NOTATIONS

A : coefficient d'accélération de zone.

 A_l : section d'armature longitudinale.

 A_{min} : section d'armature minimale déterminée par les règlements.

Ar : section d'armature de répartition.

At: section d'armature transversale.

 A_s : section d'armatures tendue.

 A_s ': section d'armature comprimée.

Br: section réduite du béton.

Cp: facteur de force horizontale.

Cs: coefficient de sécurité.

D: coefficient d'amplification dynamique.

E : module de déformation longitudinale.

Eij : module de déformation longitudinale instantanée.

Eiv: module de déformation longitudinale différée.

G: action permanente.

H: hauteur.

I: moment d'inertie.

J: action permanente avent mise en place des cloisons.

L : longueur.

Le : longueur en élévation.

Ln: entre axe des nervures.

M: moment fléchissant.

Mj: moment fléchissant sous charge permanente avant mise en place des cloisons.

M_{ser}: moment fléchissant d'état limite de service.

Mt: moment fléchissant de travée.

 M_u : moment fléchissant d'état limite ultime de résistance.

 M_1 : moment par rapport aux armatures tendues ; coefficient de Pigeaud.

 M_2 : coefficient de Pigeaud M_{22} : moment suivant le sens 2-2

 M_3 : moment suivant le sens 3-3.

N : effort normal.

Npp: effort normal dû au poids des poutres principales.

Nps: effort normal dû au poids des poutres secondaires.

 N_{ser} : effort normal d'état limite de service.

 N_u : effort normal d'état limite ultime de résistance.

P: poids propre; périmètre.

Q: action variable quelconque; facteur de qualité.

R : rayon ; coefficient de comportement de la structure.

S : surface.

T: effort tranchant

 T_x : période fondamentale dans le sens x-x.

 T_y : période fondamentale dans le sens y-y.

Uc : périmètre du contour.

V: action sismique; effort horizontal.

W: poids total de la structure.

a: longueur; distance; dimension.

b : largeur.

 $\mathbf{b_0}$: largeur de la nervure.

b₁ : largeur de poteau.

 \mathbf{c} : enrobage.

d: hauteur utile.

e : excentricité ; espacement.

f : flèche.

 \mathbf{f}_{bc} : contrainte caractéristique du béton à la compression.

f_e: limite élastique d'acier.

 $\mathbf{f_{ti}}$: contrainte caractéristique du béton à la traction.

g: giron de la marche.

h: hauteur.

h_e: hauteur libre.

h': hauteur de la zone nodale.

j : nombre des jours.l : longueur ; distance.

 l_f : longueur de flambement.

 $\mathbf{l}_{\mathbf{x}}$: la petite dimension du panneau de la dalle.

 $\mathbf{l_y}$: la grande dimension du panneau de la dalle.

l': longueur de la zone nodale.

 l_0 : longueur libre.

q_{eq} : charge linéaire équivalente.

q : charge linéaire.

q_{ser} : charge linéaire d'état limite de service.

q_u : charge linéaire d'état limite ultime de résistance.

t : période.

x: abscisse.

y: ordonnée.

 α : Angle, coefficient sans dimension.

y : Coefficient partiel de sécurité, rapport des moments.

β : Coefficient sans dimension, coefficient de pondération.

ε: Coefficient de réponse.

η: Coefficient de fissuration relatif, facteur de correction d'amortissement.

 λ : Élancement mécanique d'un élément comprimé, coefficient sans dimension, rapport des dimensions.

μ: Moment réduit.

v : Coefficient de poisson.

σ : contrainte de béton ou d'acier.

τ : Contrainte tangentielle ou de cisaillement.

 ψ : Coefficient de pondération.

ξ : Pourcentage d'amortissement critique.

δ : Coefficient de réduction, espacement des armatures transversales, déplacement.

• Diamètre d'armature transversale ou treillis soudés.