxford
University Press.

6. Coleman, W., & Coleman, W. R. (1977). Biology in the nineteenth cen-
tury: Problems of form, function and transformation (Vol. 1). Cam-
bridge University Press.

22

7. Larson, E. J. (2004). Evolution: The remarkable history of a scientific
theory (Vol. 17). Random House Digital, Inc.

8. Schaffner, K. F. (1993). Discovery and explanation in biology and
medicine. University of Chicago press.

9. Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Long-
man Publishing Co., Inc.

10. Hunter, L. (Ed.). (1993). Artificial intelligence and molecular biology
(Vol. 445). Menlo Park: Aaai Press.

11. Langton, C. G. (Ed.). (1997). Artificial life: An overview.

12. Ginsberg, M. (2012). Essentials of artificial intelligence. Newnes.

13. Flasiński, M. (2016). Introduction to artificial intelligence. Switzer-
land: Springer International Publishing.

14. Pham, T. D., Yan, H., Ashraf, M. W., & Sjöberg, F. (2021). Advances
in Artificial Intelligence, Computation, and Data Science. Springer
International Publishing.

15. Jahne, B. (Ed.). (2000). Computer vision and applications: a guide
for students and practitioners. Elsevier.

16. Kisacanin, B., Bhattacharyya, S. S., & Chai, S. (Eds.). (2008). Em-
bedded computer vision. Springer Science & Business Media.

17. Szeliski, R. (2010). Computer vision: algorithms and applications.
Springer Science & Business Media.

18. Forsyth, D. A., & Ponce, J. (2012). Computer vision: a modern ap-
proach. Pearson.

23

19. Davies, E. R. (2017). Computer vision: principles, algorithms, appli-
cations, learning. Academic Press.

20. Mellor, D. H. (1985). Real time. CUP Archive.

21. Liu, F., Narayanan, A., & Bai, Q. (2000). Real-time systems.

22. Dorak, M. T. (Ed.). (2007). Real-time PCR. Taylor & Francis.

23. Mackay, I. M. (2007). Real-time PCR in microbiology (pp. 13-35).
Norfolk, UK: Caister Academic Press.

24. Meuer, S., Wittwer, C., & Nakagawara, K. I. (Eds.). (2012). Rapid
cycle real-time PCR: methods and applications. Springer Science &
Business Media.

25. Akenine-Moller, T., Haines, E., & Hoffman, N. (2019). Real-time ren-
dering. Crc Press.

24

Part II :

Image Processing

25

Chapter 4

Image formation

When we talk about biomedical imaging, we are necessarily referring to the
various imaging tools used to obtain medical images, such as magnetic reso-
nance imaging (MRI), X-ray computed tomography (CT) imaging, and mi-
croscopy. These imaging tools have provided unprecedented accuracy and
reliability in disease identification and treatment response. In this section,
we provide a brief description of these different imaging modalities.

4.1 X-Ray Imaging

Like radio waves and visible light electromagnetic radiation, X-rays are also a
type of radiation that has both a frequency and a wavelength. However, the
frequency of X-rays is higher and their wavelength is shorter ranging from
0.124 to 0.0124 nm, and can be compared to the atomic and/or molecular
spacing of different materials. These properties allow X-rays to entirety pen-
etrate most materials and interact with them at the microscopic scale, which
constitutes a non-destructive volumetric imaging of the molecular structure
of objects. Figure 4.1 shows the process generation of X-ray image by typical
medical imaging applications. X-rays are emitted by the X-ray tube in the
form of photons, which have a much higher energy than that of light. These

26

photons are then collimated by a beam-limiting device. Afterwards, they en-
ter the object (patient), where they may be scattered or absorbed. The X-ray
beam absorbed will be proportional to the type and size of object, more X-
rays that pass through the object, the higher the optical density of the image.
At the end, an image is obtained which contains a two-dimensional distri-
bution of optical density which relates for example to the tissue distribution
within the patient.

4.2 Computed Tomography (CT)

Unlike a conventional X-ray which cannot provide depth information from
a single image. CT is a new imaging technique that uses a motorized X-
ray source and provides a different form of imaging known as cross-sectional
imaging. Specifically, computed tomography measure X-ray transmission
through a patient for a large number of views. It separates superimposed
anatomical details and produces axial sectional images that are used for a
variety of diagnostic and therapeutic purposes. Figure 4.2 shows a modern
CT scan machine and figure 4.3 shows a CT scan image of a man’s brain.

4.3 Magnetic Resonance Imaging (MRI)

Unlike methods that rely on the emission of radiation, Magnetic Resonance
Imaging (MRI) is a modern imaging technique that makes use of the phe-
nomenon of nuclear spin resonance and does not emit any ionizing radiation.
This technique is very reliable and is widely used to study many organs such
as the brain, spine, joints, soft tissues and cardiac cavities, which is often not
possible with X-rays, ultrasound or even CT. The main idea of MRI is based
on the fact that the hydrogen atoms in the human body are stimulated by
an external magnetic field. As a result, protons, a component of hydrogen
atoms, try to orient their spins to align with the external magnetic field.

27

When this stimulation is stopped, the spins return to their original position
while emitting a weak signal that can be picked up, recorded and processed
in the form of an image by a computer system. Figure 4.4 shows a modern
MRI and MRI image of a complete body.

4.4 Ultrasound Imaging

Ultrasound is an imaging technique that uses high-frequency sound waves
inaudible to humans, greater than 20,000 periods per second (20 kHz), to
explore body tissue. The ultrasound beam is emitted by a probe and trans-
mitted at different speeds through body tissue (e.g., 1540 meters per second
through soft tissue). Afterwards, the same probe receives several echoes from
the part of the body examined. The round-trip time of the echo can be trans-
lated into the depth of the echo source. In other words, echoes coming from
a deep region of the body are more attenuated than those coming from a su-
perficial region. At the end, the reflected echoes are converted into detailed
images visible on the screen. Ultrasound imaging is a popular and inexpen-
sive tool used in various medical disciplines such as obstetrics, gynecology,
pediatrics and neurology. Figure 4.5 shows a modern MRI and MRI image
of a complete body.

4.5 Microscopy

Microscopy is a powerful biophysical tool commonly used in biological re-
search. It is able to show the detail of small biological structures by achieving
resolution at the cellular level. The microscopy is based on the concept of
magnification, which is the ratio between the diameter of the image observed
under the microscope and the diameter of the object in reality. If a 40X
objective is used for example, a total magnification of 400X is obtained (10X
× 40X = 400X). There are many several of microscopes, but for the sake

28

of space, we will focus on optical microscopy, fluorescence microscopy, and
electron microscopy. Below, we provide a brief description of these different
microscopes.

4.5.1 Optical microscopy

Optical microscopy is an optical instrument used to generate magnified im-
ages of small objects using visible light and a lens system. The visible light
is a strong point of optical microscopy that maintains its continuity to the
present. On the one hand, light is cheap and plentiful and can be manipu-
lated with relatively inexpensive laboratory equipment. On the other hand,
light does not irreversibly change the electronic or atomic structure of the
material with which it interacts. this allows the observation of natural pro-
cesses in situ. The lens system is based on using an objective lens close to the
specimen which produces a magnified intermediate image (from 10x to100x
magnification). An additional magnification is achieved by an ocular (usu-
ally gives additional 10x magnification) to produce a virtual image. Hence,
if one uses a 40X objective lens, a total magnification of 400X is obtained
(10X × 40X = 400X). Figure 4.6 shows an example of optical microscope
and a magnified image of small object.

4.5.2 Fluorescent microscopy

Fluorescence microscopy is one of the most widely used instruments for ex-
amining biological samples. In addition to being an optical microscopy, it
also uses fluorescence to study properties of organic or inorganic substances.
Fluorescence microscopy uses a light source that is more intense than visible
light, which can excite a fluorescent species in the sample of interest. The flu-
orescent species in turn emits lower energy light of a longer wavelength which
produces the magnified image. Figure 4.7 shows an example of fluorescent
microscopy and a magnified image of small object.

29

4.5.3 Electron microscopy

Electron microscopy is also a type of microscopy used to create highly mag-
nified images, up to 2 million times. It is known by its ultrahigh-resolution
images, superior to optical microscopes. The high resolution of electron mi-
croscopy images results from the use of electron beams as a source of illumi-
nating radiation, instead of a beam of light, to investigate the samples prop-
erties and behavior. Like the optical microscopy, the electron microscopy
uses a lens system to form images. The lens system controls the electron
beam to sweep the surface of the sample to be analyzed. Figure 4.8 shows
an example of electron microscopy and a magnified image of small object.

30

Figure 4.1: Basic principles of X-ray imaging (Figure adapted from book No-13:
978-1-4398-7034).

31

Figure 4.2: X-ray computed tomography. (Figure adopted from url http://www.
amradusa.com/equipment/ct/).

Figure 4.3: CT scan image of a man’s brain. (Figure adopted from url https:
//www.dreamstime.com).

32

http://www.amradusa.com/equipment/ct/
http://www.amradusa.com/equipment/ct/
https://www.dreamstime.com
https://www.dreamstime.com

Figure 4.4: MRI machine with full body image. (Figure adapted from url https:
//irmba.fr/irm_corps_entier.html and https://www.siemens-healthineers.com).

Figure 4.5: Ultrasound machine with baby ultrasound image. (Figure adapted
from url https://medi-plus.fr/ and https://fr.dreamstime.com/).

33

https://irmba.fr/irm_corps_entier.html
https://irmba.fr/irm_corps_entier.html
https://www.siemens-healthineers.com
https://medi-plus.fr/
https://fr.dreamstime.com/

Figure 4.6: Optical microscopy with a plant tissue image. (Figure adapted from
url https://fr.dreamstime.com/).

Figure 4.7: Fluorescent microscopy with image. (Figure adapted from Wikipedia).

Figure 4.8: Electron microscopy with image. (Figure adapted from Wikipedia).

