Sommaire

Liste des tableaux	l
Liste des figures Liste des symboles et des abréviations	II V
Introduction général	VII
Chapitre 1 : Étude bibliographique sur les liquides ioniques	
I.1.Définition des liquides ioniques	p.1
I.2.Historique	p.2
I.3.Nomenclature des liquides ioniques	p.3
I.4.La synthèse des liquides ioniques	p.3
I.4.1. Réaction de quaternisation du noyau imidazole	p.4
I.4.2. Réaction d'échange de l'anion	p.5
I.4.3. Synthèse des liquides ioniques de sels de N, N'-dialkyl imidazolium	p.7
I.5. Propriétés physico-chimiques	p.8
I.5.1. Le point de fusion	p.9
I.5.2. Domaine liquide et Surfusion	p.9
I.5.3. La densité et la viscosité	p.9
I.5.4. Toxicité et dangerosité	p.10
I.5.5. Volatilité	p.10
I.6. Propriétés électrochimiques des LI	p.11
I.6.1. Propriétés électrochimiques et dépôt électrolytique	p.11
I.6.2. Stabilité chimique et acidité	p.11
I.6.3. Échelle de polarité et paramètres de Kamlet-Taft	p.11
I.6.4. La Conductivité électrique	p.12
I.6.5. Polarité	p.13
I.7. Comportement vis-à-vis des gaz, de l'eau et des solvants organiques	p.13
I.7.1. Solubilité des gaz dans les LIS	p.14
I.7.2. Solubilité de l'eau dans les LIs et des LIs dans l'eau	p.16
I.7.3. Miscibilité des LIs avec les solvants organiques	p.17
I.8. Les applications des liquides ioniques	p.18
I.8.1. Applications en électrochimie	p.19
I.8.2. Applications en synthèse organique et en catalyse	p.20
I.8.2.1. Réaction de Diels – Alder	p.20
I.8.2.2. Réaction d'hydrogénation	p.20

I.8.3. Applications dans le domaine des procédés de séparation et	
de l'analyse	p.21
I.8.3.1. Extraction liquide – liquide	p.21
I.8.3.2. Micro extraction en phase liquide (LPME)	p.22
I.9.conclusion	p.22
Bibliographie	p.24
Chapitre II: étude bibliographié sur le ZnO	
II.1. Introduction	p.29
II.2. Propriétés physiques	p.30
II.2.1Structure cristalline	p.30
II.2.2. Structure de bande électronique	p.31
II.2.2. Structure de bande électronique	p.31
II.2.3. Modes de vibration	p.32
II.3. Propriétés chimiques	p.34
II.4. Propriété optique	p.35
II.5. Propriétés électriques du ZnO	p.36
II.6. Les nanoparticules de ZnO	p.36
II.6.1. Propriétés structurales	p.36
II.6.2. Propriétés optiques	p.37
II.6.3. Propriétés électriques et électroniques	p.38
II.7. Les applications de ZnO	p.39
II.7.1. Les Cellules solaires	p.39
II.7.2. Les Générateurs d'électricité	p.40
II.7.3. Les Diodes électroluminescentes	p.40
II.7.4. Les Capteurs chimiques & détecteurs mécaniques	p.41
II.7.5. Les Vitrages intelligents & couche de revêtement anti UV	p.41
II.8. Conclusion	p.41
Bibliographie	p.44
Chapitre III: Techniques de caractérisations	
III.1. Diffraction des rayons X (DRX)	p.44
III.1.1. Principe	p.44

