Résumé

L'industrie de la fonderie utilise, entre autres, pour les coulées de pièces, des moules et des noyaux en sables. Cela génère, par conséquent, des quantités importantes de sables usés dont un faible volume seulement sera recyclé au niveau de l'usine, d'où l'intérêt de valoriser ces matériaux dans plusieurs domaines.

Le présent travail dans cette optique, dans lequel on a mené une étude expérimentale pour la valorisation des sables de fonderie dans le domaine de BTP. Dans notre étude, on s'est intéressé également au traitement des sables polluants, ce qui contribuera à la protection de l'environnement.

Il a été trouvé que les sables à minéraux naturels, tel que le sable à vert, donnent, après traitement aux liants hydrauliques, des performances mécaniques intéressantes pour être utilisés en construction routière, autant que couches de forme ou remblais. Le développement d'un dispositif pour le traitement hydraulique du sable au silicate de soude a permis de réduire le pH de ce matériau et rendre son utilisation plus pratique dans le domaine de BTP.

Mots clés : Sables de fonderie, valorisation, construction routière, matériaux de construction, environnement.

Abstract

The founder industry uses molds and sand cores, which generates significant quantities of uses sand with only a small volume recycled at the manufactory. It is why that the valorization of these materials in several areas is very interesting.

This work is a part of this topic, in which we conducted an experimental study in order to valorize used sands in civil construction fields. Our study was focused also on the treatment of contaminated sands, which will help to protect the environment.

It was found that the natural mineral sands, such as green sands, provide after treatment with hydraulic binders an interesting mechanical performance for its uses in road construction, as far as subgrade or embankment. The development of a device for hydraulic treatment of sodium silicate sands allows a reduction in their pH and makes its practical use very promising in the fields of construction.

ملخّص

نستعمل في ميدان السباكة الرّمل وبكميّات كبيرة لغرض قولبة القطع الحديديّة. يتمّ ذلك بإعادة رسكاتها بكميّات قليلة جدّاً. فلهذا السّبب، أضحى الرّمل المستعمل مطلوباً ولقي رواجاً في ميادين عديدة أخرى.

يندرج عملنا المتواضع ضمن هذا الإطار، إذ تطرّقنا من خلاله إلى دراسة تجريبيّة تهدف إلى تثمين استعمال الرّمال في كلّ من ميداني البناء والأشغال العموميّة. عرّجنا أيضاً على قضيّة معالجة الرّمال الملوّثة قصد الحفاظ على البيئة.

وتوصّلنا إلى أنّ الرّمال التي تحتوي على معادن طبيعة تمنحنا مزايا ميكانيكيّة هامّة وذلك بعد القيام بمعالجتها بمادتّي الجير والاسمنت. وكلّ هذا بهدف استعمالها في ميدان أشغال الطّرقات.

قصد تحقيق الهدف المرجو من هذه الدراسة، قمنا بتصميم جهاز يعمل على المعالجة المائيّة للرّمال التي تحتوي على سيليكات الصّوديوم يتمّ من خلاله تخفيض مستوى PH وهذا ما فتح المجال أمام إمكانيّة استعمال هذه الرّمال من جديد وفي نفس المجال.

SOMMAIRE

Résumél
AbstractI
Sigles et abréviationsVII
Liste des tableauxX
Liste des figuresXII
Introduction générale1
Chapitre I : Présentation de l'Enterprise d'ALFET-cadre du stage.
I.1 Présentation de la structure d'accueil
I.1.1 Fiche d'identité
I.1.2 Historique
I.1.3 Moyens
I.2 Objectif du stage6
I.3 Remarques notés durant le stage7
Conclusion
Chapitre II : Généralités sur les sables de fonderie.
II.1 Introduction8
II.2 Procédés de moulage8
II.2.1 Sable à vert (S1)
II.2.1.1 Identification des matériaux additifs utilisé
II.2.2 Sable au silicate de soude (S2)
II.2.2.1 Identification du silicate de soude
II.2.2.2 Usages divers
II.2.2.3 Les dangers du silicate de soude liquide alcaline
II.2.2.3.1 Identification du danger
II.2.2.3.1 Identification du danger