34

https://fr.dreamstime.com/

Chapter 5

Image Digitization

During the image capture process, light accumulates in the sensor cells, in-
dicated by pixels. Each cell then converts to a numeric value. At the end of
conversion process, one get a data table. The latter is known as the digital
image. Figure 5.1 shows the conversion process. As shown in the figure,

Figure 5.1: Conversion process.

the image on the left represents the first step of the conversion process. It
is a grayscale image where each pixel represents a value from 0 to 255 (0:
black, 255 white). For binary images, the pixel has two values, 0 for ”black”
and 1 for white”. For color images, the pixel has three values from 0 to 255,

35

representing Red-Green-Blue. Thus, any color can be encoded as a mixture
of red, green, and blue, as presented in the table 5.1. Recall that the value is
interpreted as the amount of light hitting a cell in sensor. Figure 5.2 presents

Table 5.1: Colors in numeric values.

Color Red value Green value Blue value
black 0 0 0
White 255 255 255
Red 255 0 0
Blue 0 0 255

Green 0 128 0
Yellow 255 255 0
Purple 128 0 128
orange 255 165 0

an example of digital coding for a binary image, grayscale image and also an
RGB image.

(a) (b) (c)

Figure 5.2: (a) Binary image. (b) Grayscale image. (c) RGB image

5.1 Sampling

Since the output of most image sensors represents an analog signal which
can have infinite values requiring infinite memory to store them, it is im-
portant to proceed with the sampling. Sampling represents a process of
recording an analog signal at regular discrete moments of time, ie, breaking
up a continuous signal to a discrete signal. Therefore, a continuous image
turns into a discrete image by selecting values on the continuous image and

36

discarding others. This procedure is generally occur in the sensor. Fig-
ure 5.3 and Algorithm 5.1 show the sampling process [Code adopted from
https://www.fatalerrors.org/].

(a) (b) (c)

Figure 5.3: Example of sampling. (a) Original image of bacteria. (b)(c)
Sampled images.

Listing 5.1: Sampling in Python
1 import numpy as np

2 from skimage import data

3 from matplotlib import pyplot as plt

4 image=data. coffee ()

5 ratio =100

6 image1 =np.zeros ((int(image.shape [0]/ ratio),

7 int(image.shape [1]/ ratio),

8 image.shape [2]) , dtype=’float32 ’)

9 for i in range(image1 .shape [0]):

10 for j in range(image1 .shape [1]):

11 for k in range(image1 .shape [2]):

12 delta=image[i*ratio :(i+1)* ratio ,j*ratio :(j+1)*

13 ratio ,k]

14 image1 [i,j,k]=np.mean(delta)

5.2 Quantization

Since the sampling points represent continuous values, quantization allows
these continuous values to be replaced by discrete values. Thus, an image

37

https://www.fatalerrors.org/

encoded on 256 bits is quantized so that it is encoded on 8 bits. Figure
5.4 and Algorithm 5.2 show the quantization process [Code adopted from
https://www.fatalerrors.org/].

(a) (b)

Figure 5.4: Example of quantization. (a) Original image of bacteria. (b)
Quantized images.

Listing 5.2: Quantization in Python
1 from skimage import data

2 from matplotlib import pyplot as plt

3 image=data. coffee ()

4 ratio =128 # Set quantization ratio

5 for i in range(image.shape [0]):

6 for j in range(image.shape [1]):

7 for k in range(image.shape [2]):

8 image[i][j][k]= int(image[i][j][k]/ ratio)* ratio

5.3 Resolution

The quality of the image depends mainly on its definition, ie, the number
of pixels it can contain horizontally and vertically. The more the number of
pixels increases, the more the quality of the image increases. Thus, for ultra

38

https://www.fatalerrors.org/

high definition 4K, we are talking about an image whose definition is 3840
pixels horizontally and 2160 pixels vertically, i.e. a definition of 3840×2160
pixels. Table 5.2 and Figure 5.5 summarize the main image definitions.

Table 5.2: Summary table of the main image definitions.

Name
defini-
tion

Norm Image defini-
tion

Common names

480p DVD 720×480 pixels SD, definition standard, quality DVD
720p HD Ready 1280×720 pixels HDTV, HD 720p, 720p, HD Ready
1080p Full HD 1920×1080 pix-

els
HDTV 1080p, HD 1080p, 1080p, Full
HD

2160p UHDTV1 3840×2160 pix-
els

4K, UHD 4K, Ultra HD 4K, UHD-4K,
2160p

4320p UHDTV2 7680×4320 pix-
els

8K, UHD 8K, Ultra HD 8K, UHD-8K,
4320p

Now suppose two images that have the same definitions, for example
3840×2160 pixels, but the first has 75 inches diagonal (1 inch = 2.54 cen-
timeters), the equivalent of 51.2 pixels per inch, and the other 55 inches or
69.8 dpi (see Figure 5.6). The number of pixels is identical for the two im-
ages but they are more tight on the image of smaller dimension. Thus, the
first image will be clearness than the second. In fact, in this example we
are talking about the concept of resolution. The higher the resolution, the
smaller and more numerous the pixels, and the finer the image. Figure 5.7
illustrates an example which more clearly presents the principle of resolution.
The resolution is calculated by the following equation (Eq. 5.1).

Resolution (dots per inch : dpi) = number of dots

number of inches
(5.1)

Thus, the resolution of an image that is 2837 pixels wide and its actual size
is 10 cm wide, is: 720 dpi.

Proof. dots per inch? = 2837 / (10 / 2,54) = 720 dpi

39

(a) 480p (DVD) (b) 720p (HD Ready) (c) 1080p (Full HD)

(d) 2160p (4k) (e) 4320p (8k)

Figure 5.5: The effect of increasing the definition.

Figure 5.6: Image clarity according to pixel size.

Computer screens are usually used at 72 or 75 dpi. professional printing
equipment often operate at 4800 dpi or more. This is essential to have very
good quality prints, such as magazines or books. Note that the more pixels
there are in the image, the more memory space increases to store the pixels.

40

Figure 5.7: Resolution vs Pixel Dimension.

41

Chapter 6

Basic image processing
algorithms

Image processing consists of performing certain operations on an image, in
order to extract useful information from it or to obtain an improved image.
Generally speaking, there are three levels of image processing operations:
Low level, relates to primitive operations (eg noise reduction, contrast en-
hancement, etc.). Intermediate level, operations of extracting attributes (for
example, edges, contours, regions, etc.). High Level, operations of analysis
and interpretation of the content of a scene. Each level encompasses a set of
algorithms. In this section, we present some simple and useful algorithms of
each level implemented using python.

6.1 Low level algorithms

6.1.1 Read image

The digital image sent from sensor to processing unit is often stored in a file
in the computer. The file is composed of metadata (file name, size, type,
and so on), data, and EOF, a special character that indicates the end of

42

the file. In order to process the file, one must first upload it by finding
the file path. Algorithm 6.1 loads the image file, reports the format, mode,
and size, then shows the result (see Fig.6.1) [Code adopted from https:
//machinelearningmastery.com/].

Listing 6.1: Read image in Python
1 # load and show an image with Pillow

2 from PIL import Image

3 # load the image

4 image = Image. open(’File.jpg ’)

5 # summarize some details about the image

6 print(image. format)

7 print(image.mode)

8 print(image.size)

9 # show the image

10 image.show ()

Result:

Listing 6.2:
1 JPEG

2 RGB

3 (640 , 360)

6.1.2 Resize image
Images captured by the sensor often vary in size, therefore, we need to estab-
lish a base size for all images. On another side, image changes from 1392 ×
1040 to 696 × 520 pixels results in a reduction in image size, and therefore
a reduction in the time required to process the resized image. Sometimes
resizing an image is necessary to find out more information by exploring all
possible angles of the image. Algorithm 6.3 loads the image, reports the shape
of the image, then resizes it to have a width and height of 200 pixels (see
Fig.6.2) [Code adopted from https://machinelearningmastery.com/].

Listing 6.3: Resize image in Python

43

https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/

Figure 6.1: Uploaded image (plant cells).

1 # resize image and force a new shape

2 from PIL import Image

3 # load the image

4 image = Image. open(’File.jpg ’)

5 # report the size of the image

6 print(image.size)

7 # resize image and ignore original aspect ratio

8 img_resized = image. resize ((200 ,200))

9 # report the size of the thumbnail

10 print(img_resized .size)

Result:

Listing 6.4:
1 (640 , 360)

2 (200 , 200)

6.1.3 Remove noise
Any digital image is subject to some perturbations due to different intrin-
sic (i.e., sensor) and extrinsic (i.e., environment) conditions which are often

44

(a)

(b)

Figure 6.2: Resized image. (a) Original image. (b) Image after resizing.

not possible to avoid in practical situations. Denoising process is impor-
tant to smooth images and remove unwanted noise. Algorithm 6.5 loads
the image and remove noise (see Fig.6.3) [Code adopted from https://www.
geeksforgeeks.org/].

Listing 6.5: Denoise image in Python
1 # importing libraries

2 import numpy as np

3 import cv2

4 from matplotlib import pyplot as plt

5 # Reading image from folder where it is stored

6 img = cv2. imread (’File.jpg ’)

7 # denoising of image saving it into dst image

8 dst = cv2. fastNlMeansDenoisingColored (img ,

9 None , 10, 10, 7, 15)

10 # Plotting of source and destination image

11 plt. subplot (121) , plt. imshow (img)

12 plt. subplot (122) , plt. imshow (dst)

13 plt.show ()

Result:

45

https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/

(a) (b)

Figure 6.3: Denoised image. (a) Original (noisy) image. (b) After removing
noise.

6.1.4 Binarization (thresholding)
Consists of converting the original image to just two levels of gray (black
and white) in order to speed up future treatment process. Thresholding can
be used to detect e.g., cells, proteins, DNA, glycogen, acids, etc. Algorithm
6.6 shows the binarization steps (see Fig.6.4) [Code adopted from https:
//www.geeksforgeeks.org/].