III.2. spectroscopie infrarouge IR	p.46
III.2.1. Principe	p.46
III.2.2. domaine spectral de la spectroscopie IR	p.48
III.2.2.1.niveaux d'énergie et énergie mise en jeu lors de la transition	p.48
III.2.3.Mode de vibrations moléculaires	p.50
III.2.3.1.des vibrations d'élongation(ou stretching)	p.51
III.2.3.2.des vibrations de déformation angulaire (ou bendling)	p.51
III.2.4.Interprétation d'un spectre infrarouge	p.52
III.2.4.1.différentes régions du spectre infrarouge	p.52
III.2.4.2.localisation des bandes d'absorption des types digitales	p.52
III.2.4.3.Région des empreintes digitales	p.52
III.2.5.La spectroscopie infrarouge à transformée de Fourier FTIR	p.54
III.2.6.Réflectance totale atténuée ATR	p.54
III.2.7.Applications	p.56
III.3.la spectrométrie UV-visible	p.56
III.3.1.définition	p.56
III.3.2.principe de la spectrophotométrie UV-visible	p.57
III.3.3.loi de Beer-Lambert	p.58
III.3.4.Appareillage	p.58
III.3.4.1.Sources lumineuses	p.59
III.3.4.2.Sélecteur de longueurs d'onde-Le monochromateur	p.59
III.3.4.3.Cellules	p.60
III.3.4.4.Détecteurs	p.60
III.4.Mesures diélectrique	p.60
III.4.1.principe physique de la spectroscopie d'impédance	p.60
III.4.2.Création de la polarisation	p.60
III.4.3.susceptibilité électrique	p.62
III.4.4.Constante diélectrique	p.63
III.4.5.Phénomènes de polarisation aux basses fréquences	p.63
III.4.6.Polarisation des électrodes	p.64
III.4.7.Dispersion à basse fréquence LFD	p.64
III.4.8.Définition du facteur de pertes diélectriques (tan δ)	p.65
III.4.9.Relaxations du type Debye	p.65
III.4.10.Distribution des temps de relaxation	p.65

III.4.10.1.Relation de Cole-Cole	p.65
III.4.10.2.Relation de Davidson Cole	p.66
III.4.10.3.Relation de Havarilia -Negami	p.66
III.5.Microscopie électronique à transmission MET	p.66
III.5.1.introduction	p.66
III.5.2.principe	p.67
III.6.conclusion	p.71
Bibliographie	p.72
Chapitre IV: Résultats et discussion	
IV.1. Introduction	p.73
IV.2. Synthèse des échantillons	p.74
IV.2.1. Matériel et méthode	p.74
IV.2.1.1 Matériels utilisés	p.74
IV.2.1.2.Préparation des NPs de ZnO	p.75
IV.2.1.3. Préparation des NPs de ZnO dans un LI	p.75
IV.3. Caractérisations	p.76
IV.3.1. Etude par Diffraction des Rayon X	p.76
IV.3.1.1. Dispositif expérimentale	p.76
IV.3.1.2. Résultats et discussion	p.76
IV.3.1.3. Réseau cristallin et tailles des nanoparticules de ZnO	p.78
IV.3.1.4. Morphologie des NPs	p.80
IV.3.2. Etude par la spectroscopie infrarouge FTIR	p.80
IV.3.2.1. Dispositif expérimentale	p.80
IV.3.2.2. Résultats et discussion	p.80
IV.3.3. Etude par la spectroscopie UV-Visible	p.83
IV.3.3.1. Dispositif expérimentale	p.83
IV.3.3.2. Résultats et discussion	p.83
IV.3.3.3. Gap optique des nanoparticules déterminé par UV-Vis	p.83
IV.3.4. Etude par mesures diélectriques	p.85
IV.3.4.1 Dispositif expérimentale	p.85
IV.3.4.2. Résultats et discussion	p.85

IV.3.4.2.1. Effet de la température et de la fréquence sur la conductivité	
et la permittivité électrique	p.85
IV.3.4.2.2.Energie d'activation	p.87
IV.4.3.2.3. Résumé	p.91
IV.3.5. Etude par Microscope électronique en transmission (MET)	p.92
IV.3.5.1 Dispositif expérimentale	p.92
IV.3.5.2. Résultats et discussion	p.92
Bibliographies	p.94
Conclusion générale	p.95