II.2.2.6 Stabilité et réactivité	14
II.2.2.7 Toxicité et cancérogénicité	15
II.2.2.8 Renseignements écologiques	15
II.2.3 Sable furanique (S4)	15
II.2.3.1 Identification des additifs	16
II.2.3.1.1 Identification des dangers de la résine	16
II.2.3.1.2 Identification des dangers du catalyseur	16
Conclusion	16
Chapitre III : Règlementation en ce qui concerne la gestion des déch	hets industrielle.
III.1 Introduction	17
III.2 Règlementation Algérienne	17
III.2.1 Loi N°01 (12 decembre2001)	17
III.2.2 Décret exécutif N° 07-205 (30 juin 2007)	18
III.2.3 Décret exécutif N° 04-409 (14 décembre 2004)	18
III.2.4 Décret exécutif N° 03-477 (09 décembre2003)	18
III.3 Réglementation française actuelle	18
III.3.1 Loi du 15 juillet 1975	18
III.3.2 Arrêté du 16.juillet 1991	19
III.3.3 Décret du 18 avril 2002.	19
III.3.4 Arrêté du 9 septembre 1987	21
III.3.5 Arrêté du 30 décembre 2002	21
III.3.5.1 Mode opératoire du teste du potentiel polluant	22
III.3.5.2 Critères d'admission des déchets	22
III.4 Réglementation européenne	23
III.4.1 Les principales directives	23
III.4.2 Décision du conseil européen du 19 septembre 2002	23
III.4.3 Caractérisation de base des déchets	24
III.4.4 Vérification de la conformité	24
III.5 Réglementation aux Etats Unis	26
III 5 1 Evemple du Wisconsin	28

Conclusion	31
Chapitre IV : Valorisation dans le domaine du G.C et techniques de traitements usés.	des sables
IV.1 Introduction	32
IV.2 Valorisation dans le domaine de G.C	32
IV.2.1 Valorisation dans la construction routière	32
IV.2.1.1 Valorisation en couches de remblais	32
IV.2.1.2 Valorisation en couches de formes	33
IV.2.1.3 Valorisation en assises de chaussées	33
IV.2.1.4 Utilisation dans la formulation d'enrobés	33
IV.2.1.5 Valorisation en grave hydraulique	33
IV.2.2 Fabrication des matériaux de construction	33
IV.2.2.1 Tuiles et briques.	33
IV.2.2.2 Valorisation en cimenterie	34
IV.2.2.3 Valorisation des sables usés en coulis de béton	34
IV.2.3 Valorisation de sable en barrière étanche ouvragée	34
IV.3 Antécédent de traitement	34
IV.3.1 Régénération des sables de fonderie	34
IV.3.2 Solution de traitement	35
IV.3.2.1 Bactérie contre phénol.	35
IV.3.2.1 Recyclage des sables à vert par voie hydraulique	36
IV.3.2.1.1 Les solutions hydrauliques	36
a- Solutions existantesb- Solutions à l'étude	
IV.3.2.3 Régénération des sables de fonderie par gaz naturel	38
IV.3.2.3.1 L'objet du projet	38
a- Le principeb- Exploitation du sable de fonderie	
Conclusion	40
Chapitre V : Analyse cristallographique des minéraux.	
V.1 Généralités.	41
V 1 1 Origines	41

V.1.2 Définition d'un cristal	41
V.1.3 Types de réseaux	41
V.1.3.1 Réseau 2D.	41
V.1.3.2 Réseau 3D.	43
V.1.3.2.1 Les différentes possibilités pour ces six paramètres	44
a- Système triclinique	44
b- Système monoclinique	45
c- Système orthorhombique	46
d- Système quadratique	46
e- Système rhomboédrique	47
f- Système hexagonal	48
g- Système cubique	48
V.2 Diffraction des rayons X	49
V.2.1 Principe.	49
V.2.2 Production des rayons X	50
V.2.2.1 Matériels	50
V.2.2.2 Spectre obtenu	51
V.2.2.3 Méthode de diffraction	52
Conclusion	52
Chapitre VI : Résultat et interprétations.	
VI.1 Introduction	53
VI.2 Les essais sur le sable brute (SB)	53
VI.2.1 Les essais d'identification.	53
VI.2.1.1 Analyse granulométrique	53
VI.2.1.2 Limite d'Atterberg	58
VI.2.1.3 Valeur du bleu de méthylène	58
VI.2.1.4 Teneur en carbonate	59
VI.2.1.5 Equivalent de sable	60
VI.2.2 Classement du sable	61
VI.3 Les essais sur sable à vert (S1)	62