Listing 6.6: Binarization in Python
1 # organizing imports

2 import cv2

3 import numpy as np

4 # path to input image is specified and image

5 # is loaded with imread command

6 image1 = cv2. imread (’File.jpg ’)

7 # cv2. cvtColor is applied over the

8 # image input with applied parameters

9 # to convert the image in grayscale

10 img = cv2. cvtColor (image1 , cv2. COLOR_BGR2GRAY)

11 # applying thresholding technique on the input

12 # image all pixels value above 120 will be set to

13 #255

14 ret , thresh = cv2. threshold (img , 120, 255,

15 cv2. THRESH_BINARY)

16 # the window showing output image

46

https://www.geeksforgeeks.org/
https://www.geeksforgeeks.org/

17 cv2. imshow (’Binary Threshold ’, thresh)

18 # De - allocate any associated memory usage

19 if cv2. waitKey (0) & 0xff == 27:

20 cv2. destroyAllWindows ()

Result:

(a) (b)

Figure 6.4: Binarization of the image. (a) Original image. (b) binarized
image.

6.2 Intermediate level algorithms

6.2.1 Edge detection
An important step in image processing, used to separate the objects from
each other before identifying their content (see Fig.6.5). For instance, the
separation of nuclei from cytoplasm plays an essential role in a wide spectrum
of clinical and research settings. Below the edge detection algorithm 6.7
[Code adopted from https://www.geeksforgeeks.org/].

Listing 6.7: Edge detection in Python
1 from PIL import Image , ImageFilter

2 img = Image. open(r"File.jpg")

3 # Converting the image to greyscale , as Sobel

4 # Operator requires input image

5 #to be of mode Greyscale (L)

47

https://www.geeksforgeeks.org/

6 img = img. convert ("L")

7 # Calculating Edges using the passed laplican Kernel

8 final = img. filter (ImageFilter . Kernel ((3, 3),

9 (-1, -1, -1, -1, 8, -1, -1, -1, -1), 1, 0))

10 final.save(" EDGE_sample .png")

(a) (b)

Figure 6.5: Edge detection (a) image input. (b) image output.

6.2.2 Discrete Fourier Transform (DFT)

DFT was introduced by Jean Baptiste Joseph Fourier in 1822. It is one of the
most important mathematical theories in signal processing and probably one
of the most commonly used techniques in image processing. DFT determines
the frequency spectra of digital signals. Let F (k) be a Frequency spectra of a
signal f(n), n = 0, ..., N − 1. The DFT is mathematically defined as follows:

F (k) =
N−1∑
n=0

f(n)e− 2π
N
kn (6.1)

For images, 2D DFT represents a natural extension of Fourier analysis to phe-
nomena in the R2 space. It is used to convert an image from spatial domain
to frequency domain, in other words, it separates high frequency coefficients
from low frequency coefficients (see Fig.6.6). 2D DFT is mathematically

48

defined as follows:

F (u, v) = 1
MN

M−1∑
m=0

N−1∑
n=0

f(m,n)e−i2π(um/M+vn/N) (6.2)

Below the 2D DFT algorithm 6.8 [Code adopted from
https://thepythoncodingbook.com/].

Listing 6.8: 2D Discrete Fourier Transform (2D DFT) in Python
1 import numpy as np

2 import matplotlib . pyplot as plt

3
4 image_filename = "image.png"

5
6 def calculate_2dft (input):

7 ft = np.fft. ifftshift (input)

8 ft = np.fft.fft2(ft)

9 return np.fft. fftshift (ft)

10
11 # Read and process image

12 image = plt. imread (image_filename)

13 image = image [:, :, :3]. mean(axis =2) # Convert to grayscale

14 plt. set_cmap ("gray")

15 ft = calculate_2dft (image)

16 plt. subplot (121)

17 plt. imshow (image)

18 plt.axis("off")

19 plt. subplot (122)

20 plt. imshow (np.log(abs(ft)))

21 plt.axis("off")

22 plt.show ()

Result:

49

https://thepythoncodingbook.com/

(a) (b)

Figure 6.6: 2D DFT (a) image input. (b) image output.

6.2.3 Discrete Cosine Transform (DCT)

DCT was first proposed by Nasir Ahmed in 1972. It is a widely used trans-
formation technique in signal processing and image processing. DCT is close
to DFT but its projection kernel is a cosine which creates real coefficients,
unlike the DFT, whose kernel is a complex exponential and therefore creates
complex coefficients. (see Fig.6.7). 2D DCT is mathematically defined as
follows:

F (p, q) = αpαq
M−1∑
m=0

N−1∑
n=0

Amncos
π(2m+ 1)p

2M cos
π(2n+ 1)q

2N (6.3)

where 0 ≤ p ≤ M-1, 0 ≤ q ≤ N-1 and

αp =


1√
M

p = 0√
2
M

1 ≤ p ≤M − 1.

αq =


1√
N

q = 0√
2
N

1 ≤ q ≤ N − 1.

Below the 2D DCT algorithm 6.9 [Code adopted from https://docs.

50

https://docs.scipy.org/
https://docs.scipy.org/

scipy.org/].

Listing 6.9: 2D Discrete Cosine Transform (2D DCT) in Python
1 from scipy. fftpack import dct , idct

2
3 from skimage .io import imread

4 from skimage .color import rgb2gray

5 import numpy as np

6 import matplotlib .pylab as plt

7
8 image_filename = "fruit.png"

9
10 # implement 2D DCT

11 def dct2(a):

12 return dct(dct(a.T, norm=’ortho ’).T, norm=’ortho ’)

13
14 # Read and process image

15 image = plt. imread (image_filename)

16 imF = dct2(image)

17 plt.show ()

(a) (b)

Figure 6.7: 2D DCT (a) image input. (b) image output.

51

https://docs.scipy.org/
https://docs.scipy.org/

6.2.4 Discrete Wavelet Transform (DWT)

DWT was first invented by Alfréd Haar in 1909, but the most commonly used
DWT was formulated by Ingrid Daubechies in 1988. Its main advantage over
Fourier transforms is its temporal resolution as it captures both frequency
and location information. Generally, the DWT can be expressed by the
following equation:

F (a, b) =
∫ ∞
−∞

f(x)ψ∗a,bxd(x) (6.4)

DWT is a representation of a square-integrable function by a certain
orthonormal series generated by a wavelet. The Two-dimensional DWT (2D
DWT) is an extension of one-dimensional DWT which is of particular interest
to image processing and computer vision applications (see Fig.6.8).

Below the Wavelet transform algorithm 6.10 [Code adopted from https:
//mahotas.readthedocs.io/].

Listing 6.10: Wavelet transform in Python
1 # importing various libraries

2 import numpy as np

3 import mahotas

4 import mahotas .demos

5 from mahotas . thresholding import soft_threshold

6 from matplotlib import pyplot as plt

7 from os import path

8 # loading image

9 f = mahotas .demos.load(’File ’, as_grey = True)

10 # making ply gray

11 plt.gray ()

12 # showing image

13 print("Image")

14 plt. imshow (f)

15 plt.show ()

16 # Transform using D8 Wavelet to obtain transformed

17 #image t

52

https://mahotas.readthedocs.io/
https://mahotas.readthedocs.io/

18 t = mahotas . daubechies (f, ’D8’)

19 # showing transformed image

20 print(" Transformed Image")

21 plt. imshow (t)

22 plt.show ()

(a) (b)

Figure 6.8: Wavelet transform (a) image input. (b) image output.

6.3 High level algorithms

Image analysis and interpretation includes classification techniques, recogni-
tion, extraction or feature selection, etc. We cover all of these principles in
the following chapters.

53

Chapter 7

Suggested readings

1. Greenberg, J. (Ed.). (2018). X-Ray Diffraction Imaging: Technology
and Applications. CRC Press.

2. Najarian, K., & Splinter, R. (2012). Biomedical signal and image pro-
cessing. Taylor & Francis.

3. Haidekker, M. (2010). Advanced biomedical image analysis. John Wi-
ley & Sons.

4. Sternberg, S. R. (1983). Biomedical image processing. Computer,
16(01), 22-34.

5. Guan, L. (Ed.). (2017). Multimedia image and video processing. CRC
press.

6. Wheeler, A., & Henriques, R. (Eds.). (2017). Standard and super-
resolution bioimaging data analysis: a primer. John Wiley & Sons.

7. Pitas, I. (2000). Digital image processing algorithms and applications.
John Wiley & Sons.

8. Bhabatosh, C. (1977). Digital image processing and analysis. PHI
Learning Pvt. Ltd.

54

9. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing, 3rd
edition, Prentice Hall, Upper Saddle River, NJ.

10. Castleman, K. R. (1993). Digital image processing.

11. Bovik, A. C. (2010). Handbook of image and video processing. Aca-
demic press.

12. Haskell, B. G., Puri, A., & Netravali, A. N. (1996). Digital video: an
introduction to MPEG-2. Springer Science & Business Media.

13. Poynton, C. (2012). Digital video and HD: Algorithms and Interfaces.
Elsevier.

14. Winkler, S. (2005). Digital video quality: vision models and metrics.
John Wiley & Sons.

15. Umesh, P. (2012). Image processing in python. CSI Communications,
23(2).

16. Kinser, J. M. (2018). Image Operators: Image Processing in Python.
CRC Press.

17. Chityala, R., & Pudipeddi, S. (2020). Image processing and acquisition
using Python. Chapman and Hall/CRC.

55

Part III :

Machine learning

56

Chapter 8

Object Recognition

Object recognition is a computer vision technique very useful in a variety
of applications such as identification and diagnosis of diseases, discovery of
antibiotics, revealing antibiotic mechanisms of action, prediction of glycemic
responses, prediction of gestational age and time to delivery in pregnant
women, the plant science and plant breeding, location of pollution zones,
etc. Object recognition task is inspired by humans. Humans recognize ob-
jects very easily, in a robust, selective and fast manner. This is due to the
power of the human brain and the neurobiological foundations on which he
relies. Formally, humans can perform object recognition based on previously
acquired information, called reference information or labeled data, without
which new objects cannot be recognized. Human’s knowledge of the lion
makes him flee from the puma, which is very similar to it. In fact, some
features of the lion are similar to the puma, for instance the size of the body,
the shape of the nose, mouth and eyes. The information obtained by human
about the lion is only these features, which he will inevitably find in the
image of the puma, so he classifies it as dangerous. More precisely, human
memory cannot save all the data on the lion. In contrast, it saves important
features, such as those listed above, and uses them to make further com-
parisons with other animals. Although objects recognition by machines is a

57

very complicated operation, it is nevertheless experiencing a rapid adoption
rate in various and diverse industries thanks to the recent advances in hard-
ware and deep learning technology. Figure 8.1 shows an example of object
recognition.

