

A : coefficient d'accélération de zone

Aa: section d'armature en appui

A₁: section d'armature longitudinale

A_{min}: section d'armature minimale déterminée par les règlements

Ar : section d'armature de répartition

A_{ser} : section d'armature d'état limite de service **At** : section d'armature de travée ou transversale

A_u: section d'armature d'état limite ultime de résistance

Ax : section d'armature du sens x-x Ay : section d'armature du sens y-y A' : section d'armature comprimée

A₁: section de l'armature la plus tendue ou la moins comprimée A₂: section de l'armature la moins tendue ou la plus comprimée

Br: section réduite du béton **Cp**: facteur de force horizontale

Cs : coefficient de sécurité

 \mathbf{Cr} : charge de rupture

Crn : charge de rupture minimale nécessaire **D** : coefficient d'amplification dynamique

E : module de déformation longitudinale

Eij : module de déformation longitudinale instantanée **Eiv** : module de déformation longitudinale différée

G: action permanente

H: hauteur

HA: armature à haute adhérence

I: moment d'inertie

If: moment d'inertie fictif

J: action permanente avent mise en place des cloisons

L:longueur

Le : longueur en élévation Ln : entre axe des nervures Lp : longueur en plan

M: moment fléchissant

Ma: moment fléchissant en appui

Mc : moment fléchissant en centre ; masse de la cabine ; moment de la console

Md: moment fléchissant de la droite

Me : masse du câble ; moment au centre de la section

Mf: moment fléchissant totale

 \mathbf{Mg} : moment fléchissant sous charge permanente ; masse du treuil ; moment dû au garde corps

Mj: moment fléchissant sous charge permanente avant mise en place des cloisons

M_l: masse linéaire

M_{ser}: moment fléchissant d'état limite de service

Mt : moment fléchissant de travée

M_n: moment fléchissant d'état limite ultime de résistance

Mw : moment fléchissant de la gauche **Mx** : moment fléchissant du sens x-x

 $\mathbf{M}\mathbf{y}$: moment fléchissant du sens y-y \mathbf{M}_0 : moment de flexion d'une poutre simplement appuyée

M₁: moment par rapport aux armatures tendues ; coefficient de Pigeaud

M₂: coefficient de PigeaudM₂₂: moment suivant le sens 2-2M₃₃: moment suivant le sens 3-3

N: effort normal

Ne : effort normal au centre de la section

Npp : effort normal dû au poids des poutres principales **Nps** : effort normal dû au poids des poutres secondaires

 N_{ser} : effort normal d'état limite de service

 N_u : effort normal d'état limite ultime de résistance

P: poids propre ; périmètre **Pr**: poids propre du radier

Q : action variable quelconque ; facteur de qualité **R** : rayon ; coefficient de comportement de la structure

 \mathbf{S} : surface

Sr : surface du radier **T** : effort tranchant

 T_x : période fondamentale dans le sens x-x T_y : période fondamentale dans le sens y-y

Uc: périmètre du contour

V : action sismique ; effort horizontal

Vt : effort sismique à la base de la structure

W: poids total de la structure

Wp : poids de l'élément en considération.

a: longueur; distance; dimension

b: largeur

b₀: largeur de la nervureb₁: largeur de poteau

c: enrobage

d: hauteur utile;

e : excentricité ; espacement
e_a : excentricité additionnelle

f: flèche

 \mathbf{f}_{c} : contrainte caractéristique du béton à la compression

f_e: limite élastique d'acier

 $\mathbf{f_t}$: contrainte caractéristique du béton à la traction

g: giron de la marche

h: hauteur

 $\mathbf{h_c}$: hauteur du corps creux $\mathbf{h_d}$: hauteur de la dalle

 h_e : hauteur libre

hmov : hauteur moyenne

 $\mathbf{h_t}$: hauteur totale

h': hauteur de la zone nodale

h₁: hauteur du poteaui: rayon de giration

j : nombre des jours

1: longueur; distance

l_f: longueur de flambement

 $\mathbf{l}_{\mathbf{x}}$: la petite dimension du panneau de la dalle

 $\mathbf{l_y}$: la grande dimension du panneau de la dalle

l': longueur de la zone nodale

 l_0 : longueur libre

q_b : charge linéaire induite par les marches

q_{eq}: charge linéaire équivalente

q_l: charge linéaire

q_{ser}: charge linéaire d'état limite de service

q_u : charge linéaire d'état limite ultime de résistance

 $\mathbf{q}_{\mathbf{P}}$: charge linéaire du palier

s : espacement

t: espacement; période

x: abscisse

v: ordonnée

y₁: ordonnée du centre de gravité de la section homogène

z : bras de levier

 α : Angle, coefficient sans dimension

γ : Coefficient partiel de sécurité, rapport des moments

β : Coefficient sans dimension, coefficient de pondération

ε: Coefficient de réponse

η: Coefficient de fissuration relatif, facteur de correction d'amortissement

 θ : Déviation angulaire, coefficient sans dimension, coefficient globale dépendant du type de construction

 λ : Élancement mécanique d'un élément comprimé, coefficient sans dimension, rapport des dimensions

μ: Moment réduit

v : Coefficient de poisson

ρ : Rapport de deux dimensions

σ : contrainte de béton ou d'acier

τ : Contrainte tangentielle ou de cisaillement

ψ : Coefficient de pondération

ξ : Pourcentage d'amortissement critique

δ : Coefficient de réduction, espacement des armatures transversales, déplacement

 Σ : Sommation

φ : Diamètre d'armature transversale ou treillis soudés