VI.3.1 Les essais d'identification	62
VI.3.1.1 Analyse granulométrique le l'essai sédimentométrique	62
VI.3.2.2 Classement du sable (S1)	66
VI.3.3 Les essais de portance	66
VI.3.3.1 Essai Proctor.	67
VI.3.3.2 Essai CBR.	68
VI.3.3 Exécution de traitement	69
VI.3.3.1 L'influence de traitement	72
VI.3.3.1.1 L'influence de l'essai Proctor	72
VI.3.3.1.2 L'influence de l'essai CBR	73
VI.3.4 Les essais sur mortier.	75
VI.3.4.1 Confection des éprouvettes de mortier	75
VI.3.4.2 Résultat de la résistance à la compression et à la flexion	77
VI.4 Les essais sur les sables (S2) et (S3)	78
VI.4.1 Le principe du traitement hydraulique	78
VI.4.2 Mode opératoire	79
VI.4.3 Les essais d'identification.	82
VI.4.3.L'analyse granulométrique	82
VI.4.3.2 Résultat d'identification.	84
VI.4.4 Classement des sables (S2) et (S3)	84
VI.5. Résultat de la diffraction des rayons X	84
VI.5 Interprétation des résultats	92
Conclusion	93
Conclusion générales et perspectives	94
Bibliographie	96
ANNEXES.	
ANNEXES 1 : Bulletin d'analyse du S.D fournie par ADWAN C.C	98
ANNEXES 2 : Fiche signalétique de la R.F et du catalyseur fourni par FOSECO)99
ANNEXES 3 : Classification des sols et norme NF P 11 300et GTR	101
ANNEXES 4 : courbe spectrale de référence.	102

SIGLES ET ABREVIATIONS

Chapitre 1:

ALFET : Algérienne des fonderies de Tiaret.

FONDAL : Groupe industrielle fonderie algérien.

Chapitre II:

Ca: Calcium.

Mg: Manganèse.

Na: Sodium.

K: Potassium.

AFS: Indice de finesse.

Na₂SiO₃: Trioxosilicate de di sodium.

SiO₂: dioxyde de silicium.

Na₂CO₃: Le carbonate de sodium.

CO₂: Dioxyde de carbone.

Na₂O: L'oxyde de sodium.

Fe: Fer.

NTP: Programme national canadien de toxicologie.

CIRC: Centre international de recherche sur le cancer.

OSHA: Administration d'hygiène et de la sécurité des Etats-Unis.

Cataset PA20 : le catalyseur ou le durcisseur fourni par foseco industrie.

RESIMAX 3519 : la résine fournie par foseco industrie.

Chapitre III:

COT: Carbone organique total.

Sr: Strontium.

Pb: Plomb.

Zn: zinc.

Co: Cobalt.

Ni: Nickel.

Hg: Mercure.

Ba: Baryum.

Cu: Cuivre.

CNA: Capacité de neutralisation acide.

CEN : Centre européen de normalisation.

NE: Norme européenne.

RCRA: Resource Concervation and Recovery Act.

TLCP: Toxicity Caractersitique leaching.

HSWA: HAZARDOUS AND SOLID WASTE AMENDEMENTS.

BUD: Beneficial use détermination.

Chapitre IV:

BTP: Bâtiments et travaux publics.

SETRA : Service d'étude sur le transport les routes et leurs aménagement.

LCPC: Laboratoire central de ponts et chaussées.

FNTP: Fédération national de travaux publics.

TVPI: Traitement et valorisation du produit industriel.

Fe₂O₃ : Oxide de fer.

CAC 2000: Coulis auto compactant.

JORF : Journal officiel de la république française.

GTR : Classification des matériaux.

BRGM : Bureau de recherche géologique et minière.

Safond: Une fonderie dans le nord d'Italie.

Ecofond: Fonderie espagnole au pays basque.