Figure 8.1: Object recognition

Generally, the main steps of object recognition are presented in the fol-
lowing diagram:

Figure 8.2: Steps in object recognition

• Pre-processing: to correct the image, improve contrast, etc., roughly,

58

prepare the image to be recognized. This step is already discussed in
chapter 6.

• Feature extraction: extracting the important information contained in
the image to help classification.

• Learning algorithm for classification: learn classification algorithms
how to take into account the features extracted in step 2 to generate
class labels as an output.

Both steps, 2 and 3, will be well discussed in the following chapters. In
the following, we list down some object detection algorithms one must know.

8.1 Faster R-CNN

Faster R-CNN is a Deep Convolutional Neural Networks (DCNN) developed
from traditional Artificial Neural Networks (ANN) and used for object detec-
tion. Before explaining the Faster R-CNN method, let us explain the ANN
and the CNN methods.

• Artificial Neural Networks (ANN): The ANN is a computational
system inspired by the Biological Neural Networks (BNN) that can be
used for predictive modeling, adaptive control and other applications.
Basically, the biological neuron is a cell that can be found in brain.
Hence, the BNN consists of synapse, dendrites that receive signals (im-
pulses) from other neurons and axon that transmits the signals to other
cells. In the other side, the ANN consists of the inputs which replaces
the dendrites in the BNN, the hidden layer or f(x), where all the compu-
tations are performed and the outputs that replace the axon. Figure 8.3
shows the components of the BNN and the ANN. The ANN computes
the sum of the inputs multiplied by its weight to output the result.
The simplest form of ANN is the Perceptron. Algorithm 8.1 shows the
Perceptron steps [Code adopted from https://scikit-learn.org/].
.

59

https://scikit-learn.org/

Figure 8.3: Comparison between the BNN and the ANN [figure adapted from
Wikipedia].

Listing 8.1: ANN perceptron in Python
1 from sklearn . datasets import load_digits

2 from sklearn . linear_model import Perceptron

3 X, y = load_digits (return_X_y =True)

4 clf = Perceptron (tol =1e-3, random_state =0)

5 clf.fit(X, y)

6 clf.score(X, y)

• Convolutional Neural Network (CNN): CNN is a type of artificial
neural network mainly developed to solve difficult image-driven pattern

60

recognition tasks. It consists of three basic components: convolution
layer, pooling layer and the output layer. Figure 8.4 and 8.5 shows the
Concept of CNN.

Figure 8.4: Components of CNN.

Figure 8.5: CNN – Image Classification.

1. Convolutional layer: In this layer a convolution operation is ap-
plied to the input in order to to extract the high-level features
such as edges, from the input image.

2. Pooling layer: In this layer the dimension of the inputs is roughly
reduced using a simple operation sush as the max that takes the
largest value in the pool region and neglects all others.

3. Fully-connected layer: This layer is used to classify the data.

Algorithm 8.2 shows the CNN steps [Code adopted from https://www.
tensorflow.org/tutorials/images/cnn/].

61

https://www.tensorflow.org/tutorials/images/cnn/
https://www.tensorflow.org/tutorials/images/cnn/

Listing 8.2: CNN in Python
1 import tensorflow as tf

2 from tensorflow .keras import datasets , layers , models

3 import matplotlib . pyplot as plt

4 (train_images , train_labels), (test_images , test_labels) =

5 datasets . cifar10 . load_data ()

6
7 # Normalize pixel values to be between 0 and 1

8 train_images , test_images = train_images /255.0 ,

9 test_images /255.0

10 class_names = [’airplane ’, ’automobile ’, ’bird ’, ’cat ’,

11 ’deer ’,’dog ’, ’frog ’, ’horse ’, ’ship ’,

12 ’truck ’]

13 model = models . Sequential ()

14 model.add(layers . Conv2D (32, (3, 3), activation =’relu ’,

15 input_shape =(32 , 32, 3)))

16 model.add(layers . MaxPooling2D ((2, 2)))

17 model.add(layers . Conv2D (64, (3, 3), activation =’relu ’))

18 model.add(layers . MaxPooling2D ((2, 2)))

19 model.add(layers . Conv2D (64, (3, 3), activation =’relu ’))

20 model. summary ()

21 model.add(layers . Flatten ())

22 model.add(layers .Dense (64, activation =’relu ’))

23 model.add(layers .Dense (10))

24 model. compile (optimizer =’adam ’,

25 loss=tf.keras. losses . SparseCategoricalCrossentropy

26 (from_logits =True), metrics =[’accuracy ’])

27
28 history = model.fit(train_images , train_labels , epochs =10,

29 validation_data =(test_images ,

30 test_labels))

31 test_loss , test_acc = model. evaluate (test_images ,

32 test_labels , verbose =2)

The Faster R-CNN is an extension of CNN which is also based on the ANN. It
consists of of two components: a fully convolutional Region Proposal Network

62

(RPN) that proposes candidate regions followed by the Fast R-CNN detector
that uses the proposed regions. Algorithm 8.3 shows the Faster R-CNN steps
[Code adopted from https://www.analyticsvidhya.com/blog/].

Listing 8.3: Faster R-CNN in Python
1 # as the images are in train_images folder , add train_images

2 before the image name

3 for i in range(data.shape [0]):

4 data[’format ’][i] = ’train_images /’ + data[’format ’][i]

5
6 # add xmin , ymin , xmax , ymax and class as per the format

7 required for i in range(data.shape [0]):

8 data[’format ’][i] = data[’format ’][i] + ’,’ +

9 str(train[’xmin ’][i]) + ’,’ + str(train[’ymin ’]

10 [i]) + ’,’ + str(train[’xmax ’][i]) + ’,’ +

11 str(train[’ymax ’][i]) + ’,’ + train[’cell_type ’][i]

12
13 data. to_csv (’annotate .txt ’, header =None , index=None , sep=’ ’)

14 cd keras -frcnn

15 python train_frcnn .py -o simple -p annotate .txt

16 python test_frcnn .py -p test_images

8.2 YOLO

You Only Look Once (YOLO) is a state-of-the-art neural network-based
real-time object detection system. It is extremely fast compared to other
techniques. Although several techniques have proven their superiority in
the field of object detection, such as Faster R-CNN, nevertheless YOLO has
proven their superiority over them. On the one hand, YOLO is extremely
fast compared to various techniques, including Faster R-CNN. On the other
hand, YOLO takes the entire image into account when making its predictions,
unlike techniques based on sliding window and region proposal. Figure 8.6
shows the Concept of YOLO.

63

https://www.analyticsvidhya.com/blog/

Figure 8.6: YOLO Principle [Figure adopted from the CVPR conference].

Algorithm 8.4 shows the YOLO steps [Code adopted from https://
cloudxlab.com/blog/object-detection-yolo-and-python-pydarknet/].

Listing 8.4: YOLO in Python
1 import numpy as np

2 import time

3 import cv2

4 INPUT_FILE =’data/dog.jpg ’

5 OUTPUT_FILE =’predicted .jpg ’

6 LABELS_FILE =’data/coco.names ’

7 CONFIG_FILE =’cfg/ yolov3 .cfg ’

8 WEIGHTS_FILE =’yolov3 . weights ’

9 CONFIDENCE_THRESHOLD =0.3

10 LABELS = open(LABELS_FILE). read (). strip (). split("\n")

11 np. random .seed (4)

12 COLORS = np. random . randint (0, 255, size =(len(LABELS), 3),

13 dtype="uint8")

14 net = cv2.dnn. readNetFromDarknet (CONFIG_FILE , WEIGHTS_FILE)

15 image = cv2. imread (INPUT_FILE)

16 (H, W) = image.shape [:2]

17 # determine only the * output * layer names that we need from

18 # YOLO

19 ln = net. getLayerNames ()

20 ln = [ln[i[0] - 1] for i in net. getUnconnectedOutLayers ()]

21 blob = cv2.dnn. blobFromImage (image , 1 / 255.0 , (416 , 416) ,

22 swapRB =True , crop=False)

23 net. setInput (blob)

64

https://cloudxlab.com/blog/object-detection-yolo-and-python-pydarknet/
https://cloudxlab.com/blog/object-detection-yolo-and-python-pydarknet/

24 start = time.time ()

25 layerOutputs = net. forward (ln)

26 end = time.time ()

27 print("[INFO] YOLO took {:.6f} seconds ". format (end - start))

28 # initialize our lists of detected bounding boxes ,

29 confidences , and class IDs , respectively

30 boxes = []

31 confidences = []

32 classIDs = []

33 # loop over each of the layer outputs

34 for output in layerOutputs :

35 # loop over each of the detections

36 for detection in output :

37 # extract the class ID and confidence (i.e.,

38 probability) of

39 # the current object detection

40 scores = detection [5:]

41 classID = np. argmax (scores)

42 confidence = scores [classID]

43 # filter out weak predictions by ensuring the

44 # detected probability is greater than the

45 # minimum

46 probability if confidence > CONFIDENCE_THRESHOLD :

47 # scale the bounding box coordinates

48 #back relative to the size of the image ,

49 # keeping in mind that YOLO actually

50 # returns the center (x, y)- coordinates

51 #of the bounding

52 # box followed by the boxes ’ width and

53 # height

54 box = detection [0:4] *

55 np.array ([W, H, W, H])

56 (centerX , centerY , width , height)

57 = box. astype ("int")

58 # use the center (x, y)- coordinates to

59 # derive the top and left corner of the

65

60 # bounding box

61 x = int(centerX - (width / 2))

62 y = int(centerY - (height / 2))

63 # update our list of bounding box

64 # coordinates , confidences ,

65 # and class IDs

66 boxes. append ([x, y, int(width),

67 int(height)])

