NOMANCLATURE

 V_{1} La vitesse du vent nominale de l'aérogénérateur. Masse volumique de l'air. ρ β L'angle d'orientation de pale. R Rayon de la surface balayée par la turbine. S La surface balayée par la turbine. La puissance absorbée par l'aérogénérateur. P_{aero} P_{1} La puissance de la masse d'air. C_{v} Le coefficient de puissance. λ La vitesse relative de l'éolienne. La vitesse relative optimale de l'éolienne. $\lambda_{optimal}$ Ω_{tur} Vitesse de rotation de la turbine. Ω_{mec} Vitesse de rotation de l'arbre du générateur. G Gain du multiplicateur. C_{q} Couple résistant issue du multiplicateur. P_{s} Puissance active statorique. P_r Puissance active rotorique. C_{aer} Couple aérodynamique de l'éolienne. Cnis Couple des frottements visqueux. C_{em} Couple électromagnétique. C_{em-ref} Couple électromagnétique de référence. C_{mec} Couple mécanique. $C_{t-estim\acute{e}}$ Couple de la turbine estimé. K_f Coefficient des frottements visqueux de l'éolienne et de sa génératrice. Inertie de la turbine. J_t

Inertie de la génératrice.

 J_j

NOMANCLATURE ET ABRIVIATIONS

Glissement. g $[V_{SABC}]$ Tensions simples triphasées au stator de la machine. $[V_{Rahc}]$ Tensions simples triphasées au rotor de la machine. $[i_{SARC}]$ Courants statoriques. $[i_{Rabc}]$ Courants rotoriques. $[\phi_{SABC}]$ Flux statoriques. $[\phi_{Rabc}]$ Flux rotoriques. R_S Résistance des enroulements statoriques. R_R Résistance des enroulements rotoriques. Inductance cyclique du stator. $L_{\mathcal{S}}$ P Nombre de pair de pôles. Inductance cyclique du rotor. L_r L_{s} Inductance propre des enroulements statoriques. L_r Inductance propre des enroulements rotoriques. Inductance mutuelle des enroulements statoriques. m_{s} m_g Inductance mutuelle des enroulements rotoriques. M_{max} Inductance mutuelle maximale. P nombre de paires de pôles de la machine. le coefficient de frottement visqueux de la machine f Cs le couple électromagnétique en (N.m). C_r le couple résistant en (N.m). [A] Matrice de Park. θ Est l'angle entre l'axe statorique as et l'axe rotorique. θ_r Est l'angle entre l'axe rotorique ar, et l'axe de Park directe. θ_{s} Est l'angle entre l'axe statorique as, et l'axe de Park directe Est la vitesse angulaire du système d'axes (d, q). w

Est la vitesse angulaire électrique du rotor.

 W_r

NOMANCLATURE ET ABRIVIATIONS

 $W_{\rm s}$ Est la vitesse angulaire électrique du stator.

X tensions, courant ou flux.

d indice de l'axe direct de Park.

q indice de l'axe en quadrature de Park.

O indice de l'axe homopolaire de Park.

M Inductances mutuelles.

 $P_{\rm s}$ Puissance active.

 Q_s Puissance réactive.

 i_{cond} Courant traverse condensateur.

 V_{dc} Tension de bus continu.

 R_f , R_f Résistance et l'inductance de filtre RL.

 S_a, S_b, S_c Séquence de commande du convertisseur à MLI.

 $\Delta \Phi r$ Variation du vecteur flux rotorique.

ΔCem Variation du vecteur couple électromagnétique.

Ts Période de commutation.

 N_i Les secteurs.

ωgl Pulsation de glissement.

 T_1, T_2 Temps d'application des deux vectrices tensions adjacentes.

ABRIVIATIONS

MADA Machine Asynchrone à Double Alimentation.

GADA Génératrice asynchrone à double alimentation.

Pi Proportionnel- Intégrateur.

CCM Convertisseur Cote rotor.

CCR Convertisseur Cote Réseau.

MLI Modulation à Large Impulsion.

MPPT maximum Power Point Tracking.