SASIL : Société italienne de produit chimique (production de silice).

Chapitre VI:

CBR: California bearing ratio.

I.CBR : Indice portant.

 γd : Densité sèche.

W: Teneur en eau.

pH : Potentiel hydrogène.

SB: Sable brute.

S1 : Sable à vert.

S2 : Sable au silicate de soude.

S3 : Sable au silicate de soude + bentonite.

S4 : Sable furanique.

LISTE DES TABLEAUX

<u>Tableau I.1</u> : Effectifs socio-professionnel de l'entreprise d'ALFET	04
<u>Tableau.II.1</u> : composition du sable à vert	9
<u>Tableau II.2</u> : caractéristique physico-chimiques de la bentonite	10
<u>Tableau II.3</u> : composition du sable au silicate de soude	12
<u>Tableau II.4:</u> Composition chimique du silicate de soude	12
<u>Tableau II.5</u> : composition du sable à la résine furanique	16
<u>Tableau III.1</u> : exemples de filières de valorisation autorisées	29
<u>Tableau III.2</u> : Eléments à rechercher dans les sables de fonderie.	30
<u>Tableau IV.1</u> : Couts exploitation du sable dans la fonderie	40
<u>Tableau V.1:</u> Systèmes cristallins	44
<u>Tableau VI.1:</u> Résultats de l'analyse granulométrique sur le sable brute (SB) ECH 01	54
<u>Tableau VI.2</u> : Résultat sur l'analyse granulométrique sur le sable brute (SB) ECH 02	56
<u>Tableau VI.3:</u> tableau d'identification du sable brute (SB)	61
<u>Tableau VI.4:</u> résultat de l'analyse granulométrique du sable (S1) ECH 01	62
<u>Tableau VI.5</u> : Résultat de la sédimentométrie ECH 01	62
<u>Tableau VI.6:</u> Résultat de l'analyse granulométrique du sable (S1) ECH 02	64
<u>Tableau VI.7</u> : résultat de la sédimentométrie ECH 02	64
<u>Tableau VI.8:</u> Récapitulation des résultats d'identification	66
<u>Tableau VI.9:</u> Résultat de l'essai Proctor modifié	67
<u>Tableau VI.10:</u> Résultat de l'essai CBR d'immersion à 4 jours du sable à vert (S1)	68
<u>Tableau VI.11:</u> Résultat de l'essai Proctor modifié (sable à vert traité à 2% de chaux)	70
<u>Tableau VI.12:</u> Résultat de l'essai Proctor modifié (sable à vert traité à 4% de chaux)	70
<u>Tableau VI.13:</u> Résultat de l'essai Proctor modifié (sable à vert traité à 2% de ciment)	70
<u>Tableau VI.14:</u> Résultat de l'essai Proctor modifié (sable à vert traité à 4% de ciment)	70
<u>Tableau VI.15</u> : Résultats de l'essai CBR du (sable à vert traité à 2% de chaux)	71
Tableau VI.16: Résultats de l'essai CBR du (sable à vert traité à 4% de chaux)	71

<u>Tableau VI.17</u> : Résultats de l'essai CBR du (sable à vert traité à 2% de ciment)	71
<u>Tableau VI.18</u> : Résultats de l'essai CBR du (sable à vert traité à 4% de ciment)	71
<u>Tableau VI.19</u> :L'influence de traitement sur l'essai Proctor modifié	72
<u>Tableau VI.20</u> :L'influence de traitement sur le résultat CBR	73
<u>Tableau VI.21:</u> Opérations de malaxage du mortier normal	77
<u>Tableau VI.22:</u> Comparaison de la résistance à la flexion avec un sable témoin	77
<u>Tableau VI.23</u> : Comparaison de la résistance à la compression avec un sable témoin	78
<u>Tableau VI.24:</u> Résultat de l'analyse granulométrique du sable (S2)	82
<u>Tableau VI.25</u> : Résultats de l'analyse granulométrique du sable (S3)	83.
Tableau VI.26 : Résultats des essais identification.	84

LISTE DES FIGURES.