68 confidences . append (float(confidence))

69 classIDs . append (classID)

70 # apply non - maxima suppression to suppress weak , overlapping

71 # bounding

72 # boxes

73 idxs = cv2.dnn. NMSBoxes (boxes , confidences ,

74 CONFIDENCE_THRESHOLD ,

75 CONFIDENCE_THRESHOLD)

76 # ensure at least one detection exists

77 if len(idxs) > 0:

78 # loop over the indexes we are keeping

79 for i in idxs. flatten ():

80 # extract the bounding box coordinates

81 (x, y) = (boxes[i][0] , boxes[i][1])

82 (w, h) = (boxes[i][2] , boxes[i][3])

83 color = [int(c) for c in COLORS [classIDs [i]]]

84 cv2. rectangle (image , (x, y), (x + w, y + h),

85 color , 2)

86 text = "{}: {:.4f}". format (LABELS [classIDs [i]],

87 confidences [i])

88 cv2. putText (image , text , (x, y - 5),

89 cv2. FONT_HERSHEY_SIMPLEX ,0.5 , color , 2)

90 # show the output image

91 cv2. imwrite (" example .png", image)

66

Chapter 9

Classification

Classification is a machine learning-based technique used to organize data
into relevant categories. It is of great importance as it covers a wide range of
fields such as biology, medicine, chemistry, agriculture, etc. In biology, the
classification is used for two totally different purposes, often in combination,
namely, the identification and creation of natural groups. Classification is
roughly divided into three main categories including, binary classification,
multiclass classification and multilabel classification. In this chapter, we
present the different most used algorithms of each category.

9.1 Naive Bayes

Naive Bayes is a simple and very relevant supervised classifier for real, dis-
crete and streaming data. It is based on Bayes’ theorem and a set of con-
ditional independence assumptions between the features. Mathematically,
Bayes’ theorem is expressed by the following equation (9.1):

P (X | Y) = P (Y | X)P (X)
P (Y) = P (X ∩Y)

P (Y) (9.1)

67

P (Y | X) = P (X ∩Y)
P (X) (9.2)

P (X ∩Y) = cardinal(X ∩Y)
cardinal(Ω) (9.3)

P (X) = cardinal(X)
cardinal(Ω) (9.4)

Where, P (X) and P (Y) are the probabilities of observing X and Y respec-
tively without any given conditions. P (X ∩Y) is the probability of both X
and Y being true. cardinal(Ω) is the data size. cardinal(X) is the number
of elements in X. P (X | Y) is the probability of X occurring given that Y
is true. P (Y | X) is the probability of Y occurring given that X is true.

For the sake of simplicity, let us consider the following example. The
table below presents a set of 100 persons, males and females. We are looking
to know the conditional probability that a person is affected by COVID-19
given that he is a ”male”.

Male Female Total
COVID19+ 8 12 20
COVID19− 32 48 80
Total 40 60 100

P (COVID19+ |Male) = P (COVID19+ ∩Male)
P (Male) = 12

60 = 0.2.

Now, we come back to Naive Bayesian classifier. Mathematically,
Naive Bayes is expressed by the following equation (9.5):

P (C | X) = P (C | x1)× P (C | x2)× ...× P (C | xn) (9.5)

P (C | xi) = P (xi | C)P (C)
P (xi)

(9.6)

68

Where, P (C) is the prior probability of class, P (xi) is the prior probability
of predictor, P (C | X) is the posterior probability of class (C: target) given
predictor (xi, attributes), P (xi | C) is the likelihood which is the probability
of predictor given class.

Now back to COVID-19 example. We are looking to know the conditional
probability that a person is affected by COVID-19 given that he is a male,
with a high temperature and cough.
P (COVID19+)=0.5,
P (Male)=0.5,
P (Temperature ↑)=0.65,
P (Cough)=0.8,
P (Male | COVID19+) = 0.8,
P (Temperature ↑ | COVID19+)= 0.7,
P (Cough | COVID19+) =0.9.

P (COVID19+ |Male,Temperature ↑,Cough) = P (COVID19+ |Male)

×P (COVID19+ | Temperature ↑)× P (COVID19+ | Cough)

= 0.96.

Algorithm 9.1 shows the Naive Bayes steps [Code adopted from https:
//scikit-learn.org/].

Listing 9.1: Naive bayes in Python
1 from sklearn . datasets import load_data

2 from sklearn . model_selection import train_test_split

3 from sklearn . naive_bayes import GaussianNB

4 X, y = load_data (return_X_y =True)

5 X_train , X_test , y_train , y_test =

6 train_test_split (X, y, test_size =0.5 , random_state =0)

7 gnb = GaussianNB ()

8 y_pred = gnb.fit(X_train , y_train). predict (X_test)

9 print(" Number of mislabeled points out of a total %d points :%d"

69

https://scikit-learn.org/
https://scikit-learn.org/

9.2 Decision Trees (DTs)

DTs is a powerful supervised classifier commonly used in operations research
and machine learning. A tree, in graph theory, is an undirected, acyclic and
connected graph. It is composed of a root node, an internal nodes, and a leaf
or terminal nodes. All nodes store information and are often labeled with
numbers or letters. Figure 9.1 shows an example of tree.

Figure 9.1: Example of a tree

DTs use a decision model in the form of a tree whose leaves contain
all potential decisions. Reaching the potential decisions at the ends of the
branches is based on the decisions made at each stage. Let’s consider the
following example related to military service in Algeria (see Figure 9.2). In
the figure, the DTs relies on 3 features of the dataset, namely sex, age and
health, to predict whether a person is fit to join the algerian military or not.
Algorithm 9.2 shows the Decision Trees steps [Code adopted from https:
//scikit-learn.org/].

Listing 9.2: Decision Trees in Python
1 from sklearn . datasets import load_data

2 from sklearn .tree import DecisionTreeClassifier

3 from sklearn .tree import export_data

4 X = load_data ()

5 decision_tree = DecisionTreeClassifier (random_state =0,

70

https://scikit-learn.org/
https://scikit-learn.org/

Figure 9.2: Example of Decision Trees

6 max_depth =2)

7 decision_tree = decision_tree .fit(X.data , X. target)

8 result = export_data (decision_tree , feature_names

9 =X[’feature ’])

10 print(result)

9.3 Support Vector Machines (SVM)

SVM is a supervised learning method developped by Vapnik in 1995. It is
very powerful for general classification, regression and even outlier detection.
It is flexible, theoretically very solid, and simple to use even without a great
knowledge of the data. Basically, SVM finds a hyperplane that optimally
separates two classes by maximizing the margin between the classes’ closest
points. Figure 9.3 shows an example of optimal linear separation by SVM in
a two dimensional space. Note that, the points on the boundaries are called
support vectors.

The points in the above example are linearly separable, but in reality

71

Figure 9.3: Linear separation by SVM

the data is rarely linearly separable. For this, SVM often rely on the use of
kernels such as polynomial, Gaussian kernel, Radial basis function (RBF),
sigmoid etc, when dealing with nonlinear problems. Algorithm 9.3 shows the
SVM steps [Code adopted from https://scikit-learn.org/].

Listing 9.3: SVM in Python
1 from sklearn import svm

2 X = [[0, 0], [1, 1]]

3 y = [0, 1]

4 clf = svm.SVC ()

5 clf.fit(X, y)

72

https://scikit-learn.org/

9.4 k-Nearest Neighbors (KNN)

KNN is a supervised learning method, mostly used to solve classification and
regression problems. It ranks new data points based on the rank of neighbors,
assuming similar items are nearby. Basically, KNN is broken down into three
steps:

• Step 1: Calculate the Similarity: The distance between the new data
and all other data already classified is measured. Euclidean Distance
is the most commonly used method for calculating distance. It is rep-
resented by the following equation:

d (p, q) =
√√√√ n∑
i=1

(qi − pi)2 (9.7)

• Step 2: Find K-Nearest Neighbors: One selects K nearest data points,
i.e the smaller distances. K is a parameter defined at the start of the
algorithm.

• Step 3: Making predictions: Predict a class value for new data. This
by assigning the new data points to the class for which the number of
neighbors is maximum.

Figure 9.4 outlines the basic steps mentioned above.
Algorithm 9.4 shows the KNN steps [Code adopted from https://scikit-learn.

org/].

Listing 9.4: KNN in Python
1 from sklearn . neighbors import NearestNeighbors

2 import numpy as np

3 X = data

4 nbrs = NearestNeighbors (n_neighbors =2, algorithm =’ball_tree ’)

5 .fit(X)

6 distances , indices = nbrs. kneighbors (X)

73

https://scikit-learn.org/
https://scikit-learn.org/

Figure 9.4: KNN steps.

74

Chapter 10

Regression

Regression is a statistics-based technique used to predict continuous numeric
outputs where an order relation is defined. It covers a wide range of fields
such as business, survey analysis, neuroimaging, etc. In this chapter, we
present a set of regression techniques with a brief description of each.

10.1 Linear Regression

Linear Regression is a supervised machine learning algorithm that seeks to
establish a linear relationship between two or more variables. It has many
practical uses such as prediction and forecasting. Contrary to the classifica-
tion, the predicted output is continuous and has a constant slope. Generally,
the simple linear regression model is stated in the following form:

y = β0 + β1x+ ε (10.1)

Where, y is the dependent variable, β0 is the intercept, β1 is the slope of the
linear regression line, x is the independent variable and ε is the random error.
The most commonly used method to solve the above equation is that of least
squares estimation. This later finds parameters β0 and β1 that minimize the

75

following residual sum of squares:

(β0, β1) = arg min
(β0,β1)

n∑
i=1

[yi − (β0 + β1x)]2 (10.2)

After solving the equation 10.2, one obtains:

β1 =
∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2 (10.3)

β0 = ȳ − β1x̄ (10.4)

Algorithm 10.1 shows the linear regression steps [Code adopted from https:
//scikit-learn.org/].

Listing 10.1: Linear regression in Python
1 import numpy as np

2 from sklearn . linear_model import LinearRegression

3 X = np.array ([[1 , 1], [1, 2], [2, 2], [2, 3]])

4 y = np.dot(X, np.array ([1, 2])) + 3

5 reg = LinearRegression (). fit(X, y)

10.2 Ridge Regression

Ridge regression is a linear regression technique introduced by Hoerl and
Kennard in 1970. It is used when the data suffers from multicollinearity, that
is, when the independent variables are highly correlated. Ridge regression
can be seen as a regularized version of linear least squares regression by
shrinking the coefficients or weights of the regression model towards zero.
This is achieved by imposing a penalty term (l2-norm) which is equal to the
square of the coefficient. The Ridge regression is represented by the following
equation:

n∑
i=1

(yi −
p∑
j=1

xijβj)2 + λ
p∑
j=1

β2
j (10.5)

76

https://scikit-learn.org/
https://scikit-learn.org/

where λ is a regularization penalty. If λ = 0 then the equation is the basic
linear regression. As we increase the value of λ, the value of the coeffi-
cient tends towards zero leading to both low variance and low bias. Al-
gorithm 10.2 shows the Ridge regression steps [Code adopted from https:
//scikit-learn.org/].

Listing 10.2: Ridge regression in Python
1 from sklearn . linear_model import Ridge

2 import numpy as np

3 n_samples , n_features = 10, 5

4 rng = np. random . RandomState (0)

5 y = rng.randn(n_samples)

6 X = rng.randn(n_samples , n_features)

7 clf = Ridge(alpha =1.0)

8 clf.fit(X, y)

10.3 Lasso Regression

Least Absolute Shrinkage and Selection Operator or Lasso is a linear re-
gression technique developed by Robert Tibshirani in 1996. The difference
between Lasso and Ridge regression is in the penalty function. Ridge regres-
sion uses the squared Euclidean norm and Lasso uses the l1-norm. The lasso
regression loss function is therefore represented by the following equation:

n∑
i=1

(yi −
p∑
j=1

xijβj)2 + λ
p∑
j=1
|βj| (10.6)

In addition to the regularization, lasso also performs variable selection to
enhance the prediction accuracy and interpretability of the resulting sta-
tistical model. Algorithm 10.3 shows the Lasso steps [Code adopted from
https://scikit-learn.org/].

Listing 10.3: Lasso in Python
1 from sklearn import linear_model

77

https://scikit-learn.org/
https://scikit-learn.org/
https://scikit-learn.org/

2 clf = linear_model .Lasso(alpha =0.1)

3 clf.fit ([[0 ,0] , [1, 1], [2, 2]], [0, 1, 2])

4 print(clf.coef_)

5 print(clf. intercept_)

10.4 Quantile regression (QR)

QR is an extension of linear regression method, generally used when the
data does not satisfy the assumptions for linear regression (eg. financial eco-
nomics). Contrary to the classical linear regression that estimates the mean
response of the dependent variable dependent on the independent variables,
the Quantile regression estimates the median, as well as all other quantiles,
of a set of data across a distribution based on the variables within that dis-
tribution. QR minimizes a weighted sum of the positive and negative error
terms as follow:

τ
∑

yi>β̂τ
′
Xi

|yi − β̂τ
′
Xi|+ (1− τ)

∑
yi<β̂τ

′
Xi

|yi − β̂τ
′
Xi| (10.7)

Where τ is the quantile level. Algorithm 10.4 shows the Lasso steps [Code
adopted from https://scikit-learn.org/].

Listing 10.4: QR in Python
1 from sklearn . linear_model import QuantileRegressor

2
3 quantiles = [0.05 , 0.5, 0.95]

4 predictions = {}

5 out_bounds_predictions = np. zeros_like (y_true_mean ,

6 dtype=np.bool_)

7 for quantile in quantiles :

8 qr = QuantileRegressor (quantile =quantile , alpha =0)

9 y_pred = qr.fit(X, y_normal). predict (X)

10 predictions [quantile] = y_pred

78

https://scikit-learn.org/

11
12 if quantile == min(quantiles):

13 out_bounds_predictions = np. logical_or (

14 out_bounds_predictions , y_pred >= y_normal

15)

16 elif quantile == max(quantiles):

17 out_bounds_predictions = np. logical_or (

18 out_bounds_predictions , y_pred <= y_normal

19)

79

Chapter 11

Clustering

Clustering is an unsupervised technique based on machine learning used to
group data. Unlike classification, in clustering there are no labels for the
training data and the groups are not defined in advance but are created
based on a measure of similarity which should be clear and have a practical
meaning so that data assigned to the same group or cluster should be as
similar as possible and data assigned to different groups should be as different
as possible. In this chapter, we present a set of clustering techniques with a
brief description of each.

11.1 k-means

k-means is one of the most popular partition-based unsupervised clustering
algorithms. The ’k’ refers to the number of clusters which is fixed beforehand,
and ’means’ refers to the averaging or centroid of the data. Basically, k-
means partitions n observations into the k clusters such that the sum of
the distances between observations and their respective clusters centroids
is minimized. Clusters centroids are updated by an iterative calculation
will continue until certain convergence criteria are satisfied. Figure 11.1
and Algorithm 11.1 show the k-means process [Code adopted from https:

80

https://scikit-learn.org/
https://scikit-learn.org/

//scikit-learn.org/].

Figure 11.1: k-means clustering.

Listing 11.1: k-means in Python
1 from sklearn . cluster import KMeans

2 import numpy as np

3 X = data

4 kmeans = KMeans (n_clusters =2, random_state =0). fit(X)

5 kmeans . labels_

6 kmeans . predict ([[0 , 0], [12, 3]])

7 kmeans . cluster_centers_

11.2 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is a
Hierarchy-based unsupervised clustering algorithm. It is very useful when
the data sets are very large. BIRCH summarizes large datasets into smaller
and dense regions called Clustering Feature (CF) entries. It then applies a

81

https://scikit-learn.org/
https://scikit-learn.org/

clustering algorithm on the leaves of the CF tree. Figure 11.2 and Algorithm
11.2 show the BIRCH process [Code adopted from https://acervolima.
com/].

Figure 11.2: BIRCH clustering.

Listing 11.2: BIRCH in Python
1 # Import required libraries and modules

2 import matplotlib . pyplot as plt

3 from sklearn . datasets . samples_generator import make_blobs

4 from sklearn . cluster import Birch

5
6 # Generating 600 samples using make_blobs

7 dataset , clusters = make_blobs (n_samples = 600, centers = 8,

8 cluster_std = 0.75 , random_state = 0)

9

82

https://acervolima.com/
https://acervolima.com/

10 # Creating the BIRCH clustering model

11 model = Birch(branching_factor = 50, n_clusters = None ,

12 threshold = 1.5)

13
14 # Fit the data (Training)

15 model.fit(dataset)

16
17 # Predict the same data

18 pred = model. predict (dataset)

11.3 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is
a density-based unsupervised clustering algorithm proposed by Martin Ester
in 1996. It looks for high-density base samples and develops clusters from
them. Basically, DBSCAN requires two parameters:

• ε: used to defined the neighborhood around points. If it is too small
then large part of the data will be considered as outliers. If it is too
large the the majority of data points will be in the same clusters.

• MinPts: is the minimum number of data points within ε radius. It
is based on the size of the dataset i.e. if the dataset is large then the
value of MinPts should be higher.

Figure 11.3 and Algorithm 11.3 show the DBSCAN process [Code adopted
from https://github.com/].

Listing 11.3: DBSCAN in Python
1 # Compute DBSCAN

2 db = DBSCAN (eps =0.3 , min_samples =10). fit(X)

3 core_samples_mask = np. zeros_like (db.labels_ , dtype= bool)

4 core_samples_mask [db. core_sample_indices_] = True

5 labels = db. labels_

83

https://github.com/

Figure 11.3: DBSCAN clustering [adopted from wikipedia].

6
7 # Number of clusters in labels , ignoring noise if present .

8 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)

9 n_noise_ = list(labels). count (-1)

11.4 FCM

FCM (Fuzzy C-Means Clustering) is a fuzzy theory-based unsupervised clus-
tering algorithm developed by J.C. Dunn in 1973. It is very similar to the
k-means, the difference is that in k-means each data point can only belong to
one cluster, on the other hand in FCM each data point can belong to several
clusters. For instance, the Cyan color is a color halfway between blue and
green. Instead to belonging to only blue [blue = 1, green = 0] or only green
[blue = 0, green = 1], the Cyan can belong to blue [blue = 0.5] and green
[green = 0.5]. Basically, FCM is divided on three steps:

• Define a number of clusters centers: Clusters are randomly selected.

• Calculate the fuzzy membership: By assigning data points to clusters.

84

Each point belonging to every cluster to a certain degree.

• Iteration: Recalculate the cluster centers and the degree of membership
in each cluster.

Algorithm 11.4 show the FCM process [Code adopted from
https://towardsdatascience.com/].

Listing 11.4: FCM in Python
1 import numpy as np

2 from fcmeans import FCMmy_model = FCM(n_clusters =2)

3 # we use two cluster as an example

4 my_model .fit(X) ## X, numpy array. rows: samples columns :

5 # features

85

https://towardsdatascience.com/

Chapter 12

Dimensionality Reduction

We previously indicated that high-dimensional original data cannot be pro-
cessed by human, and we have given the example of lion and puma. We
confirmed that the reason for this is the limited capabilities of the human
brain. It may be different for machines. Doubling the computing capacity
of machines, for example processors or memories, with the aim of increas-
ing the number of training samples can lead to improvements such as saving
time and increasing the accuracy of the calculations. This solution may be
inevitable, but it is very expensive. For this, various solutions have been pro-
posed to mitigate the curse of dimensionality on the one hand, and reduce the
high cost on the other. In fact, high-dimensional data tend to be noisy with
an enormous amount of redundant features, this may significantly affect the
performance of machines and the accuracy of the calculations. Dimension-
ality reduction by selecting or extracting important features from original
data is one of the effective solutions used in this context. Dimensionality
reduction is roughly divided into linear methods and nonlinear methods. In
the following, we present some methods of each group.