Figure I.1: Siege de l'entreprise ALFET.	3
<u>Figure I.2</u> : Organigramme hiérarchique de la structure d'ALFET	6
Figure II.1 sable à vert (S1) usés provenant de l'ALFET	9
Figure II.2 : Bentonite de fonderie	10
Figure II.3: Noir minéral de fonderie	11
Figure IV.1: Schéma d'un système de recyclage	39
Figure V.1: Un Réseau 2D.	42
Figure V.2: Surface d'une maille	42
Figure V.3: Un Réseau 3D.	43
<u>Figure V.4</u> : Un système triclinique	44
<u>Figure V.5</u> : Système triclinique plus symétrique	45
<u>Figure V.6:</u> Système monoclinique	45
<u>Figure V.7:</u> système orthorhombique.	46
<u>Figure V.8 :</u> Quadratique	46
Figure V.9: Système rhomboédrique.	47
<u>Figure V.10:</u> Système hexagonal	48
<u>Figure V.11:</u> Système cubique	48
<u>Figure V.12:</u> Principe de la diffractométrie des rayons x	49
Figure V.13: L'orientation du cristal	50
<u>Figure V.14</u> : Une tache décrit selon la loi de Bragg	50
Figure V.15: Anode tournante	51
<u>Figure V.16</u> : Tubes scellé	51
Figure V.17: Un synchrotron.	51
Figure V.18: Machine de diffraction des rayons X	52
Figure VI.1 : Série de tamis normalisé	53
Figure VI.2: La courbe d'analyse granulométrique du sable brute (SB) ECH 01	55
Figure VI 3: La Coubre d'analyse granulométrique du sable brute (SB) ECH 02	57

<u>Figure VI.4:</u> Coupelle de Casagrande	58
<u>Figure VI.5:</u> Calcimétre pour la détermination de la teneur en carbonates	59
Figure VI.6: Éprouvettes 01 et 02 du sable brute (SB)	60
<u>Figure VI.7:</u> La courbe d'analyse granulométrique du sable (S1) ECH 01	63
Figure VI.8 : La courbe d'analyse granulométrique du sable (S1) ECH 02	65
Figure VI.9: Essai Proctor.	67
Figure VI.10: Courbe du résultat Proctor modifié	68
Figure VI.11: Courbe de l'essai CBR	69
<u>FigureVI.12</u> : Les étapes de l'essai CBR après immersion (Phases A,B,C)	69
<u>Figure VI.13</u> : Courbe de l'influence de traitement	72
<u>Figure VI.14</u> : Résultat de l'essai CBR de 4 jours d'immersion à 55 coups	73
Figure VI.15: Résultats de l'essai CBR de 4 jours d'immersion à 25 coups	74
<u>Figure VI.16</u> : Résultats de l'essai CBR de 4 jours d'immersion à dix coups	74
<u>FigureVI.17</u> : Machine d'essai de résistance à la flexion	75
<u>Figure VI.18</u> : La machine de l'essai Marshall utilisé pour l'essai de compression	76
Figure VI.19: Moules prismatiques utilisés	77
<u>Figure VI.20</u> : Etapes de traitement hydraulique des sables (S2) et (S3)	80
<u>Figure VI.21</u> : Le dispositif miniature pour le traitement de 50g de sable	81
Figure VI.22 : Le dispositif du traitement hydraulique pour le traitement d'un kilo de s	sable81
<u>Figure VI.23:</u> La courbe d'analyse granulométrique du sable (S2)	82
<u>Figure VI.24</u> : La courbe d'analyse granulométrique du sable (S3)	83
Figure VI.25: Spectre (01) sable à vert non traité	85
<u>Figure VI.26:</u> Spectre (02) sable au silicate de soude non traité (ADWAN)	86
<u>Figure VI.27:</u> Spectre (03) sable au silicate de soude non traité (Chlef)	87
Figure VI.28: Spectre (04) sable furanique (S4)	88
Figure VI.29: Spectre (05) sable au silicate de soude traité hydrauliquement (ADWAN	٧)89
<u>Figure VI.30</u> : Spectre (06) sable au silicate de soude traité hydrauliquement (Chlef)	90
Figure VI.31: Spectre (07) sable au silicate de soude plus Bentonite non traité (Adwar	ı)91
Figure VI 32: Diagramme de stabilité du quartz	92