86

12.1 Linear methods

Linear dimensionality reduction methods are of great importance for the anal-
ysis of high-dimensional data with noise. Thanks to their simple geometric
interpretations and attractive computational properties (e.g., covariance, dy-
namic structure, correlation, margin between data classes), it is possible to
produce a low-dimensional linear mapping of the original high-dimensional
data while by preserving the characteristics of interest in the original data.
In this section, we present four linear methods, including: PCA, MDS, LDA
and CCA.

12.1.1 Principal Component Analysis (PCA)

One of the most widely used unsupervised methods for feature extraction
and data visualization. It was originally formulated by Pearson in 1901, it
subsequently experienced many extensions. Principal component analysis
can be divided into five steps, which are presented in the following diagram:

Figure 12.1: Steps in PCA.

• Standardization: used to ensure that all the features are along the same
scale, and thus avoid biased results. Mathematically, this can be done
by the following equation (Eq.12.1):

Standardized feature value = value−mean
standard deviation

(12.1)

• Covariance matrix: used to understand how two features vary with
each other and see if there is any relationship between them. Mathe-

87

matically, this can be done by the following equation (Eq.12.2):

covx,y =
∑N
i=1(xi − x̄)(yi − ȳ)

N − 1 (12.2)

• Eigen decomposition: used to get the Eigenvectors which are the prin-
cipal components of the covariance matrix and the eigenvalues which
are their corresponding magnitude. Mathematically, an eigenvector
satisfies the following equation (Eq.12.3):

A~v = λ~v (12.3)

where A is a square matrix, ~v is the eigenvector and λ is an eigenvalue.

• Feature vector: used as the first step towards dimensionality reduction.
In this step, we choose between keeping all the components obtained
in the previous step or rejecting those of less importance (low eigenval-
ues) and forming a feature vector. Mathematically, this can be done
by plotting the cumulative sum of the eigenvalues as in the following
equation (Eq.12.4):

λj∑d
j=1 λj

(12.4)

If one must choose between three components, ie the eigenvectors v1,
v2 and v3 of the feature vector in the previous step, then if the formula
shows that 95% of the variance is captured in the two largest princi-
pal components then it is acceptable to choose the first two principal
components to constitute the projection matrix and reducing dimen-
sionality by 1.

• Recasting the data: used to project the original data onto a new sub-
space of lower dimensionality. This is done by multiplying the trans-
pose of the original data by the transpose of the feature vector as in

88

the following equation (Eq.12.5):

New data = Original dataT × Feature vectorT (12.5)

Algorithm 12.1 shows the PCA steps [Code adopted from https://github.
com/].

Listing 12.1: PCA in Python
1 def pca(X, n_components =2):

2
3 # Presprocessing - Standard Scaler

4 X_std = StandardScaler (). fit_transform (X)

5
6 # Calculate covariance matrix

7 cov_mat = np.cov(X_std.T)

8
9 # Get eigenvalues and eigenvectors

10 eig_vals , eig_vecs = np. linalg .eigh(cov_mat)

11
12 # flip eigenvectors ’ sign to enforce deterministic output

13 eig_vecs , _= extmath . svd_flip (eig_vecs , np. empty_like

14 (eig_vecs).T)

15
16 # Concatenate the eigenvectors corresponding to the highest

17 # n_components eigenvalues

18 matrix_w = np. column_stack ([eig_vecs [:,-i] for i in

19
20 range (1, n_components +1)])

21
22 # Get the PCA reduced data

23 Xpca = X_std.dot(matrix_w)

24
25 return Xpca

89

https://github.com/
https://github.com/

12.1.2 Multidimensional scaling (MDS)

MDS is a visual representation tool that locates objects (eg. colors, faces,...)
in an Euclidean space according to their pairwise distances or dissimilari-
ties. Thus, similar objects are close together on the graph, while less similar
objects or have longer distances are far apart. Figure 12.2 illustrates the
principle of MDS.

Figure 12.2: the principle of MDS.

As shown in the figure, Algiers is far from Timimoun about 1224 km,
but it is close to Tiaret (275 km). As the map of Algeria is very large,
we can delete Tiaret. Thus, MDS will serve as a dimensionality reduction.
Mathematically, MDS satisfies the following equation (Eq.12.6):

∑
i inf j

(dij|xi − xj|)2 (12.6)

Where xi ∈ RK is the coordinates of the ith object in K-dimensional Eu-
clidean space and D is a dissimilarity matrix. |xi−xj|=

√
(xi − xj)T (xi − xj).

Algorithm 12.2 shows the MDS steps [Code adopted from https://github.
com/].

Listing 12.2: MDS in Python
1 def mds ():

2 D = np. loadtxt (’DISTANCES .txt ’, delimiter =’,’)

3 C = np. genfromtxt (’CITIES .txt ’, dtype = ’str ’, delimiter ="\n")

90

https://github.com/
https://github.com/

4 n = len(D)

5 H = np.eye(n) - np.ones ((n,n))/n

6 B = -0.1 * H.dot(D**2). dot(H)

7
8 evals , evecs = np. linalg .eigh(B)

9 idx = np. argsort (evals)[:: -1]

10 evals = evals[idx]

11 evecs = evecs [:, idx]

12
13 w = [0 ,1]

14 L = np.diag(np.sqrt(evals[w]))

15 U = evecs [:,w]

16 Y = U.dot(L)

17 return Y, C

12.1.3 Linear Discriminant Analysis (LDA)

LDA is a supervised dimensionality reduction technique used in several fields
such as Bioinformatics, chemistry, etc. It is very similar to PCA, but in ad-
dition to finding the component axes that maximize the variance of data, it
seeks the projection that maximizes between-class variability while minimiz-
ing within-class variability. In other words, LDA transforms the original data
into a lower dimensional space while maintaining the class-discriminatory in-
formation. It can be divided into three steps:

• Separability between-class: In this step, a distance between the means
of different classes is calculated.

• Separability within-class: In this step a distance between the means
and the samples of each class is calculated.

• Lower Dimensional Space: This step enables the dimensionality reduc-
tion.

91

Mathematically, LDA satisfies the following equation (Eq.12.7):

maximize
tr(wTSBw)
tr(wTSWw) subject to w ∈ Or×d (12.7)

SW =
n∑
i=1

(xi − µci)(xi − µci)T (12.8)

SB =
n∑
i=1

(µci − µ)(µci − µ)T (12.9)

Where, SW is the within-class covariance matrix and SB is the between-
class covariance matrix. µ is the global data mean and µci is the class mean
associated with xi. Algorithm 12.3 shows the LDA steps [Code adopted from
https://scikit-learn.org/].

Listing 12.3: LDA in Python
1 import numpy as np

2 from sklearn . discriminant_analysis

3 import LinearDiscriminantAnalysis

4 X = np.array ([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1],

5 [3, 2]])

6 y = np.array ([1, 1, 1, 2, 2, 2])

7 clf = LinearDiscriminantAnalysis ()

8 clf.fit(X, y)

9 LinearDiscriminantAnalysis ()

10 print(clf. predict ([[-0.8 , -1]]))

12.1.4 Canonical correlation analysis (CCA)

Canonical correlation analysis studies the linear relationships between two
sets of variables (within and between sets) in order to know if the two sets
describe the same phenomenon, and therefore one can do without one of

92

https://scikit-learn.org/

them. Mathematically, Eq.12.10 and Eq.12.11 govern the CCA.

(′∑
xy

−1∑
xx

∑
xy

− ρ2∑
yy

)
Y = 0 (12.10)

(∑
xy

−1∑
yy

′∑
xy

−ρ2∑
xx

)
X = 0 (12.11)

Where, ρij is the correlation coefficient and ∑′

xy is the transpose of ∑xy which
represents the covariance.

ρij =
∑
xy√∑
ii

∑
jj

(12.12)

Algorithm 12.4 shows the CCA steps [Code adopted from https://scikit-learn.
org/].

Listing 12.4: CCA in Python
1 from sklearn . cross_decomposition import CCA

2 X = [[0. , 0., 1.], [1. ,0. ,0.] , [2. ,2. ,2.] , [3. ,5. ,4.]]

3 Y = [[0.1 , -0.2], [0.9 , 1.1] , [6.2 , 5.9] , [11.9 , 12.3]]

4 cca = CCA(n_components =1)

5 cca.fit(X, Y)

6 CCA(n_components =1)

7 X_c , Y_c = cca. transform (X, Y)

12.2 Nonlinear methods

Linear methods are very powerful but suffer from being based on linear mod-
els and often miss important nonlinear structures in the data. Nonlinear
methods, also called manifold learning, are also very powerful and can be
applied when the original high dimensional data contains nonlinear relation-
ships. In this section, we present three nonlinear methods, including: Isomap,
KPCA and LLE.

93

https://scikit-learn.org/
https://scikit-learn.org/

12.2.1 Isometric mapping (Isomap)

Isomap can be viewed as an extension of MDS but it uses geodesic distances
instead of euclidean ones in MDS. Figure 12.3 shows the difference between
geodesic and euclidean distance.

Figure 12.3: Geodesic vs. Euclidean distances between A and B

Isomap can be divided into three steps:

• Nearest neighbor: In this step, a neighborhood graph is constructed.

• Shortest-path graph: In this step, a shortest path between two nodes A
and B is computed, using Dijkstra’s algorithm for instance (estimate
geodesics).

• MDS with geodesic distance: In this step, the MDS method is applied
using a geodesic distance as input distance to find the lower-dimensional
representation of original data.

Algorithm 12.5 shows the Isomap steps [Code adopted from https://github.
com/].

Listing 12.5: Isomap in Python
1 def isomap (data , n_components =2, n_neighbors =6):

2 """

3 data: input image matrix of shape (n,m) if dist=False ,

4 square distance matrix of size (n,n) if dist=True

5 n_components : number of components for projection

94

https://github.com/
https://github.com/

6 n_neighbors : number of neighbors for distance matrix

7 computation

8 """

9 # Compute distance matrix

10 data , _ = distance_mat (data , n_neighbors)

11
12 # Compute shortest paths from distance matrix

13 from sklearn .utils.graph import graph_shortest_path

14 graph = graph_shortest_path (data , directed =False)

15 graph = -0.5 * (graph ** 2)

16
17 # Return the MDS projection on the shortest paths graph

18 return mds(graph , n_components)

12.2.2 Kernel PCA (KPCA)
KPCA can be viewed as a nonlinear generalization of principal component
analysis (PCA), using techniques of kernel methods (eg., gaussian kernel).
KPCA projects a linearly inseparable data set into a higher dimensional space
in which the same data set becomes linearly separable. i.e, before performing
a PCA, the nonlinear data are mapped into a higher-dimensional feature
space. Figure 12.4 illustrates the principle of KPCA. Algorithm 12.6 shows
the KPCA steps [Code adopted from https://nirpyresearch.com/].

Listing 12.6: KPCA in Python
1 def ker_pca (X, n_components =3, gamma = 0.01):

2
3 # Euclidean distances

4 dist = euclidean_distances (X, X, squared =True)

5
6 # Gaussian kernel matrix

7 K = np.exp(-gamma * dist)

8 Kc = KernelCenterer (). fit_transform (K)

9
10 # Eigenvalues and eigenvectors of the kernel matrix

11 eig_vals , eig_vecs = np. linalg .eigh(Kc)

95

https://nirpyresearch.com/

Figure 12.4: the principle of KPCA

12
13 eig_vecs , _= extmath . svd_flip (eig_vecs , np. empty_like

14 (eig_vecs).T)

15
16 Xkpca = np. column_stack ([eig_vecs [:,-i] for i in

17
18 range (1, n_components +1)])

19
20 return Xkpca

12.2.3 Locally Linear Embedding (LLE)

LLE is an unsupervised learning algorithm used to solve globally nonlinear
problems using locally linear fitting. It computes low-dimensional embed-
dings while preserving the neighborhood of the high-dimensional inputs. LLE
can be divided into three steps:

• Nearest neighbor: In this step, a neighborhood graph is constructed,
using the euclidean distance.

96

• Reconstruction data: In this step, weights are computed to optimally
reconstruct data from its nearest neighbours.

• Low-dimensional embedding : In this step, the coordinates of the orig-
inal high-dimensional data are computed in the low-dimensional space.

Algorithm 12.7 shows the LLE steps [Code adopted from https://scikit-learn.
org/].

Listing 12.7: LLE in Python
1 from sklearn . manifold import LocallyLinearEmbedding

2 X, _ = load_data (return_X_y =True)

3 X.shape

4 embedding = LocallyLinearEmbedding (n_components =2)

5 X_transformed = embedding . fit_transform (data)

6 X_transformed .shape

97

https://scikit-learn.org/
https://scikit-learn.org/

Chapter 13

Suggested readings

1. Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine
learning. Springer Science & Business Media.

2. Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of
machine learning. MIT press.

3. Alpaydin, E. (2020). Introduction to machine learning. MIT press.

4. Pham, T. T. (2018). Applying Machine Learning for Automated Classi-
fication of Biomedical Data in Subject-Independent Settings. Springer.

5. Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification.
Hoboken: Wiley.

6. Anzai, Y. (2012). Pattern recognition and machine learning. Elsevier.

7. Weenink, D. (2003). Canonical correlation analysis. In Proceedings of
the Institute of Phonetic Sciences of the University of Amsterdam (Vol.
25, pp. 81-99). Amsterdam: University of Amsterdam.

8. Cunningham, J. P., & Ghahramani, Z. (2015). Linear dimensional-
ity reduction: Survey, insights, and generalizations. The Journal of
Machine Learning Research, 16(1), 2859-2900.

98

9. Abe, S. (2005). Support vector machines for pattern classification (Vol.
2, p. 44). London: Springer.

10. Matloff, N. (2017). Statistical regression and classification: from linear
models to machine learning. Chapman and Hall/CRC.

11. Halgamuge, S. K., & Wang, L. (Eds.). (2005). Classification and clus-
tering for knowledge discovery (Vol. 4). Springer Science & Business
Media.

12. Freund, R. J., Wilson, W. J., & Sa, P. (2006). Regression analysis.
Elsevier.

13. Chatterjee, S., & Hadi, A. S. (2013). Regression analysis by example.
John Wiley & Sons.

14. Celebi, M. E. (Ed.). (2014). Partitional clustering algorithms. Springer.

15. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT
press.

16. Ketkar, N., & Santana, E. (2017). Deep learning with Python (Vol.
1). Berkeley: Apress.

17. Sejnowski, T. J. (2018). The deep learning revolution. MIT press.

18. Stevens, E., Antiga, L., & Viehmann, T. (2020). Deep learning with
PyTorch. Manning Publications.

99

Part IV :

Applications Gallery

100

13.1 Application 1

Dimensionality reduction using PCA

Let’s consider the following data matrix to be the score of 6 patients.

X =

s1 s2



p1 2 1
p2 3 5
p3 4 3
p4 5 6
p5 6 7
p6 7 8

1- Compute the mean vector:
X̄ = 1

n

n∑
i=1

xi = x1 + x2 + · · ·+ xn
n

, hence

X̄ =
[
(2 + 3 + 4 + 5 + 6 + 7)/6 (1 + 5 + 3 + 6 + 7 + 8)/6

]
=
[
4.5 5

]

2- Compute the covariance matrix:

covx,y =
∑N
i=1(xi − x̄)(yi − ȳ)

n

D = xi − X̄ =



−2.5 −4
−1.5 0
−0.5 −2
0.5 1
1.5 2
2.5 3



DT =
−2.5 −1.5 −0.5 0.5 1.5 2.5
−4 0 −2 1 2 3



101

Covariance matrix C :

C = 1
6 × [DT ×D] = 1

6 ×
17.5 22

22 34

 =
2.92 3.67

3.67 5.67


3- Compute the Eigenvectors & Eigenvalues:
The eigenvalues of C are calculated using the following equation:

det(C− λI) = 0.

where, λ is an eigenvalue for C and I is an identity matrix.

det(C− λI) = 0 =⇒
2.92 3.67

3.67 5.67

− λ
1 0

0 1

 =
2.92− λ 3.67

3.67 5.67− λ

 = 0

Hence,

(2.92–λ)(5.67–λ)–(3.67× 3.67) = λ2–8.59λ+ 3.09 = 0

Solving this equation, we get, λ1 = 8.22 and λ2 = 0.38
The eigenvectors are calculated using the following equation:

(C− λi)× vi.

One can obtain two eigenvectors: v1 = [x1, x2] and v2 = [x′1, x′2].
If we use λ1 then:2.92− 8.22 3.67

3.67 5.67− 8.22

×
x1

x2


︸ ︷︷ ︸
v1

=
−5.3 3.67

3.67 −2.55

×
x1

x2



102

Hence, we get the following system:
−5.3× x1 + 3.67× x2 = 0

3.67× x1 − 2.55× x2 = 0
.

If we use λ2 then:2.92− 0.38 3.67
3.67 5.67− 0.38

×
x′1
x′2


︸ ︷︷ ︸
v2

=
2.54 3.67

3.67 5.29

×
x′1
x′2



Hence, we get the following system:
2.54× x′1 + 3.67× x′2 = 0

3.67× x′1 − 5.29× x′2 = 0
.

By simplifying the above systems, we get the values of the two eigenvectors
which are the principal components.

13.2 Application 2

Classification using Neural Network

Let’s consider the following data matrix:

Input =

X1 X2


0 0
0 1
1 0
1 1

Output =

Y = X1 ⊕X2


0
1
1
0

103

Let’s assume the sigmoid function f(x) is used in the activation function
of the neural network.

f(x) = 1
1 + e−x

Let’s assume b = 0, [w1, w2]= [0.8, 0.4], [w3, w4]= [0.2, 0.9].

H1 = f((w1×X1) + (w3×X2) + b) =⇒ H1 = f((0.8× 1) + (0.2× 0) + 0).
H1 = f(0.8) = 0.68.

H2 = f((w2×X1) + (w4×X2) + b) =⇒ H2 = f((0.4× 1) + (0.9× 0) + 0).
H2 = f(0.4) = 0.59.

Now, suppose [w5, w6]= [0.3, 0.6]

Y = f((w5×H1)+(w6×H2)+b) =⇒ H1 = f((0.3×0.68)+(0.6×0.59)+0).
Y = f(0.55) = 0.63.

104

The value of the output neuron (target) should have 1, the output value is
0.63. It is wrong because of the initial weights used which are chosen at
random. To fix this we use backpropagation by adjusting the weights to
improve the network.

w∗5
w∗6

 =
w5

w6

− a×∆×
H1

H2


w∗1 w∗3

w∗2 w∗4

 =
w1 w3

w2 w4

− a×∆×
X1

X2

×
w5

w6


Where, ∆ = (claculated − target) and a is used in a smarting manner. We
repeat the same process of backward and forward pass until error is close or
equal to zero.

105

106

	Preface
	List of Symbols
	I : Introduction
	Biology and medicine into the 21st century: Opportunities & Challenges
	What is Biology?
	History

	Artificial intelligence
	Computer vision concept
	Real-time concept

	Suggested readings

	II : Image Processing
	Image formation
	X-Ray Imaging
	Computed Tomography (CT)
	Magnetic Resonance Imaging (MRI)
	Ultrasound Imaging
	Microscopy

	Image Digitization
	Sampling
	Quantization
	Resolution

	Basic image processing algorithms
	Low level algorithms
	Intermediate level algorithms
	High level algorithms

	Suggested readings

	III : Machine learning
	Object Recognition
	Faster R-CNN
	YOLO

	Classification
	Naive Bayes
	Decision Trees (DTs)
	Support Vector Machines (SVM)
	k-Nearest Neighbors (KNN)

	Regression
	Linear Regression
	Ridge Regression
	Lasso Regression
	Quantile regression (QR)

	Clustering
	k-means
	BIRCH
	DBSCAN
	FCM

	Dimensionality Reduction
	Linear methods
	Nonlinear methods

	Suggested readings

	IV : Applications Gallery
	Application 1
	Application 2

